一笔画和中国邮递员问题

合集下载

第八讲邮递线路问题

第八讲邮递线路问题

第八讲邮递线路问题一、多笔画在第一册第八讲例1中,我们讨论了下列图形的一笔画问题。

通过观察列出了下表:由此表我们发现,一个图能否一笔画成与图的奇结点的个数有关系。

如果我们再进一步观察,还可发现,这些图中的奇结点的数目都是偶数。

这是一种偶然的巧合还是一种普遍的规律呢?如果我们再观察一些其它的图,结果也是没有出现奇结点数目是奇数的现象。

于是我们可以作如下猜想:在任何一个图中,奇结点的个数一定是偶数。

这是因为一个图的每条边都与两个结点相连结,所以,如果把一个图的所有结点的度数相加,由于每条边都计算了两次,其度数和是边数的2倍,它是偶数,可设为2n。

又因为每个偶结点的度数都是偶数,它们的度数和当然是偶数,可设为2m。

由此可知,所有奇结点的度数和为2n-2m=2(n-m)(n、m为自然数)也是一个偶数,但每个奇结点的度数都是奇数,所以奇结点的个数一定是偶数。

否则,如果奇结点的个数是奇数,那么,因为奇数个奇数的和是奇数,就得到所有奇结点度数的和是奇数。

这与上述结论相矛盾。

这就说明,在任何一个图中,奇结点的个数一定是偶数。

例1 先数一数下列各图形中奇结点的个数。

如果有的图形不能一笔画成,那么,至少几笔才能画成?分析与解:图8-2(a)中只有两个奇结点,根据欧拉定理,可从A点出发一笔画出到B点结束,图(b)中有四个奇结点,不能一笔画成。

图8-2(b)与图(a)比较,多出了折线CEFD。

如果先一笔画出图(a),再添一笔画出折线CEFD,就可得到图(b)。

因此,图(b)至少两笔才能画成。

图8-2(c)中共有六个奇结点,也不能一笔画成。

图(c)与图(b)比较又多出了一面旗子。

它也含有两个奇结点,于是在两笔画出图(b)的基础上,再添一笔画上旗子,就成了图(c)。

因此,图(c)至少三笔才能画成。

例2 图8-3(a)表示一所房子,问至少几笔才能画成?分析与解:1图8-3(a)所示的图中共有B、E、F、G、I、J六个奇结点,所以不能一笔画成。

小学数学《一笔画》练习题(含答案)精选全文

小学数学《一笔画》练习题(含答案)精选全文

可编辑修改精选全文完整版小学数学《一笔画》练习题(含答案)什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.所谓一笔画,就是从图形上的某点出发,笔不离开纸,而且每条线都只画一次不准重复.我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点.判断图形能否一笔画的规律:(1)能一笔画出的图形必须是连通的图形;(2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点; (3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点.以另一个奇点作为终点;(4)奇点个数超过两个的图形,一定不能一笔画.(一) 一笔画以及多笔画【例1】 观察下面的图形,说明哪些图可以一笔画完,哪些不能,为什么?对于可以一笔画的图形,指明画法.(f)(e)(d)JIH G F ED C BAJ K IHGFED CB A分析:(a )图:可以一笔画,因为只有两个奇点A 、B ;画法为A →头部→翅膀→尾部→翅膀→嘴. (b )图:不能一笔画,因为此图不是连通图.(c )图:不能一笔画,因图中有四个奇点:A 、B 、C 、D.(d )图:可以一笔画,因为只有两个奇点;画法为:A →C →D →A →B →E →F →G →H →I →J →K →B. (e )图:可以一笔画,因为没有奇点;画法可以是:A →B →C →D →E →F →G →H →I →J →B →D →F →H →J →A.(f )图:不能一笔画出,因为图中有八个奇点.[注意]在上面能够一笔画出的图中,画法并不是惟一的.事实上,对于有两个奇点的图来说,任一个奇点都可以作为起点,以另一个奇点作为终点;对于没有奇点的图来说,任一个偶点都可以作为起点,最后仍以这点作为终点.[巩固]判断下列图a、图b、图c能否一笔画.E分析:图a是一个连通的图形,图中只有点A和点F两个奇点,所以它能一笔画,其中一种画法如下:A —M—N—A—F—B—C—B—K—C—D—E—D—L—E—F.‘图b是一个不连通的图形,所以不能一笔画.图c是连通图,图中所有点都是偶点,所以能一笔画.其中一种画法如下:A—B—C—D—E—F—D—A—F —C—A.【例2】右图是某地区所有街道的平面图.甲、乙二人同时分别从A、B出发,以相同的速度走遍所有的街道,最后到达 C.如果允许两人在遵守规则的条件下可以选择最短路径的话,问两人谁能最先到达C?分析:本题要求二人都必须走遍所有的街道最后到达C,而且两人的速度相同.因此,谁走的路程少,谁便可以先到达C.容易知道,在题目的要求下,每个人所走路程都至少是所有街道路程的总和.仔细观察上图,可以发现图中有两个奇点:A和C.这就是说,此图可以以A、C两点分别作为起点和终点而一笔画成.也就是说,甲可以从A出发,不重复地走遍所有的街道,最后到达C;而从B出发的乙则不行.因此,甲所走的路程正好等于所有街道路程的总和,而乙所走的路程则必定大于这个总和,这样甲先到达C.[巩固]在六面体的顶点B和E处各有一只蚂蚁(见右图),它们比赛看谁能爬过所有的棱线,最终到达终点D.已知它们的爬速相同,哪只蚂蚁能获胜?分析:许多同学看不出这是一笔画问题,但利用一笔画的知识,能非常巧妙地解答这道题.这道题只要求爬过所有的棱,没要求不能重复.可是两只蚂蚁爬速相同,如果一只不重复地爬遍所有的棱,而另一只必须重复爬某些棱,那么前一只蚂蚁爬的路程短,自然先到达D点,因而获胜.问题变为从B到D与从E到D哪个是一笔画问题.图中只有E,D两个奇点,所以从E到D可以一笔画出,而从B到D却不能,因此E点的蚂蚁获胜.[数学小游戏] 用一笔画成四条线段把所有的点连起来,怎样画?分析:通过试画,似乎不可以画,但通过仔细观察,对照一笔画的规律,便可发现,若添上两个辅助点,就可画成.如右图:FE DCB ADCBA我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n 个奇点(n 为自然数),那么这个图一定可以用n 笔画成.公式如下: 奇点数÷2=笔画数,即2n ÷2=n.【例3】 判断下列图形能否一笔画.若能,请给出一种画法;若不能,请加一条线或去一条线,将其改成可一笔画的图形.IH G FED CBA 图aH G I KLJ F EDCBA 图b DC HG EFBA图c分析:图a :原图有四个奇点,所以不能一笔画,在B,D 两点之间加一条线后,图中只有两个奇点,故可以一笔画出,如图d 所示.画法:H →A →B →C →D →E →F →I →D →B →I →H →G →F .图b :原图有四个奇点,所以不能用一笔画.去掉K ,L 两点之间的连线,图中只有两个奇点,故 可以一笔画出,如图e 所示.画法:B →C →D →E →F →→J →H →G →I →A →B →K →I →L →E .图c :原图有四个奇点,所以不能用一笔画.在B ,C 两点之间加一条线后,图中只有两个奇点, 故可以一笔画出,如图f 所示.画法:A →E →D →H →A →B →F →C →G →B →C →D注意:a 、b 、c 三个图都是连通的图形,但由于每个图的奇点个数均超过两个,所以都不能一笔画.图dA BCD EFG H IH GI KLJ F EDCB A 图eDC HG EFBA图f[前铺]观察下面的图,看各至少用几笔画成?分析:(1)图中有8个奇点,因此需用4笔画成. (2)图中有12个奇点,需6笔画成. (3)图是无奇点的连通图,可一笔画成.DC BA(2)(1)FEC DB A分析:图(1)中有6个奇点,因此可添上两条(或3条)边后可改为一笔画;又因为这个图中,把这6个奇点任意分为3对后,最多只有两对奇点间有边相连,因此,可去掉两条边后改为一笔画,举例如图(3)~(6).图(2)中有4个奇点,因此,可添上2条(或1条)边后改为一笔画;又因为把奇点按A 与B ,C 与D (或A 与D ,B 与C )分为两对后,每对间均有边相连,因此,可去掉两条(或1条)边后改为一笔画.举例如图(7)~(8).说明:图(6)运用了两种方法,去掉边BC ,添上边AD 与EF.(二)一笔画的实际应用【例5】 18世纪的哥尼斯堡城是一座美丽的城市,在这座城市中有一条布勒格尔河横贯城区,这条河有两条支流在城市中心汇合,汇合处有一座小岛A 和一座半岛D ,人们在这里建了一座公园,公园中有七座桥把河两岸和两个小岛连接起来(如图a).如果游人要一次走过这七座桥,而且对每座桥只许走一次,问如何走才能成功?:这个有趣的问题引起了著名数学家欧拉的注意,他证明了七桥问题中提到的走法根本不存在. 下面,我们考虑如下两个问题:(1)如果再架一座桥,游人能否走遍所有这八座桥?若能,这座桥应架在何处?若不能,请说明理由. (2)架设几座桥可以使游人走遍所有的桥回到出发地?而得到一个由四个点和七条线组成的图形(如图b).在图b 中,点A ,B ,C ,D 四个点均为奇点,显然不能一笔画出这个图形.若将其中的两个奇点改成偶点,即在某两个奇点之间连一条线,这样奇点个数由四个变为两个,此时,图形可以一笔画出.如我们可以选择奇点B ,D ,在B ,D 之间连一条线(架一座桥),如图c .在图c 中只有点A 和C 两个奇点,那么我们可以以A 为起点,C 为终点将图形一笔画出.其中一种画法为:A →C →A →B →A →D →B →D →C所以,如果在河岸B 与小岛D 之间架一座桥,游人就可以不重复地走遍所有的桥.(2)在(1)的基础上,再在另外两个奇点A 与C 之间连一条线(即架一座桥),使这两个奇点也变成偶点,如图d .那么A ,B ,C ,D 四个点均为偶点,所以图d 可以一笔画出,并且可以以任意点为起点,最后 仍回到这个点.其中一种画法为:A →C →A →C →D →A →B →D →B →A这表明:在河岸B 与小岛D 之间架一座桥后,再在小岛A 与河岸C 之间架一座桥,共架设两座桥,就可以使游人不重复地走遍所有的桥并回到出发地.[巩固]如图所示,两条河流的交汇处有两个岛,有七座桥连接这两个岛及河岸.问:一个散步者能否一次不重复地走遍这七座桥?分析:用点表示小岛与河岸,用连接两点的线表示连接相应两地的桥,如图,有2个奇点,所以该图可以一笔画,即可以一次不重复地走遍这七座桥.例如右下图的走法.EDCBA【例6】 有一个邮局,负责21个村庄的投递工作,右图中的点表示村庄,线段表示道路.邮递员从邮局出发,怎样才能不重复地经过每一个村庄,最后回到邮局?分析:图中有两个奇点,所以该图可以一笔画,但因为邮局所在点为奇点,所以要一笔画就不可能回到邮局.又图中A,B,C,D,E,F,G,H,I,J十点均有4条线段与之相连,如果我们将上图一笔画的话,就要经过以上十点各两次,这也不满足题目的要求,所以要将这些点相连的线段去掉一些,使得与这些点相连的线段均只有两条,并且将两个奇点也变成只有两条线段与之相连,这样得到的图形即可一笔画,又只经过每个点一次,并且可以回到邮局,一种可行路线如下:邮局I JHGF E D C B A 邮局邮局【例7】 右图是某博物馆的平面图,相邻两个展厅之间有一扇门相通,每一个展厅都有一门通往馆外.问参观者能否不重复地一次穿过每一扇门?若能,请找出一条可行路径;若不能,请说明理由.如果允许关闭某一扇门,问参观者能否不重复地穿过每一扇开着的门?分析:我们把展厅A,B,C,D,E 及馆外F 看成某个图中的点,把两个展厅之间的门看作是连接表示这两个展厅的点的线.根据题中条件知,馆外F 与A ,B ,C ,D ,E 各展厅相通,这样将点F 与点A ,B ,C ,D ,E 用线连接;展厅A 与展厅B ,C ,D 相通,将点A 与点B ,C ,D 用线连接;展厅B 除与A 相通外,它还与D ,E 展厅相通,将B 与D ,E 连接;除此之外,展厅C ,D 相通,展厅D ,E 相通,将点C ,D 连接,再将点D ,E 连接(如图a).于是本题要解决的问题就变成了能否将图a 一笔画的问题.可以看出:图a 中共有六个点,其中有四个奇点,它们分别为C ,D ,E ,F ,由一笔画的规律可知,图a 不能一笔画.也就是说,参观者不能够不重复地一次穿过每一扇门.如果允许关闭某一扇门,这相当于在图a 中去掉一条线,那么参观者就有可能不重复地一次穿过每一扇门.我们知道,在图a 中有四个奇点C ,D ,E ,F 为了把图a 改成一笔画图形,我们设法减少奇点个数,使奇点数变为两个.为此,我们可以去掉一条连接两个奇点的线,如去掉E 与F 间的连线,相应的图a 就变成了图b .在图b 中,除了原来的C 和D 是奇点外,其余点全部是偶点,故图b 可以一笔画.其中一种画法为:C →F →D →E →B →F →A →B →D →A →C →D .上面的分析表明,如果关闭连接E 、F 两展厅之间的门,参观者就可以不重复地一次穿过每一扇开着的门. 本题与七桥问题类似,只是将行人过桥换成了参观者穿过每一扇门.我们将这个问题转化为一笔画问题来研究.[前铺]右图是某展览馆的平面图,一个参观者能否不重复地穿过每一扇门?如果不能,请说明理由.如果能,应从哪开始走? FFF F E C D BA EB A分析:我们将每个展室看成一个点,室外看成点E ,将每扇门看成一条线段,两个展室间有门相通表示两个点间有线段相连,于是得到下图.能否不重复地穿过每扇门的问题,变为下图是否一笔画问题.EDC BA图中只有A ,D 两个奇点,是一笔画,所以答案是肯定的,应该从A 或D 展室开始走. 【例8】 已知长方体木块的长是80厘米,宽40厘米,高80厘米(如右图),并且要求蜘蛛在爬行过程中只能前进,不能后退,同一条棱不能爬两次.请问这只蜘蛛最多要爬行多少厘米?分析:图中八个顶点均为奇点,所以不能一笔画,要使其能一笔画,至少要去掉三条棱,使上图只有两个奇点,就可以满足一笔画的条件.长方体的棱长总和一定,(80+80+40)×4=800(厘米),因此去掉的三条棱越短,蜘蛛爬过的距离就越远.所以我们去掉三条棱长为40厘米的棱,于是可知,蜘蛛爬行的最远距离为: 800-40×3=680(厘米).蜘蛛的爬行路径为:G →F →C →D →G →H →A →B →E →H(如右图).[注意]这是一个立体图形,它有八个顶点,我们把长方体的棱看作顶点与顶点之间的连线,蜘蛛只能前进不能后退,并且每一条棱不能爬两次,这实质上是一个一笔画问题.【例9】 右图是某小区的街道分布图,街道长度如图所示(单位:公里),图中各点表示不同楼的代号.一辆垃圾清扫车从垃圾站(垃圾站位于C 楼与D 楼之间的P 处)出发要清扫完所有街道后仍回到垃圾站,问怎样走路线最短,最短路线是多少公里?分析:为了少走冤枉路和节省时间,题目中要求最短路线,根据一笔画原理,我们知道一笔画路线就是最短路线.本题要求清扫车从P点出发,仍回到P 点.通过观察上图可知,图中有六个奇点,根据一笔画规律可知,清扫车想清扫完所有街道而又不走重复的路是不可能的.要使清扫车从P 点出发,最后仍回到P 点,就必须把图中所有的奇点都变成偶点,即在两奇点之间添加一条线.在实际问题中,就是清扫车在哪些街道上重复走的问题,由于每条街道的长度不同,因此需要我们考虑清扫车重复走哪条街道才使总路线最短.为使六个奇点都变成偶点,我们可以有下图中的四种方法表示清扫车所走的重复路线,其中填虚线的地方表示的是重复路线.重复的路程分别为:图a :2×2+3=7;图b :3+4×2=11;图C :3×3=9; 图d :3+6×2=15.显然,重复走的路线最短,总路程就最短.从上述计算中就可找到最短路线图,即下面四个图中的图a .408080H G F ED C BA804080H GFED CBA图b 图a图d图c在图a 中,所有点均为偶点,是一笔画图形.清扫车可按如下路径走:P →D →G →D →E →F →G →H →L →H →C →B →L →M →A →B →C →P ,全程为:(1+2+4+2)×2+3×5+2×2+3=40(公里).【例10】 邮递员李文投送邮件的街道以及街道的长度如右图所示(单位:千米),每天小李要从邮局出发,走遍所有街道后回到邮局.请你帮他设计一条最短路线,并计算出这条路线有多少千米?分析:本题仍可以用一笔画图形的方法来解决.在图a 中共有六个奇点E ,F ,G ,H ,I ,J ,把这些奇点配对,每对之间用虚线连接(如图a),其中要用到D 点,这样图中就没有奇点了,从而可以不重复地走遍所有的街道.由于邮递员李文要重复走一些路段,因此重复走的路越短越好,即添上去的重复线段的总长度越短越好.在图a 中H 与E 之间有重叠,这样势必会增加李文所走路程的长度,应作调整.经调整后,将重叠部分去掉便得图b .在图b 的圈形闭路IHGJI 中,I ,J ,G ,H 各点没有连线时是奇点,连线后变成偶点,增加长度为50×2=100千米.而如果连IJ 和HG ,增加的长度仅为10×2=20,由此可知图b 需继续作调整,改成图c ,这种连接方法是最好的,它使李文行走的路线最短.根据以上分析,为了保证添上去的线段之和最短,应遵循下面的两条原则:(1)连线不能有重叠的线段;(2)在每一个圈形闭路上,连线长度之和不能超过 这个闭路总圈长的一半.经过分析可以知道,图c 的连接方法能使邮递员李文行走路线最短,而且能保证李文从邮局出发又回到邮局.这时他的行走路线为:邮局→A →I →J →I →H →G →H →E →D →F →D →G →J →B →C →D →E →邮局 他行走的全程为: (50+15)×4+20×4+10×6+20×2=440(千米).图a图b图c[小结]本题中采用的方法叫做“奇偶点图上作业法”,用这种方法来确定最短路线比较简便实用.此方法可以用下面的口诀来描述:画出路线图,确定奇偶点;奇点对对连,连线不重叠;闭路添连线.不得过半圈.[巩固]右图是某地区街道的平面图,图上的数字表示那条街道的长度.清晨,洒水车从A 出发,要洒遍所有的街道,最后再回到A.问:如何设计洒水路线最合理? 分析:这又是一个最短路线的问题.通过分析可以知道:在洒水路线中,K 是中间点,因此必须成为偶点,这样洒水车必须重复走KC 这条边(如下左图).至此,奇点的个数并未减少,仍是6个.容易得出,洒水车必须重复走的路线有:GF 、IJ 、BC.即洒水路线如下右图.全程45+3+6=54(里).1. (例1)判断下列各图能否一笔画.图aG I H F ECD BA图bF ED CBA分析:图a 中九个点全是偶点,因此可以一笔画,其中一种画法为:A →F →B →G →C →H →D →E →H →l →→F →G →l →E →A .图b 中A ,B ,C ,D 四个点均为奇点,故不可以一笔画.图c 中,只有A,C 为奇点,故可一笔画.其中一种画法为:A →D →E →C →H →N →G →M →F →A →B →C .2. (例3)下列各图至少要用几笔画完?分析:(1)4笔;(2)4笔;(3)2笔;(4)1笔;(5)1笔;(6)1笔.3.(例6)右图是某展览厅的平面图,它由五个展室组成,任两展室之间都有门相通,整个展览厅还有一个进口和一个出口,问游人能否一次不重复地穿过所有的门,并且从入口进,从出口出?分析:把每个展室看作一个结点,整个展厅的外部也看作一个点,两室之间有门相通,可以看作两点之间有边相连.这样,展厅的平面图就转化成了我们数学中的图,一个实际问题也就转化为这个图(如下图)能否一笔画成的问题了,即能否从A出发,一笔画完此图,最后再回到A.上图(b)中,所有的结点都是偶点,因此,一定可以以A作为起点和终点而一笔画完此图.也即游人可以从入口进,一次不重复地穿过所有的门,最后从出口出来.下面仅给出一种参观路线:A→E→B→C→E→F→C→D→F→A.4.(例7)一辆清洁车清扫街道,每段街道长1公里,清洁车由A出发,走遍所有的街道再回到A.怎样走路程最短,全程多少公里?分析:清洁车走的路径为: ABCNPBCDEFMNEFGHOLMHOIJKPLJKA. 即:清洁车必须至少重复走4段1公里的街道,如下图.最短路线全程为28公里.5.(例10)一个邮递员的投递范围如右图,图上的数字表示各段街道的长度.请你设计一条最短的投递路线,并求出全程是多少?分析:邮递员的投递路线如下图,即:路线为:ABCDEDOBOMNLKLGLNEFGHIMOJIJA.最短路线的全程为39+9=48.。

一笔画问题

一笔画问题

一笔画问题画一个图案,如果用笔既不重复也不遗漏,纸不离笔,一笔画成,那么就称这个图案是一笔画图案.现在我们来研究的问题是:(1)怎样的图案才能一笔画成?(2)如果一个图案能一笔画成,那么该从哪里起笔到哪里收笔?需提醒大家的是,这些问题与图案中的“奇点”的个数有关.何谓奇点呢?我们知道,任何图案都是由线条(直线或曲线)连成的.在图案中,由三条或三条以上的方向各不相同的线连接在一起的点叫做图案点,通过图案点的线是奇数条就称奇点(当然,通过图案点的线是偶数条就称偶点,现在只需回答前面的问题而与偶点无关).例如,在下面各图案中的奇点个数见统计表(请读者对照图案辨认奇点).统计表:接着就请读者朋友拿起你的笔来逐个试画以上各图案,看能否一笔画成,将结论填在统计表内.并注意体会能一笔画的图案应该怎样画.最后,请根据上表归纳出前面两个问题的答案.【规律】(1)奇点数为0或2的图案可以一笔画成.奇点数多于2的图案不能一笔画成.(2)画奇数为0的图案时,可以选择任意点起笔都能一笔画成;画奇数为2的图案时,必须选择其中的一个奇点起笔,而到另一个奇点收笔才能一笔画成.【练习】1.下面各图案,能一笔画出来吗?试一试.2.容易看出,下面的两个图案都不能一笔画成,请在每个图案上各补画一条线就能使新图案一笔画成了.会吗?3.这是大数学家欧拉曾经研究过的一个著名数学问题----七桥问题.东普士的多尼斯堡城中有一条横贯城区的河流,河上有两个岛,两岸和两岛之间共架有七座桥、如下图所示:问人们能不重复地走遍这七座桥吗?4.回龙州公园的游览点与路线示意图如下.如果要使游人游完所有的游览点而不重复行走的路线,请问入口处和出口处应该设在什么位置?如果一个图形可以用笔在纸上连续不断而且不重复地一笔画成,那么这个图形就叫一笔画。

显然,在下面的图形中,(1)(2)不能一笔画成,故不是一笔画,(3)(4)可以一笔画成,是一笔画。

同学们可能会问:为什么有的图形能一笔画成,有的图形却不能一笔画成呢?一笔画图形有哪些特点?关于这个问题有一个著名的数学故事——哥尼斯堡七桥问题。

(六)中国邮递员问题

(六)中国邮递员问题
该图特点:d(vi )均为偶数
v•1 e 1 v•2
e4
e5
e2
v•3 e 3 v•4
该图不存在欧拉回路
存在奇点
定理 无向连通图G为欧拉图的 充要条件是G中无奇点
证明:必要性
已知G=(V,E)为欧拉图,即存在一条欧拉回路C, C经过G的每一条边,由于G为连通图, 所以G中的每个点至少在C中出现一次
v•35
• • 9
v
4
4
4
4 v9
G1
步骤1、若图中某条边有两条或多于两条的重复边
同时去掉偶数条,使图中每一条边最多有一条重复边
可得到重复边权和较小的欧拉图 G2 G2的重复边权和= 21
v•1 2 •v 6 4 •v 7
• • • v
5
2
6
v
3
5
4
3
v8
v•3 5
4
4
9 v•4 4 •v 9
G2
G2是欧拉图, 重复边权和=21
记 G G C 1 ( V , E ) E , EE1, V是 E中边的端 在 G 中, G 与 C 以 1的公v共 2为顶 起点 点取C 一 2
简单 C 2 : { v 2 ,回 e 1,0 v 5 ,e 5 路 ,v 6 ,e 6 ,v 1 ,e 1 ,v 2 }
记 G G C 2 ( V , E ) E , EE1, V是 E中边的
必要性G: 有设 一条 vi为以起,v点 j为终点的欧 L 拉 在 G上增加一 e(v条 i,vj)边 ,得连通 G, 图 把e边 加L 到 中G 得 的一条欧 C,拉 即 G为 回 欧路 拉图 d(v)为偶 ,v G 数 在 G 中,,d(vi ),d(vj )为奇数

哥尼斯堡七桥难题

哥尼斯堡七桥难题

从“哥尼斯堡七桥问题”谈到“中国邮递员问题”古城哥尼斯堡,景致迷人,碧波荡漾的普瑞格尔河横贯其境。

普瑞格尔河的两岸及河中的两个美丽的小岛,由七座桥连接组成了这座秀色怡人的城市(如图)。

古往今来,吸引了无数的游人驻足于此。

早在十八世纪,哥尼斯堡属于德国东普鲁士(今俄罗斯加里宁格勒。

1945年德国战败根据波茨坦会议的决定将哥尼斯堡连同东普鲁士一部分地区割让给苏联,次年为纪念刚逝世的苏联共产党和苏维埃国家领导人米哈伊尔·加里宁,柯尼斯堡更名为加里宁格勒)。

那时候,哥尼斯堡市民生活富足。

市民们喜欢四处散步,于是便产生这样的问题:是否可以设计一种方案,使得人们从自己家里出发,经过每座桥恰好一次,最后回到家里。

这便是著名的“哥尼斯堡七桥问题”。

热衷于这个有趣的问题的人们试图解决它,但一段时间内竟然没有人能给出答案。

后来,问题传到了瑞士著名数学家欧拉那里,居然也激起了他的兴趣。

他从人们寻求路线屡遭失败的教训中敏锐地领悟到,也许这样的方案根本就不存在。

欧拉经过悉心的研究,1736年,年方29岁的欧拉终于解决了这个问题,并向圣彼得堡科学院递交了一份题为《哥尼斯堡的七座桥》的论文。

论文不仅仅是解决了这一难题,而且引发了一门新的数学分支——图论的诞生。

论文的核心就是著名的“一笔画原理”:对满足下列两个要求的图就可以一笔画出:i.首先是连通图;ii.其次奇点个数为0或2,当且仅当奇点个数为0时,始点和终点重合,形成的一笔画称为欧拉回路,而当奇点个数为2时,形成的一笔画称为欧拉迹。

我们知道,对于可一笔画出的图,首先必须是连通的;其次对于图中的某点,如果不是始点或终点,那么它必有进有出,即交汇于此点的弧线总是成双成对的,此点必定是偶点。

如图,七桥问题的图的奇点的个数为4,这表明它不是欧拉回路,也不是欧拉迹,因而,不论始点和终点是否重合都不可能找到一条经过七座桥且每座桥只走一次的路线!随着时间的推移,图论不断发展,欧拉回路问题也有所拓广。

一笔画和中国邮递员问题

一笔画和中国邮递员问题
输出: 从v到w的欧拉通路/欧拉回路. 算法: (下一页)
《集合论与图论》第17讲
14
Fleury算法(递归形式)
算法:
(1) if d(v)>1 then e:=v关联的任意非割边
(2)
else e:=v关联的唯一边
(3) u:=e的另一个端点.
(4) 递归地求G-e的从u到w的欧拉通路
27
作业(#13)
p234, 习题八, 2,3,4(更正: G-v0)
《集合论与图论》第17讲
28
定理1: 设G是无向连通图,则 (1) G是欧拉图
⇔ (2) G中所有顶点都是偶数度 ⇔ (3) G是若干个边不交的圈的并 证明: (1)⇒(2)⇒(3)⇒(1). (1)⇒(2): 若欧拉回路总共k次经过顶点v,则
d(v)=2k.
《集合论与图论》第17讲
6
定理1((2)⇒(3))
(2) G中所有顶点都是偶数度 (3) G是若干个边不交的圈的并 证明: (2)⇒(3): 若删除任意1个圈上的边,
else Gi+1:=G-E(Pi+1), e:=Gi+1中与Pi+1上vk关联的任意边, Pi+1:= vk…vk. v*:=vk,v:=vk, i:=i+1, goto (1).
《集合论与图论》第17讲
19
逐步插入回路算法(举例)
《集合论与图论》第17讲
20
应用(轮盘设计)
000,001,010,011,100,101,110,111
i1goto集合论与图论第17讲20逐步插入回路算法举例集合论与图论第17讲21应用轮盘设计集合论与图论第17讲22应用轮盘设计00110110000001100010101011110111集合论与图论第17讲23中国邮递员问题中国邮递员问题chinesepostmanproblem

中国邮递员问题 ppt课件

中国邮递员问题 ppt课件

中国邮递员问题
管梅谷教授首先提出的方法是奇偶点图上作业 法(1962年)
Edmonds,Johnson(1973年)给出有效算法。
复杂度为 O(|V(G)|2|E(G)|)
中国邮递员问题
中国邮递员问题
解决这样的问题,可以采用奇偶 点图上作业法:如果在配送范围 内,街道中没有奇点,那么他就 可以从配送中心出发,走过每条 街道一次,且仅一次,最后回到 配送中心,这样他所走的路程也 就是最短的路程。
原来的问题可以叙述为在一个有奇点的图中, 要求增加一些重复边,使新图不含奇点,并且 重复边的总权为最小。
我们把使新图不含奇点而增加的重复边简称为 可行(重复边)方案,使总权最小的可行方案 为最优方案。
现在的问题是第一个可行方案如何确定? 在确定一个可行方案后,怎么判断这个方案是
否为最优方案? 若不是最优方案,如何调整这个方案?
Fleury算法的复杂度是 O(| E(G)|2)
中国邮递员问题
求欧拉回路的算法(回路算法)
算法思想: 首先得到一个回路C1, 再在剩
下的图G- C1中求一条与C1有公共顶点的
回路C2, 则C1与 C2构成一个更长的回路,
继续下去可得到含所有边恰好一次的回
路. 回路算法的复杂度是
O(|
E(G) |)
这个问题就是一笔画问题。
中国邮递员问题
管梅谷教授。
上海市人。1957年毕业于华 东师范大学数学系。历任 山东师范大学讲师、副教 授、教授、校长,中国运 筹学会第一、二届常务理 事,山东省数学学会第四 届副理事长,山东省运筹 学会第一届副理事长,山 东省世界语协会理事长。 是第六届全国政协委员。 从事运筹学及其应用的研 究,对最短投递路线问题 的研究取得成果。所提模 型在国外称为中国投递问 题。

第六节 中国邮递员问题

第六节 中国邮递员问题
2
e4
3
4
e3
e4
e1
V4 V2
3
4
e3
2
V2
e2
2
e5
V3
1
e2
2
e5
V3
1
e1
V4
(b)
8 30(a )
V1
V1
2
e4
3
4
e3
e4
e1
V4 V2
3
4
e3
2
V2
e2
2
e5
V3
1
e2
2
e5
V3
1
e1
V4
(d )
(c )

赋权图G的每个闭链上,
重复边权之和不超过该闭链总权数的一半
或该闭链中非重复边权之和. 设重复边权之和为a,非重复边权之和为b:
1 a (a b ) 2

ab
作业
195页
习题8
8.3题
第六节 中国邮递员问题 所谓中国邮递员问题,用图的语言来描 述,就是给定一个赋权连通图G ,要寻求一 个圈,使得经过G的每条边至少一次,并且 圈的总圈数最小。
这个问题是由我国数学家管梅谷教授于 1962年首先提出来的,因此称为“中国邮路 问题”. 这个问题和所谓的“一笔画问题”联系密切 。
8. 6. 1 一笔画问题
定理 8.6
加边法化欧拉图的原则和方法是:
在赋权图G的一些边上,加且仅加一条重 复边,使图G的每个顶点成为偶次顶点 ;

赋权图G的每个闭链上,重复边权之和不 超过该闭链总权数的一半或该闭链中非重复 边权之和.

例8.8 设有图 8-30(a)所示的赋权图,构造 总权数最小的闭的欧拉链.

物流算法

物流算法

3、“一笔画”问题(Drawing by one line)
还有一个用图论语言的描述方式:平面上有n个点,用最短的线将全部的点连起来。称为“一笔画”问题。
4、配送路线问题(Route of Distribution)
TSP问题在物流中的描述是对应一个物 Nhomakorabea配送公司,欲将n个客户的订货沿最短路线全部送到。如何确定最短路线。
10、扫描算法(Sweep Algorithm)
它也是求解车辆数目不限制的VRP问题的启发式算法。求解过程同样是4步:以起始点为原点建立极坐标系,然后从最小角度的两个客户开始建立一个组,按逆时针方向将客户逐个加入到组中,直到客户的需求总量超出了车辆的载重定额。然后建立一个新的组,继续该过程,直到将全部客户都加入到组中。
9、节约里程法(Saving Algorithm)
节约算法是用来解决运输车辆数目不确定的VRP问题的最有名的启发式算法。它的核心思想是依次将运输问题中的两个回路合并为一个回路,每次使合并后的总运输距离减小得幅度最大,直到达到一辆车的装载限制时,再进行下一辆车的优化。优化过程分为并行方式和串行方式两种。
VRP问题和TSP问题的区别在于:客户群体的数量大,只有一辆车或一条路径满足不了客户的需求,必须是多辆交通工具以及运输工具的行车顺序两个问题的求解。相对于TSP问题,VRP问题更复杂,求解更困难,但也更接近实际情况。
6、多个旅行商问题(Multiple TSP)
由于限制条件的增加,TSP问题可以衍生出多个旅行商问题(MTSP),就是一个出发点,m个旅行商的TSP,即所访问的客户没有需求,车辆没有装载的限制,优化目标就是要遍历所有的客户,达到总里程最短。
TSP问题最简单的求解方法是枚举法。它的解是多维的、多局部极值的、趋于无穷大的复杂解的空间,搜索空间是n个点的所有排列的集合,大小为(n-1)!。可以形象地把解空间看成是一个无穷大的丘陵地带,各山峰或山谷的高度即是问题的极值。求解TSP,则是在此不能穷尽的丘陵地带中攀登以达到山顶或谷底的过程。

CH6-10 中国邮递员问题

CH6-10 中国邮递员问题

☐图的存储表示;☐顶点的度数;☐图的连通性;☐顶点间的最短路径;☐欧拉图的判断,欧拉回路输出;问题描述:一个邮递员从邮局出发走遍每条街道,最后返回邮局,找到一条最短的行走线路?最短欧拉回路!问题提出:我国数学家管梅谷先生在20世纪60年代提出一笔画游戏✈✈满足“一笔画”:☐凡是由偶点组成的连通图,一定可以一笔画成.画时可以把任一偶点为起点,最后一定能以这个点为终点画完此图☐凡是只有两个奇点的连通图(其余都为偶点),一定可以一笔画成.画时必须把一个奇点为起点,另一个奇点终点☐其他情况的图都不能一笔画出实例:一个邮递员投递信件要走的街道如图所示,图中的数字表示各条街道的千米数,他从邮局出发,要走遍各街道,最后回到邮局。

怎样走才能使所走的行程最短?全程多少千米? 2 1 2111怎么样使非欧拉图变为欧拉图?除去奇点!添加边或删除边。

怎么样除去奇点?这里应该采用的办法?重复某些边(添加边)2 1 23分析:图中共有8个奇点,不可能不重复地走遍所有的路。

必须在8个奇点间添加4条线,才能消除所有奇点,从而成为能从邮局出发最后返回邮局的一笔画。

当然要在距离最近的两个奇点间添加一条连线,图中虚线所示,共添加4条连线,这4条连线表示要重复走的路,显然,这样重复走的路程最短,全程34千米。

走法不唯一邮局2 1 2111 2 1 23☐建立街区无向网的邻接矩阵;☐求各顶点的度数;☐求出所有奇度点;☐图的连通性判断;☐求出每一个奇度点到其它奇度结点的最短路径;☐根据最佳方案添加边,对图进行修改,使之满足一笔画;☐对图进行一笔画,并输出;其一:“添加”哪些边?☐“添加”的边所依附的顶点必须均是奇度顶点☐“添加”的边必须是已有的边,也就是有的边不止走一次其二:如何选择代价最小的边?☐奇数顶点之间的最短路径☐Dijstra算法☐Floyd算法其三:输出一笔画?☐FE算法(F leury E uler)V4U1U6V3U5U2V1U4V2U31111111222222533V4V3V1V241.求奇度点的最短路径2.构造奇度点间的完全加权图3.求图的最佳(总权最小)完备匹配M={1,4;2,3}4.求1和4之间的最短轨V1 U1 V4;2和3之间的最短轨V2 U4 V3;5. 加同权边即可一个实例如果一个匹配中,图中的每个顶点都和图中某条边相关联,则称此匹配为完全匹配,也称作完备匹配给定一个图G ,M 为G 边集的一个子集,如果M 满足当中的任意两条边都不依附于同一个顶点,则称M 是一个匹配1.求奇度点的最短路径2.构造奇度点间的完全加权图3.求图的最佳(总权最小)完备匹配M={1,4;2,3}4.求1和4之间的最短轨V1 U1 V4;2和3之间的最短轨V2 U4 V3;5. 加同权边即可给定一个图G,M为G边集的一个子集,如果M满足当中的任意两条边都不依附于同一个顶点,则称M是一个匹配如果一个匹配中,图中的每个顶点都和图中某条边相关联,则称此匹配为完全匹配,也称作完备匹配1.取G 中的起始顶点V 0,令P 0=V 02.假设沿着P i = v 0e 1v 1e 2v 2…e i v i 走到顶点vi ,按下面方法从E(G)-{e 1,e 2,…,e i }中选e i+1①e i+1与v i 相关联;②除非没有别的边可供选择,否则e i+1不应该是G i =G-{e 1,e 2,…,e i }中的桥3.当2不能再进行时算法停止V4V1V2V5V6V7V8V3V4V1V2V5V6V7V8V3总结步骤1.求图G中奇度结点集合V0={v};2.对V0中的每个顶点对u,v,用Dijkstra算法求距离d(u,v);3.构造加权完全图;4.求加权图的总权最小的完备匹配M;5.在G中求M中同一边的结点间的最短轨;6.把G中在上一步求得的每条最短轨之边变成同权倍边,得到欧拉图G1;7.用FE算法求G1的一条欧拉回路W,W即为解;举例:邮递员要从邮局出发,走遍左下图(单位:千米)中所有街道,最后回到邮局,怎样走路程最短?全程多少千米?其二:如何选择代价最小的边?☐奇数顶点之间的最短路径☐Dijstra算法☐Floyd算法☐最小生成树的方法☐Prim算法☐Kruskal算法奇度结点间最短路径计算➢如果只有两个奇度结点,那么最短路径就是原来每条街道代价加上两个奇度顶点之间的最短代价之和;➢如果有多个奇度结点,要进行不同的组合。

(仓库管理)仓储管理计算题

(仓库管理)仓储管理计算题

1. 某公司经过对某种产品库存的仔细研究,发现其存货持有成本为产品的单位成本的25%,并且由于出现缺货所导致的延期交货的成本为每年产品的单位成本的150%。

这种产品的单位成本为400 元,每次再订货成本为100 元。

针对这种产品的每年的需求是恒定不变的,为300 个产品单位,并且所有的缺货情况都可以通过延期交货的方式来进行弥补。

最佳的订购政策是什么?在一年中有多少比例的时间是通过延期交货来满足需求的?2. 某种产品的需求是每年2000个产品单位,每一个订单的成本是10元,每年的存货持有成本是产品单位成本的40%,而单位成本根据订单批量变化的规律如下:订单批量小于500 个产品单位,单位成本为 1 元;订单批量在500~999 个产品单位之间,单位成本为0.80 元;订单批量大于等于1000个产品单位,单位成本为0.60 元;在这种情况下,最佳的订单批量是多少?3. C公司生产中使用的甲零件,全年共需耗用3600件。

该零件既可自行制造也可外购取得。

如果自制,单位制造成本为l0 元,每次生产准备成本34.375元,每日生产量32 件。

如果外购,购入单价为9.8元,从发出定单到货物到达需要l0 天时间,一次订货成本72 元。

假设该零件的每年单位储存成本为4元,一年按360天计算。

要求通过计算确定C公司自制和外购方案哪个方案更好。

例题1例:某公司发现,针对某种产品的需求呈正态分布,需求的平均值为每年2000个产品单位,标准偏差为400个产品单位。

产胎的单位成本为100欧元,订货至交货周期为3周。

请计算在服务水平为95 %的情况下的安全存货是多少?解:已知条件为6)=400个产品单伐,L=3周查表,对应?5%的服务禾平,Z值等于1.64,故可以得出:妥全库存二Z x b。

x L i/i =1*64 * 400 x (3/52 ) b- =158 (个产品单住)例题2.某公司每年以每个单位30美元的价格采购6 000个单位的某种产品。

中国邮递员问题

中国邮递员问题

管梅谷
管梅谷教授。 上海市人。1957年毕业于华 东师范大学数学系。历任 山东师范大学讲师、副教 授、教授、校长,中国运 筹学会第一、二届常务理 事,山东省数学学会第四 届副理事长,山东省运筹 学会第一届副理事长,山 东省世界语协会理事长。 是第六届全国政协委员。 从事运筹学及其应用的研 究,对最短投递路线问题 的研究取得成果。所提模 型在国外称为中国投递问 题。
求解。
推广的中国邮递员问题: 混合图的中国邮递员问题,有各种限制 的中国邮递员问题,动态网络的中国邮 递员问题。 其他相关问题-旅行售货员(TSP)问题, 灾清巡视路线。

谢谢!
v1 2 5 v2 5 9 v3 v4 图2 3 v8
4
3
v7
6
v9 4 4 4
v6
4
v5

这样就得到初始方案.在这个图中,没有奇点, 故称它为欧拉图。对应于这个可行方案,重复 边总权为51。
思考



这样的可行方案是不是只有一种呢? 在确定一个可行方案后,怎么判断这个方案是 否为最优方案? 若不是最优方案,如何调整这个方案?

欧拉图及求欧拉回路的算法
欧拉行迹—含所有边恰好一次的行迹 欧拉回路—含所有边恰好一次的回路 欧拉图—存在欧拉回路的图

设G是连通图, 下列命题等价: (1) G是欧拉图. (2) 每个顶点的度数都是偶数. (3) G是两两无公共边的圈的并.
欧拉图及求欧拉回路的算法
求欧拉回路的算法(Fleury算法,1921年) 算法思想: “过河拆桥,尽量不走独木桥”. 即若已选定迹 Wi v0e1v1e2 eivi , 从 G Wi 中选 取下一条边 ei 1 使得ei 1 与 vi 相关联, 且ei 1 不是 G Wi 的桥, 除非无边可选.

中国邮递员问题

中国邮递员问题

(割边)
FE算法复习:
(1)任取 v0属于V(G),令W0=v0. (2)设行迹Wi=v0v1v2…vi已选定,则从E(G)-E(W)中 选一条边ei+1,使得ei+1与vi相关联,且非必要时, ei+1 不要选G-E(W)的桥(所谓桥是一条删除后使连通图 不再连通的边)。 (3)反复执行(2), 直至每边e属于E(G)皆入选为止。

情况2:加权图G中有奇次顶时中国邮路问 题的解法(某些边要通过两次)
解法步骤:设G是连通加权图 1)求G中奇次顶集合V0; 2)对V0中的每个顶对u,v,用Dijkstra算法求距离d(u,v); 3)构造加权完全图K|V0|,完全图中顶点即为V0中顶点,边uv 之权为d(u,v); 4)求加权图K|V0|的总权最小的完备匹配M。 5)在G中求M中同一边之端点间的最短轨。 6)把G中在(5)求得的每条最短轨之边变成同权倍边,得 Euler图G’. 7)用FE算法求G’的一条Euler回路W’,W’即为中国邮路。 实例探讨

中国邮递员问题--邮递员从选好邮件去投递,然后返回邮 局,必须经过由他负责的每条街道至少 一次,怎么走耗时最少?
情况 1:邮路可抽象为 Euler图,则所有路经过恰好一次。 情况 2:邮路抽象成的图 G中包含奇次顶。(有的路径需要 重复走)
情况1:仍要遵循一定规则走
定理6.3
若G是Euler图,FE算法终止时得 到的W是Euler回路。
本质:此算法能实现无重复边的一笔画,且
回到出发点。

证明思路 (1)证明是闭行迹。 (2)证明能够经过一切边。(反证不能经过一切边)
基本概念复习
行迹:各边相异的道路。 Euler行迹:在图G中含一切边的行迹。 Euler回路:含一切边的闭行迹。 Euler图:若G中存在Euler回路。

小学奥数教程:奇妙的一笔画_全国通用(含答案)

小学奥数教程:奇妙的一笔画_全国通用(含答案)

所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢?下面,我们就来探求解决这个问题的方法.什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点. 一笔画问题:(1)能一笔画出的图形必须是连通的图形;(2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点; (3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点,以另一个奇点为终点; (4)奇点个数超过两个的图形,一定不能一笔画. 多笔画问题:我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n 个奇点(n 为自然数),那么这个图一定可以用n 笔画成.模块一、判断奇偶点【例 1】 我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点.下图中,哪些点是偶点?哪些点是奇点?J O I H G FED CBA【考点】一笔画问题 【难度】2星 【题型】解答 【解析】 奇点: D H J O 偶点:A B C E F G I 【答案】奇点: D H J O 偶点:A B C E F G I【例 2】 同学们野营时建了9个营地,连接营地之间的道路如图所示,贝贝要给每个营地插上一面旗帜,要求相邻营地的旗帜色彩不同,则贝贝最少需要 种颜色的旗子,如果贝贝从某营地出发,不走重复路线就 (填“能”或“不能”)完成任务.【考点】一笔画问题 【难度】2星 【题型】填空 【关键词】华杯赛,六年级,初赛,第10题 【解析】 最少需要3种颜色的旗子。

因为中间的三点连成一个三角形,要使这三点所代表营地两粮相邻,要使相邻营地没有相同颜色的旗子,必须各插一种与其它两点不同颜色的旗子。

Chap.6-邮递员问题

Chap.6-邮递员问题

11
6.中国邮递员问题 6.中国邮递员问题
v1
5 2
v8
3
4
v7
3 4
v2
5
6
v9
4
v6
4 4
v3
9
v4
v5
图8.29
12
6.中国邮递员问题 6.中国邮递员问题
在连接 v2 和 v4 的链中任取一条,比如链 ( v2,v1,v8,v7,v6,v5,v4 ) , 在 加 入 重 复 边 [v2,v1],[v1,v8],[v8,v7],[v7,v6],[v6,v5],[v5,v4 ]. 同 样 , 任 取 连 接 v6 和 v8 的 一 条 链 (v8,v1,v2,v3,v4,v5,v6), 在 加 入 重 复 边 [v8,v1],[v1,v2],[v2,v3],[v3,v4],[v4,v5],[v5,v6 ].于是,得到图8.30 在连通图8.30中,没有奇点,故它是欧拉 图。对于这条邮递路线,重复边的总长 为:2W12+W23+W34+2W45+2W56+W67+W78+2W18=51。
6
6.中国邮递员问题 6.中国邮递员问题
v1-v2-v4-v3-v2-v4-v6-v5-v4-v6-v5-v3-v1,
总长是12。 也可以按照另一条路线走:
v1-v2-v3-v2-v4-v5-v6-v4-v3-v5-v3-v1,
总长是11。 按 照 第 1 条 路 线 走 , 在 边 [v2,v4],[v4,v6],[v6,v5]上各走3两次,按照 第2条路线走,在边[v3,v2],[v3,v5]上各走了 两次。
15
6.中国邮递员问题 6.中国邮递员问题

中国邮递员问题

中国邮递员问题

– 第四步:检查有重复边的线路是否是多余的。即检查重复边的两端是 否已有其他线路相连通,如有的话,可将重复边连同原边从线路图中 删去。发现重复边V4V5的两端可通过其他线路相连,可将V4V5及重复 边一起从线路图中删去。即可得送货线路如下:V0—V1—V2—V3— V5—V6—V10—V9—V12—V7—V8—V12—V9—V4—V11—V1—V0。线 路的总长度减少为215千米。总长度较前减少了20千米。
A
6
2 2 I 5 4
H 1
4
G 1 F 5
J 3 K 2
D
3
B 3 C
5
E
图中重复边的总距离W1为18<23(总距离的一半),为可行解; 检查是否每一个闭合圈的重复边的总距离都小于该闭合圈的总距离 的一半。 在圈(A,B,K,J,I,H)中,重复边总距离为8,小于该圈总距离19 的一半,满足要求,不需改进;在圈(B,C,D,K)中,不需改进; 在圈(D,E,F,J)中,不满足要求需改进
A 6 B 3 C 4 5
2
2 I
H 1 J 3 K 2 D
4 3
G 1 F 5
5
E
阅读推荐
1、《物流管理实务》,梁金萍 主编,清华大学出 版社,2010。 2、《运筹学》
– 第二步:考虑到从配货中心出发的送货车辆,在送完所有的门店货物 后,仍需要返回配货中心,故再需对生成的最小树采用中国邮递员线 路的算法进行扩充。 奇点有:V0,V1,V3,V4,V6,V7,V8,V9,V10,V12。故需增加边 V3V5,重复边V0V1,V5V6,V4V9,V9V10,V7V12,V8V12,V9V12等 7条。 粗线部分已给出了送货车量从配送中心出发,送货到10家门店后返回 配货中心的具体路线。即可为:V0—V1—V2—V3—V5—V6—V5—V4— V9—V10—V9—V12—V7—V12—V8—V12—V9—V4—V11—V1—V0。线 路的总长度为251千米。

有趣的一笔画问题

有趣的一笔画问题

有趣的一笔画问题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(有趣的一笔画问题)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为有趣的一笔画问题的全部内容。

有趣的一笔画问题一笔画问题的提出:一笔画是一个大问题,为了更好的解决这个问题,我们从生活提出一笔画问题。

我们先看一个公路检查员的问题:他为了检查几个城市之间的若干公路,希望在这些城市和公路组成的公路系统中找出一条路线,使他能不重复地恰好通过每条公路一次,而经过每个城市的次数不限。

这就是拓扑学中的数学问题。

一笔画的含义如果用笔在纸上连续不断又不重复,一笔画成某种图形,这种图形就叫一笔画。

下面的画能一笔画成,你也试着描一描,画一画吧!那么是不是所有的图形都能一笔画成呢?那我们就要一起学习一笔画的规律.其实一笔画是一个几何问题,一个图形由一笔构成叫一笔画.传统意义上的几何学是研究图形的形状大小等性质,而对于平面图形的一笔画与多笔画问题,通常的几何方法是无能为力的,因为一个图形能否一笔画,与图形的大小、形状和线段的长短等几何概念都没有关系,而是与图形中线段的数目及连接关系有关,我们可以随意地将图形拉伸、压缩或弯曲,甚至在保持端点不动的前提下,还可以将某些线段“搬家",只要图形的整体结构不变,能否一笔画的性质也就不会改变。

一笔画问题是一个简单的数学游戏,即平面上由曲线段构成的一个图形能不能一笔画成,使得在每条线段上都不重复?例如汉字‘日'和‘中’字都可以一笔画的,而‘田'和‘目’则不能。

(在日本动画片一休中,是采用对折纸张的方法画出‘田’和‘目’的一笔画)也是可取之处。

一笔画问题、欧拉回路与中国邮递员问题

一笔画问题、欧拉回路与中国邮递员问题

一笔画问题、欧拉回路与中国邮递员问题(不重复(重复)地行遍所有的边再回到终点)欧拉定理[学习目标]1.会表述欧拉回路与中国邮递员问题的定义;2.会用弗罗莱算法求解一些简单的中国邮递员问题.18世纪时,欧洲有一个风景秀丽的小城哥尼斯堡, 那里有七座桥。

如图1所示:河中的小岛A与河的左岸B、右岸C各有两座桥相连结,河中两支流间的陆地D与A、B、C各有一座桥相连结。

问:一个人怎样才能一次走遍七座桥,每座桥只走过一次,最后回到出发点?这个例子是历史上非常有名的哥尼斯堡7桥问题。

哥尼斯堡现在是立陶宛共和国的一个城市,图1是当地奈发夫岛附近的地域图,此例子就是当地人民中间流传久远的一个难题。

直到1736年,数学家欧拉首次系统研究并完全解决了这类问题。

图 1 图 2七桥问题引起了著名数学家欧拉(1707—1783)的关注。

他把具体七桥布局化归为图2所示的简单图形,于是,七桥问题就变成一个一笔画问题:怎样才能从A、B、C、D中的某一点出发,一笔画出这个简单图形(即笔不离开纸,而且a、b、c、d、e、f、g各条线只画一次不准重复),并且最后返回起点?一笔画出的图形中的各点或者都是与偶数条线相连的点,或者其中只有两个点与奇数条线相连。

欧拉定理:如果一个网络是连通的并且奇顶点的个数等于0或2,那么它可以一笔画出;否则它不可以一笔画出。

定义经过G的每条边的迹叫做G的Euler迹;闭的Euler迹叫做Euler回路或E 回路;含Euler 回路的图叫做Euler 图。

直观地讲,Euler 图就是从一顶点出发每边恰通过一次能回到出发点的那种图,即不重复地行遍所有的边再回到出发点。

定理: (i )G 是Euler 图的充分必要条件是G 连通且每顶点皆偶次。

(ii )G 是Euler 图的充分必要条件是G 连通且 di i C G 1==,i C 是圈,)()()(j i C E C E j i ≠Φ= 。

(iii )G 中有Euler 迹的充要条件是G 连通且至多有两个奇次点。

汉密尔顿图和中国邮递员问题

汉密尔顿图和中国邮递员问题
因为G是哈密尔顿图,所以 中有一条哈密尔顿圈 记为C, 中有一条哈密尔顿圈, 因为 是哈密尔顿图,所以G中有一条哈密尔顿圈,记为 , 是哈密尔顿图 则对于顶点集V的任意一个非空真子集 必有ω 的任意一个非空真子集S必有 则对于顶点集 的任意一个非空真子集 必有ω(C-S) ≤|S|。 。 而圈C是由 删去一些边所形成的, 是由G删去一些边所形成的 而圈 是由 删去一些边所形成的,故C-S是G-S的生成子 是 的生成子 图,因此ω(G-S)≤ω(C-S)≤|S| 。 因此ω ≤ ≤
必要条件的应用
必要条件的局限性 ——只能判定一个图不是 不是哈密尔 不是
顿图
下图(Petersen图)满足上述必要条件。 Petersen图不是H_图。
关于哈密尔顿图的充分条件,现在有许多结论。 关于哈密尔顿图的充分条件,现在有许多结论。 这里只介绍其中较为简明的结果。 这里只介绍其中较为简明的结果。 定理2 设图 ≥3, 定理 设图G=(V, E),V(G)=n≥3,并且对任意一对 , ≥3 不邻接的顶点u, 都有 都有d(u)+d(v) ≥ n,则G是哈密 不邻接的顶点 v都有 , 是哈密 尔顿图。 尔顿图。 推论1 设图G=(V, E),V(G)=n≥3,并且 ≥3, 推论 设图 , ≥3 是哈密尔顿图。 δ(G) ≥ n/2,则G是哈密尔顿图。 , 是哈密尔顿图
4.2 哈密尔顿图
哈密尔顿在1859年提出了一个“环游世界”的问 年提出了一个“环游世界” 哈密尔顿在 年提出了一个 用一个正十二面体的20个顶点代表世界上 个顶点代表世界上20 题:用一个正十二面体的 个顶点代表世界上 个城市,用正十二面体的棱代表旅游路线。 个城市,用正十二面体的棱代表旅游路线。问旅 游者能否从某个城市出发, 游者能否从某个城市出发,经过每一个城市恰好 一次,然后回到出发的城市? 一次,然后回到出发的城市?这就是著名的哈密 尔顿问题,也即在图中找出一条包含所有20个顶 尔顿问题,也即在图中找出一条包含所有 个顶 点的圈。 点的圈。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
输出: 从v到w的欧拉通路/欧拉回路. 算法: (下一页)
《集合论与图论》第17讲
14
Fleury算法(递归形式)
算法:
(1) if d(v)>1 then e:=v关联的任意非割边
(2)
else e:=v关联的唯一边
(3) u:=e的另一个端点.
(4) 递归地求G-e的从u到w的欧拉通路
定理1: 设G是无向连通图,则 (1) G是欧拉图
⇔ (2) G中所有顶点都是偶数度 ⇔ (3) G是若干个边不交的圈的并 证明: (1)⇒(2)⇒(3)⇒(1). (1)⇒(2): 若欧拉回路总共k次经过顶点v,则
d(v)=2k.
《集合论与图论》第17讲
6
定理1((2)⇒(3))
(2) G中所有顶点都是偶数度 (3) G是若干个边不交的圈的并 证明: (2)⇒(3): 若删除任意1个圈上的边,
22
中国邮递员问题
中国邮递员问题(Chinese postman problem): 求邮递员走遍管区所有街道的 最短回路
管梅谷(Guan Mei-gu),1962,中国 运筹学(Operation Research) 组合优化(Combinatorial Optimization)
一组有限条指令, 具有以下特征:
输入: 算法工作对象 输出: 算法工作结果 确定性: 算法根据输入和当前工作状态, 决定
下一步采用的指令 可行性: 算法的指令都是可以实现的 终止性: 算法工作有穷步后停止
输入
指令组 工作区
输出
《集合论与图论》第17讲
13
Fleury算法
输入: 连通图G,起点v,终点w. 若v≠w, 则 除v,w外的顶点都有偶数度;若v=w, 则所 有顶点都有偶数度.
解法: (1) 求带权图G所有奇数顶点之间的短程线 (2) 用所有奇数顶点和短程线得完全图K (3) 求K的最小完美匹配M (4) 用M给G沿短程线加重复边得G* (4) 求G*的欧拉回路
《集合论与图论》第17讲
25
中国邮递员问题(举例)
A2 B1 C1 D2 E
G1
6
5
3
I 2H
4
G2 F
B2 K5 8
H4
D 57
G
A2 B1 C1 D2 E
G* 1
6
5
3
I 2H
4
G2 F
最优路线: ABCDEFGHBCDGHIA, W(G*)=35
《集合论与图论》第17讲
26
总结
七桥问题,一笔画,欧拉通(回)路,欧拉图 判定欧拉图的充分必要条件 求欧拉回路的算法 中国邮递员问题
《集合论与图论》第17讲
ba c
a
1
0
c
1
1
0
《集合论与图论》第17讲
1 0 1
21
应用(轮盘设计)
D=<V,E>, V={00,01,10,11}, E={ abc=<ab,bc> | a,b,c∈{0,1} }
000
00
001
100
01 010 10
101
011 11
110
1
11
1
0
0
0
1
1
00
111
《集合论与图论》第17讲
(5) 把e接续在递归地求出的通路上
《集合论与图论》第17讲
15
Fleury算法(迭代形式)
算法:
(1) P0:=v; (2) 设Pi=v0e1v1e2…eivi已经行遍,设Gi=G-
{e1,e2 ,… ,ei}, ei+1:= Gi中满足如下2条件的边: (a) ei+1与vi关联 (b) 除非别无选择,否则ei+1不是Gi中的桥 (3) 若Gi≠Ni, 则回到(2); 否则算法停止
《集合论与图论》第17讲
18
逐步插入回路算法
(0) i:=0, v*:=v,v:=v1,P0=v1, G0=G. (1) e:=在Gi中与v关联的任意边(v,v’),
Pi+1:=“Pi”ev’. (2) if v’≠v* then i:=i+1, v=v’, goto (1). (3) if E(Pi+1)=E(G) then 结束
第17讲 欧拉图
1. 七桥问题,一笔画,欧拉通(回)路,欧拉图 2. 判定欧拉图的充分必要条件 3. 求欧拉回路的算法 4. 中国邮递员问题
《集合论与图论》第17讲
1
七桥问题
七桥问题(Seven bridges of Königsberg problem): River Pregel, Kaliningrad, Russia
《集合论与图论》第17讲
2
Leonhard Euler
Leonhard Euler(1707~1783):
人类有史以来最多产的数学家. 1736年,“七桥问题”,图论和拓扑学诞生
C
c A
d
g e
D
a bf
B 《集合论与图论》第17讲
3
一笔画
《集合论与图论》第17讲
4
欧拉图(Eulerian)
《集合论与图论》第17讲
16
论》第17讲
17
Fleury算法(正确性证明)
定理5: 设G是无向欧拉图,则Fleury算法 终止时得到的简单通路是欧拉回路
证明: (1) Pm是回路: 显然. (2) Pm经过G中所有边: (反证)否则,
G-Pm的连通分支还是欧拉回路, 并且与 Pm相交. 若v0是交点,则算法不应结束; 若 v0不是交点,则算法在最后离开交点回到 v0时走了桥; 这都是矛盾! #
则所有顶点的度还是偶数, 但是不一定连 通了. 对每个连通分支重复进行.
《集合论与图论》第17讲
7
定理1((3)⇒(1))
(1) G是欧拉图 (3) G是若干个边不交的圈的并 证明: (3)⇒(1): 有公共点但边不交的简单
回路, 总可以拼接成欧拉回路: 在交点处, 走完第1个回路后再走第2个回路. # 用归纳法严格证明
27
作业(#13)
p234, 习题八, 2,3,4(更正: G-v0)
《集合论与图论》第17讲
28
《集合论与图论》第17讲
8
无向半欧拉图的充分必要条件
定理2: 设G是无向连通图,则 (1) G是半欧拉图
⇔ (2) G中恰有2个奇度顶点 证明: (1)⇒(2): 欧拉通路的起点和终点是
奇数度,其余顶点都是偶数度. (2)⇒(1): 在两个奇数度顶点之间加1条新边,
所有顶点都是偶数度,得到欧拉回路.从欧 拉回路上删除所加边后,得到欧拉通路. #
else Gi+1:=G-E(Pi+1), e:=Gi+1中与Pi+1上vk关联的任意边, Pi+1:= vk…vk. v*:=vk,v:=vk, i:=i+1, goto (1).
《集合论与图论》第17讲
19
逐步插入回路算法(举例)
《集合论与图论》第17讲
20
应用(轮盘设计)
000,001,010,011,100,101,110,111
《集合论与图论》第17讲
10
有向半欧拉图的充分必要条件
定理4: 设G是无向连通图,则 (1) G是半欧拉图
⇔ (2) G中恰有2个奇度顶点, 其中1个入度 比出度大1,另1个出度比入度大1, 其余顶 点入度等于出度. #
《集合论与图论》第17讲
11

《集合论与图论》第17讲
12
算法(algorithm)
欧拉通路(Euler trail): 经过图中所有边的 简单通路
欧拉回路(Euler tour/circuit): 经过图中所 有边的简单回路
欧拉图(Eulerian): 有欧拉回路的图 半欧拉图(semi-Eulerian): 有欧拉通路的

《集合论与图论》第17讲
5
无向欧拉图的充分必要条件
《集合论与图论》第17讲
9
有向欧拉图的充分必要条件
定理3: 设G是有向连通图,则 (1) G是欧拉图
⇔ (2) ∀v∈V(G), d+(v)=d-(v) ⇔ (3) G是若干个边不交的有向圈的并 证明: (1)⇒(2)⇒(3)⇒(1). (1)⇒(2): 若欧拉回路总共k次经过顶点v,则
d+(v)=d-(v)=k. 其余与定理1类似. #
《集合论与图论》第17讲
23
带权图(weighted graph)
带权图(weighted graph): G=<V,E,W>,
W:E→R, W(e)称为e的权
B5 C
3
5
A 8 14 10
D
B5 C
3
5
A 8 14 10
D
4
9
4
9
F6 E
F6 E
13
《集合论与图论》第17讲
24
中国邮递员问题(解法)
相关文档
最新文档