胶黏剂与粘接技术原理

合集下载

胶粘技术的原理与应用论文

胶粘技术的原理与应用论文

胶粘技术的原理与应用1. 胶粘技术的概述胶粘技术是一种将两个或多个材料通过胶粘剂粘合在一起的工艺。

胶粘技术广泛应用于各个领域,如制造业、建筑业、医疗保健、汽车工业等。

胶粘技术的原理是利用胶粘剂的黏性和附着力将物体粘在一起,形成牢固的连接。

2. 胶粘技术的原理胶粘技术的原理主要包括以下几个方面:2.1 胶粘剂的选择胶粘剂的选择是胶粘技术成功应用的关键。

胶粘剂可分为热熔胶、水性胶、油性胶等不同类型,每种类型的胶粘剂都有其特定的性能和适用场景。

选择合适的胶粘剂需要考虑材料的性质、胶接面的表面处理、工作环境等因素。

2.2 表面处理表面处理是胶粘技术中非常重要的一步。

通过表面处理,可以去除材料表面的油脂、氧化层等污染物,增强胶粘剂的附着力。

常见的表面处理方法包括清洗、打磨、添加粘接剂等。

2.3 接触时间和压力在胶粘技术中,接触时间和压力对于胶粘剂的固化和连接效果至关重要。

接触时间过短可能导致胶粘剂未能充分固化,接触时间过长则可能导致胶粘剂失去附着力。

压力的大小与接触面积和胶粘剂的黏性相关,适当的压力可以增加胶粘剂的附着力。

2.4 胶粘剂的固化胶粘剂的固化过程也是胶粘技术中的关键步骤。

胶粘剂的固化方式有热固化、湿固化等不同方式。

固化时间和固化温度对胶粘剂的性能和连接效果有直接影响。

3. 胶粘技术的应用胶粘技术在各个领域都有广泛的应用。

下面列举了几个常见的应用领域:3.1 制造业胶粘技术在制造业中应用广泛,包括汽车制造、电子制造、航空航天等行业。

胶粘技术可以用于连接各种材料,如金属、塑料、橡胶等,实现零部件的粘接、密封、固定等功能。

3.2 建筑业在建筑业中,胶粘技术可以用于各种建筑材料的粘接和密封,如玻璃、金属板、石材等。

胶粘技术可以大大提高建筑材料的抗震性能和密封性能。

3.3 医疗保健在医疗保健领域,胶粘技术可以用于制备各种医用胶带、医用膜等医疗用品。

胶粘技术可以实现医疗器械的粘接、固定和制备各种贴合的医疗用品。

常见的胶黏剂及其粘结机理

常见的胶黏剂及其粘结机理

一、胶黏剂的定义:通过界面的黏附和内聚等作用,能使两种或两种以上的制件或材料连接在一起的天然的或合成的、有机的或无机的一类物质,统称为胶黏剂,又叫黏合剂,习惯上简称为胶。

简而言之,胶黏剂就是通过黏合作用,能使被黏物结合在一起的物质。

二、胶黏剂的分类:胶黏剂的分类方法很多,按应用方法可分为热固型、热熔型、室温固化型、压敏型等;按应用对象分为构造型、非构型或特种胶;按形态可分为水溶型、水乳型、溶剂型以及各种固态型等;从胶黏剂的应用领域来分,那么胶黏剂主要分为土木建筑、纸X与植物、汽车、飞机和船舶、电子和电气以及医疗卫生用胶黏剂等种类。

所以用途不同的胶黏剂的作用机理也是大不一样的,下面就各种材料:木材、玻璃、金属、纸X和塑料的粘结机理做以简单的介绍。

三、六大胶粘理论聚合物之间,聚合物与非金属或金属之间,金属与金属和金属与非金属之间的胶接等都存在聚合物基料与不同材料之间界面胶接问题。

粘接是不同材料界面间接触后相互作用的结果。

因此,界面层的作用是胶粘科学中研究的根本问题。

诸如被粘物与粘料的界面X力、外表自由能、官能基团性质、界面间反响等都影响胶接。

胶接是综合性强,影响因素复杂的一类技术,而现有的胶接理论都是从某一方面出发来阐述其原理,所以至今全面唯一的理论是没有的。

1、吸附理论:人们把固体对胶黏剂的吸附看成是胶接主要原因的理论,称为胶接的吸附理论。

理论认为:粘接力的主要来源是粘接体系的分子作用力,即范德化引力和氢键力。

胶粘与被粘物外表的粘接力与吸附力具有某种一样的性质。

胶黏剂分子与被粘物外表分子的作用过程有两个过程:第一阶段是液体胶黏剂分子借助于布朗运动向被粘物外表扩散,使两界面的极性基团或链节相互靠近,在此过程中,升温、施加接触压力和降低胶黏剂粘度等都有利于布朗运动的加强。

第二阶段是吸附力的产生。

当胶黏剂与被粘物分子间的距离到达10-5Å时,界面分子之间便产生相互吸引力,使分子间的距离进一步缩短到处于最大稳定状态。

3m胶粘接要求

3m胶粘接要求

3m胶粘接要求3M胶粘接是指使用3M公司生产的胶粘剂进行粘接的一种技术。

胶粘接是一种常见的连接和修复材料的方法,适用于多种材料和应用场景。

3M胶粘剂具有优异的粘接性能和耐久性,能够提供稳定、可靠的连接。

下面是与3M胶粘接相关的参考内容:1. 胶粘原理:3M胶粘剂的粘接原理是通过分子间相互作用力实现的。

在粘接过程中,胶粘剂中的分子与被粘接材料表面的分子发生相互作用,形成牢固的连接。

常见的相互作用力包括分子之间的静电力、范德华力、亲和力等。

2. 选择合适的3M胶粘剂:在进行3M胶粘接时,选择合适的胶粘剂非常重要。

不同的胶粘剂适用于不同的材料和应用场景。

一般来说,需要考虑的因素包括粘接材料的种类、表面性质、温度和湿度条件等。

对于特殊的材料,如金属、塑料、橡胶等,还需要考虑其表面处理的方式。

3. 表面处理:在进行3M胶粘接之前,通常需要对粘接材料的表面进行处理,以提高胶粘接的效果。

常见的表面处理方法包括去油、去污、打磨、酸洗等。

通过表面处理,可以去除材料表面的污垢和氧化层,增加胶粘剂与材料之间的接触面积,提高粘接强度。

4. 温度和湿度控制:温度和湿度对3M胶粘接的效果有重要影响。

一般来说,胶粘剂的粘接性能会随着温度的升高而增强,而湿度过高则可能导致胶粘剂失去粘接能力。

所以,在进行3M胶粘接时,需要在适宜的温度和湿度条件下进行,以确保粘接效果。

5. 加压时间和压力:在进行3M胶粘接时,需要施加适当的压力,并保持一定时间,以达到最佳的粘接效果。

压力有助于胶粘剂与被粘接材料之间的紧密接触,提高粘接强度。

加压时间一般根据胶粘剂的要求和具体应用而定。

6. 质量控制:3M胶粘接完成后,需要进行质量控制。

常见的质量控制方法包括检查粘接剂的外观、粘接强度测试、耐热性和耐候性测试等。

通过质量控制,可以确保胶粘接的质量和可靠性。

7. 应用领域:3M胶粘接广泛应用于汽车制造、电子设备、建筑材料、航空航天和医疗器械等领域。

胶粘接技术在这些领域中起到了重要的连接和修复作用,能够提高产品的性能和可靠性。

胶粘剂粘接原理

胶粘剂粘接原理

粘接原理1、机械理论认为,胶粘剂必须渗入被粘物表面的空隙内,并排除其界面上吸附的空气,才能产生粘接作用。

在粘接如泡沫塑料的多孔被粘物时,机械嵌定是重要因素。

胶粘剂粘接经表面打磨的致密材料效果要比表面光滑的致密材料好,这是因为(1)机械镶嵌;(2)形成清洁表面;(3)生成反应性表面;(4)表面积增加。

由于打磨确使表面变得比较粗糙,可以认为表面层物理和化学性质发生了改变,从而提高了粘接强度。

2、吸附理论认为,粘接是由两材料间分子接触和界面力产生所引起的。

粘接力的主要来源是分子间作用力包括氢键力和范德华力。

胶粘剂与被粘物连续接触的过程叫润湿,要使胶粘剂润湿固体表面,胶粘剂的表面张力应小于固体的临界表面张力,胶粘剂浸入固体表面的凹陷与空隙就形成良好润湿(γSV=γSL+γLVcosθ。

γSV,γSL,γLV各代表了固气接触,固液接触和液气接触。

θ为0º表示完全浸润)。

如果胶粘剂在表面的凹处被架空,便减少了胶粘剂与被粘物的实际接触面积,从而降低了接头的粘接强度。

许多合成胶粘剂都容易润湿金属被粘物,而多数固体被粘物的表面张力都小于胶粘剂的表面张力。

实际上获得良好润湿的条件是胶粘剂比被粘物的表面张力低(即γ氟塑料很难粘接。

通过润湿使胶粘剂与被粘物紧密接触,主要是靠分子间作用力产生永久的粘接。

在粘附力和内聚力中所包含的化学键有四种类型:1)离子键2)共价键3)金属键4)xx力3、扩散理论认为,粘接是通过胶粘剂与被粘物界面上分子扩散产生的。

当胶粘剂和被粘物都是具有能够运动的长链大分子聚合物时,扩散理论基本是适用的。

热塑性塑料的溶剂粘接和热焊接可以认为是分子扩散的结果。

4、静电理论由于在胶粘剂与被粘物界面上形成双电层而产生了静电引力,即相互分离的阻力。

当胶粘剂从被粘物上剥离时有明显的电荷存在,则是对该理论有力的证实。

5、弱边界层理论认为,当粘接破坏被认为是界面破坏时,实际上往往是内聚破坏或弱边界层破坏。

弱边界层来自胶粘剂、被粘物、环境,或三者之间任意组合。

胶粘剂粘接机理及粘接技术

胶粘剂粘接机理及粘接技术

4 电子理论(双电层理论 )
将被胶接材料和固化的胶粘剂层理想化为电容器,即在胶接 接头中存在双电层,胶接力主要来自双电层的静电引力。静 电引力的产生是相1电荷场相2电荷场相互作用的结果。
贡献
成功地解释了粘 附功与剥离速度 有关的实验事实
缺陷
• 静电引力(<0.04MPa)对胶接强度的 贡献可忽略不计
25g/L
3-5g/L
OP乳化剂: —
2-3g/L
2-3g/L
处理条件:80℃/30min 70℃/30min 50℃/10min
3、超声波除油 适合结构复杂的构件。
C、除锈
1、机械法:
2、化学法: 硫酸+缓蚀剂(硫脲、联苯胺、食盐等) 盐酸+缓蚀剂(六次甲基次胺、甲醛等)
D、表面化学处理
胶接体系内分子接触 区(界面)的稠密程 度是决定胶接强度的 主要因素
物质的极性有利于获得 高胶接强度,但过高会 妨碍湿润过程的进行
必要非充分条件
胶粘剂湿润被胶接材料的表面
产生物理吸附
高的胶接强度
理论缺陷
把胶接作用主要归功于分子间的作用力(弱力), 不能圆满解释胶粘剂与被胶接物之间的胶接力大于 胶粘剂本身的强度这一事实。
若胶黏剂与高分子材料被粘物的相容性不好,或润湿 性不良,则胶黏剂分子因受到斥力作用,链段不可能发 生深度扩散,只在浅层有少许扩散,这时界面的轮廓显 得分明。只靠分子色散力的吸引作用结合的界面,在外 力作用下,容易发生滑动,所以粘接强度不会很高。
利用胶黏剂粘接金属,由于金属分子是以金属键紧密 结合起来的,分子的位置固定不变,而且金属分子排列 规整,有序性高,大多数能生成晶体构造,密度大而结 构致密,不但金属分子不能发生扩散作用,就是胶黏剂 的分子也不可能扩散到金属相里面去。所以,胶黏剂粘 接金属形成的界面是很清晰的。

常见的胶黏剂及其粘结机理

常见的胶黏剂及其粘结机理

一、胶黏剂的定义:通过界面的黏附和内聚等作用,能使两种或两种以上的制件或材料连接在一起的天然的或合成的、有机的或无机的一类物质,统称为胶黏剂,又叫黏合剂,习惯上简称为胶。

简而言之,胶黏剂就是通过黏合作用,能使被黏物结合在一起的物质。

二、胶黏剂的分类:胶黏剂的分类方法很多,按应用方法可分为热固型、热熔型、室温固化型、压敏型等;按应用对象分为结构型、非构型或特种胶;按形态可分为水溶型、水乳型、溶剂型以及各种固态型等;从胶黏剂的应用领域来分,则胶黏剂主要分为土木建筑、纸张与植物、汽车、飞机和船舶、电子和电气以及医疗卫生用胶黏剂等种类。

所以用途不同的胶黏剂的作用机理也是大不一样的,下面就各种材料:木材、玻璃、金属、纸张和塑料的粘结机理做以简单的介绍。

三、六大胶粘理论聚合物之间,聚合物与非金属或金属之间,金属与金属和金属与非金属之间的胶接等都存在聚合物基料与不同材料之间界面胶接问题。

粘接是不同材料界面间接触后相互作用的结果。

因此,界面层的作用是胶粘科学中研究的基本问题。

诸如被粘物与粘料的界面张力、表面自由能、官能基团性质、界面间反应等都影响胶接。

胶接是综合性强,影响因素复杂的一类技术,而现有的胶接理论都是从某一方面出发来阐述其原理,所以至今全面唯一的理论是没有的。

1、吸附理论:人们把固体对胶黏剂的吸附看成是胶接主要原因的理论,称为胶接的吸附理论。

理论认为:粘接力的主要来源是粘接体系的分子作用力,即范德化引力和氢键力。

胶粘与被粘物表面的粘接力与吸附力具有某种相同的性质。

胶黏剂分子与被粘物表面分子的作用过程有两个过程:第一阶段是液体胶黏剂分子借助于布朗运动向被粘物表面扩散,使两界面的极性基团或链节相互靠近,在此过程中,升温、施加接触压力和降低胶黏剂粘度等都有利于布朗运动的加强。

第二阶段是吸附力的产生。

当胶黏剂与被粘物分子间的距离达到10-5&Aring;时,界面分子之间便产生相互吸引力,使分子间的距离进一步缩短到处于最大稳定状态。

粘接与胶粘剂技术导论

粘接与胶粘剂技术导论

粘接与胶粘剂技术导论在我们生活的每个角落,粘接与胶粘剂都扮演着不可或缺的角色,真的是无处不在。

想想看,你家里那些破旧的家具、玩具,甚至是你每天用的水杯,都是因为某种粘接方式让它们能继续陪伴你。

说到这里,大家是不是觉得这小小的胶水其实大有文章呢?可不是嘛,胶粘剂可不是随便哪个小东西,它们背后有着不少的科学道理和历史故事呢。

胶水的种类真是五花八门,像是百花齐放的春天。

有些是水溶性的,有些则是超级强力的,简直让人眼花缭乱。

要是你问我哪个最好用,我还真不知道怎么回答。

不同的场景用不同的胶水,就像你在吃火锅的时候,麻辣锅和清汤锅绝对不能混。

想象一下,拿着一瓶强力胶去粘你那本心爱的书,结果一不小心,书页都粘在一起了,那可就麻烦了。

所以,选择适合的胶水才是王道。

再说说粘接的过程,嘿嘿,这可是个技术活。

就像在做菜,先得准备好所有的材料,然后一步一步来。

表面要清洁,这点可不能马虎,脏东西、油脂这些都是小小的“捣蛋鬼”,它们会让胶水失去效果。

然后,就是涂胶水,这时候你得小心翼翼,别涂得太厚,太薄也不行,太厚的话,干得慢,太薄的话,粘不牢。

真是让人头疼,但一想到能把东西粘起来,心里又乐开了花。

有趣的是,胶水的原理就像是谈恋爱一样,得让两者之间有好的接触面。

就像你跟朋友搭话,必须得聊得投机才能建立友谊。

胶水里的分子在表面接触后,它们就像是热恋中的情侣,开始交织在一起。

时间一长,胶水就会变得坚固,俨然一对恩爱的小夫妻。

你说神奇不神奇?粘接的技术不光是简单的涂胶,科学家们在这方面可是费了不少心思。

早些年,人们在粘接方面可是摸索了很久,有些甚至是通过试错来找到最好的方法。

有了这些经验,现代的粘接技术才变得越来越成熟,应用范围也是越来越广。

你看,现在的飞机、汽车,甚至是宇宙飞船,都是靠着粘接技术来提高强度和降低重量的。

要是没有这些胶水,估计我们的生活得简化不少,想想都觉得可怕。

还有一点不得不提,环保。

随着人们对环境的关注越来越高,胶水行业也在努力向绿色化发展。

机械工程中的材料胶结与粘接分析

机械工程中的材料胶结与粘接分析

机械工程中的材料胶结与粘接分析机械工程是一个复杂而多样化的领域,材料胶结与粘接作为其中的一个重要方面,对于机械结构的稳固性和性能发挥起着关键作用。

本文将从材料胶结与粘接的基本原理、常见应用以及发展趋势等方面进行分析。

一、基本原理材料胶结与粘接是指通过各种胶粘剂将两个或多个材料连接在一起的工艺过程。

它的基本原理是利用胶粘剂的物理和化学特性,将两个物体粘在一起并形成牢固的结合。

常见的胶粘剂有有机胶、无机胶和高分子胶等。

有机胶主要是通过溶剂挥发或化学反应固化,形成胶层将两个物体粘接在一起。

无机胶则通过物理吸附和化学键等结合形式粘合材料。

而高分子胶则依靠分子间的交联和聚合使两个材料结合成整体。

二、常见应用材料胶结与粘接在机械工程中有广泛的应用。

最常见的就是在各种结构连接中的使用,如焊接、螺栓固定等。

与传统连接方式相比,胶粘剂能够在连接表面形成均匀的粘结层,提供更大的连接面积,从而实现更牢固的连接效果。

此外,在制造工艺中,材料胶结与粘接也被广泛应用。

例如,利用胶粘剂将轴承固定在零件上,可以大大提高零件的加工精度和使用寿命。

在汽车制造中,黏合剂的应用可以简化制造流程,提高产品性能。

在航空航天领域,胶粘剂的使用可以减轻设备重量,提高整体结构的强度和刚度。

三、发展趋势材料胶结与粘接技术在机械工程中的应用已经取得了显著的进展,但仍存在一些挑战和改进空间。

首先,胶粘剂的性能需要进一步提高。

材料胶结与粘接的强度、耐热性、耐腐蚀性等性能对于不同的应用有不同的要求。

因此,需要开发更多具有特殊性能的胶粘剂,以满足不同行业和领域的需求。

其次,胶粘剂的环保性也是一个关注的问题。

传统的胶粘剂中常含有有机溶剂和重金属等有害物质,对环境和人体健康造成潜在的危害。

因此,需要研发更环保的胶粘剂,减少对环境的污染。

此外,随着机械工程领域的不断发展和创新,材料胶结与粘接技术也将面临新的挑战和机遇。

例如,随着电子元器件的不断微型化,需要研发能够粘接纳米级元器件的粘合剂;随着新材料的涌现,胶粘剂也需要能够实现与新材料的高效粘接。

常见的胶黏剂及其粘结机理

常见的胶黏剂及其粘结机理

一、胶黏剂的定义:通过界面的黏附和内聚等作用,能使两种或两种以上的制件或材料连接在一起的天然的或合成的、有机的或无机的一类物质,统称为胶黏剂,又叫黏合剂,习惯上简称为胶。

简而言之,胶黏剂就是通过黏合作用,能使被黏物结合在一起的物质。

二、胶黏剂的分类:胶黏剂的分类方法很多,按应用方法可分为热固型、热熔型、室温固化型、压敏型等;按应用对象分为结构型、非构型或特种胶;按形态可分为水溶型、水乳型、溶剂型以及各种固态型等;从胶黏剂的应用领域来分,则胶黏剂主要分为土木建筑、纸张与植物、汽车、飞机和船舶、电子和电气以及医疗卫生用胶黏剂等种类。

所以用途不同的胶黏剂的作用机理也是大不一样的,下面就各种材料:木材、玻璃、金属、纸张和塑料的粘结机理做以简单的介绍。

三、六大胶粘理论聚合物之间,聚合物与非金属或金属之间,金属与金属和金属与非金属之间的胶接等都存在聚合物基料与不同材料之间界面胶接问题。

粘接是不同材料界面间接触后相互作用的结果。

因此,界面层的作用是胶粘科学中研究的基本问题。

诸如被粘物与粘料的界面张力、表面自由能、官能基团性质、界面间反应等都影响胶接。

胶接是综合性强,影响因素复杂的一类技术,而现有的胶接理论都是从某一方面出发来阐述其原理,所以至今全面唯一的理论是没有的。

1、吸附理论:人们把固体对胶黏剂的吸附看成是胶接主要原因的理论,称为胶接的吸附理论。

理论认为:粘接力的主要来源是粘接体系的分子作用力,即范德化引力和氢键力。

胶粘与被粘物表面的粘接力与吸附力具有某种相同的性质。

胶黏剂分子与被粘物表面分子的作用过程有两个过程:第一阶段是液体胶黏剂分子借助于布朗运动向被粘物表面扩散,使两界面的极性基团或链节相互靠近,在此过程中,升温、施加接触压力和降低胶黏剂粘度等都有利于布朗运动的加强。

第二阶段是吸附力的产生。

当胶黏剂与被粘物分子间的距离达到10-5&Aring;时,界面分子之间便产生相互吸引力,使分子间的距离进一步缩短到处于最大稳定状态。

粘接技术简介

粘接技术简介

粘接技术简介1、粘接机理用胶粘剂将物体连接起来的方法称为粘接。

显而易见,要达到良好的粘接,必须具备两个条件:胶粘剂要能很好地润湿被粘物表面;胶粘剂与被粘物之间要有较强的相互结合力,这种结合力的来源和本质就是粘接机理。

粘接的过程可分为两个阶段。

第一阶段,液态胶粘剂向被粘物表面扩散,逐渐润湿被粘物表面并渗入表面微孔中,取代并解吸被粘物表面吸附的气体,使被粘物表面间的点接触变为与胶粘剂之间的面接触。

施加压力和提高温度,有利于此过程的进行。

第二阶段,产生吸附作用形成次价键或主价键,胶粘剂本身经物理或化学的变化由液体变为固体,使粘接作用固定下来。

当然,这两个阶段是不能截然分开的。

至于胶粘剂与被粘物之间的结合力,大致有以下几种可能:(1)由于吸附以及相互扩散而形成的次价结合。

(2)由于化学吸附或表面化学反应而形成的化学键。

(3)配价键,例如金属原子与胶粘剂分子中的N、O等原子所生成的配价键。

(4)被粘物表面与胶粘剂由于带有异种电荷而产生的静电吸引力。

(5)由于胶粘剂分子渗进被粘物表面微孔中以及凸凹不平处而形成的机械啮合力。

不同情况下,这些力所占的相对比重不同,因而就产生了不同的粘接理论,如吸附理论、扩散理论、化学键理论及静电吸引理论等。

2、粘接工艺过程粘接工艺过程一般可分为初清洗、粘接接头机械加工、表面处理、上胶、固化及修整等步骤。

初清洗是将被粘物件表面的油污、锈迹、附着物等清洗掉,然后根据粘接接头的形式和形状对接头处进行机械加工,如表面机械处理,以形成适当的表面粗糙度等。

粘接的表面处理是粘接好坏的关键。

常用的表面处理方法有溶剂清洗、表面喷砂和打毛、化学处理等。

化学处理一般是用铬酸盐和硫酸溶液、碱溶液等,除去表面松疏的氧化物和其他污物,或使某些较活泼的金属“钝化”,以获得牢固的粘接层。

上胶厚度一般以0.05~0.15mm为宜。

固化时,应掌握适当的温度。

固化时施加压力,有利于粘接强度的提高。

3、粘接强度根据接头受力情况的不同(见下图),粘接强度可分为抗拉强度、抗剪强度、劈裂(扯裂)强度及剥离强度等。

环氧树脂胶粘剂原理分析及粘接强度增强7种方法

环氧树脂胶粘剂原理分析及粘接强度增强7种方法

性能:环氧树脂胶粘剂系由环氧树脂加固化剂,填料等配制而成。

粘接强度高,硬度大,刚性好,能耐酸,碱,油和有机溶液,固化收缩小,可做为金属,水泥,陶瓷,玻璃,石料,木材,热固性塑料等材料的结构胶粘剂和建筑灌封材料。

原理分析:配方中,环氧树脂和聚氯乙烯树脂为主要胶粘成分;邻苯二甲酸二辛脂为增塑剂;石英粉和白炭黑为填充改性剂;三氟化硼甘油,三氟化硼苯胺,二缩三乙二醇胺为固化剂;磷酸为酸化剂,并起固化促进作用及增加对金属的粘合力。

双组分室温固化的环氧胶粘剂。

被粘合的表面上涂以本品后,施加一定压力。

即可让其在室温下固化。

出固化条件为:16.5摄氏度时14-16秒,25摄氏度时7-9秒,30摄氏度时4-6秒。

主要用于各种金属与金属,金属与非金属,以及各种硬塑料制品的粘合,具有很高的粘接强度。

环氧胶粘剂粘接强度增强方法:虽然环氧胶粘剂的粘接强度比较高,但对于一些高强结构粘接仍感不足,还需进一步提高粘接强度,可通过如下一些途径进行增强。

1采用高性能环氧树脂一些高性能的环氧树脂,如AG一80、AFG一90、酚醛环氧树脂、似盼F 环氧树脂、双酚S环氧树脂、液晶环氧树脂、TDE一85(IJ())、731等,单独配合或与双酚A型环氧树脂共混,都具有很高的粘接强度。

液晶环氧树脂是一种高度分子有序,深度分子交联的聚合物网络,可形成自增强结构,力学性能相当优异。

少量液晶环枫树脂与B144环氧树脂共混,固化物的拉伸强度和冲击强度明显抛岛。

2选用增强性固化剂固化剂对环氧胶粘剂的粘接强度有重要影响,选用能使环氧胶固化后粘接强度高的固化剂,如双氰胺、间苯二胺、二氨基二苯甲烷、二氨基二苯砜、低分子聚酰胺(315、3051)、G一328、端氨基聚醚、105缩胺、甲基六氢苯酐、均苯四酸二酐/苯酐(20/28)、2一乙基一4一甲基咪唑、线性酚醛树脂等。

环氧树脂预先与CTBN接枝,以多醚胺(聚醚胺)作为内增韧型固化剂,采用双重增韧体系,使室温固化环氧胶粘剂的室温剪切强度达到35MPa。

胶粘剂粘接原理

胶粘剂粘接原理

粘接原理1、机械理论机械理论认为,胶粘剂必须渗入被粘物表面的空隙内,并排除其界面上吸附的空气,才能产生粘接作用。

在粘接如泡沫塑料的多孔被粘物时,机械嵌定是重要因素。

胶粘剂粘接经表面打磨的致密材料效果要比表面光滑的致密材料好,这是因为(1)机械镶嵌;(2)形成清洁表面;(3)生成反应性表面;(4)表面积增加。

由于打磨确使表面变得比较粗糙,可以认为表面层物理和化学性质发生了改变,从而提高了粘接强度。

2、吸附理论吸附理论认为,粘接是由两材料间分子接触和界面力产生所引起的。

粘接力的主要来源是分子间作用力包括氢键力和范德华力。

胶粘剂与被粘物连续接触的过程叫润湿,要使胶粘剂润湿固体表面,胶粘剂的表面张力应小于固体的临界表面张力,胶粘剂浸入固体表面的凹陷与空隙就形成良好润湿(γSV =γSL+γLVcosθ。

γSV,γSL,γLV各代表了固气接触,固液接触和液气接触。

θ为0º表示完全浸润)。

如果胶粘剂在表面的凹处被架空,便减少了胶粘剂与被粘物的实际接触面积,从而降低了接头的粘接强度。

许多合成胶粘剂都容易润湿金属被粘物,而多数固体被粘物的表面张力都小于胶粘剂的表面张力。

实际上获得良好润湿的条件是胶粘剂比被粘物的表面张力低(即γSV要大),这就是环氧树脂胶粘剂对金属粘接极好的原因,而对于未经处理的聚合物,如聚乙烯、聚丙烯和氟塑料很难粘接。

通过润湿使胶粘剂与被粘物紧密接触,主要是靠分子间作用力产生永久的粘接。

在粘附力和内聚力中所包含的化学键有四种类型:1)离子键2)共价键3)金属键4)范德华力3、扩散理论扩散理论认为,粘接是通过胶粘剂与被粘物界面上分子扩散产生的。

当胶粘剂和被粘物都是具有能够运动的长链大分子聚合物时,扩散理论基本是适用的。

热塑性塑料的溶剂粘接和热焊接可以认为是分子扩散的结果。

4、静电理论由于在胶粘剂与被粘物界面上形成双电层而产生了静电引力,即相互分离的阻力。

当胶粘剂从被粘物上剥离时有明显的电荷存在,则是对该理论有力的证实。

环氧树脂胶黏剂概述

环氧树脂胶黏剂概述

环氧树脂胶黏剂概述环氧树脂胶黏剂简称环氧胶,由于其具有优异的粘结性能,又叫做“万能胶”。

环氧树脂胶黏剂具有粘结强度高,收缩率低,化学稳定性好等优点,对木材、金属、陶瓷、水泥等材料都有很强的粘结能力。

除了对各类材料发挥黏结作用之外,环氧树脂胶黏剂还能起到密封、导热导电、耐磨、装饰等作用。

一种多功能化的胶黏剂能广泛应用于化学化工、电子封装材料等多个领域。

一、环氧树脂胶黏剂定义环氧树脂是分子中含有两个或两个以上的环氧基团,以脂肪族、脂环族或芳香族碳链为分子骨架的高分子预聚物且能以环氧基为活性基团进行交联聚合反应的聚合物。

单纯的环氧树脂是不具备应用价值的,必须釆用相应的固化剂固化以实现其功能性。

常用的双酌型环氧树脂机构如图所示:环氧树脂分子链上含有的轻基和环氧基赋予了环氧树脂很髙的反应性和粘接力,同时极性的醚键也赋予了环氧树脂一定的粘接力,使得环氧树脂具有很高的粘接强度,使得环氧树脂可作为性能优良的结构胶黏剂使用。

二、环氧树脂胶黏剂的粘接原理环氧胶黏剂的粘接过程分为三步,首先需要对被粘材料的表面进行适当的预处理;其次,将配制好的环氧胶粘剂在被粘接物的表面涂覆均勾;最后,在相应的条件下,胶黏剂会发生固化反应,形成交联结构的网状聚合物。

要产生粘接作用,环氧胶黏剂的大分子必须在被粘物表面充分的扩散,当其与被粘物表面的距离小于时,两者之间会彼此相互吸引,产生范德华力,同时可能会形成氢键、共价键、配位键、离子键、金属键等。

环氧树脂胶黏剂在被粘物表面的扩散实际上就是一个充分的润湿的过程,整个润湿过程与两者的表面张力有关,当环氧树脂胶黏剂的表面张力比被粘物的临界表面张力小的时候,环氧树脂胶黏剂便能够将被粘物表面充分的润湿,环氧树脂胶黏剂和被粘物在界面上由粘附作用产生的作用力为环氧胶黏剂的粘接力,一般粘接力主要包括机械嵌合力、分子间力、化学键力。

常见的粘接机理有一下几种:1、机械理论该理论认为环氧树脂胶黏剂渗入到被粘物表面的四坑和空穴,环氧树脂固化后会与被粘物产生嵌合、咬合、互锁等作用。

第二章 粘接原理与粘接技术

第二章 粘接原理与粘接技术

本文由赤脚兽医1988贡献ppt文档可能在WAP端浏览体验不佳。

建议您优先选择TXT,或下载源文件到本机查看。

选修课多媒体课件粘接主讲:主讲:赵鑫苏州科技学院剂20112011-3-291第二章粘接原理与粘接技术本章主要内容§2.1 被粘物表面特征及表面要求§2.2 润湿和粘接理论§2.3 被粘物表面处理方法§2.4 胶粘剂的固化§2.5 粘接强度及其影响因素§2.6 粘接接头的设计20112011-3-29 2§2.1 被粘物表面特征及表面处理要求一.固体表面的形态特征1、固体表面的粗糙性2、固体表面的多孔性3、固体表面的吸附性和复杂性4、固体表面的缺陷性20112011-3-293§2.1 被粘物表面特征及表面处理要求二.被粘物表面的处理要求净化被粘物表面——物理机械法 1、净化被粘物表面物理机械法机械处理:洗涤:改变被粘物表面物理化学性质——化学法 2、改变被粘物表面物理化学性质化学法金属的表面活化:高分子材料的表面活化:20112011-3-294§2.2 润湿和粘接理论一、润湿液体在固体表面分子间力作用下的均匀铺展现象。

表示液体对固体的亲和性。

物质的表面张力:通常金属、氧化物、无机物的表面张力较大,约为0.2-5N·m-1. 聚合物固体、有机物、胶粘剂、水等,表面张力较小,一半小于0.1N·m-1.20112011-3-29 5§2.2 润湿和粘接理论二、粘接力粘接力:指粘接剂与被粘物表面之间的连接力。

包括机械嵌合力、分子间力、和化学键力。

嵌合力:粘接剂润湿、渗透在材料的空隙中固化后因镶嵌形成的力。

分子间力:粘接剂与被粘物表面之间的吸引力。

化学键力:粘接剂与被粘物表面之间形成化学键。

20112011-3-296§2.2 润湿和粘接理论三、粘接力的种类及粘接理论1.化学键键合力(共价键、配位键、离子键、金属键等)●如:O R OH+NCOR'ROCNHR'化学键基于化学键理论,通过化学键结合。

5.1-5.2胶粘剂概述,胶接的基本原理3

5.1-5.2胶粘剂概述,胶接的基本原理3
增塑剂通常是高沸点液体,一般不与高聚物发生反 应。

30

按化学结构可以分为以下几类: ①邻苯二甲酸酯类:最主要的增塑剂,性能全面, 用途广泛; ②脂肪族二元酸酯类:主要用作耐寒的辅助增塑剂; ③磷酸酯类:耐寒性差,毒性大,但有阻燃作用; ④聚酯类:耐久性、耐热性良好,但相容性较差; ⑤偏苯三酸酯类:耐热性、耐久性优良,相容性也 好。
17
氯化溶剂
氯化溶剂除了严重危害健康,还会破坏大气
臭氧层。国外已从1996年禁止使用氯化溶剂。 尽管国标GB18583-2001暂时没有限制氯化 溶剂的使用,但对生产厂来说,应该考虑该 原材料的毒性问题,不可置消费者的身体健 康于不顾。
18
Байду номын сангаас、胶粘剂的发展(沿革)
5300年前,水和粘土调和起来作胶粘剂,制陶和制砖,把石头 等固体粘接成生活用具。 4000年前我国利用生漆作胶粘剂和涂料制成器具,既实用, 又有工艺价值。3000年前的周朝已适用动物胶作为木船的 嵌缝密封胶。秦朝(前221年至前207年)以糯米浆与石灰制成的 灰浆用作长城基石的的胶粘剂,使得万里长城至今仍屹立于 亚洲的北部,成为中华民族古老文明的象征。 骨胶; 动物血液; 树脂粘液;
3、按用途分 结构胶;非结构胶;特种胶黏剂。 4、按应用方法分类


室温固化型;热固型;热熔型;压敏型;再湿型。
39
四、胶粘剂的应用


1、汽车工业的应用
现代汽车工业的技术进步要求结构材料轻量化、驾
驶安全化、节能环保化、美观舒适化等,因此一定
采用铝合金、玻璃钢、蜂窝夹层结构,塑料、橡胶
等新型材料,必然要大量以粘接代替焊接,胶粘剂

44

胶粘接原理

胶粘接原理

胶粘接原理
胶粘接是一种常见的连接方式,它通过胶粘剂将两个或多个材料牢固地粘合在一起。

胶粘接的原理是什么呢?在这篇文档中,我们将详细介绍胶粘接的原理及其相关知识。

首先,胶粘接的原理是基于分子间力的作用。

当胶粘剂涂覆在材料表面时,它会与材料表面的分子发生作用,形成分子间的吸附力。

这种吸附力可以使胶粘剂与材料表面紧密结合,从而实现粘合效果。

此外,一些胶粘剂还可以通过化学反应与材料表面的分子结合,增强粘合效果。

其次,胶粘接的原理还涉及表面能的概念。

表面能是材料表面对外界物质的吸引力大小的量度。

在胶粘接过程中,胶粘剂的表面能要与被粘合材料的表面能相适应,才能实现良好的粘合效果。

如果胶粘剂的表面能与被粘合材料的表面能相差太大,就会导致粘合效果不佳。

另外,胶粘接的原理还与粘接界面的形态有关。

粘接界面的形态对胶粘接的强度和耐久性有重要影响。

通常情况下,粘接界面的形态应该尽可能多地增加接触面积,以增强粘合效果。

此外,粘接界面的形态还应该尽可能地减少应力集中的可能性,从而提高粘接的强度和耐久性。

最后,胶粘接的原理还与胶粘剂的选择有关。

不同类型的胶粘剂具有不同的粘合原理和适用范围。

在选择胶粘剂时,需要考虑被粘合材料的性质、使用环境、所需的粘合强度等因素,从而选择合适的胶粘剂来实现理想的粘合效果。

总之,胶粘接的原理是基于分子间力的作用,涉及表面能、粘接界面的形态和胶粘剂的选择等多个方面。

了解胶粘接的原理对于正确选择胶粘剂、优化粘接工艺具有重要意义,希望本文能对您有所帮助。

双面胶的粘接原理

双面胶的粘接原理

双面胶的粘接原理双面胶是一种具有粘合性能的胶粘剂,它的主要原理是通过分子间的吸附、物理交联或化学反应等方式,将两个不同的物体粘接在一起。

双面胶的粘接原理可以从两个方面来解释,即物理粘接和化学粘接的原理。

物理粘接主要通过胶粘剂与被粘接物表面之间的分子间力进行吸附,形成力的积累,从而实现粘接效果。

而化学粘接则是通过胶粘剂中的化学物质与被粘接物表面的化学物质发生化学反应,形成共价键或离子键等化学键连接,从而实现粘接效果。

在物理粘接方面,双面胶的材料中常常含有一种或多种黏附剂,它们能够与被粘接物表面的原子或分子表现出亲和性,形成吸附作用。

黏附剂分子与被粘接物表面之间的吸引力主要包括范德华力、静电力和亲水作用。

范德华力是指分子间由于极性和库仑相互作用引起的相互吸引力,这种力相对较弱。

静电力则是指分子间由于正负电荷之间的相互吸引所产生的力,这种力相对较强。

亲水作用是指分子间由于水分子的亲和性而引起的相互吸引力,主要是通过水分子在粘接界面形成的氢键相互作用来实现的。

在化学粘接方面,双面胶中的胶粘剂会通过与被粘接物表面的化学物质发生化学反应,形成化学键连接。

这种化学反应可以是共价键的形成,也可以是离子键或氢键的形成。

共价键是由于原子之间共享电子而形成的化学键,其强度相对较高。

离子键是由于离子之间电荷吸引力而形成的化学键,其强度也相对较高。

氢键则是由于氢原子与氮、氧或氟等元素形成的短暂共价键而形成的特殊分子间作用力。

除了物理粘接和化学粘接原理,双面胶的粘接效果还受到其他因素的影响。

例如,胶粘剂的性质、被粘接物表面的性质、胶粘剂与被粘接物表面之间的接触面积、环境湿度和温度等都会对粘接效果产生影响。

因此,在选择和使用双面胶时,需要根据具体的粘接要求和环境条件来考虑,以确保粘接效果的可靠性和持久性。

综上所述,双面胶的粘接原理主要包括物理粘接和化学粘接。

物理粘接主要通过胶粘剂与被粘接物表面之间的分子间力进行吸附,形成力的积累,从而实现粘接效果。

胶粘剂粘接原理

胶粘剂粘接原理

粘接原理1、机械理论机械理论认为,胶粘剂必须渗入被粘物表面的空隙内,并排除其界面上吸附的空气,才能产生粘接作用;在粘接如泡沫塑料的多孔被粘物时,机械嵌定是重要因素;胶粘剂粘接经表面打磨的致密材料效果要比表面光滑的致密材料好,这是因为1机械镶嵌;2形成清洁表面;3生成反应性表面;4表面积增加;由于打磨确使表面变得比较粗糙,可以认为表面层物理和化学性质发生了改变,从而提高了粘接强度;2、吸附理论吸附理论认为,粘接是由两材料间分子接触和界面力产生所引起的;粘接力的主要来源是分子间作用力包括氢键力和范德华力;胶粘剂与被粘物连续接触的过程叫润湿,要使胶粘剂润湿固体表面,胶粘剂的表面张力应小于固体的临界表面张力,胶粘剂浸入固体表面的凹陷与空隙就形成良好润湿γSV =γSL+γLVcosθ;γSV,γSL,γLV各代表了固气接触,固液接触和液气接触;θ为0o表示完全浸润;如果胶粘剂在表面的凹处被架空,便减少了胶粘剂与被粘物的实际接触面积,从而降低了接头的粘接强度;许多合成胶粘剂都容易润湿金属被粘物,而多数固体被粘物的表面张力都小于胶粘剂的表面张力;实际上获得良好润湿的条件是胶粘剂比被粘物的表面张力低即γSV要大,这就是环氧树脂胶粘剂对金属粘接极好的原因,而对于未经处理的聚合物,如聚乙烯、聚丙烯和氟塑料很难粘接;通过润湿使胶粘剂与被粘物紧密接触,主要是靠分子间作用力产生永久的粘接;在粘附力和内聚力中所包含的化学键有四种类型:1离子键2共价键3金属键4范德华力3、扩散理论扩散理论认为,粘接是通过胶粘剂与被粘物界面上分子扩散产生的;当胶粘剂和被粘物都是具有能够运动的长链大分子聚合物时,扩散理论基本是适用的;热塑性塑料的溶剂粘接和热焊接可以认为是分子扩散的结果;4、静电理论由于在胶粘剂与被粘物界面上形成双电层而产生了静电引力,即相互分离的阻力;当胶粘剂从被粘物上剥离时有明显的电荷存在,则是对该理论有力的证实;5、弱边界层理论弱边界层理论认为,当粘接破坏被认为是界面破坏时,实际上往往是内聚破坏或弱边界层破坏;弱边界层来自胶粘剂、被粘物、环境,或三者之间任意组合;如果杂质集中在粘接界面附近,并与被粘物结合不牢,在胶粘剂和被粘物内部都可出现弱边界层;当发生破坏时,尽管多数发生在胶粘剂和被粘物界面,但实际上是弱边界层的破坏;聚乙烯与金属氧化物的粘接便是弱边界层效应的实例,聚乙烯含有强度低的含氧杂质或低分子物,使其界面存在弱边界层所承受的破坏应力很少;如果采用表面处理方法除去低分子物或含氧杂质,则粘接强度获得很大的提高,事实业已证明,界面上确存在弱边界层,,致使粘接强度降低;粘接原理目前已提出的粘接理论主要有:机械嵌合理论;吸附理论;静电理论;扩散理论;化学键理论;酸碱理论等;粘接是涉及面广而机理复杂的问题,不同的胶粘系统可能不同的胶粘机理;关于粘接力可以从以下几个方面来考虑:1粘接间的作用力胶粘剂与被处理对象之间的界面相互作用力称粘接力,粘接力的来源是多方面的,根据文献资料介绍主要有以下几种;1.1化学键力又称主价键力,存在于原子或离子之间,有离子键、共价键及金属键3种不同形式;离子键力是正离子和负离子之间的相互作用力,离子键力与正、负离子所带电荷的乘积成正比,与正、负离子之间距离的平方成反比;离子键力有时候可能存在于某些无机胶黏剂与无机材料表面之间的界面区内;共价键力即为两个原子之间通过共用电子对连接的作用力;每个电子对产生的共价键力为3~4×10-9N,共价键能等于共价键力与形成共价键的两原子间距离的乘积;金属键力是金属正离子之间由于电子的自由运动而产生的连接力,与粘接过程关系不大;胶黏剂与被粘物之间,如能引入化学键连接,其粘接强度将有显着提高;各种主价键键能的数值见表2—1;主价键有较高的键能,胶黏剂与被粘物之间如能引入主价键连接,其粘接强度将有显着提高;1.2分子间力分子间力又称次价键力,包括取向力、诱导力、色散力以上诸力合称范德华力和氢键力几种形式;取向力即极性分子永久偶极之间产生的引力,与分子的偶极矩的平方成正比,与两分子距离的六次方成反比;分子的极性越大,分子之间距离越靠近,产生的取向力就越大;温度越高,分子的取向力越弱;诱导力是分子固有偶极和诱导偶极之间的静电引力;极性分子和非极性分子相互靠近时,极性分子使非极性分子产生诱导偶极,极性分子之间,也能产生诱导偶极;诱导力与极性分子偶极矩的平方成正比,与被诱导分子的变形程度成正比,与两分子间距离的六次方成反比,与温度无关;色散力是分子色散作用产生的引力;由于电子是处于不断运动之中的,正、负电荷中心瞬间的不重合作用色散作用产生的瞬时偶极,诱导邻近分子产生瞬时诱导偶极,这种偶极间形成的作用力称色散力;低分子物质的色散力较弱,色散力与分子间距离的六次方成反比,与环境温度无关;非极性高分子物质中,色散力占全部分子作用力的80%~100%;氢键作用产生的力称氢键力;当氢原子与电负性大的原子x形成共价化合物HX时,HX分子中的氢原子吸引邻近另一个HX分子中的X原子而形成氢键:X原子的电负性越大,氢键力也越大;X原子的半径越小,氢键力越大;氢键力具有饱和性和方向性,比主价键力小得多,但大于范德华力;1.3机械力机械嵌合理论认为粘接力来自于两表面的机械互锁,靠锚固\钩合\楔合等作用,使胶粘剂与被粘物连接在一起.实际上这种力并非起主要作用,只是在一些场合改善了粘接效果;粘合原理有如下几种1.吸附理论:认为粘合剂和被粘物分子间的范德华力对吸附强度的贡献是最重要的;2.机械结合理论:认为粘合剂侵透到被粘物表面的空隙中,固化后就像许多小钩和榫头似地把粘合剂和被黏物连接在一起,这种微细的机械结合对多孔性表面更为显着;3.静电理论:主要依据是,实验测得的剥离时所消耗的能量与按双电层模型计算出的黏附功相符;4.扩散理论:是以粘合剂与被黏物在界面处相溶为依据提出的;5.化学键理论:认为粘合剂和被粘物之间除存在范德华力外,有时还可形成化学键,化学键的键能比分子间的作用大得多,形成较多的化学键对提高粘接强度和改善耐久性都具有重要意义;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档