整式的乘法和因式分解纯计算题100道定稿.doc

合集下载

八年级数学上册第十四章整式的乘法与因式分解知识点题库(带答案)

八年级数学上册第十四章整式的乘法与因式分解知识点题库(带答案)

八年级数学上册第十四章整式的乘法与因式分解知识点题库单选题1、要使多项式(x+p)(x−q)不含x的一次项,则p与q的关系是()A.相等B.互为相反数C.互为倒数D.乘积为−1答案:A分析:计算乘积得到多项式,因为不含x的一次项,所以一次项的系数等于0,由此得到p-q=0,所以p与q 相等.解:(x+p)(x−q)=x2+(p−q)x−pq∵乘积的多项式不含x的一次项∴p-q=0∴p=q故选择A.小提示:此题考查整式乘法的运用,注意不含的项即是该项的系数等于0.2、下列分解因式正确的是()A.a3−a=a(a2−1)B.x3+4x2y+4xy2=x(x+2y)2C.−x2+4xy−4y2=−(x+2y)2D.16x2+16x+4=(4x+2)2答案:B分析:根据分解因式的方法进行分解,同时分解到不能再分解为止;A、a3−a=a(a2−1)=a(a+1)(a−1),故该选项错误;B、x3+4x2y+4xy2=x(x2+4xy+4y2)=x(x+2y)2,故该选项正确;C、−x2+4xy−4y2=−(x2−4xy+4y2)=−(x−2y)2,故该选项错误;D、16x2+16x+4=4(4x2+4x+1)=4(2x+1)2,故该选项错误;故选:B.小提示:本题考查了因式分解,解决问题的关键是掌握因式分解的几种方法,注意因式分解要分解到不能再分解为止;3、若x 2+ax =(x +12)2+b ,则a ,b 的值为( ) A .a =1,b =14B .a =1,b =﹣14 C .a =2,b =12D .a =0,b =﹣12答案:B分析:根据完全平方公式把等式右边部分展开,再比较各项系数,即可求解.解:∵x 2+ax =(x +12)2+b =x 2+x +14+b , ∴a =1,14+b =0, ∴a =1,b =﹣14,故选B .小提示:本题主要考查完全平方公式,熟练掌握完全平方公式是解题的关键.4、下列因式分解正确的是( )A .a 4b ﹣6a 3b +9a 2b =a 2b (a 2﹣6a +9)B .x 2﹣x +14=(x ﹣12)2C .x 2﹣2x +4=(x ﹣2)2D .x 2﹣4=(x +4)(x ﹣4)答案:B分析:直接利用提取公因式法以及公式法分解因式进而判断即可.解:A 、a 4b ﹣6a 3b +9a 2b =a 2b (a 2﹣6a +9)=a 2b (a ﹣3)2,故此选项错误;B 、x 2﹣x +14=(x ﹣12)2,故此选项正确;C 、x 2﹣2x +4,无法运用完全平方公式分解因式,故此选项错误;D 、x 2﹣4=(x +2)(x ﹣2),故此选项错误;故选:B .小提示:本题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法进行解题.5、如下列试题,嘉淇的得分是()姓名:嘉淇得分:将下列各式分解因式(每题20分,共计100分)①2xy−4xyz=2xy(1−2z);②−3x−6x2=−3x(1−2x);③a2+2a+1=a(a+2);④m2−4n2= (m−2n)2;⑤−2x2+2y2=−2(x+y)(x−y)A.40分B.60分C.80分D.100分答案:A分析:根据提公因式法及公式法分解即可.①2xy−4xyz=2xy(1−2z),故该项正确;②−3x−6x2=−3x(1+2x),故该项错误;③a2+2a+1=(a+1)2,故该项错误;④m2−4n2=(m+2n)(m−2n),故该项错误;⑤−2x2+2y2=−2(x+y)(x−y),故该项正确;正确的有:①与⑤共2道题,得40分,故选:A.小提示:此题考查分解因式,将多项式写成整式乘积的形式,叫做将多项式分解因式,分解因式的方法:提公因式法、公式法,根据每道题的特点选择恰当的分解方法是解题的关键.6、在下列各式中,一定能用平方差公式因式分解的是().A.−a2−9B.a2−9C.a2−4b D.a2+9答案:B分析:直接利用平方差公式:a2−b2=(a+b)(a−b),进而分解因式判断即可.A、−a2−9,无法分解因式,故此选项不合题意;B、a2−9=(a+3)(a−3),能用平方差公式分解,故此选项符合题意;C、a2−4b,无法分解因式,故此选项不合题意;D、a2+9,无法分解因式,故此选项不合题意.故选B.小提示:此题主要考查了公式法分解因式,正确应用乘法公式是解题关键.7、若2a+3b−3=0,则4a×23b的值为()A.23B.24C.25D.26答案:A分析:先利用已知条件2a+3b−3=0,得2a+3b=3,再利用同底数幂的乘法运算法则和幂的乘方将原式变形得出答案.解:∵2a+3b−3=0,∴2a+3b=3,∵4a×23b=(22)a×23b=22×a×23b=22a+3b,∴原式=4a×23b=(22)a×23b=22×a×23b=22a+3b=23,故选:A.小提示:本题主要考查了同底数幂的乘法运算和幂的乘方,正确将原式变形是解题关键.8、下列因式分解正确的是()A.a2+b2=(a+b)2B.a2+2ab+b2=(a−b)2C.a2−a=a(a+1)D.a2−b2=(a+b)(a−b)答案:D分析:根据因式分解的方法,逐项分解即可.A. a2+b2,不能因式分解,故该选项不正确,不符合题意;B. a2+2ab+b2=(a+b)2故该选项不正确,不符合题意;C. a2−a=a(a−1),故该选项不正确,不符合题意;D. a2−b2=(a+b)(a−b),故该选项正确,符合题意.故选D.小提示:本题考查了因式分解,掌握因式分解的方法是解题的关键.9、计算(x+1)(x+2)的结果为( )A.x2+2B.x2+3x+2C.x2+3x+3D.x2+2x+2答案:B解:原式=x2+2x+x+2=x2+3x+2.故选B.10、已知2n=a,3n=b,12n=c,那么a、b、c之间满足的等量关系是()A.c=ab B.c=ab3C.c=a3b D.c=a2b答案:D分析:直接利用积的乘方、幂的乘方运算法则将原式变形得出答案.A选项:ab=2n⋅3n=6n≠12n,即c≠ab,A错误;B选项:ab3=2n⋅(3n)3=2n⋅33n=2n⋅27n=54n≠12n,即c≠ab3,B错误;C选项:a3b=(2n)3⋅3n=8n⋅3n=24n≠12n,即c≠a3b,C错误;D选项:a2b=(2n)2⋅3n=4n⋅3n=12n=c,D正确.故选:D.小提示:本题主要考查了积的乘方运算,幂的乘方运算,正确将原式变形是解题关键.填空题11、计算:(√5-2)2018(√5+2)2019的结果是_____.答案:√5+2分析:逆用积的乘方运算法则以及平方差公式即可求得答案.(√5-2)2018(√5+2)2019=(√5-2)2018×(√5+2)2018×(√5+2)=[(√5-2)×(√5+2)]2018×(√5+2)=(5-4)2018×(√5+2)=√5+2,故答案为√5+2.小提示:本题考查了积的乘方的逆用,平方差公式,熟练掌握相关的运算法则是解题的关键.12、若|a|=2,且(a−2)0=1,则2a的值为_______.答案:1##0.254分析:根据绝对值的意义得出a=±2,根据(a−2)0=1,得出a−2≠0,求出a的值,即可得出答案.解:∵|a|=2,∴a=±2,∵(a−2)0=1,∴a−2≠0,即a≠2,∴a=−2,∴2a=2−2=1.4.所以答案是:14小提示:本题主要考查了绝对值的意义,零指数幂有意义的条件,根据题意求出a=−2,是解题的关键.13、已知x−y=3,xy=10,则(x+y)2=______.答案:49分析:根据(x+y)2=(x-y)2+4xy即可代入求解.解:(x+y)2=(x-y)2+4xy=9+40=49.所以答案是:49.小提示:本题主要考查完全平方公式,熟记公式的几个变形公式对解题大有帮助.14、分解因式:am+an−bm−bn=_________________答案:(m+n)(a−b)分析:利用分组分解法和提取公因式法进行分解因式即可得.解:原式=(am+an)−(bm+bn)=a(m+n)−b(m+n)=(m+n)(a−b),所以答案是:(m+n)(a−b).小提示:本题考查了因式分解,熟练掌握因式分解的方法是解题关键.15、若x−y−3=0,则代数式x2−y2−6y的值等于______.答案:9分析:先计算x-y的值,再将所求代数式利用平方差公式分解前两项后,将x-y的值代入化简计算,再代入计算即可求解.解:∵x−y−3=0,∴x−y=3,∴x2−y2−6y=(x+y)(x−y)−6y=3(x+y)−6y=3x+3y−6y=3(x−y)=9所以答案是:9.小提示:本题主要考查因式分解的应用,通过平方差公式分解因式后整体代入是解题的关键.解答题16、化简:3(a﹣2)(a+2)﹣(a﹣1)2.答案:2a2+2a-13分析:根据平方差公式和完全平方公式去括号,再计算加减法.解:3(a﹣2)(a+2)﹣(a﹣1)2=3(a2-4)-(a2-2a+1)=3a2-12-a2+2a-1=2a2+2a-13.小提示:此题考查了整式的乘法计算公式,整式的混合运算,正确掌握平方差公式和完全平方公式的计算法则是解题的关键.17、爱动脑筋的小明在学习《幂的运算》时发现:若a m=a n(a>0,且a≠1,m、n都是正整数),则m= n,例如:若5m=54,则m=4.小明将这个发现与老师分享,并得到老师确认是正确的,请您和小明一起用这个正确的发现解决下面的问题:(1)如果2×4x×32x=236,求x的值;(2)如果3x+2+3x+1=108,求x的值.答案:(1)x=5(2)x=2分析:(1)利用幂的乘方的法则及同底数幂的乘法的法则对式子进行整理,从而可求解;(2)利用同底数幂的乘法的法则及幂的乘方的法则对式子进行整理,即可求解.(1)因为2×4x×32x=236,所以2×22x×25x=236,即21+7x=236,所以1+7x=36,解得:x=5;(2)因为3x+2+3x+1=108,所以3×3x+1+3x+1=4×27,4×3x+1=4×33,即3x+1=33,所以x+1=3,解得:x=2.小提示:本题主要考查幂的乘方,同底数幂的乘法,解答的关键是对相应的运算法则的掌握与运用.18、阅读:已知a、b、c为△ABC的三边长,且满足a2c2−b2c2=a4−b4,试判断△ABC的形状.答案:(1)③,忽略了a2−b2=0的情况;(2)见解析分析:(1)根据题意可直接进行求解;(2)由因式分解及勾股定理逆定理可直接进行求解.解:(1)由题意可得:从第③步开始错误,错的原因为:忽略了a2−b2=0的情况;故答案为③;忽略了a2−b2=0的情况;(2)正确的写法为:c2(a2−b2)=(a2+b2)(a2−b2)c2(a2−b2)−(a2+b2)(a2−b2)=0(a2−b2)[c2−(a2+b2)]=0当a2−b2=0时,a=b;当a2−b2≠0时,a2+b2=c2;所以△ABC是直角三角形或等腰三角形或等腰直角三角形.小提示:本题主要考查勾股定理逆定理及因式分解,熟练掌握勾股定理逆定理及因式分解是解题的关键.解析:解:因为a2c2−b2c2=a4−b4,①所以c2(a2−b2)=(a2−b2)(a2+b2)②所以c2=a2+b2③所以△ABC是直角三角形④请据上述解题回答下列问题:(1)上述解题过程,从第______步(该步的序号)开始出现错误,错的原因为______;(2)请你将正确的解答过程写下来.。

(完整版)第十四章--整式乘除及因式分解(知识点+题型分类练习),推荐文档

(完整版)第十四章--整式乘除及因式分解(知识点+题型分类练习),推荐文档

C. ﹣2(3x﹣1)=﹣6x﹣2
D. ﹣2(3x﹣1)=﹣6x+2
2.( 2015•济宁)化简 ﹣16( x﹣0.5)的结果是( )
A. ﹣16x﹣0.5
B. ﹣16x+0.5
C. 16x﹣8
3.(2016·佛山)化简 m n (m n) 的结果是( ).
D. ﹣16x+8
A. 0
B. 2m
C.0.2a2b 与﹣ a2b D.a2b3 与﹣a3b2
4.(2015•柳州)在下列单项式中,与 2xy 是同类项的是( )
A.2x2y2
B.3y
C.xy
D.4x
5.(2014•毕节)若 2 am b4 与 5 an2 b2mn 可以合并成一项,则 mm 的值是( )
A.2
B. 0
C.﹣1
D.1
C. x·x2= x4 C.(-x2)3=-x6 C.(a2)3=a6
D.(2x2)2=6x6 D.(x3)2=x5
D.a6÷a3=a2
8.下列运算正确的是 ( )
A. 3 = 3
9.下列计算正确的是 (
B. ( 1 ) 1 22
)
A.a3·a2=a6
B.a2+a4=2a2
10.下列计算正确的是( )
A. 6a-5a=1
B. a+2a2=3a3
) C.-(a-b)=-a+b
D.2(a+b)=2a+b
7.(2012•浙江)化简: 2(a 1) a _______ .
考点 3、根据题意列代数式
1.(2014•盐城)“x 的 2 倍与 5 的和”用代数式表示为

2.(2010·嘉兴)用代数式表示“a、b 两数的平方和”,结果为_______。

整式的乘法与因式分解习题带答案精选全文完整版

整式的乘法与因式分解习题带答案精选全文完整版

可编辑修改精选全文完整版Array第十四章、整式乘除与因式分解14.1 整式的乘法(1)(-3x)2(x+1)(x+3)+4x(x-1)(x2+x+1),其中x=-1;解:原式=9x2(x2+3x+x+3)+4x(x3+x2+x-x2-x-1)=9x2(x2+4x+3)+4x(x3-1)=9x4+36x3+27x2+4x4-4x=13x4+36x3+27x2-4x当x=-1时原式=13×(-1)4+36×(-1)3+27×(-1)2-4×(-1)=13-36+27+4=8(2)y n(y n+3y-2)-3(3y n+1-4y n),其中y=-2,n=2.解:原式=y2n+3y n+1-2y n-9y n+1+12y n=y2n-6y n+1+10y n当y=-2,n=2时原式=(-2)2×2-6×(-2)2+1+10×(-2)2=16+48+40=10415、已知不论x、y为何值时(x+my)(x+ny)=x2+2xy-8y2恒成立.求(m+n)mn的值.解:x2+nxy+mxy+mny2=x2+2xy-8y2x2+(m+n)xy+mny2=x2+2xy-8y2∴m+n=2,mn=-8∴(m+n)mn=2×(-8)=-166、已知31=+a a,则221a a +=( B ) A .5 B .7 C .9 D .117、如果x 2+kx +81是一个完全平方式,则k 的值是( D )A .9B .-9C .±9D .±188、下列算式中不正确的有( C )①(3x 3-5)(3x 3+5)=9x 9-25②(a +b +c +d)(a +b -c -d)=(a +b)2-(c +d)2③22)31(5032493150-=⨯ ④2(2a -b)2·(4a +2b)2=(4a -2b)2(4a -2b)2=(16a 2-4b 2)2A .0个B .1个C .2个D .3个9、代数式2)(2y x +与代数式2)(2y x -的差是( A ) A .xy B .2xy C .2xy D .0 10、已知m 2+n 2-6m +10n +34=0,则m +n 的值是( A )A .-2B .2C .8D .-8二、解答题11、计算下列各题:(1)(2a +3b)(4a +5b)(2a -3b)(5b -4a)(2)(x +y)(x -y)+(y -z)(y +z)+(z -x)(z +x);(3)(3m 2+5)(-3m 2+5)-m 2(7m +8)(7m -8)-(8m)2(1) 解:原式=(2a +3b)(2a -3b)(4a +5b)(5b -4a)=(4a 2-9b 2)(25b 2-16a 2)=100a 2b 2-64a 4-225b 4+144a 2b 2=-64a 4+244a 2b 2-225b 4(2) 解:原式=x 2-y 2+y 2-z 2+z 2-x 2=0(3) 解:原式=25-9m 4-m 2(49m 2-64)-64m 2=-58m 4+2512、化简求值:(1)4x(x 2-2x -1)+x(2x +5)(5-2x),其中x =-1(2)(8x 2+4x +1)(8x 2+4x -1),其中x =21 (3)(3x +2y)(3x -2y)-(3x +2y)2+(3x -2y)2,其中x =31,y =-21 (1) 解:原式=4x 3-8x 2-4x +x(25-4x 2)=4x 3-8x 2-4x +25x -4x 3=-8x 2+21x当x =-1时原式=-8×(-1)2+21×(-1)=-8-21=-29(2) 解:原式=(8x 2+4x)2-1当x =时,原式=[8×()2+4×]2-1=(2+2)2-1=15(3) 解:原式=9x 2-4y 2-9x 2-12xy -4y 2+9x 2-12xy +4y 2=9x 2-24xy -4y 2当x =,y =-时原式=9×()2-24××(-)-4×(-)2=1+4-1=413、解下列方程:(1)(3x)2-(2x +1)2=5(x +2)(x -2)解:9x 2-4x 2-4x -1=5x 2-205x 2-4x -1=5x 2-204x =19∴x =419(2)6x +7(2x +3)(2x -3)-28(x -21)(x +21)=4解:6x +28x 2-63-28x 2+7=46x -56=46x =60∴x =1014、解不等式:(1-3x)2+(2x -1)2>13(x -1)(x +1)解:1-6x +9x 2+4x 2-4x +1>13x 2-1313x 2-10x +2>13x 2-13-10x>-15∴x<2315、若n 满足(n -2004)2+(2005-n)2=1,求(2005-n)(n -2004)的值.解:(n -2004)2+2·(n -2004)·(2005-n)+(2005-n)2=1+2(n -2004)(2005-n)(n -2004+2005-n)2=1+2(n -2004)(2005-n)1=1+2(2005-n)(n -2004)∴(2005-n)(n -2004)=014.3 因式分解一、选择题1、下列各式,从左到右的变形是因式分解的为( B )A .x 2-9+5x =(x +3)(x -3)+5xB .x 2-4x +4=(x -2)2C .(x -2)(x -3)=x 2-5x +6D .(x -5)(x +2)=(x +2)(x -5)2、把多项式x 2-mx -35分解因式为(x -5)(x +7),则m 的值是( B)A .2B .-2C .12D .-123、分解因式:x 2-2xy +y 2+x -y 的结果是( A )A .(x -y )(x -y +1)B .(x -y )(x -y -1)C .(x +y )(x -y +1)D .(x +y )(x -y -1)4、若9x 2-12xy +m 是一个完全平方公式,那么m 的值是( B )。

整式乘法与因式分解100题+(基础篇答案)

整式乘法与因式分解100题+(基础篇答案)
10.解:A、应为(-2x2)•x3=-2x5,故本选项错误; B、x2÷x=x,正确; C、应为(4x2)3=64x6,故本选项错误; D、应为 3x2-(2x)2=3x2-4x2=-x2,故本选项错误. 故选 B.
11.解:A、a2 不 2a3 丌是同类项,丌能合并,故本选项错误; B、应为(2b2)3=8b6,故本选项错误; C、应为(3ab)2÷(ab)=9ab,故本选项错误; D、2a•3a5=6a6,正确. 故选 D.
28.解:-3x3•(-2x2y)=-3×(-2)•x3x2•y=6x5y.
29.解:3x2•(-2xy3)=3×(-2)•(x2•x)y3=-6x3y3.
30.解:(-2a)(-3a)=(-2)×(-3)a•a=6a2.
31.解:8b2(-a2b)=-8a2b3.
32.解:8a3b3•(-2ab)3=8a3b3•(-8a3b3)=-64a6b6.
49.解:(-2a3+3a2-4a)(-5a5)=10a8-15a7+20a6.
50.解:(x-2)(x+3)=x2+x-6.
51.解:(x-2y)(2x+y)=2x2+xy-4xy-2y2=2x2-3xy-2y2.
52.解:3x(5x-2)-5x(1+3x)=15x2-6x(- 5x+15x2)=15x2-6x-5x-15x2=-11x.
48.解:A、应为 2ac(5b2+3c)=10ab2c+6ac2,故本选项错误; B、应为(a-b)2(a-b+1)=(a-b)3+(b-a)2,故本选项错误; C、应为(b+c-a)(x+y+1)=x(b+c-a)-y(a-b-c)-a-b-c,故本选项错误; D、(a-2b)(11b-2a)=(a-2b)(3a+b)-5(2b-a)2. 故选 D.

人教版八年级数学上册整式的乘法及因式分解专题训练.doc

人教版八年级数学上册整式的乘法及因式分解专题训练.doc

整式的乘法及因式分解专题训练一、同底数幂的乘法。

1、同底数幂相乘,不变,;2、计算工式:a m× a n =a() (m,n都是);3、计算:2 · x3 6( 3)、(- 2)×(-5×(- 2)5( 1)、x ( 2)、 a· a 2)( 4)、 m x-2· m 2-x(5)、- x5·x3·x10(6)、10x×1000 ( 7)、- 3×(- 3)2( 8)、 3× 105× 2× 106( 9)、- 8×(- 26)二、幂的乘方。

1 、幂的乘方,不变,相乘;2 、计算公式:( a m)n());=a ( m、 n 都是3、计算:3 )6 4)2 m)10 4)5( 1)、( 10 ( 2)、( a ( 3)、( a ( 4)、-( x4 )4 2 35 4)2 2)2( 5)、( a ( 6)、( a )· a ( 7)、( x ( 8)、-(- x三、积的乘方。

1 、积的乘方,等于把积的每一个因式分别,再把所得的幂。

2 、计算公式:( ab)n()()=a b ( n 为正整数);3、计算:( 1)、( 2a)2(2)、(-5b)3(3)、(x2y)3(4)、(-3m2) 3( 5)、-( x2y 3z5)2( 6)、(- 1/2xy )3( 7)、( 2ab2)3( 8)(- pq)3四、整式的乘法。

(一)、单项式×单项式。

1、运算法则:单项式与单项式相乘,把它们的、分别相乘,对于只在一个单项式里含有的字母,则连同它的作为积的一个因式。

2 2 2 2 1+2 1+23 32、举例: 2xy · 3x y z = ( 2× 3)( x · x )( y · y ) z=6x y z=6x y z(请同学们按上面举例的格式进行计算)2 3 4 5( 2)、3x 2 2 2)( 1)、-8m n · 3m n ; ·(- 6xy ) ; ( 3)、(-5a b)(- 4a2 2( 5)、 4y ·(-2xy 2 2 3( 4)、3x · 6x )( 6)、(-3x )· 5x2 3 2 2( 8)、( 2x )(-6xy 2( 7)、(-2a bc )(- 3ab ))(二)、单项式×多项式。

(完整版)整式的乘法与因式分解专题训练

(完整版)整式的乘法与因式分解专题训练

整式的乘法和因式分解一、整式的运算1、已知a m =2,a n =3,求a m +2n 的值;2、若32=n a,则n a 6= . 3、若125512=+x ,求x x +-2009)2(的值。

4、已知2x +1⋅3x -1=144,求x ;5.2005200440.25⨯= .6、( 23)2002×(1.5)2003÷(-1)2004=________。

7、如果(x +q )(3x -4)的结果中不含x 项(q 为常数),求结果中的常数项8、设m 2+m -1=0,求m 3+2m 2+2010的值二、乘法公式的变式运用1、位置变化,(x +y )(-y +x )2、符号变化,(-x +y )(-x -y )3、指数变化,(x 2+y 2)(x 2-y 2)44、系数变化,(2a +b )(2a -b )5、换式变化,[xy +(z +m )][xy -(z +m )]6、增项变化,(x -y +z )(x -y -z )7、连用公式变化,(x +y )(x -y )(x 2+y 2)8、逆用公式变化,(x -y +z )2-(x +y -z )2三、乘法公式基础训练:1、计算 (1)1032 (2)19822、计算 (1)(a -b +c )2 (2)(3x +y -z )23、计算 (1)(a +4b -3c )(a -4b -3c ) (2)(3x +y -2)(3x -y +2)4、计算 (1)19992-2000×1998 (2)22007200720082006-⨯.四、乘法公式常用技巧1、已知a 2+b 2=13,ab =6,求(a +b )2,(a -b )2的值。

变式练习:已知(a +b )2=7,(a -b )2=4,求a 2+b 2,ab 的值。

2、已知2=+b a ,1=ab ,求22b a +的值。

变式练习:已知8=+b a ,2=ab ,求2)(b a -的值。

整式乘法与因式分解100题(基础篇)

整式乘法与因式分解100题(基础篇)

整式乘法与因式分解500题—基础篇2412128 2.下列四个算式:①63+63;②(2×63)×(3×63);③(22×32)3;④(33)4.下列运算中,正确的是( )5.下面是一名学生所做的4道练习题:①(-3)0=1;②a 3+a 3=a 6;③4m -4=;④(xy 2)3=x 3y 6,他做对的个数是( )9.下列运算正确的是( )500题分为两次发放,当前100题为开课前预习练习;暑期学习后,配备400道拔高巩固题!整式乘法与因式分解500题—基础篇11.下列运算正确的是()222.一个长方体的长、宽、高分别3a-4,2a,a,它的体积等于()23.2x2•(-3x3)=_______.24.(-2x2)•3x4=_______.25.(3x2y)(-x4y)=_______.26.2a3•(3a)3=_______.27.(-3x2y)•(xy2)=_______.28.-3x3•(-2x2y)=_______.29.3x2•(-2xy3)=_______.30.(-2a)(-3a)=_______.31.8b2(-a2b)=_______.32.8a3b3•(-2ab)3=_______.33.(-3a3)2•(-2a2)3=_______.34.(-8ab)()=_______.35.2x2•3xy=_______.36.3x4•2x3=_______.37.x2y•(-3xy3)2=_______.38.(2a2b)3c÷(3ab)3=_______.39.(-2a)3•b4÷12a3b2=_______.40.计算:(_______)•3ab2=9ab5;-12a3bc÷(_______)=4a2b;(4x2y-8x3)÷4x2=_______.41.若(a m+1b n+2)•(a2n-1b2m)=a5b3,则m+n的值为_______.42.若n为正整数,且a2n=3,则(3a3n)2÷(27a4n)的值为_______.43.利用形如a(b+c)=ab+ac的分配性质,求(3x+2)(x-5)的积的第一245.下列多项式相乘结果为a2-3a-18的是()249.(-2a 3+3a 2-4a )(-5a 5)=_______.50.(x-2)(x+3)=_______.51.(x-2y )(2x+y )=_______.52.3x (5x-2)-5x (1+3x )=_______.53.(x-a )(x 2+ax+a 2)=_______.54.5x (x 2-2x+4)+x 2(x+1)=_______.256.若(x+1)(2x-3)=2x 2+mx+n ,则m=_______,n=_______. 整式乘法与因式分解500题—基础篇57.若(x+4)(x-3)=x2+mx-n,则m=_______,n=_______.259.若(mx3)•(2x k)=-8x18,则适合此等式的m=_______,k=_______.60.若(x+1)(2x-3)=2x2+mx+n,则m=_______,n=_______.61.若(x-2)(x-n)=x2-mx+6,则m=_______,n=_______.62.若(x+p)与(x+2)的乘积中,不含x的一次项,则p的值是_______.64.计算(a+m)(a+)的结果中不含关于字母a的一次项,则m等于()65.如果(x+1)(x2-5ax+a)的乘积中不含x2项,则a为_______.66.已知(5-3x+mx2-6x3)(1-2x)的计算结果中不含x3的项,则m的值为_______.67.通过计算几何图形的面积可表示一些代数恒等式,如图可表示的代数恒等式是()68.如图,正方形卡片A类,B类和长方形卡片C类若干张,如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片_______张.69.已知m+n=2,mn=-2,则(1-m )(1-n )的值为( )70.若2x (x-1)-x (2x+3)=15,则x=_______.71.已知a 2-a+5=0,则(a-3)(a+2)的值是_______.72.按下列程序计算,最后输出的答案是_______.73.下列运算正确的是( ). (am+bm+cm )÷n=am÷n+bm÷n+cm÷n=. (-a b-14a +7a )÷7a=-7a b-2a. (36x 4y 3-24x 3y 2+3x 2y 2)÷(-6x 2y )=-6x 2y+4x 5y 3-x 4y 3. (6a m+2b n -4a m+1b n+1+2a m b n+2)÷(-2a m b n )=-3a 2+2ab-b n+1 74.下列计算正确的是( )422325277.下列计算正确的是( )2222.-(-x)•(-x)=-x.(x-3y)(-x+3y)=x2-9y288.(a+1)2-(a-1)2=_______.89.化简(a+b)2-(a-b)2的结果是_______.22.x2-x+B94.小明计算一个二项式的平方时,得到正确结果a2-10ab+■,但最后一项不.(a+b)(b-a).(x2-y)(x+y2)96.下列各式中,能用平方差公式计算的是()97.应用(a+b)(a-b)=a2-b2的公式计算(x+2y-1)(x-2y+1),则下列变.(x-y)(x+y)=x2-y2.(a+b)(a-b)=a2-b2.(3x+5)(3x-5)=9x-2599.对于任意的整数n,能整除(n+3)(n-3)-(n+2)(n-2)的整数是()100.如果两个数互为倒数,那么这两个数的和的平方与它们的差的平方的差是()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档