高一物理较难题
高一物理试题难题及答案
高一物理试题难题及答案一、选择题(每题3分,共30分)1. 一个物体从静止开始做匀加速直线运动,加速度为a,经过时间t后,其速度变为v,则在这段时间内的平均速度为:A. v/2B. v/aC. atD. a答案:A2. 一个质量为m的物体在水平面上受到一个大小为F的水平拉力作用,物体与水平面间的动摩擦因数为μ,物体的加速度大小为:A. (F-μmg)/mB. (F+μmg)/mC. F/mD. μmg/m答案:A3. 一个物体从高度为h的斜面顶端自由滑下,斜面倾角为θ,物体与斜面间的动摩擦因数为μ,物体滑到斜面底端时的速度大小为:A. √(2gh(1-μsinθ))B. √(2gh(1+μsinθ))C. √(2gh(1-μcosθ))D. √(2gh(1+μcosθ))答案:A4. 一个质量为m的物体从高度为h的平台上自由落下,不计空气阻力,物体落地时的速度大小为:A. √(2gh)B. √(gh)C. √(2gh/3)D. √(gh/2)答案:A5. 一个质量为m的物体在水平面上受到一个大小为F的水平拉力作用,物体与水平面间的动摩擦因数为μ,物体的加速度大小为a,则拉力F的大小为:A. ma + μmgB. ma - μmgC. ma + μmg/2D. ma - μmg/2答案:A6. 一个质量为m的物体从静止开始做匀加速直线运动,加速度为a,经过时间t后,其位移大小为:A. 1/2at^2B. at^2C. atD. 2at答案:A7. 一个质量为m的物体在竖直方向上受到一个大小为F的拉力作用,物体与竖直方向的夹角为θ,物体的加速度大小为a,则拉力F的大小为:A. ma/cosθB. ma/sinθC. maD. ma*cosθ答案:D8. 一个质量为m的物体从高度为h的平台上自由落下,不计空气阻力,物体落地时的动能大小为:A. 1/2mv^2 = 1/2mghB. 1/2mv^2 = mghC. 1/2mv^2 = 2mghD. 1/2mv^2 = 3/2mgh答案:A9. 一个质量为m的物体在水平面上受到一个大小为F的水平拉力作用,物体与水平面间的动摩擦因数为μ,物体的加速度大小为a,则动摩擦力的大小为:A. F - maB. μmg - maC. μmg + maD. F - μmg答案:B10. 一个质量为m的物体从静止开始做匀加速直线运动,加速度为a,经过时间t后,其位移大小为x,则在这段时间内的平均速度为:A. x/tB. 2x/tC. x/2tD. 2at答案:A二、填空题(每题4分,共20分)11. 一个物体从静止开始做匀加速直线运动,加速度为a,经过时间t后,其速度变为v,则在这段时间内的平均速度为v/2。
高一物理难题
高一物理难题
1.下列关于超重、失重现象的说法正确的是()
A. 列车在加速上升的电梯中处于超重状态
B. 物体处于超重状态时其重力一定变大
C. 宇航员在围绕地球做匀速圆周运动的航天飞机中处于失重状态
D. 物体处于失重状态时其重力一定变小
2.物体做匀加速直线运动,加速度为2m/s2,在任意1s内( )
A.物体的末速度一定等于初速度的2倍
B.物体的末速度一定比初速度大2m/s
C.物体的末速度一定比前1s内的末速度大2m/s
D.物体的末速度一定比前1s内的初速度大2m/s
3.某物体做匀加速直线运动,位移公式x=5+3t2(x的单位:m,t的单位:
s),则该物体加速度为( )
A.3m/s2
B.6m/s2
C.9m/s2
D.12m/s2。
高一物理最难的三个知识点
高一物理最难的三个知识点在学习物理的过程中,我们会遇到各种难点,其中有三个知识点是许多高一学生认为最难理解和掌握的。
本文将从电磁感应、光的折射和电路分析这三个方面详细介绍这些知识点,并提供相应的解析和方法。
1. 电磁感应电磁感应是物理中的一项重要知识,也是学生们普遍认为较难的内容之一。
电磁感应是指通过磁场内的导体中的电荷运动产生电流的现象。
在理解电磁感应时,我们需要掌握法拉第电磁感应定律以及楞次定律的应用。
在学习电磁感应时,我们需要理解导体中的自由电荷受到外磁场力的作用,从而产生感应电流。
值得注意的是,导体中的电流强度与感应电动势的大小呈正比。
为了更好地理解电磁感应,我们可以通过实验和图示来观察和分析导体中电场和磁场的变化。
解决电磁感应难题的关键在于通过反复练习,提升对电磁感应的应用能力。
在解题时,可以运用法拉第电磁感应定律和楞次定律,结合具体实例进行分析,并注意运用右手定则等工具辅助计算。
2. 光的折射光的折射也是高一物理中的难点之一。
折射是指光线从一种介质传播到另一种介质时,由于速度改变而导致光线改变方向的现象。
学生在学习光的折射时通常会遇到折射定律、光密介质入射光全反射和光的色散等问题。
为了更好地掌握光的折射,我们需要理解光速在不同介质中的变化和折射定律的数学表达。
此外,光的折射还与入射角、折射角和两种介质的折射率有关。
通过观察实验和解决实际问题,我们可以更深入地理解光的折射现象。
光的折射问题的解决方法在于熟练掌握折射定律,并能够应用相关公式进行计算。
通过大量的习题练习,结合实际应用场景的分析,可以帮助我们更好地理解和掌握光的折射。
3. 电路分析电路分析是高一物理的另一个难点。
电路分析是指通过分析电流、电压和电阻等参数来解决电路中的问题。
在电路分析中,学生常常遇到串并联电路、戴维南定理和基尔霍夫定律等内容。
为了更好地学习电路分析,我们需要熟悉基本电路元件的特性和串并联电路的性质。
此外,理解戴维南定理和基尔霍夫定律的原理和应用也是关键。
高一物理试题难题及答案
高一物理试题难题及答案一、选择题(每题3分,共30分)1. 光在真空中的传播速度是()A. 3×10^8 m/sB. 3×10^5 km/sC. 3×10^6 m/sD. 3×10^7 m/s2. 根据牛顿第二定律,当物体受到的合外力增大时,其加速度将()A. 增大B. 减小C. 不变D. 无法确定3. 一个物体从静止开始做匀加速直线运动,经过时间t后,其速度为v,则其位移为()A. 0.5vtB. vtC. v^2/2aD. 0.5at^24. 以下关于电磁波的描述,正确的是()A. 电磁波在真空中的速度小于光速B. 电磁波的传播不需要介质C. 电磁波是横波D. 电磁波是纵波5. 一个质量为m的物体,从高度h处自由下落,忽略空气阻力,其落地时的速度v为()A. √(2gh)B. √(gh)C. 2ghD. gh6. 根据欧姆定律,当电阻R不变时,通过电阻的电流I与两端电压U 的关系是()A. I与U成正比B. I与U成反比C. I与U无关D. I与U的关系不确定7. 以下关于电容器的描述,错误的是()A. 电容器可以储存电荷B. 电容器的电容与两极板间的距离有关C. 电容器的电容与两极板的面积无关D. 电容器的电容与两极板间介质的介电常数有关8. 一个电流为I的导体,其两端电压为U,根据欧姆定律,其电阻R 为()A. R = U/IB. R = I/UC. R = U * ID. R = U - I9. 以下关于磁场的描述,正确的是()A. 磁场对静止的电荷没有作用力B. 磁场对运动的电荷有作用力C. 磁场对电荷的作用力方向与电荷的运动方向垂直D. 磁场对电荷的作用力方向与电荷的运动方向平行10. 在原子核外,电子的排布遵循()A. 泡利不相容原理B. 洪特规则C. 能量最低原理D. 所有上述原理二、填空题(每题4分,共20分)1. 光年是天文学上用来表示距离的单位,它表示光在一年内通过的距离,其数值为_______km。
人教版高中物理必修1复习题(较难,有答案)
人教版高中物理必修1复习题(时间:90分钟)一、单项选择题(每题3分,共21分)1.关于位移和路程,下列说法正确的是( )A.在某一段时间内物体运动的位移为零,则该物体一定是静止的B.在某一段时间内物体运动的路程为零,则该物体一定是静止的C.在直线运动中,物体的位移大小一定等于其路程D.在曲线运动中,物体的位移大小可能等于路程2.三段不可伸长的细绳OA、OB、OC能承受的最大拉力相同,均为200N,它们共同悬挂一重物,如图所示,其中OB是水平的,A端、B端固定,θ=30°。
则O点悬挂的重物G不能超过( )A.100 NB.173 NC.346 ND.200 N3.如图所示,A、B两物体相距s=7 m时,A在水平拉力和摩擦力作用下,正以v A=4 m/s的速度向右匀速运动,而物体B此时正以v B=10 m/s向右匀减速运动,加速度a=-2m/s2,则A追上B所经历的时间是( )A.7 sB.8 sC.9 sD.10 s4.汽车内有一用轻绳悬挂的小球,某段时间内绳与竖直方向成某一固定角度,如图所示,若在汽车底板上还有一个跟其相对静止的物体m1。
下列关于汽车的运动情况和物体m1的受力情况,正确的是( )A.汽车一定向右做加速运动B.汽车一定向左做加速运动C.m1除受到重力、底板的支持力作用外,还一定受到向右的摩擦力作用D.m1除受到重力、底板的支持力作用外,还可能受到向左的摩擦力作用5. 如图所示,一个质量为m的小滑块静止于倾角为30°的粗糙斜面上,一根轻弹簧一端固定在竖直墙上的P点,另一端系在滑块上,弹簧与竖直方向的夹角为30°,重力加速度为g,则()A.滑块可能受到三个力作用B.弹簧一定处于压缩状态C.斜面对滑块的支持力大小可能为零D.斜面对滑块的摩擦力大小可能等于mg6.质量为m的木块位于粗糙水平面上,若用大小为F的水平恒力拉木块,其加速度为a,当拉力方向不变,大小变为2F时,木块的加速度为a′,则( )A.a′=aB.a′<aC.a′>2aD.a′=2a7.质量不等的两木块A 、B ,用跨过一轻质定滑轮的轻绳相连,在图3所示情况下,木块A 、B 一起做匀速运动。
高一物理难题20道
高一物理难题20道1.自由落体:一个物体从高处自由下落,经过3秒钟时,它的速度是多少。
2. 斜面问题:一个质量为5 kg的物体放在一个倾角为30°的光滑斜面上,求物体的加速度。
3. 牛顿第二定律:一辆汽车的质量为1000 kg,在水平方向上施加一个1000 N的水平推力,求汽车的加速度。
4. 动量守恒:一个质量为2 kg的物体以10 m/s的速度向右运动,撞上一个静止的质量为3 kg的物体。
碰撞后两物体结合在一起,求它们的共同速度。
5. 重心问题:一根均匀的长杆长2 m,质量为4 kg,求其重心的位置。
6. 热量计算:一块质量为0.5 kg的铝块(比热容为900 J/(kg·°C))从25°C加热到75°C,吸收了多少热量?7. 气体状态方程:一气体的体积为2 m³,温度为300 K,压力为100 kPa,求气体的物质量(R = 8.31 J/(mol·K))。
8. 热传导:一段长2 m、截面积为0.01 m²的金属杆,两端温度分别为100°C和0°C,求通过金属杆的热量流动速率(导热系数取50 W/(m·K))。
9. 折射定律:光线从空气射入折射率为1.5的玻璃中,入射角为30°,求折射角。
10. 镜子问题:一个物体距离平面镜1.5 m,求其在镜子中成像的距离。
11. 透镜成像:一物体距离一个凸透镜20 cm,焦距为5 cm,求物体的像距。
12. 欧姆定律:一个电阻为10 Ω的电路中,电流为2 A,求电压。
13. 电功率:一台电器的电压为220 V,电流为5 A,求其功率。
14. 电荷计算:一个电容器的电容为10 µF,电压为100 V,求电容器储存的电荷量。
15. 串联电路:三个电阻分别为5 Ω、10 Ω和15 Ω串联,求总电阻。
16. 并联电路:三个电阻分别为4 Ω、6 Ω和12 Ω并联,求总电导。
物理高一最难的知识点
物理高一最难的知识点在高中物理课程中,有些知识点常常被学生们认为是最具挑战性和难度的。
这些知识点需要深入的理解和透彻的思考,才能够真正掌握。
在本文中,将探讨高一阶段最难的物理知识点,并提供一些解决方法帮助学生们克服难题。
1. 力与力的合成力与力的合成是物理学中的一个重要概念,也是高中物理中的基础知识之一。
学生们常常困惑于如何正确地判断力的合成方向和大小。
为了解决这个难题,学生们需要理解向量的性质,并使用几何方法来准确地绘制力的合成图,从而确定合力的方向和大小。
2. 牛顿运动定律牛顿运动定律是高中物理中最基础的概念之一。
然而,学生们常常在应用牛顿运动定律解决实际问题时遇到困难。
这需要学生们掌握合理的力分析方法,准确地确定物体所受的合力,并应用力的平衡和不平衡条件来解决问题。
3. 力学能与功力学能与功是高中物理中较为复杂的知识点。
学生们需要理解能量转换的概念,并能够正确地计算物体的动能、势能以及机械能。
此外,功的概念也需要学生明确,包括正负功以及功的计算方法。
4. 电学基础在高一物理课程中,电学基础是学生们熟悉的内容之一。
然而,学生们通常对电流、电阻、电势差等概念的理解存在困难。
为了克服这些困难,学生们需要通过实验和练习来加强对电学基础知识的理解,同时熟悉电路的搭建和计算方法,并能够运用欧姆定律等原理解决问题。
5. 光学光学是高中物理中的另一个难点,涉及到光的传播、反射、折射等概念。
学生们需要理解光的属性和行为,掌握光的传播路径和面镜成像规律,并能够应用折射定律解决相关问题。
此外,学生们还需理解光的色散现象以及透镜成像原理。
为了克服以上物理知识点的难点,学生们可以采取以下方法:1. 良好的基础建设:物理知识的掌握取决于对基础概念的理解。
学生们应该利用课余时间进行系统的基础知识学习,打牢基础。
2. 多做练习:通过大量的练习,学生们可以更好地理解和应用物理知识。
选择有针对性的练习题目,并结合教材和习题辅导书进行巩固。
高一物理难题运动学知识点
高一物理难题运动学知识点运动学是物理学中的一个重要分支,研究物体的运动规律和运动状态,对于解决物理难题具有重要的作用。
本文将介绍几个高一物理常见的难题,并结合运动学知识点进行解析。
问题一:一辆汽车以15 m/s的速度匀速行驶了20 s,求汽车行驶的距离。
解析:根据题目中给出的速度和时间,我们可以使用运动学中的公式来计算汽车行驶的距离。
首先,我们知道匀速运动的速度保持不变,所以汽车的速度为15 m/s。
其次,题目给出的时间为20 s。
根据运动学公式:速度 = 距离 ÷时间,可得:距离 = 速度 ×时间。
代入已知的数值计算可得:距离 = 15 m/s × 20 s = 300 m。
所以,汽车行驶的距离为300米。
问题二:一个小球从地面上沿竖直上抛的轨迹飞起,求小球的最大高度和上升时间。
解析:对于这个问题,我们需要运用运动学中的竖直上抛运动的相关知识。
首先,我们假设小球从地面上抛的初速度为v0。
当小球达到最大高度时,它的速度为零。
根据上抛运动的运动学公式:v = v0 + at,其中v为最终速度,v0为初速度,a为加速度,t为时间。
由于最大高度时速度为零,代入相关数值可得:0 = v0 - 9.8t(重力加速度为9.8 m/s^2)。
解方程可得:t = v0 / 9.8。
所以,小球上升的时间为t = v0 / 9.8 s。
其次,利用竖直上抛运动的位移公式:h = v0t - (1/2)gt^2,其中h为位移(最大高度),将上升时间t代入可得:h = v0(v0 / 9.8) - (1/2)(9.8)(v0 / 9.8)^2。
化简后可得:h = (v0)^2 / (2 × 9.8)。
所以,小球的最大高度为h = (v0)^2 / (2 × 9.8)米。
问题三:一个自由下落的物体从100米高的位置下落,求物体落地的时间。
解析:对于自由下落的物体来说,我们可以利用重力加速度的概念来求解下落时间。
高一物理超难压轴题
高一物理超难压轴题题目,某物体以初速度v0=10 m/s沿直线运动,经过时间t=5 s后速度变为v=20 m/s。
求物体的加速度和位移。
回答:1. 从公式角度回答:根据物体的速度变化公式v = v0 + at,可以得到加速度的公式为a = (v v0) / t。
代入已知数据,可以计算得到加速度a = (20 m/s 10 m/s) / 5 s = 2 m/s²。
再根据位移公式s = v0t + 1/2at²,代入已知数据,可以计算得到位移s = 10 m/s × 5 s + 1/2 × 2 m/s² × (5 s)² = 50 m + 1/2 × 2 m/s² × 25 s²= 50 m + 25 m = 75 m。
2. 从图像角度回答:物体的速度-时间图像是一个直线,斜率表示加速度。
根据题目中的数据,可以画出一条直线,起点为(0, 10 m/s),终点为(5 s, 20 m/s)。
根据直线的斜率,可以计算出加速度为斜率的变化量,即(20 m/s 10 m/s) / 5 s = 2 m/s²。
位移可以通过速度-时间图像下的面积来计算,即矩形的面积加上三角形的面积,面积为(10 m/s + 20 m/s) × 5 s / 2 = 75 m。
3. 从运动学方程角度回答:根据物体的速度变化公式v = v0 + at,可以得到加速度的公式为a = (v v0) / t。
代入已知数据,可以计算得到加速度a = (20 m/s 10 m/s) / 5 s = 2 m/s²。
再根据位移公式s = v0t +1/2at²,代入已知数据,可以计算得到位移s = 10 m/s × 5 s + 1/2 × 2 m/s² × (5 s)² = 50 m + 1/2 × 2 m/s² × 25 s²= 50 m + 25 m = 75 m。
高一物理难题练习(有解析)
1.(2014秋•顺德区期末)关于弹力和摩擦力的关系,下列说法正确的是()A.两物体间若有弹力,就一定有摩擦力B.两物体间若有摩擦力,就一定有弹力C.在同一个接触面上,弹力和摩擦力的方向必互相垂直D.当两物体间的弹力消失时,摩擦力仍可存在一段时间3.(2014•抚州校级模拟)如图所示,固定斜面上有一光滑小球,有一竖直轻弹簧P与一平行斜面的轻弹簧Q连接着,小球处于静止状态,则关于小球所受力的个数不可能的是()A.2 B.3 C.4 D.53.(2006•北京)木块A、B分别重50N和60N,它们与水平地面之间的动摩擦因数均为0.25.夹在A、B之间的轻弹簧被压缩了2cm,弹簧的劲度系数为400N/m.系统置于水平地面上静止不动.现用F=1N的水平拉力作用在木块B上,如图所示,力F作用后()A.木块B所受摩擦力大小是9NB.木块B所受摩擦力大小是7NC.木块A所受摩擦力大小是12.5ND.木块A所受摩擦力大小是11.5N4.(2016春•九江校级月考)水平桌面上有两个玩具车A和B,两者用一轻质细橡皮筋相连,在橡皮筋上有一红色标记R.在初始时橡皮筋处于拉直状态,A、B和R分别位于直角坐标系中的(0,2l)、(0,﹣l)和(0,0)点.已知A从静止开始沿y轴正向做匀加速运动;B平行于x轴朝x轴正向以速度v匀速运动.在两车此后运动的过程中,标记R在某时刻通过点(l,l).假定橡皮筋的伸长是均匀的,求A运动加速度的大小.5.(2012•安徽一模)以下说法中正确的是()A.做匀变速直线运动的物体,ts内通过的路程与位移的大小一定相等B.质点一定是体积和质量极小的物体C.速度的定义式和平均速度公式都是,因此速度就是指平均速度D.速度不变的运动是匀速直线运动6.(2015秋•信阳期中)2010年8月5日,智利圣何塞铜矿发生塌方事故,导致33名矿工被困.10月14日0时32分,“凤凰二号”救生舱搭载最后一名救援人员到达地面,33名矿工被困69天全部获救.如图所示,救援通道高度624m,假设“凤凰二号”救生舱上升时间为20分钟48秒,为保证矿工生命安全,救生舱的最大加速度不大于0.01m/s2,则()A.“凤凰二号”救生舱上升的平均速度为0.5m/sB.“凤凰二号”救生舱上升的最大速度为0.5m/sC.“凤凰二号”救生舱上升的加速时间一定大于50sD.“凤凰二号”救生舱上升时可能是一直加速7.(2015秋•成都校级月考)物体在一条直线上运动,依次经过A、C、B三个位置,在AC段做加速度大小为a1的匀加速运动、CB段做加速度大小为a2的匀加速运动,且从A到C和从C到B的时间相等,物体经过A、B两点时的速度分别为v A和v B,经过C时的速度为v C=,则a1和a2的大小关系为a1a2;设从A到C和从C到B的位移大小分别为x1和x2,则x1x2.(两空均选填“>”、“<”或“=”)8.(2015秋•重庆校级期中)不在同一直线上的两个共点力F1和F2的大小不同,夹角为θ,它们的合力大小为F,则()A.合力F可能沿F1和F2夹角的角平分线B.保持F1和F2的大小不变,夹角θ增大,合力F一定减小C.保持夹角θ不变,若F1和F2中的一个减小,合力F一定减小D.保持夹角θ不变,F1和F2同时增大一倍,合力F也增大一倍9.(2013秋•城区校级期末)不在同一直线上的两个共点力F1和F2大小不同,它们的合力大小为F,保持F1和F2方向不变的情况下()A.F1、F2同时增大一倍,F也增大一倍B.F1、F2同时增加5N,F也增加5NC.F1增加5N,F2减少5N,F一定不变D.F1、F2中的一个减小,F不一定减小10.(2015•江苏)一人乘电梯上楼,在竖直上升过程中加速度a随时间t变化的图线如图所示,以竖直向上为a的正方向,则人对地板的压力()A.t=2s时最大 B.t=2s时最小 C.t=8.5s时最大D.t=8.5s时最小11.(2015秋•重庆校级期中)如图所示,劲度系数为k的轻弹簧的左端固定在墙上,右端与置于水平面上质量为m的物体接触(未连接).用水平力F缓慢推动物体到位置A,物体静止后,撤去F,物体开始向右运动,在位置O(弹簧原长位置)离开弹簧后,继续运动到最远位置B.已知AO=x0,OB=2x0,物体与水平面间的动摩擦因数为μ,重力加速度为g.则()A.在AO段,物体的速度一直增大B.物体在AO段与OB段的速度变化量相等C.在AO段,物体的加速度先减小后增大D.物体做匀减速运动的时间为12.(2014秋•大邑县校级期中)一个用绝缘材料制成的劲度系数为k的轻弹簧,一端固定,另一端与质量为m、带正电荷q的小球相连,静止在光滑绝缘水平面上,当加入如图所示的场强为E的匀强电场后,小球开始运动,下列说法正确的是()A.小球的速度最大时,弹簧伸长为B.小球向右一直做加速运动C.小球向右运动过程中,小球的加速度先增大再减小D.运动过程中,小球的电势能、动能和弹簧的弹性势能相互转化13.(2016•枣庄校级模拟)如图(a),一物块在t=0时刻滑上一固定斜面,其运动的v﹣t图线如图(b)所示,若重力加速度及图中的v0,v1,t1均为已知量,则可求出()A.斜面的倾角B.物块的质量C.物块与斜面间的动摩擦因数D.物块沿斜面向上滑行的最大高度14.(2015秋•重庆校级期中)如图(a),一物块在t=0时刻滑上一固定斜面,其运动的v﹣t图线如图(b)所示,若重力加速度及图中的v0、v1、t1均为已知量,且有sin2θ+cos2θ=1则可求出()A.物块的质量 B.物块与斜面间的动摩擦因数C.物块沿斜面上滑的最大距离D.物块滑回斜面底端时的速度.15.(2015秋•重庆校级期中)某同学用如图1所示的装置测量滑块的质量M及滑块与木板之间的动摩擦因数μ.一表面粗糙的木板固定在水平桌面上,一端装有定滑轮;木板上有一滑块,其一端与穿过电磁打点计时器的纸带相连,另一端通过跨过定滑轮的细线与重物相连.开始实验时,滑块开始做匀加速运动,重物落地后,滑块再运动一段距离停在木板上(尚未到达滑轮处),打点计时器在纸带上打出一系列小点.打点计时器使用的交流电源的频率为50Hz,重力加速度g=9.8m/s2.图2给出的是实验中获取的一条纸带的一部分:0、1、2、3、4、5、6、7、8、9是计数点,每相邻两计数点间还有1个打点,计数点间的距离如图所示.(1)纸带中相邻两计数点间的时间间隔为 s.(2)通过分析纸带数据,可判断重物在两相邻计数点和之间某时刻落地的.(3)为使重物的重力在数值上近似等于滑块运动时受到的拉力,应满足的条件是重物的质量m滑块的质量M.(选填“远大于”、“远小于”或“近似等于”)(4)重物质量m已知,为测量滑块的质量M,下列物理量中还应测量的有.(填入所选物理量前的字母)A.木板的长度LB.重物落地前滑块加速阶段的加速度a1C.重物落地后滑块减速阶段的加速度a2D.滑块运动的时间t(5)重物落地后滑块减速阶段的加速度a2=m/s2,滑块与木板间的动摩擦因数μ=.(保留两位有效数字)16.(2015秋•重庆校级期中)战士拉车胎进行100m赛跑训练体能.车胎的质量m=8.5kg,战士拉车胎的绳子与水平方向的夹角为θ=37°,车胎与地面间的滑动摩擦系数μ=0.7.某次比赛中,一名战士拉着车胎从静止开始全力奔跑,跑出20m达到最大速度(这一过程可看作匀加速直线运动),然后以最大速度匀速跑到终点,共用时15s.重力加速度g=10m/s2,sin37°=0.6,cos37°=0.8.求(1)战士加速所用的时间t1和达到的最大速度v;(2)战士匀加速运动阶段对车胎的拉力F.17.(2014秋•郊区校级月考)如图1所示,当A、B两物块放在光滑的水平面上时,用水平恒力F作用于A的左端,使A、B一起向右做匀加速直线运动时的加速度大小为a1,A、B间的相互作用力的大小为N1.如图2所示,当A、B两物块放在固定光滑斜面上时,此时在恒力F作用下沿斜面向上做匀加速时的加速度大小为a2,A、B间的相互作用力的大小为N2,则有关a1,a2和N1、N2的关系正确的是()A.a1>a2,N1>N2B.a1>a2,N1<N2C.a1=a2,N1=N2D.a1>a2,N1=N218.(2007•东台市模拟)如图,质量为M、长度为l的小车静止在光滑的水平面上.质量为m的小物块(可视为质点)放在小车的最左端.现用一水平恒力F作用在小物块上,使物块从静止开始做匀加速直线运动.物块和小车之间的摩擦力为F f.物块滑到小车的最右端时,小车运动的距离为s.在这个过程中,以下结论正确的是()A.物块到达小车最右端时,小车具有的动能为F f sB.物块到达小车最右端时具有的动能为F(l+s)C.物块克服摩擦力所做的功为F f(l+s)D.物块和小车增加的机械能为F f s19.(2013•蚌埠一模)甲、乙两球从同一高度同时由静止释放,两球在抵达地面前,下落时受到的空气阻力F与球的速度v成正比,则F=﹣kp(k>0),且两球的比例常数k相等.图为下落时两球的“速度﹣时间”关系图.若甲球与乙球的质量分别为m1与m2,则()A.m2>m1,且甲球先抵达地面B.m2>m1,且乙球先抵达地面C.m2<m1,且甲球先抵达地面D.m2<m1,且乙球先抵达地面20.(2016•和平区二模)质量相等的甲乙两物体从离地面相同高度同时由静止开始下落,由于两物体的形状不同,运动中受到的空气阻力不同,将释放时刻作为t=0时刻,两物体的速度随时间变化的图象如图所示,则下列判断正确的是()A.0﹣t0时间内,甲、乙两物体的平均速度相等B.t0时刻之前,甲受到的空气阻力总是大于乙受到的空气阻力C.下落过程中,乙物体受到的空气阻力在不断增大D.0﹣t0时间内,甲物体机械能的减小量小于乙物体机械能的减小量21.(2015秋•石家庄校级期中)有人想水平地夹持一叠书,他用手在这叠书的两端加一压力F=200N,如图所示,如每本书的质量为1kg,手与书之间的动摩擦因数为0.6,书与书之间的动摩擦因数为0.40,认为最大静摩擦力等于滑动摩擦力,g取10m/s2.则此人可能夹持书的最大数目为()A.16 B.18 C.22 D.2422.(2015秋•淮安校级期中)一辆汽车从车站以初速度为零匀加速直线开出,开出一段时间之后,司机发现一乘客未上车,便紧急刹车做匀减速运动.在此过程中,汽车的最大速度为6m/s,从启动到停止一共前进24m,则共经历时间是()A.2s B.4s C.6s D.8s23.(2010秋•海淀区期中)启动后做匀加速直线运动的汽车的司机,发现仍有乘客未上车,急忙使汽车做匀减速直线运动直到停下.若从启动到停下,整个过程历时t,行驶x,则汽车的最大速度是()A. B. C. D.24.(2012秋•三明校级月考)如图所示,轻杆BC一端用铰链固定于墙上,另一端有一小滑轮C,重物系一绳经C固定在墙上的A点,滑轮与绳的质量及摩擦均不计,若将绳一端从A点沿墙稍向上移,系统再次平衡后,则()A.绳的拉力增大B.轻杆受到的压力减小C.绳的拉力不变D.轻杆受的压力不变25.(2013秋•松江区校级月考)如图所示,水平横梁的一端A插在竖直墙内,与墙相垂直,另一端装有一小滑轮B,一轻绳的一端C固定于墙上,另一端跨过滑轮后悬挂一重物m.则下述说法中正确的是()A.轻绳对横梁作用力的方向沿横梁指向竖直墙B.绳对横梁的作用力一定大于重物对绳的拉力C.所挂重物m的质量越大,绳对横梁的作用力也越大D.若使绳的C端位置升高,则绳BC段的作用力会减小26.(2011春•兖州市期末)如图所示,一不可伸长的柔软轻绳跨过光滑的定滑轮,绳两端各系一小球a 和b.a球质量为m,静置于地面;b球质量为3m,用手托住,高度为h,此时轻绳刚好拉紧.从静止开始释放b,则当b刚落地时a的速度为()A.v=B.v=C.v=D.v=.27.(2012春•海淀区校级期中)如图,一很长的、不可伸长的柔软轻绳跨过光滑定滑轮,绳两端各系一小球a和b.a球质量为m,静置于地面;b球质量为3m,用手托住,高度为h,此时轻绳刚好拉紧.从静止开始释放b后,若两球落地后均不再弹起,则下面说法中正确的是()A.b球落地前的加速度为B.b球到达桌边的速度为C.a可能达到的最大高度为1.5hD.绳对b球做的功为﹣mgh27.(2015秋•西昌市期末)某同学设计了一个探究无轮子小车的加速度a与小车所受拉力F关系的实验,图甲为实验装置简图.(1)他想用钩码的重力表示小车受到的合外力,为了减小这种做法带来的实验误差,你认为下列说法正确的是A.实验时要平衡摩擦力B.钩码的重力要远小于小车的总重力C.实验时不需要平衡摩擦力D.实验进行时应先释放小车再接通电源(2)如图乙所示是某次实验中得到的一条纸带,其中A、B、C、D、E是计数点,相邻计数点间的时间间隔为T,距离如图所示.则打B点时小车的速度为v B=,该同学计算小车加速度的表达式为a=.(3)当木板水平放置时,保持实验小车重量20N不变,改变砂和砂桶质量,得到图丙中的图线不过原点,现在要让图线过原点,则长木板与水平桌面的倾角应该调整为θ,则tanθ=.28.(2013秋•沙坪坝区校级期末)(1)某同学利用如图1(a)装置做“探究弹簧弹力大小与长度的关系”的实验.①在安装刻度尺时,必须使刻度尺保持状态.②他通过实验得到如图1(b)所示的弹力大小F与弹簧长度x的关系图线.由此图线可得该弹簧的原长x0=cm,劲度系数k=N/m.③他又利用本实验原理把该弹簧做成一把弹簧秤,当弹簧秤上的示数如图1(c)所示时,该弹簧的长度x=cm.(2)①某同学设计了一个探究无轮子小车的加速度a与小车所受拉力F关系的实验,图2甲为实验装置简图.他想用钩码的重力表示小车受到的合外力,为了减小这种做法带来的实验误差,你认为下列说法正确的是A.实验时要平衡摩擦力 B.实验时不需要平衡摩擦力C.钩码的重力要远小于小车的总重力 D.实验进行时应先释放小车再接通电源②如图2乙所示是某次实验中得到的一条纸带,其中A、B、C、D、E是计数点,相邻计数点间的时间间隔为T,距离如图所示.则打C点时小车的速度为;该同学计算小车加速度的表达式为.③保持实验小车重量20N不变,长木板水平放置,改变砂和砂桶质量,得到图2丙中的图线不通过原点.现在要让图线过原点,则长木板与水平桌面的倾角θ应调整为.29.(2015秋•荆州校级期末)如图所示,长为L=6m、质量M=4kg的长木板放置于光滑的水平面上,其左端有一大小可忽略,质量为m=1kg的物块,物块与木板间的动摩擦因数为μ=0.4,开始时物块与木板都处于静止状态,现对物块施加方向水平向右的恒定拉力F作用,取g=10m/s2.(1)为使物块与木板发生相对滑动,恒定拉力至少为多少;(2)若F=8N,求物块从木板左端运动到右端经历的时间;(3)若F=8N,为使物块不从木板上滑离,求恒力F的最长作用时间.30,(2014秋•吉林期末)如图甲所示,一质量M=1kg的木板静止放在水平面上,另一质量m=1kg、大小可以忽略的铁块静止放在木板的右端,已知木板与地面间的动摩擦因数μ1=0.1,铁块与木板之间的动摩擦因数μ2=0.4,设最大静摩擦力等于滑动摩擦力,g=10m/s2.现给铁块施加一个水平向左的力F.(1)若F恒为8N,经1s铁块运动到木块的左端,求木板的长度(2)若力F从零开始逐渐增加,且木板足够长,试通过分析与计算,在如图乙中作出铁块受到的摩擦力f随力F大小变化的图象.31.(2009•江门一模)2008北京奥运会取得了举世瞩目的成功,某运动员(可看作质点)参加跳板跳水比赛,起跳过程中,将运动员离开跳板时做为计时起点,其速度与时间关系图象如图所示,则()A.t1时刻开始进入水面B.t2时刻开始进入水面C.t3时刻已浮出水面D.0﹣t2的时间内,运动员处于失重状态32.质量为M,倾角为α的光滑绝缘斜面体放在光滑水平面上,一质量为m的滑块置于斜面上,当滑块在m上加上一水平向右的恒力时,滑块与斜面间刚好没有相对滑动,则()A.滑块对斜面体的压力为mgcosαB.滑块的加速度为C.所加恒力的大小为D.运动过程中斜面对滑块的支持力不做功33(2010•蓟县校级二模)如图所示,质量为m的楔形物块,在水平推力F作用下,静止在倾角为θ的光滑固定斜面上,则楔形物块受到的斜面支持力大小为()A.FsinθB.C.mgcosθD.34.(2014秋•监利县校级期末)一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体.有一水平板将物体托住,并使弹簧处于自然长度,如图所示.现让木板由静止开始以加速度a 匀加速向下移动,且a<g.经过t=多长时间木板开始与物体分离.35.(2004•淮安二模)质量均为m的物体A和B用劲度系数为k的轻弹簧连接在一起,将B放在水平桌面上,A用弹簧支撑着,如图所示.若用竖直向上的力拉A,使A以加速度a匀加速上升,试求:(1)经过多长时间B开始离开地面.(2)在B离开桌面之前,拉力的最大值.36.(2006•盐城模拟)一劲度系数k=800N/m的轻质弹簧两端分别连接着质量均为12kg的物体A、B,将他们竖直静止在水平面上,如图所示,现将一竖直向上的变力F作用A上,使A开始向上做匀加速运动,经0.4s物体B刚要离开地面,求:(设整个过程弹簧都在弹性限度内,取g=10m/s2)(1)此过程中所加外力F的最大值和最小值;(2)此过程中力F所做的功.37.如图所示,两个重叠在一起的滑块,置于固定的倾角为θ的斜面上,滑块A和滑块B的质量分别为m和M,A和B间摩擦系数为μ1,B与斜面间的摩擦系数为μ2,两滑块都从静止开始,以相同的加速度沿斜面下滑,在这个过程中A受的摩擦力(μ1大于μ2)()A.等于零B.方向沿斜面向下C.大小等于μ2mgcosθD.大小等于μ1mgcosθ38.(2016•黄冈校级模拟)如图所示,水平地面上放置相同材料制成的四个木块,其中两个质量为m的木块间用不可伸长的水平轻绳相连,下面两个木块质量分别为2m和3m.现用水平拉力F拉其中一个质量为3m的木块,使四个木块一同水平向右匀速运动,则()A.质量为3m的木块与地面间的摩擦力为B.质量为2m的木块与地面间的摩擦力为C.轻绳对m的拉力为D.轻绳对m的拉力为39.(2007•江苏)如图所示,光滑水平面上放置质量分别为m和2m的四个木块,其中两个质量为m的木块间用一不可伸长的轻绳相连,木块间的最大静摩擦力是μmg.现用水平拉力F拉其中一个质量为2m的木块,使四个木块以同一加速度运动,则轻绳对m的最大拉力为()A.B.C.D.3μmg40.(2007秋•道里区校级月考)如图所示,光滑水平面上放置质量为m和2m的四个木块,其中两个质量为m的木块间用一不可伸长的轻绳相连,木块间的最大静摩擦力都是mg.现用水平拉力F拉其中一个质量为2m的木块,使四个木块以同一加速度运动,则轻绳对m的拉力最大为()A.mg B.mg C.mg D.mg41.(2013秋•梁山县校级月考)如图,用一根长为L的细绳一端固定在O点,另一端悬挂质量为m的小球A,为使细绳与竖直方向夹30°角且绷紧,小球A处于静止,则需对小球施加的最小力等于,此时绳子拉力为.42.(2008秋•义乌市校级月考)如图所示,两块轻质竖直平行板A、B之间夹着一块重力为6N的长方体木块C,此时A、B对C的压力均为10N.若C与A、B之间的动摩擦因数均为0.4,现要使C从两板间水平匀速地拉出,则需要对C施加的拉力F的大小是多少?(设f静m=f动)43.(2013秋•诸暨市校级期末)如图,底面粗糙、斜面光滑的斜面体质量为3kg,倾角为30°,放在粗糙水平面上,现用一端固定的轻绳系一质量也为3kg的小球,小球与斜面的夹角也为30°,(1)当球和斜面体都静止时,轻绳上的拉力大小为多少?(2)若地面对斜面体的最大静摩擦力等于地面对斜面体的支持力的k倍,为使整个装置静止,k的值应满足什么条件?高一物理错题集3解析1.(2014秋•顺德区期末)关于弹力和摩擦力的关系,下列说法正确的是()A.两物体间若有弹力,就一定有摩擦力B.两物体间若有摩擦力,就一定有弹力C.在同一个接触面上,弹力和摩擦力的方向必互相垂直D.当两物体间的弹力消失时,摩擦力仍可存在一段时间【考点】物体的弹性和弹力;摩擦力的判断与计算.【专题】受力分析方法专题.【分析】弹力产生的条件:相互接触挤压;摩擦力产生的条件:接触面粗糙;相互接触挤压;有相对运动或相对运动趋势.弹力的方向垂直于接触面,摩擦力的方向与接触面相切,与相对运动或相对运动趋势的方向相反【解答】解:AB、弹力产生的条件:相互接触挤压;摩擦力产生的条件:接触面粗糙;相互接触挤压;有相对运动或相对运动趋势.可见,有摩擦力,必有弹力;有弹力,不一定有摩擦力.故A错误,B正确.C、弹力的方向垂直于接触面,摩擦力的方向与接触面相切,与相对运动或相对运动趋势的方向相反.可见两个力方向互相垂直,故C正确.D、没有弹力,也就没有摩擦力.故D错误.故选:BC.【点评】解决本题的关键掌握弹力和摩擦力的产生条件,以及它们的方向.知道有摩擦力,必有弹力;有弹力,不一定有摩擦力.3.(2014•抚州校级模拟)如图所示,固定斜面上有一光滑小球,有一竖直轻弹簧P与一平行斜面的轻弹簧Q连接着,小球处于静止状态,则关于小球所受力的个数不可能的是()A.2 B.3 C.4 D.5【考点】共点力平衡的条件及其应用;力的合成与分解的运用.【专题】共点力作用下物体平衡专题.【分析】通过对小球受力分析,根据共点力平衡判断小球可能受力的个数.【解答】解:若P弹簧对小球向上的弹力等于小球的重力,此时Q弹簧无弹力,小球受2个力平衡.若P弹簧弹力为零,小球受重力、支持力、弹簧Q的拉力处于平衡,小球受3个力.若P弹簧弹力不为零,小球受重力、弹簧P的拉力、支持力、弹簧Q的拉力,小球受4个力平衡.由于斜面光滑,小球不受摩擦力,知小球不可能受5个力.故D正确,A、B、C错误.故选D.【点评】本题判断受力的个数,关键抓住小球所受合力为零,通过平衡判断小球可能受力的个数.3.(2006•北京)木块A、B分别重50N和60N,它们与水平地面之间的动摩擦因数均为0.25.夹在A、B之间的轻弹簧被压缩了2cm,弹簧的劲度系数为400N/m.系统置于水平地面上静止不动.现用F=1N的水平拉力作用在木块B上,如图所示,力F作用后()A.木块B所受摩擦力大小是9NB.木块B所受摩擦力大小是7NC.木块A所受摩擦力大小是12.5ND.木块A所受摩擦力大小是11.5N【考点】共点力平衡的条件及其应用.【专题】计算题;压轴题.【分析】静摩擦力的大小随外力的变化而变化,但有一个最大值,其最大值略大于滑动摩擦力,在一般的计算中可以认为等于滑动摩擦力;本题中,为施加拉力F时,A、B两木块在弹簧的推动下,相对地面有运动趋势,但无相对运动,故均受静摩擦力;在木块B上加上一个水平拉力后,通过计算会发现,虽然B木块相对地面的滑动趋势变大,但仍然无法滑动,说明静摩擦力只是变大了,并不会变成滑动摩擦力.【解答】解:木块A与地面间的滑动静摩擦力为:f A=μm A g=0.25×50N=12.5N木块B与地面间的滑动静摩擦力为:f B=μm B g=0.25×60N=15N弹簧弹力为:F弹=kx=400×0.02N=8N施加水平拉力F后,对B物体受力分析,重力与支持力平衡,水平方向受向右的弹簧弹力和拉力,由于B木块与地面间的最大静摩擦力为15N(等于滑动摩擦力),大于弹簧弹力和拉力之和,故木块B 静止不动,故木块B受到的静摩擦力与弹簧弹力和拉力的合力平衡,因而:f B′=F弹+F=8N+1N=9N;施加水平拉力F后,弹簧长度没有变化,弹力不变,故木块A相对地面有向左的运动趋势,其受到向右的静摩擦力,且与弹力平衡,因而:f A′=F弹=8N;故选:A.【点评】本题关键是分别对两个木块受力分析,通过计算判断木块能否滑动,要注意静摩擦力等于外力,而不是大于外力,大于外力的只是静摩擦力的最大值!4.(2016春•九江校级月考)水平桌面上有两个玩具车A和B,两者用一轻质细橡皮筋相连,在橡皮筋上有一红色标记R.在初始时橡皮筋处于拉直状态,A、B和R分别位于直角坐标系中的(0,2l)、(0,﹣l)和(0,0)点.已知A从静止开始沿y轴正向做匀加速运动;B平行于x轴朝x轴正向以速度v匀速运动.在两车此后运动的过程中,标记R在某时刻通过点(l,l).假定橡皮筋的伸长是均匀的,求A运动加速度的大小.。
高一物理难题集
一、单选题1.物体做自由落体运动时,某物理量随时间的变化关系如图所示,由图可知,纵轴表示的这个物理量可能是( )A.位移B.速度C.加速度D.路程2.物体做匀变速直线运动,初速度为10 m/s,经过2 s后,末速度大小仍为10 m/s,方向与初速度方向相反,则在这2 s内,物体的加速度和平均速度分别为( )A.加速度为0;平均速度为10 m/s,与初速度同向B.加速度大小为10 m/s2,与初速度同向;平均速度为0C.加速度大小为10 m/s2,与初速度反向;平均速度为0D.加速度大小为10 m/s2,平均速度为10 m/s,二者都与初速度反向3.物体做匀加速直线运动,其加速度的大小为2 m/s2,那么,在任一秒内( )A.物体的加速度一定等于物体速度的2倍B.物体的初速度一定比前一秒的末速度大2 m/sC.物体的末速度一定比初速度大2 m/s D.物体的末速度一定比前一秒的初速度大2 m/s4.以v0 =12 m/s的速度匀速行驶的汽车,突然刹车,刹车过程中汽车以a =-6 m/s2的加速度继续前进,则刹车后( )A.3 s内的位移是12 m B.3 s内的位移是9 mC.1 s末速度的大小是6 m/s D.3 s末速度的大小是6 m/s5.一个物体以v0 = 16 m/s的初速度冲上一光滑斜面,加速度的大小为8 m/s2,冲上最高点之后,又以相同的加速度往回运动。
则( )A.1 s末的速度大小为8 m/s B.3 s末的速度为零C.2 s内的位移大小是16 m D.3 s内的位移大小是12 m6.从地面上竖直向上抛出一物体,物体匀减速上升到最高点后,再以与上升阶段一样的加速度匀加速落回地面。
图中可大致表示这一运动过程的速度图象是( )7.物体做初速度为零的匀加速直线运动,第1 s 内的位移大小为5 m ,则该物体( )A .3 s 内位移大小为45 mB .第3 s 内位移大小为25 mC .1 s 末速度的大小为5 m/sD .3 s 末速度的大小为30 m/s8.将自由落体运动分成时间相等的4段,物体通过最后1段时间下落的高度为56 m ,那么物体下落的第1段时间所下落的高度为( )A .3.5 mB .7 mC .8 mD .16 m9.一辆沿笔直的公路匀加速行驶的汽车,经过路旁两根相距50 m 的电线杆共用5s 时间,它经过第二根电线杆时的速度为15 m/s ,则经过第一根电线杆时的速度为( )A .2 m/sB .10 m/sC .2.5 m/sD .5 m/s二、计算题1.物体做匀加速直线运动,到达A 点时的速度为5 m/s ,经2 s 到达B 点时的速度为11 m/s ,再经过3 s 到达C 点,则它到达C 点时的速度为多大?AB 、BC 段的位移各是多大?2.一个屋檐距地面9 m 高,每隔相等的时间,就有一个水滴从屋檐自由落下。
高一物理难题
高一物理难题:电磁感应中的法拉第电磁感应定律引言在学习高一物理课程的过程中,我们会接触到许多有趣且具有挑战性的难题。
本文将讨论关于电磁感应中的法拉第电磁感应定律的难题。
电磁感应是电磁学重要的基础知识之一,在现代科技中有广泛的应用。
问题描述假设我们有一个线圈,它的匝数为 N,长度为 L,并且连接到某种电路上。
现在我们要通过改变线圈中的磁场来感应出一个恒定电流 I。
我们将线圈直接放置在沿 x 轴的一个区域内,这个区域内磁场的大小 B 随时间 t 变化,表示为B = B₀ + kt,其中B₀ 和 k 是常数。
在这个情况下,我们需要回答以下问题:1.当线圈处于不同的位置时,感应出的电动势大小是如何变化的?2.若线圈的长度 L 变化,感应出的电动势的大小有何变化?3.若线圈的匝数 N 变化,感应出的电动势的大小有何变化?4.若区域内磁场的变化规律不再是线性的,而是非线性的,感应出的电动势有何变化?问题解答1.当线圈处于不同的位置时,感应出的电动势大小是如何变化的?–为了回答这个问题,我们可以使用法拉第电磁感应定律。
根据定律,感应电动势等于磁场变化速率的负值乘以线圈的匝数。
所以,感应电动势与磁场的变化速率正相关,并且与线圈的匝数成正比。
因此,当线圈在不同位置时,感应出的电动势大小也会发生改变。
2.若线圈的长度 L 变化,感应出的电动势的大小有何变化?–当线圈的长度变化时,感应电动势的大小也会有所变化。
根据法拉第电磁感应定律,感应电动势正比于磁场变化速率和线圈的匝数。
线圈长度的增加会导致磁场线穿过更多的匝数,从而增加感应电动势的大小。
因此,当线圈的长度增加时,感应电动势也会增加。
3.若线圈的匝数 N 变化,感应出的电动势的大小有何变化?–我们可以使用法拉第电磁感应定律来回答这个问题。
感应电动势正比于磁场变化速率和线圈的匝数。
因此,当线圈的匝数增加时,感应电动势也会增加。
这是因为磁场线穿过更多的匝数,导致感应电动势的大小增加。
(完整word)高一物理较难题
1、如图6所示,一个半球形的碗放在桌面上,碗口水平,O点为其圆心.碗的内表面及碗口是光滑的.一根细线跨在碗口上,线的两端分别系有质量为m1和m2的小球,当它们处于平衡时,质量为m1的小球与O点的连线与水平线的夹角α=60°,两小球质量比m2:m1是()2、如下图所示,某同学用一根弹簧和一把直尺来测量重物的重量。
在未悬挂重物时指针正对刻度5,在弹性限度内,当挂上80N重物时,指针正对45,若指针正对20时,所挂重物为A.40N B.20NC.30N D.不知弹簧劲度系数k,故无法计算3、在一根水平粗糙的直杆上,套有两个质量均为m的铁环.两铁环上系有两等长的细线,共同拴住质量为M的小球,如图3所示,若两铁环与小球原处于静止状态,现欲使两铁环间距离增大稍许而同时仍能保持系统平衡,则水平横杆对铁环的支持力和摩擦力的变化可能是()A.支持力不变B.支持力增大C.摩擦力增大D.摩擦力不变4、如图11所示,在倾角为45°的光滑斜面上有一圆球,在球前放一光滑挡板使球保持静止,此时球对斜面的正压力为N1;若去掉挡板,球对斜面的正压力为N2,则下列判断正确的是()A. B.N2=N1C.N2=2N1D.5、如图所示,作用于O点的三个力平衡,设其中一个力大小为F1,沿-y方向,大小未知的力F2与+x方向夹角为θ,下列说法正确的是A.力F3只可能在第二象限B.力F3与F2夹角越小,则F3与F2越小C.F3的最小值为F1cosθD.力F3可能在第三象限的任意范围内6、从某一高度相隔1s先后释放两个相同的小球甲和乙,不计空气阻力,则它们下落的过程中下述说法正确的是(A)两球距离保持不变;(B)两球的距离越来越小;(C)两球的速度差保持不变;(D)乙球相对甲球做匀加速运动。
二、计算题(每空?分,共?分)7、如图B-6所示,质量为m的物体被劲度系数为k2的弹簧2悬挂在天花板上,下面还拴着劲度系数为k1的轻弹簧1,托住下弹簧的端点A用力向上压,当弹簧2的弹力大小为mg/2时,弹簧1的下端点A上移的高度是多少?8、如图所示重60N的物体放在粗糙的水平面上,现施加一个与水平方向成α=530的拉力作用,已知动摩擦因数μ=0.5,最大静摩擦力等于滑动摩擦力,试画出物体所受的摩擦力f随拉力F逐渐增大而变化的图象,并说明理由.(cos530=0.6,sin530=0.8)9、甲、乙两辆汽车在一条平直的平行双行道上同向行驶,当t =0时,乙车在甲车前面24m处。
高一物理力学难题
高一物理力学难题
引言
本文将介绍高一物理中的一些力学难题。
力学是物理学的一个重要分支,通过研究物体的运动和力的作用,帮助我们了解自然界的规律和现象。
难题一:自由落体
自由落体是力学中的基本概念。
一些典型的难题如下:
1. 一个物体从静止开始自由落体,求在经过2秒时的速度和位移。
2. 如果一个物体从高度为10米的位置开始自由落体,求它掉落到地面需要的时间。
3. 怎样调整一个物体的发射角度,使其以最大水平位移落地?
难题二:斜抛运动
斜抛运动是指一个物体同时具有初速度和初位置的运动。
以下是一些斜抛运动的难题:
1. 一辆汽车以20m/s的速度沿着10°倾斜的斜坡向上运动,求它在2秒钟内的位移。
2. 一个足球从离地面2米的位置以15m/s的速度做斜抛运动,求足球飞行的时间。
3. 当一个物体以30°角度投射,求出它的水平和垂直速度。
难题三:弹簧振子
弹簧振子是由弹簧和质点组成的振动系统。
以下是一些与弹簧振子相关的难题:
1. 一个质量为0.2kg的物体与一个劲度系数为200N/m的弹簧发生简谐振动,求它的振动周期。
2. 如果一个弹簧振子的质量为0.1kg,在振幅为0.02m时,求它的最大势能和最大动能。
3. 如何根据弹簧振子的质量和劲度系数计算出它的振动频率?
结论
通过了解和解决这些难题,我们可以加深对力学中基本概念和原理的理解。
同时,通过思考和解答这些问题,我们也可以培养自己的物理思维能力和解决问题的能力。
高中物理难度试题大全及答案
高中物理难度试题大全及答案一、选择题1. 一个物体在水平面上做匀速直线运动,下列说法正确的是()A. 物体不受力的作用B. 物体受平衡力的作用C. 物体受非平衡力的作用B. 无法确定物体受力情况答案:B2. 根据能量守恒定律,下列哪种情况不可能发生()A. 机械能守恒B. 机械能增加C. 机械能减少D. 机械能不变答案:C3. 在静电场中,关于电场线的说法错误的是()A. 电场线是闭合的B. 电场线从正电荷出发,终止于负电荷C. 电场线的疏密表示电场的强弱D. 电场线是真实存在的物理实体答案:D二、填空题4. 牛顿第二定律表达式为:___________________________答案:F=ma5. 光从空气斜射入水中时,折射角________(填“大于”、“等于”或“小于”)入射角。
答案:小于6. 一个电路的总电阻为100Ω,当其中一条导线断开后,剩余部分的总电阻变为400Ω,则该断开的导线电阻为________Ω。
答案:50Ω三、计算题7. 一个质量为2kg的物体,受到一个水平方向的恒力作用,经过5秒后,其速度从0增加到10m/s。
求作用在物体上的恒力大小。
解:首先计算物体的加速度a,由v=at得a=v/t=10m/s / 5s =2m/s²。
根据牛顿第二定律F=ma,得F=2kg * 2m/s² = 4N。
答案:4N8. 一个点电荷Q=10^-6C,位于坐标原点,求距离原点4m处的电场强度。
解:根据库仑定律,电场强度E=kQ/r²,其中k为库仑常数,k=9.0×10^9 N·m²/C²,r为距离。
将Q和r代入公式得E=(9.0×10^9 N·m²/C²) * (10^-6C) / (4m)² = 562.5 N/C。
答案:562.5 N/C四、实验题9. 在“验证牛顿第二定律”的实验中,如何减小实验误差?答案:为了减小实验误差,可以采取以下措施:- 确保打点计时器的电源频率稳定。
高一物理力学难题
以下是一道高一物理力学难题及其解析:
题目:在转动过程中半径OA 向左偏离竖直方向的最大角度是多大?
这是一道关于物理力学的问题,特别是关于转动的问题。
我们需要找出在转动过程中半径OA 向左偏离竖直方向的最大角度。
假设半径OA 在初始位置与竖直方向成θ 度角。
我们要找出的是这个角度增大的最大值Δθ。
根据力学原理,当一个物体绕固定点转动时,其转动惯量I = mr^2。
在这个问题中,物体的质量m 和半径r 是已知的,但我们需要找出的是角度Δθ。
由于物体是在转动过程中偏离竖直方向,因此我们可以使用角动量守恒定律来找出Δθ。
角动量守恒定律告诉我们,如果没有外力矩作用,则系统的角动量是守恒的。
初始状态的角动量是I_initial = mr^2 × θ,而最终状态的角动量是I_final = mr^2 × (θ + Δθ)。
因为角动量是守恒的,所以I_initial = I_final。
用数学方程表示就是:
mr^2 × θ = mr^2 × (θ + Δθ)
我们需要解这个方程来找出Δθ。
现在我们可以开始解这个方程,找出Δθ 的值。
计算结果为:Δθ = -mg/(2mrfriction)
所以,在转动过程中半径OA 向左偏离竖直方向的最大角度是Δθ = -mg/(2mrfriction)。
高一物理那一章最难知识点
高一物理那一章最难知识点高中物理是一门让学生们头疼的学科,尤其是在高一阶段。
学生们会发现,高一物理的难度确实比初中时要高出很多。
而在这门学科的众多章节中,很多学生会觉得其中一章尤为困难,令人难以理解,而这一章就是力学。
力学是物理学的基础,也是后续学习的重点和难点。
特别是在高一物理中,力学的内容是相对比较复杂和抽象的,需要学生积极思考和大量练习才能掌握。
下面我们将从三个方面来探讨高一物理力学章节的难点。
一、力和运动的关系在力学中,最基本的概念就是力,而力与运动之间的关系是学生们最难理解的部分之一。
力维持物体的运动状态,在我们生活中随处可见。
但是,理解力对于运动的影响并不容易。
例如,在我们推一个物体的时候,受力的大小和方向会影响物体的运动状态,但究竟是什么决定了物体的加速度呢?这是许多学生一直困惑的问题。
二、牛顿三定律牛顿三定律是力学中的重要概念,也是学生们容易混淆的部分。
学生们常常将其记忆成一句口诀:“物体静止就静止,物体运动就继续运动,物体的运动状态由外力决定。
”然而,这种记忆方式并不能帮助学生真正理解其中的原理和原因。
牛顿第一定律说明物体静止或匀速直线运动的状态是如何由力来决定的;牛顿第二定律描述了物体受到的力和加速度之间的关系;牛顿第三定律讲述了力的作用与反作用。
三、力学问题的解题方法力学问题的解题方法往往需要学生利用相关公式和定律进行计算,然而在实际中,学生们往往不容易正确运用这些知识。
学生们往往会陷入“公式秀”和“机械运算”的困境中,无法真正理解所学的知识。
解决这个问题的关键在于培养学生的物理思维能力和问题解决能力,让学生注重问题的实质,而不仅仅关注于公式和运算。
并非所有学生都会对高一物理力学章节感到困难,有些学生对于逻辑思维和相关数学基础较强的学生可能能够较快地掌握这些知识点。
然而,对于很多学生来说,高一力学确实是一个重要的挑战。
物理学的学习并不是被动接受知识,而是需要主动思考和积极实践的过程。
物理高一最难知识点
物理高一最难知识点物理作为一门自然科学,对于许多高中生来说,可能是他们所接触到的第一门真正意义上的科学课程。
在高中物理的学习过程中,总会有一些知识点让人感到棘手。
今天,让我们一起来探讨一下高一物理中最难的几个知识点,以及如何克服困难。
第一个可能让学生们感到困惑的知识点是运动学。
运动学作为物理的基础,对于建立后续物理知识的理解至关重要。
然而,运动学中的一些概念往往相对抽象,例如位移、速度、加速度等。
学生们可能很难将这些概念与实际生活中的场景相联系起来。
为了克服这个困难,学生们可以尝试通过观察运动物体进行实验来加深对运动学概念的理解。
此外,使用图表或动画等可视化工具也能帮助学生更好地理解运动学中的抽象概念。
另一个令学生感到困惑的知识点是电路。
电路是高一物理中重要的一个模块,它涉及到电流、电压、电阻等概念。
学生们可能会觉得很难将这些概念联系到实际应用中。
为了克服这个困难,学生们可以尝试通过组装简单的电路来加深对电路的理解。
他们可以使用电池、灯泡、导线等材料,在实验室或家中进行简单的电路实验。
此外,学生也可以尝试使用模拟软件模拟电路,例如调整电阻或电压,观察电流的变化,以增强对电路的理解。
物态变化也是高一物理中令学生们感到困惑的一个知识点。
例如,液体的升华、气体的液化等,这些物态变化的概念可能让学生们感到抽象和难以理解。
为了克服这个困难,学生们可以通过实验来观察和研究物态变化。
例如,他们可以观察冰在常温下由固态直接变为气态的现象,或是通过改变温度和压力来观察气体的液化过程。
通过实验的方式,学生们可以更深入地理解物态变化的原理和过程。
此外,光学也是高一物理中一个令学生们感到困难的领域。
例如光的传播、反射、折射等概念往往需要一定的推理和实验来理解。
为了克服这个困难,学生们可以尝试使用光学实验器材,例如平面镜、凸透镜等,来展开实验。
他们可以通过调整入射角度、改变光的路径等方式来观察光线的反射和折射现象。
此外,学生也可以参考与日常生活相关的实例,例如光的折射在眼镜中的应用等,来加深对光学概念的理解。
高中物理最难的题
高中物理最难的题
高中物理有许多难题,以下是一些被认为最难的题目之一:
1. 镜子问题:给出一个凸透镜和一个物体的位置,问物体在镜子上的倒影是什么样的。
这个问题涉及到光学的反射和折射规律的运用。
2. 静电力问题:给出多个带电粒子的位置和电荷,问某一点处的电场强度和电势能是多少。
这个问题涉及到静电力和电场的计算。
3. 波动方程问题:给出一个弹性绳的初始状态和一定条件下的振动频率和振动模式,问某一时刻绳上点的振动情况。
这个问题涉及到波动方程的求解和振动的分析。
4. 磁场问题:给出一个导线的位置和电流,问某一点处的磁场强度和磁场能量是多少。
这个问题涉及到磁场的计算和磁力的分析。
5. 相对论问题:给出一个运动物体的速度和质量,问其相对论性能量和动量是多少。
这个问题涉及到相对论的基本原理和公式的运用。
这些问题都需要对物理学的基本原理和公式有深入的理解,并且需要一定的数学技巧才能解答。
对于很多学生来说,这些问题可能是具有挑战性的。
高一下册物理教学难题解析
高一下册物理教学难题解析物理作为一门基础科学,对于高中学生来说,常常会遇到一些难题。
本文将针对高一下册物理教学中的一些难题进行分析和解析,帮助学生更好地理解和掌握这门学科。
问题一:光的反射与折射现象理解困难光的反射和折射现象是高中物理中的经典难题之一。
为了帮助学生更好地理解,我们可以通过生活中的例子进行解释。
拿一个平面镜放在书桌上,让学生观察自己的反射形象,引导学生思考为什么会出现反射。
然后,可以举例说明光在不同媒质中的传播速度变化,导致光线改变方向的现象,即折射现象。
通过实验和图示的方式,让学生直观地感受到光线传播的规律,加深对反射和折射的理解。
问题二:力和运动理论理解困难力和运动是物理学中的重要内容,但对于高中生来说,理解这些概念常常存在一定困难。
在教学中,我们可以采用实际的案例来帮助学生理解和掌握这些概念。
例如,通过让学生观察并描述不同运动物体的特点,引导他们思考为什么需要力才能改变物体的运动状态。
同时,可以进行一些力的实验,比如拉力、推力等的测量,让学生通过实践来感知力的作用和运动状态的改变。
通过将理论知识与实际生活相结合,学生可以更好地理解力和运动的关系。
问题三:电路和电流概念难以理解对于电路和电流的概念,学生往往容易混淆或理解困难。
在教学中,我们可以借助一些简单的电路实验,通过让学生亲自动手搭建和观察电路,引导他们理解电路中电流的流动方式和电路中元件的工作原理。
同时,可以通过图示和图表的方式,对电流的定义和其它相关概念进行解释和说明,帮助学生形成整体的概念框架。
鼓励学生多做一些与电路和电流相关的实验,通过实践来加深对电路和电流的理解。
问题四:热学概念和热传递的认识困难热学是高中物理中一个相对较难的部分,学生对热学概念和热传递的理解常常存在困难。
在教学中,我们可以采用实例分析和比较法来帮助学生理解和认识热学相关内容。
通过实际案例和生活中的热传递现象,如热膨胀、传热装置等,引导学生观察现象、提出问题,并通过实验或推理的方式,逐步解析热学概念和热传递规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、如图6所示,一个半球形的碗放在桌面上,碗口水平,O点为其圆心.碗的内表面及碗口是光滑的.一根细线跨在碗口上,线的两端分别系有质量为m1和m2的小球,当它们处于平衡时,质量为m1的小球与O点的连线与水平线的夹角α=60°,两小球质量比m2:m1是()2、如下图所示,某同学用一根弹簧和一把直尺来测量重物的重量。
在未悬挂重物时指针正对刻度5,在弹性限度内,当挂上80N重物时,指针正对45,若指针正对20时,所挂重物为A.40N B.20NC.30N D.不知弹簧劲度系数k,故无法计算3、在一根水平粗糙的直杆上,套有两个质量均为m的铁环.两铁环上系有两等长的细线,共同拴住质量为M的小球,如图3所示,若两铁环与小球原处于静止状态,现欲使两铁环间距离增大稍许而同时仍能保持系统平衡,则水平横杆对铁环的支持力和摩擦力的变化可能是()A.支持力不变B.支持力增大C.摩擦力增大D.摩擦力不变4、如图11所示,在倾角为45°的光滑斜面上有一圆球,在球前放一光滑挡板使球保持静止,此时球对斜面的正压力为N1;若去掉挡板,球对斜面的正压力为N2,则下列判断正确的是()A. B.N2=N1C.N2=2N1D.5、如图所示,作用于O点的三个力平衡,设其中一个力大小为F1,沿-y方向,大小未知的力F2与+x方向夹角为θ,下列说法正确的是A.力F3只可能在第二象限B.力F3与F2夹角越小,则F3与F2越小C.F3的最小值为F1cosθD.力F3可能在第三象限的任意范围内6、从某一高度相隔1s先后释放两个相同的小球甲和乙,不计空气阻力,则它们下落的过程中下述说法正确的是(A)两球距离保持不变;(B)两球的距离越来越小;(C)两球的速度差保持不变;(D)乙球相对甲球做匀加速运动。
二、计算题(每空?分,共?分)7、如图B-6所示,质量为m的物体被劲度系数为k2的弹簧2悬挂在天花板上,下面还拴着劲度系数为k1的轻弹簧1,托住下弹簧的端点A用力向上压,当弹簧2的弹力大小为mg/2时,弹簧1的下端点A上移的高度是多少?8、如图所示重60N的物体放在粗糙的水平面上,现施加一个与水平方向成α=530的拉力作用,已知动摩擦因数μ=0.5,最大静摩擦力等于滑动摩擦力,试画出物体所受的摩擦力f随拉力F逐渐增大而变化的图象,并说明理由.(cos530=0.6,sin530=0.8)9、甲、乙两辆汽车在一条平直的平行双行道上同向行驶,当t =0时,乙车在甲车前面24m处。
它们的运动规律分别为X甲=10t,X 乙=t2。
(1)甲、乙分别做什么运动?(2)甲、乙两辆汽车能否有两次相遇?如果能,求出两次相遇的时刻和两次相遇处相距多远?如果不能,求出什么时刻两车距离有最大值?是多少?10、从同一地点以相同速度20m/s先后竖直上抛两个小球,第二个小球比第一个小球晚1s,则第二个小球抛出后经过多长时间与第一个小球相遇?(不计空气阻力)评卷人得分11、A、B两辆汽车在笔直的公路上同向行驶。
当B车在A车前84m处时,B车速度为4m/s,且正以2m/s2的加速度做匀加速运动;经过一段时间后,B车加速度突然变为零。
A车一直以20m/s的速度做匀速运动。
经过12s后两车相遇。
问B车加速行驶的时间是多少?12、羚羊从静止开始奔跑,经过50m距离能加速到最大速度25m/s,,并能维持一段较长的时间;猎豹从静止开始奔跑,经过60m距离能加速到最大速度30m/s,以后只能维持这个速度4.0s.设猎豹距离羚羊xm时开始攻击,羚羊则在猎豹开始攻击后1.0s 才开始奔跑,假定羚羊和猎豹在加速阶段分别做匀加速运动,且沿同一直线奔跑.求:(1)猎豹要在其最大速度减速前追到羚羊,x值应在什么范围?(2)猎豹要在其加速阶段追上羚羊,x值应在什么范围?13、已知O、A、B、C为同一直线上的四点,AB间的距离为l0m,BC间的距离为20m,一辆自行车自O点由静止出发,沿此直线做匀加速运动,依次经过A、B、C三点,已知自行车通过AB段与BC段所用的时间相等。
求O与A的距离。
14、如图1所示,A、B两棒长均为L=1m,A悬于高处,B竖直立于地面,A的下端和B的上端相距h=20m.若A、B两棒同时运动,A做自由落体运动,B以v0=20m/s的速率做竖直上抛运动.在运动过程中两棒都保持竖直.问:(1)两棒何时开始相遇;(2)相遇(不相碰)多长时间.(g取10m/s2)15、.短跑名将博尔特在北京奥运会上创造了100m和200m短跑项目的新世界纪录,他的成绩分别是9.69s和l9.30s.假定他在100m 比赛时从发令到起跑的反应时间是0.15s,起跑后做匀加速运动,达到最大速率后做匀速运动.200m比赛时,反应时间及起跑后加速阶段的加速度和加速时间与l00m比赛时相同,但由于弯道和体力等因素的影响,以后的平均速率只有跑l00m时最大速率的96%.求:(1)加速所用时间和达到的最大速率。
(2)起跑后做匀加速运动的加速度。
(结果保留两位小数)16、质量为m的物体放在地面上,它们间的动摩擦因数为μ,用力F拉物体,使物体在水平面上做匀速直线运动,如图2所示.力与水平方向的夹角α为多大时最省力.三、多项选择(每空?分,共?分)17、如图所示,水平桌面上平放一叠共计54张的扑克牌,每一张的质量均为m.用一手指以竖直向下的力压第1 张牌,并以一定速度向右移动手指,确保手指与第1 张牌之间有相对滑动.设最大静摩擦力与滑动摩擦力相同,手指与第l 张牌之间的动摩擦因数为,牌间的动摩擦因数均为,第54 张牌与桌面间的动摩擦因数为,且有.则下列说法正确的是A.第2 张牌到第53 张牌之间可能发生相对滑动B.第2 张牌到第53 张牌之间不可能发生相对滑动C.第l 张牌受到手指的摩擦力向左D.第54 张牌受到水平桌面的摩擦力向左18、如下图甲所示,A、B两物体叠放在光滑水平面上,对物体B施加一水平变力F,F-t关系如图乙所示,两物体在变力F作用下由静止开始运动且始终保持相对静止,则A.t0时刻,两物体之间的摩擦力最大B.t 0时刻,两物体之间的速度方向开始改变C.t 0~2 t 0时间内,两物体之间的摩擦力逐渐增大D.t 0~2 t 0时间内,物体A所受的摩擦力方向始终与变力F的方向相同19、水平速度为v0、质量为m的子弹击中并穿过放在光滑水平地面上的木块,若木块对子弹的阻力恒定,则下列说法正确的有()A.子弹质量m越大,木块获得动能越大B.子弹质量m越小,木块获得动能越大C.子弹速度v0越大,木块获得动能越大D.子弹速度v0越小,木块获得动能越大20、如图所示,以匀速行驶的汽车即将通过路口,绿灯评卷人得分还有2 s将熄灭,此时汽车距离停车线18m。
该车加速时最大时速度大小为,减速时最大加速度大小为。
此路段允许行驶的最大速度为,下列说法中正确的有A.如果立即做匀加速运动,在绿灯熄灭前汽车可能通过停车线B.如果立即做匀加速运动,在绿灯熄灭前通过停车线汽车一定超速C.如果立即做匀减速运动,在绿灯熄灭前汽车一定不能通过停车线D .如果距停车线处减速,汽车能停在停车线处21、如图所示,过空间O点,可放倾角不同的光滑斜面。
从O 点无初速度地释放物体,记下它们沿这些斜面滑下速率为的位置,把这些位置连接起来,它们应该在同一个A.球面 B.抛物面 C.水平面 D.椭圆面22、如图1所示,用水平力F把一铁块紧压在竖直墙壁上静止不动,当F增大时()A.墙对铁块的弹力增大B.墙对铁块的摩擦力增大C.墙对铁块的摩擦力不变D.墙与铁块间的摩擦力减小23、某人骑自行车在平直道路上行进,图中的实线记录了自行车开始一段时间内的v-t图象,某同学为了简化计算,用虚线作近似处理,下列说法正确的是A.在t1时刻,虚线反映的加速度比实际的大B.在0-t1时间内,由虚线计算出的平均速度比实际的大C.在t1-t-2时间内,由虚线计算出的平均速度比实际的大D.在t3-t-4时间内,虚线反映的是匀速运动24、一物体沿固定斜面从静止开始向下运动,经过时间t0滑至斜面底端。
已知在物体运动过程中物体所受的摩擦力恒定。
若用F、v、s和E分别表示该物体所受的合力、物体的速度、位移和机械能,则下列图象中可能正确的是四、综合题(每空?分,共?分)评卷人得分25、(12分) 如果公路上有一列汽车车队以10 m/s的速度正在匀速行驶,相邻车间距为25 m,后面有一辆摩托车以20 m/s的速度同向行驶,当它距离车队最后一辆车25 m时刹车,以0.5 m/s2的加速度做匀减速运动,摩托车在车队旁边行驶而过,设车队车辆数足够多,求:(1)摩托车最多与几辆汽车相遇?最多与车队中汽车相遇几次?(2)摩托车从赶上车队到离开车队,共经历多长时间?五、填空题(每空?分,共?分)26、一颗长度可忽略不计的子弹以水平初速度v恰好能穿过三块紧挨着的竖直放置的固定木板.设子弹依次穿过木板1、2、3,且在木板内做匀减速直线运动.(1)若子弹穿过每块木板所需时间相同,则这三块木板沿子弹运动方向上的厚度之比d1∶d2∶d3=___________.(2)若三块木板沿子弹运动方向上的厚度均相同,则子弹穿过木板1、2、3所需时间之比t1∶t2∶t3=______.27、把一条盘放在地上的长为l的均匀铁链竖直向上刚好拉直时,它的重心位置升高了______________________。
如图5所示,把一个边长为l的质量分布均匀的立方体,绕bc棱翻转使对角面AbcD处于竖直位置时,重心位置升高了______________________。
28、光滑的直角细杆aob 固定在竖直平面内,oa杆水平,ob 杆竖直。
有两个质量均为m的小球P与Q分别穿在oa 、ob杆上,两球用一轻绳连接。
两球在水平拉力F作用下处于静止状态,绳与ob杆的夹角为30°,如图所示。
P球对oa杆的压力大小为________,水平拉力F的大小为________。
一、选择题1、A〔解析〕以1球为研究对象,分析受力,弹力N、张力T、重力1g,N的方向指向圆心,建立xoy坐标,由几何关系得,水平x轴与N、T的夹角为600如图1-15所示x轴方向:Tcos600=N cos600①y轴方向:T Sin600+NSin600= 1g ②又 T= 2g ③联立①②③得 2 2g Sin600= 1g=故答案是:A2、C3、AC4、A5、C6、C二、计算题7、评卷人得分解:A点上升的高度等于弹簧2和1缩短的长度之和.A点上升,使弹簧2仍处于伸长状态时,弹力减小了mg/2,弹簧2比原来缩短Δx1=mg/2k2,弹簧1的弹力为mg/2,压缩量为Δx1=mg/2k1,所以Δx=Δx1+Δx2=.A点上升,使弹簧2处于压缩状态时,向下的弹力mg/2,压缩量Δx2=mg/2k2,所以弹簧2总的缩短量.弹簧1上的弹力为,压缩量为Δx1′=,所以Δx=Δx1′+Δx2′=.故弹簧1的下端点A上移的高度是.【试题分析】8、开始F很小时,物体静止Fcos53°=f f<FFcos53°=(G-Fsin53°)时,刚要滑动f=18NF继续增大,f滑=(G-Fsin53°)=30-0.4F当F=75N时f=0以后物体离开平面9、(1)甲做速度为v甲=10m/s的匀速直线运动;乙做初速度为零,加速度为a=2m/s2的匀加速直线运动。