线性系统理论大作业共47页文档
线性系统理论(第二章)
x = Ax + Bu , x(0) = x0 , t ≥ t0
第二章
其中,x 为 n 维状态向量,称满足如下的矩阵方程: 维状态向量,称满足如下的矩阵方程: 其中,
Φ (t t0 ) = AΦ (t t0 ) , Φ (0) = I , t ≥ t0
的 n×n 解阵 Φ(t t0 ) 为系统的状态转移矩阵。 为系统的状态转移矩阵。
u = 0 , x = Ax, x(0) = x0 , t ≥ 0
维状态向量, 常阵。 x 为 n 维状态向量, A 为 n × n常阵。 的矩阵函数: 的矩阵函数:
∞
n×n
At
1 22 1 k k e = I + At + A t + = ∑ A t 2! k =0 k !
称为矩阵指数函数。 称为矩阵指数函数。
第二章
②令 t 和 为两个自变量, τ 为两个自变量,则必成立
e
③
A ( t +τ )
=e
(e
At
At
e
1
Aτ
=e
At
Aτ
e
At
e
At 总是非奇异的,且其逆为 总是非奇异的,
)
= e
④ 设有 n × n 常阵 A 和 F ,如果 A 和 F 是可交换的, 是可交换的, 即 A F = F A ,则必成立
别为 n×n 和 n× p 常阵。 常阵。
第二章
结论 2 :零状态响应的表达式为: 零状态响应的表达式为:
φ (t; 0 , 0 , u ) =
At At
∫
t 0
e
A (t τ )
B u (τ ) d τ
,
t ≥ 0
线性系统理论大作业2
摘要:本文主要讨论线性系统解集的几何结构与系统能观性、能控性和稳定性之间的关系。
这一关系从两个方面来说明,第一部分讲述系统解集几何结构与特征值和特征向量之间的关系,通过Matlab 仿真例子说明这一关系;第二部分分别讲述特征值和特征向量与系统能观性、能控性和稳定性之间的关系,并讲述了能观性,能控性以及稳定性的定义和判据,通过以约旦标准型为例来讲述相同特征值和不同特征值情况下的能观性,能控性,最后在Simulink中仿真一定特征值条件下系统的稳定性。
从以上两个方面来说明解集的几何结构与系统能观性、能控性和稳定性之间的关系。
>1. 零输入响应解集与特征值和特征向量之间的关系线性定常系统状态方程x Ax Buy Cx Du=+⎧⎨=+⎩,0(0),0x x t =≥的解为()00()(),0t At A t x t e x e Bu d t τττ-=+≥⎰。
为了研究线性定常系统状态方程解集的几何结构与线性系统的特征之间的关系,将系统简化,只考虑系统为零输入的状态响应,即x Axy Cx=⎧⎨=⎩,0(0),0x x t =≥的解为0()At x t e x =。
所有的零输入状态响应组成了一个线性空间,且该线性空间中有n 个独立的元素,它们的线性组合决定了所有零输入响应。
所以可以通过选择一组线性独立的初始条件得到一组零输入响应集中的基底。
下面先考虑最简单的零输入状态响应集的基底。
若12,,...n λλλ是A 的两两互异的特征值,且12,,...n v v v 是相应的单位特征向量,即,1,2,...i i i Av v i n λ==。
选0,1,2,...i x v i n ==,则0()(...)......i At At i2233i 2233i i i i 2233i i i i i i i t i x t e x e v 11I +At +A t +A t +v 2!3!11v Av t A v t A v t 2!3!11v v t v t v t 2!3!e v λλλλ====++++=++++=-所以取01122...n n x v v v ααα=+++时,相应的零输入响应为121122()...n t t t n nx t e v e v e v λλλααα=+++由此可以看出线性定常系统的零输入响应解集的几何结构可以由系统矩阵A 的特征值和特征向量来表征。
华电线性系统理论大作业
而前文已经得出导轨的动能 Tw ,因此两式相加得系统的动能 T 为:
2 2 2 2 1 x T Tb Tw m x x2 a Ib I w a 2 R
是导轨相对于水平线的倾斜角。
图 1.球杆系统简图
2.2 拉格朗日法建模
为了对球杆系统进行研究, 我们先对其进行建模, 一般来说, 这种球杆系统, 运用拉格朗日方程建立其数学模型比较方便,拉格朗日方程如下:
d T T V R U t dt q q ' q ' q
v v' w r
其中 v ' 是小球相对于导轨的线速度,其数值等于 x ,负号是指方向与规定 的正方向相反, 指的是导轨的角速度,即 a ,r 是小球的质心在坐标系中的位 置向量,计算式如下:
R x 0 x x a v 0 0 R xa a 0 0 0
其中 T 为系统的动能,包括小球的转动的动能,导轨转动的动能等,V 为系 统的势能, 包括重力势能弹性势能等等, 能量耗散函数为 R ,q
q1 , q2 ....qk
T
1
为广义坐标向量,其中 k 代表系统的自由度,即完全描述系统运动特性需要的坐 标数目,关于自由度在下文会具体分析, u 为作用于系统的外力。 以下为各个变量所表示的物理意义,M:导轨的质量,g:重力加速度 r:小 球的半径 I b :球的惯性力矩, I w :杆的惯性力矩,x:球的相对横坐标,y:球 的相对纵坐标, :小球相对于导轨的转角,a:导轨与水平线的夹角,球杆系 统受力分析如下:
线性系统控制理论作业精简版
X 和模态矩阵 M。
4、求
2 0 A= 0 0
0 0 0 0
1 0 0 0
0 1 0 0
的特征值λ,特征向量 X 和模态矩阵 M。
5、将二次型 Q(Z)= 2 x1 x2 2 x1 x3 6 x2 x3 化为标准型。 6、将 Q= X
T
AX X 1
X2
2 5 X 1 8 X 3 2 11 2 X 2 5 2 8 X3
= 8 X 12 11X 22 8 X 32 4 X 1 X 2 10 X 1 X 3 4 X 2 X 3 化为标准型。 7、用求矩阵秩的程序,验证题 1、2
第 5 页 共 7 页
4、用叠加法对下图电路列状态方程。
第七、八章 习题 1、已知状态方程的系数矩阵 A(t)= 2、求离散系统状态方程齐次解
t 1 (级数取三项即可) ,求 (t ,0) 。 1 t
X 1 ( K 1) 1 5 1 X 1 ( K ) 2 , 其中X (0) 。 1 X 2 ( K 1) 12 1 5 X 2 ( K )
第九章 习题 1、一连续系统中 A= 和可观测性。 2、判断下图电路的能控性和能观性。
2 5 1 ,B= ,C= 1 4 0 1
1 ,试判断该系统的可控性
第 6 页 共 7 页
第十一章 习题 1、已知 X X ,用李氏第一方法和二次型法确定其稳定性。 1 1 2、用 LYAPUNOV 两种方法判断下面系统在原点的稳定性。已知系统方程 为:
4.求
2 X 1 X 2 3X 3 2
X1 2X 2 X 3 1
《线性系统理论》作业参考答案
x 11 e t x 21 , 21 0 , x
x11 ( t 0 ) 1 x 21 ( t 0 ) 0
,
x 12 e t x 22 , 22 0 , x
x12 ( t 0 ) 0 x 22 ( t 0 ) 1
解得
x12 e t e t 0 x11 1 , x 21 0 x 21 1 1 (t ) x 0 e
( sI A )
1
s ( s 1) 0 2 det( sI A ) s ( s 1) 0 adj ( sI A ) 1
s 1 ( s 1) 0
2
s ( s 1) 1 s ( s 1) 1 s 1 1
2
所以 e
。
可以看出, f ( i ) 是 f ( A ) 的一个特征值。
1-3 解:(1) 特征多项式为 1 ( ) ( 1 ) .
4
验证
A 1 I 0 , ( A 1 I ) 2 0 , ( A 1 I ) 3 0 , ( A 1 I ) 4 0
At
e t 1 1 L [( sI A ) ] 0 0
e 1 1 0
t
t t 1 e te t e 1 。 t e
1-5 证明:因为 D 1 存在,所以由 D R p p
A det C B IA det D 0 BD A I D C
c
k 0
k
A
k
设 x 是属于 i 的一个非零特征向量,故
A x i x
.
2 2 因此 A x A Ax A i x i Ax i i x i x .
华工自动化线性系统第一次 大作业
求的方法有时域的求解方法和频域的求解方法。 方法1:根据或者的定义直接计算:
=I+++…++…= 从公式可以看出,右边是一个无穷项的和,要精确计算出
结果是很困难的,所以无论是手工计算还是利用电脑计算,都 不可能取无穷项计算,通常是取有限项,得到一个近似的值, 以满足不同的精度要求即可.对于不同的精度要求,n的值会不 同。在工程上,只要取它的前几项就可以满足要求,本方法易 于理解,适合计算机编程。 方法2:利用拉氏反变换法求:
版本)正在进行着陆(速度V=16英里/小时)。描述飞机纵向 运动的状态空间方程
给出如下:
控制输入是升降舵角度和向量的状态变量分别是速度的变化, 迎角,俯仰速率和俯仰度。
该飞机的纵向模式称为短周期和长周期。在长周期特征 值,这也是一种复杂的共轭特征值接近虚轴,造成长周期运 动,在水平面缓慢地震荡。
二、状态转移矩阵的重要性与意义
线性系统理论大作业
专业:控制理论与控制工程 学号与姓名:
一、飞行器原理及结构和空间坐标系
为了进行控制系统设计的目的,飞机动力学经常称为飞行 姿态的一些操作状态进行线性化,它假设飞机的速度(马赫 数)和姿态是不变的。控制面(The control surfaces)和发动 机推力装置设置或修改,以达到这些状态,我们设计控制系统 就是为了维护这些条件,例如,强制将到这些状态的扰动(偏 差)变为零。
syms M s d1 t XT X0; A=[-0.0507 -3.861 0 -32.2;-0.00117 -0.5164 1 0;-0.000129 1.4168 -0.4932 0;0 0 1 0]; disp('矩阵A的行列式如下:'); d1=det(A); I=eye(4); disp('[sI-A]^(-1)为:'); B=(s*I-A); C=inv(B); digits(4) C=vpa(C) disp('状态转移阵为'); D=ilaplace(C); digits(4); M=vpa(D) X0=[0;0;0;0]; B=[0;-0.0717;-1.645;0]; XT=M*(X0+B) %求解系统的状态响应。 %画图 subplot(2,2,1) %画出x(t)d第一个分量X1(t),并把它显示在左上 角。 ezplot(XT(1,1),[0,2]) subplot(2,2,2) %画出x(t)d第二个分量X2(t),并把它显示在右上 角。 ezplot(XT(2,1),[0,2])
线性系统理论习题答案
《线性系统理论》作业参考答案1-1 证明:由矩阵úúúúúúûùêêêêêêëé----=--121000001000010a a a a A n n nL M O M M M L L L则A 的特征多项式为nn n n n n n n n n n n n n n n n n na a a a a a a a a a a a a a a a a A I +++==+--++--=--++--=+--=--------+-----L L L M O MM ML LL L M O M M M L L L L M O MMM L L L112114322111321121)1()1(00001001)1()1(000010001000010001l l l l l l ll l l l l l l l l ll 若i l 是A 的特征值,则00001000010001)(1112121=úúúúúúûùêêêêêêëé+++=úúúúúúûùêêêêêêëéúúúúúúûùêêêêêêëé+--=-----n n i n i n i i i in n ni i i i i a a a a a a A I L M M L M O M M M L L L l l l l l l l l l u l 这表明[]Tn ii i121-l l l L 是i l 所对应的特征向量。
线性系统理论MATLAB大作业
兰州理工大学2015级线性系统理论大作业线性系统理论Matlab 实验报告1、在造纸流程中,投料箱应该把纸浆流变成2cm 的射流,并均匀喷洒在网状传送带上。
为此,要精确控制喷射速度和传送速度之间的比例关系。
投料箱内的压力是需要控制的主要变量,它决定了纸浆的喷射速度。
投料箱内的总压力是纸浆液压和另外灌注的气压之和。
由压力控制的投料箱是个耦合系统,因此,我们很难用手工方法保证纸张的质量。
在特定的工作点上,将投料箱线性化,可以得到下面的状态空间模型:u x x ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-+-=0001.0105.0002.002.08.0. []21,x x y =其中,系统的状态变量x1=液面高度,x2=压力,系统的控制变量u1=纸浆流量u2=气压阀门的开启量。
在上述条件下,试设计合适的状态变量反馈控制器,使系统具有实特征根,且有一个根大于5解:本题目是在已知状态空间描述的情况下要求设计一个状态反馈控制器,从而使得系统具有实数特征根,并要求要有一个根的模值要大于5,而特征根是正数时系统不稳定,这样的设计是无意义的,故而不妨采用状态反馈后的两个期望特征根为-7,-6,这样满足题目中所需的要求。
要对系统进行状态反馈的设计首先要判断其是否能控,即求出该系统的能控性判别矩阵,然后判断其秩,从而得出其是否可控。
Matlab 判断该系统可控性和求取状态反馈矩阵K 的程序,如图1所示,同时求得加入状态反馈后的特征根并与原系统的特征根进行了对比。
图1系统能控性、状态反馈矩阵和特征根的分析程序上述程序的运行结果如图2所示:图2系统能控性、反馈矩阵和特征根的运行结果图2中为图1matlab 程序的运行结果,经过判断得知系统是可控的,同时极点的配置个数与系统状态相符,求得了状态反馈矩阵K 的值,并把原系统的特征根(rootsold )和加入状态反馈后的特征根(rootsnew )进行对比。
同时通过特征值可以看出该系统是稳定的。
华电线性系统理论大作业
分数: ___________任课教师签字:___________ 华北电力大学研究生结课作业学年学期:2014-2015学年第一学期课程名称:线性系统理论学生姓名:学号:提交时间:2014年11月27日目录1.绪论 (1)2.球杆系统分析与建模 (1)2.1球杆模型简介 (1)2.2拉格朗日法建模 (1)2.3拉格朗日模型线性化及状态空间表达式求取 (4)3. 系统稳定性分析 (5)3.1有初始状态下求取系统响应曲线 (6)3.3稳定性判断并求取零极点分布图 (7)4.系统能控性判别 (8)4.1代数判据 (8)4.2模态判据 (8)4.3可控性与可稳定性 (10)5.系统极点配置 (10)5.1极点配置方法 (10)5.1.1状态反馈原理 (11)5.1.2输出反馈原理 (11)5.1.3PID配置极点原理 (12)5.1.4三种反馈对比 (12)5.2.用状态反馈进行极点配置 (12)6.可观性分析及带状态反馈的状态观测器的设计 (16)6.1能观性分析 (16)6.1.1代数判据 (16)6.1.2模态判据 (16)6.3全维观测器原理 (17)6.4全维状态观测器结构 (17)6.5全维状态观测器设计 (18)6.6全维状态观测器Simulink仿真 (18)6.7全维状态观测器在干扰下的性能研究 (20)7.总结 (22)1.绪论球杆系统是控制理论中很经典的一个模型,通常用来检验控制策略的效果,并且很多实际系统都可以近似抽象为球杆模型,因此,对球杆系统的研究很有意义,本文从球杆模型的拉格朗日法建模入手,对球杆系统稳定性,能控能观性等控制特性进行分析。
2.球杆系统分析与建模2.1球杆模型简介球杆系统由底座,直流伺服电机,光滑导轨,小球等组成,导轨在伺服电机的带动下转动,小球在自身重力的作用下沿着光滑的金属导轨自由滚动,球杆系统简图如下,其中x 是小球在导轨上相对于导轨中心的位移量,以导轨左侧为正,α是导轨相对于水平线的倾斜角。
线性系统大作业范文
线性系统大作业范文线性系统是控制理论中的重要概念,它涉及到系统的线性性质以及如何对系统进行控制和优化。
在本次大作业中,我研究了一个线性系统的特性,并尝试设计一个控制策略,以优化系统的性能。
以下是我对此的详细分析和实施方案。
我选择研究一个被广泛应用于调节系统中的经典线性系统,即比例-积分-微分控制器(PID控制器)。
这种控制器通过测量误差信号,并根据比例、积分和微分增益来计算控制信号,使系统的输出尽量接近期望值。
PID控制器的优点是简单、稳定且易于调节。
我首先建立了一个模型以更深入地了解系统的特性。
我选择了一个简单的一阶系统作为示例。
该系统由一个控制信号u和输出信号y之间的线性关系组成,可以使用方程y=ku来表示,其中k是系统的增益。
然后,我对这个系统进行了频率响应分析。
通过使用傅里叶变换和频谱分析,我确定了系统的幅度和相位响应。
通过分析振荡频率、幅度衰减和相位延迟等指标,我能够了解系统的稳定性和动态响应。
接下来,我设计了一个PID控制器来优化系统的性能。
PID控制器的核心是比例、积分和微分增益。
比例增益用于调整控制信号与误差信号的比例关系,积分增益用于处理系统的静差,而微分增益用于校正系统的动态响应。
通过适当调节这些参数,可以优化系统的响应速度、稳定性和误差补偿能力。
为了确定PID控制器的最佳增益,我使用了试探法。
我从一个合理的起始点开始,逐渐调整增益,观察系统的响应,并根据响应结果进行微调。
通过不断迭代,最终我找到了一组使系统达到最佳性能的增益。
为了验证PID控制器的效果,我进行了仿真实验。
我利用MATLAB软件搭建了一个模拟环境,输入初始参数和控制信号,然后模拟系统的输出。
通过比较使用PID控制器前后的系统性能指标,如误差补偿能力、响应速度和稳定性,我确认了PID控制器的优越性。
最后,我对PID控制器的适用性进行了讨论。
尽管PID控制器广泛应用于各种应用领域,但它并不适用于所有系统。
对于具有高度非线性特性、时变性或多变量耦合的系统,PID控制器的效果可能不理想。
线性系统理论全PPT课件
稳定性是线性系统的一个重要性质,它决定了系统在受到外部干扰后能否恢复到原始状态。如果一个系统是稳定 的,那么当外部干扰消失后,系统将逐渐恢复到原始状态。而不稳定的系统则会持续偏离原始状态。
03
线性系统的数学描述
状态空间模型
01
定义
状态空间模型是一种描述线性动态系统的方法,它通过状态变量和输入
航空航天控制系统的线性化分析
线性化分析
在航空航天控制系统中,由于非线性特性较强,通常需要进行线性化分析以简化系统模 型。通过线性化分析,可以近似描述系统的动态行为,为控制系统设计提供基础。
线性化方法
常用的线性化方法包括泰勒级数展开、状态空间平均法和庞德里亚金方法等。这些方法 可以将非线性系统转化为线性系统,以便于应用线性系统理论进行控制设计。
线性系统理论全ppt课件
• 线性系统理论概述 • 线性系统的基本性质 • 线性系统的数学描述 • 线性系统的分析方法 • 线性系统的设计方法 • 线性系统的应用实例
01
线性系统理论概述
定义与特点
定义
线性系统理论是研究线性系统的 数学分支,主要研究线性系统的 动态行为和性能。
特点
线性系统具有叠加性、时不变性 和因果性等特性,这些特性使得 线性系统理论在控制工程、信号 处理等领域具有广泛的应用。
线性系统的动态性能分析
动态性能指标
描述线性系统动态特性的性能指 标,如超调量、调节时间、振荡
频率等。
状态空间分析法
通过建立和解决线性系统的状态方 程来分析系统的动态性能,可以得 到系统的状态轨迹和响应曲线。
频率域分析法
通过分析线性系统的频率特性来描 述系统的动态性能,可以得到系统 的频率响应曲线和稳定性边界。
线性系统大作业1
xdot(1)=-R/L*x(1)-1/L*x(2)+1/L*f(t);
xdot(2)=1/C*x(1);
function in=f(t)
in=(t>0)*2;
end
end
仿真求解状态方程代码如下:
L=1;
C=0.1;
R=1.5;
[t,x]=ode45('funcforex14',[-1,10],[0;1],[],R,L,C);
的根。方阵A有n个特征值;实际物理系统中,A为实数方阵,故特征值或为实数,或为成对共轭复数;如A为实数对称方阵,则其特征值都是实数。
4.2系统的不变量与特征值的不变性
同一系统,经非奇异变換后,得
公式(4.1)
其特征方程为
公式(4.2)
公式(4.1)与公式(4.2)形式虽然不同,但实际是相等的,即系统的非奇异变换,其特征值是不变的。可以证明如下:
xlabel('t/ms');ylabel('电压/V');title('系统响应');
[t,x]=ode45('funcforex13',[-1,10],[0;1],[],R,L,C);
figure(1);plot(t,x(:,1),'k');hold on;xlabel('time sec');
figure(1);plot(t,x(:,1),'r');hold on;xlabel('time sec');grid;
xlabel('t/ms');ylabel('电压/V');title('齐次性');
线性系统理论大作业
《线性系统理论》大作业报告引言:研究线性定常连续系统状态方程的解时,求解状态方程是进行动态系统分析与综合的基础,是进行定量分析的主要方法。
而线性定常连续系统状态方程的解由两个部分相加组成。
第一个部分是由初始状态所引起的自由运动,即状态的零输入响;第二个部分是由输入所引起的系统强迫运动,其值为输入函数与矩阵指数函数的卷积,即状态的零状态响应。
由于这两部分中都包含有状态转移矩阵,因此状态转移矩阵的计算是线性定常连续系统状态方程求解的关键。
本文先总结了的计算方法,并运用matlab命令求解证明各方法的正确性及给出相应的零输入响应仿真结果。
然后推导了脉冲响应的公式,希望通过飞机模型的例子来研究其系统的脉冲响应。
最后推广研究了任意输入的零状态响应。
第一部分的计算方法及零输入响应的仿真证明一.的计算方法1.根据的定义直接计算定义式是一个无穷级数,故在计算中必须考虑级数的收敛条件和计算收敛速度问题。
类似于标量指数函数,对所有有限的常数矩阵A和有限的时间t来说,矩阵指数函数这个无穷级数都是收敛的。
显然用此方法计算一般不能写成封闭的解析形式,只能得到数值计算的结果。
2.变换A为约旦标准型因为任何都可经线性变换成为对角矩阵或约旦矩阵,因此下面将利用对角矩阵和约旦矩阵的矩阵指数函数计算的简便性质,通过线性变换将一般形式的系统矩阵变换成对角矩阵或约旦矩阵计算其矩阵指数函数。
对于矩阵A,若经过非奇异变换(相似变换)矩阵P作变换后,有则3. 利用拉氏反变换求已知齐次方程两边取拉氏变换即对上式两边取拉氏反变换得齐次微分方程的解:而由定义法求得的齐次微分方程的解为比较两式得4. 应用凯莱—哈密顿定理求(1)由凯莱—哈密顿定理,方阵A 满足其自身的特征方程,即()1110 0n n n fA A a A a A a I--=++++=故121210...n n n n n A a A a A a A a I ----=-----它是的线性组合。
线性系统理论结课作业
分数: ___________任课教师签字:___________研究生结课作业学年学期:课程名称:线性系统理论学生姓名:学号:提交时间:目录1 前言 (1)2.1状态反馈控制 (1)2.2数学模型 (3)3 直流电动机调速系统的设计与仿真 (5)3.1系统的能控性能观性分析 (5)3.1.1能控性定义 (5)3.1.2能控性判据 (5)3.1.3能观性定义 (7)3.1.4能观性判据 (7)3.1.5判断系统的能观性能观性 (8)3.2系统的稳定性分析 (9)3.3 LQR最优调节器的设计与仿真 (10)3.4通过状态反馈实现系统的极点配置 (12)3.4.1状态反馈的基本原理 (12)3.4.2 状态反馈的matlab实现 (13)4 状态观测器的设计 (15)4.1状态观测器的基本原理 (15)4.2状态观测器的matlab实现 (16)5 利用离散化方法研究系统的特性 (20)5.1连续线性系统离散化的概念 (20)5.2采样周期和仿真时间的选择 (21)5.3控制系统的离散化 (21)5.3.1 零阶保持器 (22)5.3.2双线性变换法离散化 (25)5.3.3采用一阶保持器离散化 (28)参考文献 (32)直流电动机调速系统的建模与控制系统的设计1 前言直流电机,是指输出或输入为直流电能的旋转电机,它是能实现直流电能和机械能互相转换的电机。
当它作电动机运行时是直流电动机,将电能转换为机械能;作发电机运行时是直流发电机,将机械能转换为电能。
直流电机由定子(由机座、主磁极、换向磁极、前后端盖和刷架等部件组成)和转子(由电枢、换向器(又称整流子)和转轴等部件构成)两部分组成,其间有一定的气隙。
电能够实现直流电能这机械能相互转化的电机,当它作电动机运行时是直流电动机,将直流转换为机械能;作发电机运行时是直流发电机,将机械能转化为直流电能。
电动机作为最主要的机电能量转换装置,其应用范围已遍及国民经济的各个领域和人们的日常生活。
《线性系统设计作业》word版
线性系统理论设计作业专业:学号:姓名:指导老师:解:1、①将惯性环节等效变换并带入数据得到如下所示:系统不加扰动和任何反馈及校正装置时,在t=0s时,加上阶跃输入u=1500,得到波形如下:可以看出输出不能跟随输入变化,而且稳态误差较大,不能符合系统控制要求。
令n x =1;d U x =2 ;d I x =3得状态空间表达式如下:Y = []x 001②判断系统稳定性,在MATLAB 中输入以下程序: >> A=[0 0 18.086;0 -588.235 0;-8.1012 59.524 -25]; P=poly(A); roots(P) 运行结果如下:ux x x x x x ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+---=•••0412.23529032125524.591012.80235.5880086.1800321-588.2350-15.6196-9.3804可以看到特征方程的所有特征值均为负实数,所以系统是稳定的。
③判断系统的能控性与能观性,在MATLAB中输入以下程序:A=[0 0 18.086;0 -588.235 0;-8.1012 59.524 -25];B=[0;23529.412;0];C=[1 0 0];M=ctrb(A,B)RM=rank(M)N=obsv(A,C)RN=rank(N)运行结果如下:M =1.0e+009 *0 0 0.02530.0000 -0.0138 8.14170 0.0014 -0.8589RM =31.0e+003 *0.0010 0 0 0 0 0.0181 -0.1465 1.0766 -0.4522 RN = 3 >>从计算结果可以看出,系统能控性矩阵和能观测性矩阵的秩都是3,为满秩,因此该系统是可控的,也是能观测的。
④反馈控制系统的设计因为被控系统能控又控制,维数不少于误差的维数且rankC=1=m ,故满足式0A B rank n m C ⎡⎤=+⎢⎥⎣⎦,即增广系统状态完全能控,所以可以采用线性状态反馈控制律 12u K x K w =-+来改善系统的动态和稳态的性能,在式中,11[k K = 2k ]3k 。
(完整word版)线性系统理论大作业小组报告-汽车机器人建模
审定成绩:重庆邮电大学硕士研究生课程设计报告(《线性系统理论》)设计题目:汽车机器人建模学院名称:自动化学院学生姓名:专业 :控制科学与工程仪器科学与技术班级:自动化1班、2班指导教师:蔡林沁填表时间: 2017年 12月重庆邮电大学摘要汽车被广泛的应用于城市交通中,它的方便、快速、高效给人们带来了很大便利,这大大改变了人们的生活。
研制出一种结构简单、控制有效、行驶安全的城市用无人智能驾驶车辆,将驾驶员解放出来,是大大降低交通事故的有效方法之一,应用现代控制理论设计出很多控制算法,对汽车进行控制是非常必要的,本文以汽车机器人为研究对象,对其进行建模和仿真,研究了其模型的能控能观性、稳定性,并通过极点配置和状态观测器对其进行控制,达到了一定的性能要求。
这些研究为以后研究汽车的自动驾驶和路径导航,打下了一定的基础。
关键字:建模、能控性、能观性、稳定性、极点配置、状态观测器目录第一章绪论 (1)第一节概述 (1)第二节任务分工 (2)第二章系统建模 (2)2 系统建模 (2)2.1运动学模型 (2)2.2自然坐标系下模型 (4)2.3具体数学模型 (6)第三章系统分析 (7)3.1 能控性 (7)3。
1.1 能控性判据 (7)3.1。
2 能控性的判定 (8)3.2 能观性 (10)3。
2。
1 能观性判据 (10)3.2。
2 能观测性的判定 (12)3.3 稳定性 (13)3.3.1 稳定性判据 (13)3。
3.2 稳定性的判定 (14)第四章极点配置 (15)4.1 极点配置概念 (15)4。
2 极点配置算法 (15)4。
3 极点的配置 (16)4.4 极点配置后的阶跃响应 (17)第五章状态观测器 (18)5.1概念 (19)5.2带有观测器的状态反馈 (20)5。
3代码实现 (21)5.4 极点配置和状态观测器比较 (23)第六章总结 (25)参考文献 (26)附件(设计程序) (27)第一章绪论第一节概述进入20世纪,汽车被广泛的应用于城市交通中,它的方便、快速、高效给人们带来了很大便利,这大大改变了人们的生活。
线性系统理论分析PPT文档共47页
1、合法而稳定的权力在使用得当时很 少遇到 抵抗。 ——塞 ·约翰 逊 2、权力会使人渐渐失去温厚善良的美 德。— —伯克
3、最大限度地行使权力总是令人反感 ;权力 不易确 定之处 始终存 在着危 险。— —塞·约翰逊 4、权力会奴化一切。——塔西佗
5、虽然权力是一头固执的熊,可是金 子可以 拉着它 的鼻子 走。— —莎士 比
谢谢你的阅读
❖ 知识就是财富Βιβλιοθήκη ❖ 丰富你的人生71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非