高考数学“放缩法”全解析

合集下载

高中数学知识点精讲精析 放缩法

高中数学知识点精讲精析 放缩法

4.3.4放缩法1.放缩法这也是分析法的一种特殊情况,它的根据是不等式的传递性— a≤b,b≤c,则a≤c,只要证明"大于或等于a 的"b≤c 就行了. (5)放缩法:将不等式一侧适当的放大或缩小以达证题目的. 2.放缩法的方法有:①添加或舍去一些项,如:a a >+12;n n n >+)1(; ②将分子或分母放大(或缩小); ③利用基本不等式,如:4lg 16lg 15lg )25lg 3lg (5lg 3log 2=<=+<⋅; 2)1()1(++<+n n n n ; ④先放缩再求和(或先求和再放缩) ⑤先放缩,后裂项(或先裂项再放缩) ⑥逐项放大或缩小⑦固定一部分项,放缩另外的项; ⑧先适当组合, 排序, 再逐项比较或放缩 ⑨利用常用结论:kkk k k 21111<++=-+;k k k k k 111)1(112--=-< ; 111)1(112+-=+>k k k k k (程度大) )1111(21)1)(1(111122+--=+-=-<k k k k k k ; (程度小)1.证明当k 是大于1的整数时,,我们可以用放缩法的一支——“逐步放大法”,证明如下:2. 若水杯中的b 克糖水里含有a 克糖,假如再添上m 克糖,糖水会变得更甜,试将这一事实用数学关系式反映出来,并证明之.分析:本例反映的事实质上是化学问题,由浓度概念(糖水加糖甜更甜)可知)0,0(>>>++<m a b mb m a b a . 解:由题意得)0,0(>>>++<m a b mb ma b a . 证法一:(比较法))()()()()(m b b a b m m b b m b a m a b b a m b m a +-=++-+=-++. 0,0>>>m a b ,0,0>+>-∴m b a b ,ba mb m a m b b a b m >++>+-∴即0)()(.证法二:(放缩法)00>>>m a b 且 ,mb m a m b mb aa mb b m b a b a ++<++=++=∴)()(. 证法三:(数形结合法)如图,在Rt ∆ABC 及Rt ∆ADF 中,AB=a ,AC=b ,BD=m ,作CE ∥BD .ADF ABC ∆∆∽ , mb m a CE b m a CF b m a b a ++=++<++=∴.A3. 已知a ,b ∈R ,且a+b=1. 求证:()()2252222≥+++b a . 证法一:(比较法)a b b a R b a -=∴=+∈1,1,,()()2222259224()22a b a b a b ∴+++-=+++- 2222911(1)4222()0222a a a a a =+-+-=-+=-≥即()()2252222≥+++b a (当且仅当21==b a 时,取等号).证法二:(分析法) ()()2258)(4225222222≥++++⇐≥+++b a b a B a ⎪⎩⎪⎨⎧≥-⇐≥++-+-=⇐0)21(22584)1(1222a a a ab 因为显然成立,所以原不等式成立. 证法三:(均值换元法)∵1a b +=,所以可设t a +=21,t b -=21, ∴左边=()()22221122(2)(2)22a b t t +++=+++-+22255252522222t t t ⎛⎫⎛⎫=++-=+≥⎪ ⎪⎝⎭⎝⎭=右边. 当且仅当t=0时,等号成立.点评:形如a+b=1结构式的条件,一般可以采用均值换元. 证法七:(利用一元二次方程根的判别式法)设y=(a+2)2+(b+2)2,由a+b=1,有1322)3()2(222+-=-++=a a a a y , 所以013222=-+-y a a ,因为R a ∈,所以0)13(244≥-⋅⋅-=∆y ,即225≥y . 故()()2252222≥+++b a . 证法四:(反证法)假设225)2()2(22<+++b a ,则 2258)(422<++++b a b a .由a+b=1,得a b -=1,于是有22512)1(22<+-+a a . 所以0)21(2<-a ,这与0212≥⎪⎭⎫ ⎝⎛-a 矛盾.所以()()2252222≥+++b a . 证法五:(放缩法)∵1a b += ∴左边=()()()()222222222a b a b +++⎡⎤+++≥⎢⎥⎣⎦()2125422a b =++=⎡⎤⎣⎦=右边. 点评:根据欲证不等式左边是平方和及a+b=1这个特点,选用基本不等式22222⎪⎭⎫⎝⎛+≥+b a b a .4.设实数x ,y 满足y+x 2=0,0<a<1.求证:812log )(log +≤+a yx a a a . 证明:(分析法)要证812log )(log +≤+a yx a a a , 10<<a ,只要证:812a a a yx ≥+,又222y x yxyxaaa a a +=+≥+ ,∴只需证:41a ayx ≥+. ∴只需证41≤+y x ,即证0412≥+-x x ,此式显然成立.∴原不等式成立.5.设m 等于a ,b 和1中最大的一个,当m x >时,求证:22<+x bx a . 分析:本题的关键是将题设条件中的文字语言“m 等于a ,b 和1中最大的一个”翻译为符号语言“a m ≥,b m ≥,1≥m ”,从而知a m x ≥>. 证明:(综合法)a m x ≥> ,,1x m b x m >≥>≥.22222 1.2a b x xa b a bx x x x x x x x∴+≤+=+<+=.6.已知,,a b c R +∈,1a b c ++=,求证:222111100()()()3a b c a b c +++++≥证明 ∵ 1a b c ++=∴ 1=2222222()2223()a b c a b c ab bc ca a b c ++=+++++≤++∴ 22213a b c ++≥又 ∵22222222111111()()27a b c a b c a b c ++=++++≥⨯= ∴ 222222222111111()()()()6()a b c a b c a b c a b c +++++=++++++110062733≥++= ∴ 222111100()()()3a b c a b c +++++≥7.若a , b , c , d ∈R +,求证:21<+++++++++++<ca d db dc c a c b bd b a a证明: 记m =ca d db dc c a c b bd b a a +++++++++++∵a , b , c , d ∈R + ∴1=+++++++++++++++>c b ad db a dc c a c b a bd c b a a m2=+++++++<cd dd c c b a b b a a m ∴1 < m < 2 即原式成立8.当 n > 2 时,求证:1)1(log )1(log <+-n n n n 证明: ∵n > 2 ∴0)1(log ,0)1(log >+>-n n n n∴2222)1(log 2)1(log )1(log )1(log )1(log ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡++-<+-n n n n n n n n n n 12log 22=⎥⎦⎤⎢⎣⎡<n n ∴n > 2时, 1)1(log )1(log <+-n n n n 9. 求证:213121112222<++++n证明:nn n n n 111)1(112--=-< ∴2121113121211113121112222<-=+-++-+-+<++++n n n n10.设x > 0, y > 0,y x y x a +++=1, yyx x b +++=11,求证:a < b 证明:yyx x y x y y x x y x y x +++<+++++=+++11111 11.lg9•lg11 < 1证明:122299lg 211lg 9lg 11lg 9lg 222=⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+≤⋅12.若a > b > c , 则0411≥-+-+-ac c b b a 证明:c a c b b a c b b a c b b a -=⎪⎪⎭⎫ ⎝⎛-+-≥--≥-+-4)()(22))((1211213.)2,(11211112≥∈>+++++++n R n nn n n 证明:左边11111122222=-+=++++>n nn n n n n n 14.121211121<+++++≤n n n 证明:11121<⋅+≤≤⋅n n n n 中式 15.已知a , b , c > 0, 且a 2 + b 2 = c 2,求证:a n + b n < c n (n ≥3, n ∈R *)证明: ∵122=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛c b c a ,又a , b , c > 0, ∴22,⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛c b c b c a c a n n∴<⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛n n c b c a 122=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛c b c a ⇒ a n + b n < c n16.已知,,x y z R ∈,且2228,24x y z x y z ++=++= 求证:4443,3,3333x y z ≤≤≤≤≤≤ 证明:显然2222()()8,8202x y x y x y z xy z z +-++=-==-+ ,x y ∴是方程22(8)8200t z x z z --+-+=的两个实根, 由0≥得443z ≤≤,同理可得443y ≤≤,443x ≤≤17. 设a ,b 为不相等的两正数,且a 3-b 3=a 2-b 2,求证143<+<a b 。

放缩法技巧及例题解析(高中数学)

放缩法技巧及例题解析(高中数学)

{an } 满足条件 an1 an f n )求和或者利用分组、裂项、倒序相加等方法来
a n 1 a1 a2 ... n (n N * ). 2 3 a2 a3 an1
当 n 3 时,
1 1 1 1 1 2 ,此时 an n n 1 n n 1 n
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 1 a1 a2 an 4 3 4 n 4 2 3 3 4 n 1 n
1

1 (n 1) 2 an1 an

1 (n 1) 2 [1 an ] (n 1) 2

an (n 1)(n 1 ) n 1
这种证法还是比较自然 的, 也易让学生接受 .
.
an an 1 n 当 n 2 时, n 1

1 1 1 1 1 an an1 (n 1)(n 2) n 1 n 2
1 1 1 1 1 1 1 2 (n 1) n n 1 n(n 1) n n(n 1) n 1 n 2 2 1 2 2( n n 1) n 1 n n n n n n 1
a a a am , b bm b b
1 1 1 1 1 1 1 1 1 (1 ) 2 3 3 5 2n 1 2n 1 2 2(2n 1) 2
注:一般先分析数列的通项公式.如果此数列的前 n 项和能直接求和或者通过变形后求和,则采用 先求和再放缩的方法来证明不等式.求和的方式一般要用到等差、等比、差比数列(这里所谓的差 比数列,即指数列 求和. 例 2、已知 an 2n 1(n N * ). 求证:

高考数学_压轴题_放缩法技巧全总结.pdf

高考数学_压轴题_放缩法技巧全总结.pdf
23
1 2( 2 n 1 1)
n
解析 :(1) 因为 1
2
( 2n 1)
1 (2n 1)( 2n 1)
11
1 ,所以
2 2n 1 2n 1
n
1
i 1 (2i 1) 2
11 1(
23
1
11 1
)1 (
)
2n 1
2 3 2n 1
(2) 1 1 1 4 16 36
11 1
2
4n
(1 4
2
2
11
1
2) n
(1 1 4
3(2n 1) 2 n
n
2n 1 2 3
n
12 2n 1 3
(14)
k2
1
1
k! (k 1)! (k 2)! (k 1) ! (k 2) !
(15)
1
n
n(n 1)
n 1(n 2)
(15)
i2 1
j2 1
i2 j2
ij
(i j)( i 2 1 j 2 1)
ij
1
i2 1
j2 1
例 2.(1) 求证 :1
1 ,所以 n 1
2n 1
k 1k2
1 12
3
1 5
1
1
25
1
2n 1 2n 1
33
奇巧积累 :(1) 1
n2
4 4n2
4
1
1
4n2
1
2 2n
1
2n
1
(2) 1
2
1
1
C1n
C2
1n
( n 1) n( n 1)
n(n 1) n( n 1)

高中数学-放缩法(详解)

高中数学-放缩法(详解)

放缩技巧放缩法:将不等式一侧适当的放大或缩小以达证题目的的方法,叫放缩法。

放缩法的方法有:⑴添加或舍去一些项,如:a a >+12;n n n >+)1( ⑵将分子或分母放大(或缩小) ⑶利用基本不等式,如:4lg 16lg 15lg )25lg 3lg (5lg 3log 2=<=+<⋅; 2)1()1(++<+n n n n⑷利用常用结论: Ⅰ、kkk k k 21111<++=-+; Ⅱ、k k k k k 111)1(112--=-< ; 111)1(112+-=+>k k k k k (程度大) Ⅲ、)1111(21)1)(1(111122+--=+-=-<k k k k k k ; (程度小) 1.若a , b , c , d ∈R +,求证:21<+++++++++++<ca d db dc c a c b bd b a a【巧证】:记m =ca d db dc c a c b bd b a a +++++++++++∵a , b , c , d ∈R+∴1=+++++++++++++++>cb a d db a dc c a c b a bd c b a a m2=+++++++<cd dd c c b a b b a a m ∴1 < m < 2 即原式成立2.当 n > 2 时,求证:1)1(log )1(log <+-n n n n 【巧证】:∵n > 2 ∴0)1(log ,0)1(log >+>-n n n n∴2222)1(log 2)1(log )1(log )1(log )1(log ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡++-<+-n n n n n n n n n n 12log 22=⎥⎦⎤⎢⎣⎡<n n ∴n > 2时, 1)1(log )1(log <+-n n n n3.求证:213121112222<++++n【巧证】:nn n n n 111)1(112--=-< ∴2121113121211113121112222<-=+-++-+-+<++++n n n n巧练一:设x > 0, y > 0,y x y x a +++=1, yyx x b +++=11,求证:a < b 巧练一:【巧证】:yyx x y x y y x x y x y x +++<+++++=+++11111 巧练二:求证:lg9•lg11 < 1巧练二:【巧证】:122299lg 211lg 9lg 11lg 9lg 222=⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+≤⋅巧练三:1)1(log )1(log <+-n n n n巧练三:【巧证】: 222)1(log )1(log )1(log ⎥⎦⎤⎢⎣⎡-≤+-n n n n n n 12log 22=⎥⎦⎤⎢⎣⎡<n n 巧练四:若a > b > c , 则0411≥-+-+-ac c b b a 巧练四: 【巧证】: c a c b b a c b b a c b b a -=⎪⎪⎭⎫ ⎝⎛-+-≥--≥-+-4)()(22))((12112巧练五:)2,(11211112≥∈>+++++++n R n nn n n巧练五:【巧证】:左边11111122222=-+=++++>n nn n n n n n 巧练六:121211121<+++++≤nn n 巧练六:【巧证】: 11121<⋅+≤≤⋅n n n n 中式 巧练七:已知a , b , c > 0, 且a 2+ b 2= c 2,求证:a n + b n < c n (n ≥3, n ∈R *)巧练七:【巧证】: ∵122=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛c b c a ,又a , b , c > 0,∴22,⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛c b c b c a c a n n ∴1=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛nn c b c a证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查知识的潜能与后继能力,因而成为压轴题及各级各类竞赛试题命题的极好素材。

高数放缩法技巧全总结

高数放缩法技巧全总结

高数放缩法技巧全总结
高等数学中的放缩法是一种常用的求极限、证明不等式等问题的方法,它在解
题过程中具有非常重要的作用。

放缩法的核心思想是通过适当的变形和估计,将原问题转化为一个更容易处理的形式,从而简化解题过程。

下面我们就来总结一下高数放缩法的一些技巧和方法。

首先,对于一些复杂的不等式问题,我们可以尝试使用放缩法来简化证明过程。

例如,对于一些涉及三角函数的不等式,我们可以尝试将其转化为一个更简单的形式,然后再进行证明。

在这个过程中,我们需要灵活运用三角函数的性质和不等式的性质,找到合适的放缩方法,从而达到简化证明的目的。

其次,对于一些涉及极限的问题,放缩法同样可以发挥作用。

在求解极限的过
程中,我们可以通过放缩的方式,将原极限转化为一个更容易处理的形式,然后再进行求解。

这种方法在一些复杂的极限问题中尤其有效,可以大大简化求解过程,提高解题效率。

另外,放缩法还可以应用于一些数学建模和物理问题中。

在实际问题中,我们
经常会遇到一些复杂的模型和方程,通过放缩法,我们可以将原问题简化,从而更好地理解和解决实际问题。

总的来说,高数放缩法是一种非常重要的解题方法,它可以在不等式证明、极
限求解、数学建模等方面发挥重要作用。

在使用放缩法时,我们需要灵活运用数学知识,找到合适的放缩方法,从而简化解题过程,提高解题效率。

希望以上总结的放缩法技巧能够帮助大家更好地掌握这一解题方法,提升数学解题能力。

高考数学_压轴题_放缩法技巧全总结

高考数学_压轴题_放缩法技巧全总结

高考数学备考之 放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。

这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种:一、裂项放缩例1.(1)求∑=-n k k 12142的值; (2)求证:35112<∑=nk k .解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk 技巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n (2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n(3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC Tr rrn r (4)25)1(123112111)11(<-++⨯+⨯++<+n n nn(5)nn nn 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n nn n (8) nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+-(9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1 (10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n(12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n(13) 3212132122)12(332)13(2221nn n nnnnnn <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15))2(1)1(1≥--<+n n n n n (15) 111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i ji j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:nn412141361161412-<++++ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn(4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(211)12131(211)12(112--+>+-+>-∑=n n i ni (2))111(41)1211(414136116141222nnn-+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案(4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析: 一方面: 因为⎪⎭⎫ ⎝⎛+--=-=-<1211212144411222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 另一方面: 1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n当3≥n 时,)12)(1(61++>+n n n n n ,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n例4.(2008年全国一卷)设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=. 设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>.解析: 由数学归纳法可以证明{}n a 是递增数列, 故 若存在正整数k m ≤, 使b a m ≥, 则b a a k k ≥>+1,若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=k m m m k k k k a a a a a a a 111ln ln ,因为)ln (ln 11b a k a akm m m<∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+ 321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=n k m m m m m m m m k k n n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m n k m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([故只要证∑∑∑=++==++-+<+<--nk m m n k m nk m m k k k m k k1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kkm kkm 而正是成立的,所以原命题成立.例6.已知n n n a 24-=,nnna a a T +++=212,求证:23321<++++nT T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n n nn n n nT -+-=-----=+++-++++=所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nn T⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n n n n 从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n nT T T T例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+证明:nn n n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为12++<n n n ,所以)1(2122214122n n n n n x x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n nn∈+-<++++ .解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n nn+++--<++++ cause ⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111n nn n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---所以6535133ln 4ln 3ln 2ln +-=--<++++n n n n nn例10.当然本题的证明还可以运用积分放缩如图,取函数xx f 1)(=,首先:⎰-<nin ABCFx S1,从而,)ln(ln |ln 11i n n x xi nn i n nin --==<⋅--⎰取1=i 有,)1ln(ln 1--<n n n,所以有2ln 21<,2ln 3ln 31-<,…,)1ln(ln 1--<n n n,n n n ln )1ln(11-+<+,相加后可以得到: )1ln(113121+<++++n n 另一方面⎰->ni n ABDExS 1,从而有)ln(ln |ln 11i n n x x i in n i n nin --==>⋅---⎰取1=i 有,)1ln(ln 11-->-n n n , 所以有nn 1211)1ln(+++<+ ,所以综上有nn n 1211)1ln(113121+++<+<++++例11.求证:e n <+⋅⋅++)!11()!311)(!211( 和e n <+⋅⋅++)311()8111)(911(2 .解析:构造函数后即可证明 例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n 解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n 所以211ln -≤+n n n,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 例14. 已知112111,(1).2n n n aa a n n +==+++证明2n a e <. 解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+, 然后两边取自然对数,可以得到nn n a n n aln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤+n nn a nn a )2111(21⇒++++≤+n nn a nn a ln )2111ln(ln 21nn n n a 211ln 2+++≤。

2022年高考数学放缩法在解答数列题中的应用技巧(十一种放缩方法全归纳)

2022年高考数学放缩法在解答数列题中的应用技巧(十一种放缩方法全归纳)

n
21 3 2
n(n 1)
(5)
2n
1 (2n
1)
1 2n 1
1 2n
(6) 1 n 2 n n 2
(7) 2( n 1 n) 1 2( n n 1) n
(8)
2 2n
1
1 2n
3
1 2n
1
(2n 1) 2n1
1 (2n 3) 2n
(9)
k(n
1 1
k)
n
1 1
k
1 k
34.已知数列 an 的首项
a1
3 5

an1
3an 2an 1

n
1、
2


(1)证明:对任意的
x
0

an
1 1 x
1
1 x2
2 3n
x
,n
1、2


(2)证明: a1 a2
an
n2 . n 1
12、经典题目方法探究
35.已知函数 f (x) ln(1 x) x .若 f (x) 在区间[0, n](n N*) 上的最小值为 bn ,令 an ln(1 n) bn .求
(Ⅰ)①求证:函数 g(x) f (x) 在 (0, ) 上是增函数;
x
①当 x1 0,x2 0 时,证明: f x1 f x2 f x1 x2 ;
(Ⅱ)已知不等式 ln(x 1) x 在 x 1且 x 0 时恒成立,求证:
1
22
ln
22
1 32
ln
32
1 42
ln
an 1, ai 0 (i 1, 2
n) ,求证: a12 a22 a1 a2 a2 a3

高考数学 压轴题 放缩法技巧全总结(最强大)

高考数学   压轴题   放缩法技巧全总结(最强大)

高考数学压轴题放缩法技巧全总结(最强大)高考数学-压轴题-放缩法技巧全总结(最强大)变焦技术(高考数学备考资料)证明级数不等式由于其思维跨度大、建构性强,充满了思考和挑战。

它可以全面全面地测试学生的潜能和后续学习能力。

因此,它已成为高考最后一道题和各级各类竞赛题命题的优秀材料。

这类问题的解决策略往往是:多角度观察给定序列的通项结构,深入分析其特点,把握其规律,适当放大缩小;主要有以下膨胀和收缩技术:一、裂项放缩例1(1)请问?K1n24k2?124n2?11? n2n值;(2)验证:?1.五2k?1k3解析:(1)因为211,那么n212n 1.2(2n?1)(2n?1)2n?12n?12n?12n?1k?14k?14(2)因为n1111?251?,所以?1?1?2??11????2?2?2???k352n?12n?133??k?114n?1?2n?12n?1?n2?41奇巧积累:(1)1441?? 1.2.2.2.2N4N?1.2n?12n?1.R1r?中国?(2)121112cn?1cn(n?1)n(n?1)n(n?1)n(n?1)(3) t1n!11111 (r?2)rrr!(n?r)!nr!r(r?1)r?1rn(4)(1?1)n?1.1.1.1.氮气?13? 215?n(n?1)21?n?2?nn?2?2n?12n?3?211?n?1(2n?1)?2(2n?3)?2n(5)111? Nnnn2(2?1)2?12(6)21?1(7)2(n?1?n)?1?2(n?n?1)(8)n?n(9)111?111?11,????k(n?1?k)?n?1?kk?n?1n(n?1?k)k?1?nn?1?k?n11??(n?1)!n!(n?1)!(10)(11)1n?2(2n?1?2n?1)?222n?1.2n?1.N211? N22(11)(12)(13)(14)2n?111 (n?2)n2nnnnnnnnnn?1n?1n(2?1)(2?1)(2?1)(2?1)(2?2)(2?1)(2?1)2?12? 11n3?1n?n21111 n(n?1)(n?1)?n(n?1)??n(n?1)?N1.N一1?n?1?n?1?1n?1?2n?n?111N1n?一2n12n?n?32?132n?1?2?2n?(3?1)?2n?3?3(2n?1)?2n?2n?1?k?211??k!?(k?1)!?(k?2)!(k?1) !(k?2)!1.NN1(n?2)n(n?1)(15)22(15)i?1?j?1?i2?j2(i?j)(i2?1?j2?1)i?j?i?ji2?1?j2?1?1例2(1)验证:1?11171? 2.(n?2)2262(2n?1)35(2n?1)(2)验证:1?1.1.1.1.12416364n24n(3)验证:1?1.3.1.3.5.1.3.5.(2n?1)?2n?1.一22?42?4?62?4?62nn(4)求证:2(n?1?1)?1?1?11?2(2n?1?1)23分析:(1)因为111?11?,所以2(2n?1)(2n?1)2?2n?12n?1?(2n?1)?(2i?1)i?1n12111111?1?(?)?1?(?)232n?1232n 1(2)11111(111)1(111)222416364n42n4n(3)首先证明1?3.5.(2n?1)?2.4.6.2n12n?1.重新连接1n?2?n?2?n进行裂项,最后就可以得到答案(4)首先,再次证明1n1n?2(n?1?n)?2n?1?n22,所以容易经过裂项得到2(n?1?1)?1?1?1123n从平均不平等性来看,很明显这是真的,2(2n12n1)2n12n1n211n22所以1?1?11?2(2n?1?1)23n例3.求证:6n1115?1.2.(n?1)(2n?1)49n31?n21??1?2?214n?12n?12n?1?2?n?414解析:一方面:因为,所以kk?1n1211?25? 11? 1.2.1.2n?12n?1.33? 35另一方面:1?1.1.1.1.1.1.249n2?33? 411n1n(n1)n1n1当n?3时,什么时候?2点,总结一下6n111n6n,当n?1时,?12?(n?1)(2n?1)49nn?1(n?1)(2n?1)6n111?12,(n?1)(2n?1)49n,6n1115?12?(n?1)(2n?1)49n3案例4(2022年国家第一卷)集合函数f(x)?十、xlnx。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学“放缩法”全解析
例如:
1、添加或舍弃一些正项(或负项)
例1、已知*
21().n n a n N =-∈求证:
*12
231
1...().23n n a a a n n N a a a +-<+++∈ 证明: 111211111111
.,1,2,...,,2122(21)2 3.222232k k k k k k k
k a k n a +++-==-=-≥-=--+-Q
1222311111111
...(...)(1),2322223223
n n n n a a a n n n a a a +∴
+++≥-+++=-->-
*122311...().232
n n a a a n n
n N a a a +∴-<+++<∈ 若多项式中加上一些正的值,多项式的值变大,多项式中加上一些负的值,多项式的
值变小。

由于证明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证明的目的。

本题在放缩时就舍去了22k -,从而是使和式得到化简.
2、先放缩再求和(或先求和再放缩) 例2、函数f (x )=
x
x 414+,求证:f (1)+f (2)+…+f (n )>n +
)(2
1
21*1
N n n ∈-+. 证明:由f (n )=
n
n 414+=1-
11
11422n n
>-+⋅ 得f (1)+f (2)+…+f (n )>n
2
2112
2112
2112
1
⋅-
++⋅-
+⋅-Λ
)(21
2
1)2141211(41*11N n n n n n ∈-+=++++-=+-Λ.
此题不等式左边不易求和,此时根据不等式右边特征, 先将分子变为常数,再对分母进行放缩,从而对左边可以进行求和. 若分子, 分母如果同时存在变量时, 要设法使其中之一变为常量,分式的放缩对于分子分母均取正值的分式。

如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或分母放大即可。

3、放大或缩小“因式”;
例3、已知数列{}n a 满足2
111
,0,2n n
a a a +=<≤求证:121
1().32n
k k k k a a a ++=-<∑ 证明 22112131110,,,.2416n n a a a a a a +<≤
=∴=≤≤Q L 2311,0,16k k a a +∴≥<≤≤当时 12
1111
1111()()().161632
n
n k k k k k n k k a a a a a a a ++++==∴-≤-=-<∑∑ 本题通过对因式2k a +放大,而得到一个容易求和的式子11
()n
k
k k a
a +=-∑,最终得出证明.
技巧:
4、逐项放大或缩小
例4、设)1(433221+++⨯+⨯+⨯=n n a n Λ求证:2)1(2)1(2
+<<+n a n n n 证明:∵ n n n n =>+2
)1( 2
12)21()1(2+=+<+n n n n
∴ 2
1
2)1(+<+<n n n n
∴ 2
)
12(31321++++<<++++n a n n ΛΛ, ∴2)1(2)1(2+<<+n a n n n
本题利用21
2
n n +<<,对n a 中每项都进行了放缩,从而得到可以求和的
数列,达到化简的目的。

5、固定一部分项,放缩另外的项; 例5、求证:2222111171234
n ++++<L 证明:21111(1)1n n n n n
<=---Q
2222211111111151171()().1232231424
n n n n ∴
++++<++-++-=+-<-L L 此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分别对待,即不能放的太宽,也不能缩的太窄,真正做到恰倒好处。

1 求证:.
2b a )2b a (222+≤+
证明:因为4b ab 2a )2b a (222++=+(因为2
2b a ab 2+≤)4b b a a 2
222+++≤(放大).2b a 22+=所以.
2b a )2b a (2
22+≤+
2 求证:)
N n )(n 1n (2n 1
∈-+>
证明:因为n 1n 2n n 2n
1++>
+=(分母有理化)),n 1n (2-+=所以原不等式成立。

3 (1999年湖南省理16)求证:)
N n (1n 212n 11n 121∈<+++++≤Λ
证明:因为,
21
n n n n n 1n n 1n n 1n n 12
n 11n 1=+=+++++≥++++++ΛΛ又,1n n n 1n 1n 1n n 12n 11n 1==+++<++++++ΛΛ所以原不等式成立。

4 求证:.2n 321132112111<⨯⨯⨯⨯++⨯⨯+⨯+ΛΛ
证明:因为左边
+
+-+-+-+=-++⨯+⨯+≤ΛΛ)4
131()3121()211(1n )1n (13212111,2n 12)n 11n 1(
<-=--证毕。

5 求证)
N n (1!n 1
!41!31!21∈<++++Λ
证明:因为,
2122211k 3211!k 11k -=⨯⨯⨯⨯<⨯⨯⨯⨯=ΛΛ所以左边
Λ+++=
32212121.1)21
(1211n 1n <-=+--
注:1、放缩法的理论依据,是不等式的传递性,即若,D C ,C B ,B A >>>则D A >。

2、使用放缩法时,“放”、“缩”都不要过头。

3、放缩法是一种技巧性较强的不等变形,一般用于两边差别较大的不等式。

常用的有“添舍放缩”和“分式放缩”,都是用于不等式证明中局部放缩。

相关文档
最新文档