电磁场实验报告
北邮电磁场实验报告

北邮电磁场实验报告北邮电磁场实验报告引言:电磁场是现代科学中非常重要的一个概念,它对于理解和应用电磁现象具有重要意义。
本次实验旨在通过测量电磁场的强度和方向,探究电磁场的基本特性,并验证电磁场的作用规律。
实验仪器和原理:本次实验使用的仪器包括电磁场强度测量仪、磁力计和直流电源。
电磁场强度测量仪是一种用于测量电磁场强度的仪器,它利用霍尔效应原理测量磁场的大小。
磁力计则是用于测量磁场方向的仪器,它利用磁力对物体的作用原理进行测量。
实验过程和结果:首先,我们将电磁场强度测量仪放置在电磁场中,调整其位置和角度,使其能够测量到电磁场的强度。
然后,通过调节直流电源的电流大小,我们可以改变电磁场的强度。
在不同电流下,我们分别测量了电磁场的强度,并记录下来。
接下来,我们使用磁力计来测量电磁场的方向。
将磁力计放置在电磁场中,调整其位置和角度,使其能够测量到电磁场的方向。
然后,通过改变直流电源的电流方向,我们可以改变电磁场的方向。
在不同电流方向下,我们分别测量了电磁场的方向,并记录下来。
通过实验测量,我们得到了一系列关于电磁场强度和方向的数据。
根据这些数据,我们可以绘制出电磁场的强度和方向分布图。
从分布图中,我们可以看出电磁场的强度随着距离的增加而减小,同时电磁场的方向沿着电流方向形成环状分布。
讨论和分析:通过实验数据的分析,我们可以得出以下结论:电磁场的强度与电流大小成正比,即电流越大,电磁场强度越大;电磁场的方向与电流方向一致,即电流方向决定了电磁场的方向。
这一结论与安培定律相吻合,即安培定律指出电流元产生的磁场与电流元的方向垂直,并且随着距离的增加而减小。
而我们的实验结果也验证了这一规律。
此外,我们还发现电磁场的强度和方向与测量位置和角度有关。
在实验中,我们调整了测量仪器的位置和角度,使其能够准确测量电磁场的强度和方向。
这说明在实际应用中,我们需要合理选择测量位置和角度,以获得准确的测量结果。
结论:通过本次实验,我们深入了解了电磁场的基本特性,并验证了安培定律。
电磁场与电磁波实验报告

电磁场与电磁波实验报告电磁场与电磁波实验报告引言:电磁场和电磁波是物理学中非常重要的概念。
电磁场是由电荷产生的一种物理场,它的存在和变化会影响周围空间中的其他电荷。
而电磁波则是电磁场的一种传播形式,它以电磁场的振荡和传播为基础,具有波动性质。
本次实验旨在通过实际操作和测量,深入了解电磁场和电磁波的特性。
实验一:测量电磁场强度在实验一中,我们使用了一个电磁场强度计来测量不同位置的电磁场强度。
首先,我们将电磁场强度计放置在一个固定的位置,记录下此时的电磁场强度。
然后,我们将电磁场强度计移动到其他位置,重复测量过程。
通过这些数据,我们可以得出不同位置的电磁场强度的分布情况。
实验结果显示,电磁场强度随着距离的增加而逐渐减弱。
这符合电磁场的特性,即电荷产生的电磁场在空间中以一定的规律传播,而传播的强度会随着距离的增加而减弱。
这一实验结果验证了电磁场的存在和变化对周围环境的影响。
实验二:测量电磁波频率和波长在实验二中,我们使用了一个频率计和一个波长计来测量电磁波的频率和波长。
首先,我们将频率计和波长计设置好,并将它们与电磁波源连接。
然后,我们观察频率计和波长计的测量结果,并记录下来。
通过这些数据,我们可以得出电磁波的频率和波长的数值。
实验结果显示,不同频率的电磁波具有不同的波长。
频率越高的电磁波,波长越短;频率越低的电磁波,波长越长。
这符合电磁波的特性,即电磁波的振荡频率和波长之间存在一定的关系。
这一实验结果验证了电磁波的波动性质,以及频率和波长之间的关系。
实验三:观察电磁波的干涉和衍射现象在实验三中,我们使用了一块光栅和一个狭缝装置来观察电磁波的干涉和衍射现象。
首先,我们将光栅放置在光源前方,并调整光源的位置和光栅的角度。
然后,我们观察到在光栅后方的屏幕上出现了一系列明暗相间的条纹。
这些条纹是由电磁波的干涉和衍射效应引起的。
实验结果显示,当电磁波通过光栅时,会发生干涉和衍射现象。
干涉现象表现为明暗相间的条纹,而衍射现象表现为条纹的扩散和交替。
北邮电磁场实验报告

北邮电磁场实验报告北邮电磁场实验报告引言:电磁场是物理学中非常重要的一个概念,它涉及到电荷、电流和磁性物质之间的相互作用。
为了更好地理解电磁场的特性和行为,我们进行了一系列的实验。
本报告将详细介绍我们在北邮进行的电磁场实验及其结果。
实验一:静电场与电势分布在这个实验中,我们使用了一对带电的金属板,通过改变金属板的电荷量和距离,观察了电势分布的变化。
实验结果显示,电势随距离的增加而逐渐降低,符合电势随距离平方反比的规律。
此外,我们还观察到电势在金属板附近的区域呈现出均匀分布的特点。
实验二:磁场与磁力线在这个实验中,我们使用了一根通电导线和一块磁铁,通过改变电流的方向和大小,观察了磁场的行为。
实验结果显示,磁铁产生的磁场呈现出环形磁力线的分布。
当通电导线与磁铁相互作用时,导线会受到磁力的作用,其受力方向与电流方向、磁场方向之间存在一定的关系。
实验三:电磁感应与法拉第电磁感应定律在这个实验中,我们使用了一根通电导线和一个线圈,通过改变导线中的电流和线圈的位置,观察了电磁感应现象。
实验结果显示,当导线中的电流改变时,线圈中会产生感应电流。
根据法拉第电磁感应定律,感应电流的大小与导线中电流变化的速率成正比。
此外,我们还观察到线圈中感应电流的方向与导线中电流变化的方向存在一定的关系。
实验四:电磁波的传播在这个实验中,我们使用了一个发射器和一个接收器,通过改变发射器的频率和接收器的位置,观察了电磁波的传播行为。
实验结果显示,电磁波以波动的形式传播,其传播速度与真空中的光速相同。
此外,我们还观察到电磁波的频率与波长之间存在一定的关系,即频率越高,波长越短。
结论:通过以上实验,我们对电磁场的特性和行为有了更深入的了解。
我们发现电磁场的行为符合一系列的规律和定律,如电势随距离平方反比、磁力线的环形分布、法拉第电磁感应定律等。
这些规律和定律为我们理解电磁场的本质和应用提供了重要的指导。
同时,我们也意识到电磁场在日常生活中的广泛应用,如电磁感应用于发电机、电磁波用于通信等。
南航电磁场实验报告

一、实验目的1. 了解电磁场的基本概念和特性;2. 掌握电磁场实验的基本原理和操作方法;3. 通过实验验证麦克斯韦方程组,加深对电磁场理论的理解;4. 提高实验操作能力和数据分析能力。
二、实验原理电磁场理论是描述电磁现象的一门基础学科,其核心内容为麦克斯韦方程组。
本实验通过搭建电磁场实验平台,验证麦克斯韦方程组在特定条件下的正确性。
三、实验仪器与设备1. 电磁场实验平台:包括实验电源、实验探头、示波器、信号发生器等;2. 麦克斯韦方程组验证装置:包括平行板电容器、电感线圈、电阻、电容器等;3. 测量仪器:包括数字多用表、频率计、功率计等。
四、实验步骤1. 搭建实验平台,连接好实验探头、示波器、信号发生器等设备;2. 调整实验参数,包括实验电源电压、频率等;3. 按照实验要求,测量平行板电容器、电感线圈、电阻、电容器等元件的参数;4. 记录实验数据,并进行处理和分析;5. 验证麦克斯韦方程组在实验条件下的正确性。
五、实验数据与结果1. 平行板电容器:根据实验数据,计算电容器的电容值,并与理论值进行比较;2. 电感线圈:根据实验数据,计算电感线圈的电感值,并与理论值进行比较;3. 电阻:根据实验数据,计算电阻的阻值,并与理论值进行比较;4. 验证麦克斯韦方程组:根据实验数据,验证电场强度、磁场强度、电位移矢量、磁感应强度等物理量的关系,验证麦克斯韦方程组的正确性。
六、实验结果分析1. 实验数据与理论值的比较:通过比较实验数据与理论值,发现实验数据与理论值基本吻合,说明实验平台搭建合理,实验操作正确;2. 验证麦克斯韦方程组:通过实验验证了电场强度、磁场强度、电位移矢量、磁感应强度等物理量的关系,验证了麦克斯韦方程组的正确性。
七、实验结论1. 电磁场实验平台搭建合理,实验操作正确;2. 实验数据与理论值基本吻合,说明实验平台具有较好的测量精度;3. 通过实验验证了麦克斯韦方程组在特定条件下的正确性,加深了对电磁场理论的理解。
北理电磁实验报告(3篇)

第1篇一、实验目的1. 理解电磁场的基本概念和性质。
2. 掌握电磁场的基本测量方法。
3. 分析电磁场在不同介质中的传播特性。
4. 熟悉电磁场实验设备的操作。
二、实验原理电磁场是电场和磁场的总称,它们在空间中以波的形式传播。
本实验通过搭建电磁场实验平台,观察和分析电磁场在不同介质中的传播特性,以及电磁场与电荷、电流的相互作用。
三、实验器材1. 电磁场实验平台2. 电磁场发生器3. 电磁场传感器4. 信号发生器5. 示波器6. 测量仪器(如:电流表、电压表、频率计等)7. 实验用线、连接器等四、实验内容1. 电磁场基本性质观察(1)搭建电磁场实验平台,观察电磁场在不同介质中的传播特性。
(2)通过电磁场发生器产生电磁波,观察电磁波在空气、水、金属等介质中的传播情况。
2. 电磁场测量(1)利用电磁场传感器测量电磁场强度。
(2)通过信号发生器产生已知频率和强度的电磁波,与传感器测量结果进行对比。
3. 电磁场与电荷、电流的相互作用(1)观察电磁场对电荷的作用,如电场力、洛伦兹力等。
(2)观察电磁场对电流的作用,如安培力、法拉第电磁感应等。
4. 电磁场实验设备操作(1)学习电磁场实验平台各部分的功能和操作方法。
(2)掌握电磁场传感器、信号发生器、示波器等仪器的使用方法。
五、实验步骤1. 搭建电磁场实验平台,连接好各部分仪器。
2. 观察电磁场在不同介质中的传播特性,记录实验数据。
3. 利用电磁场传感器测量电磁场强度,与信号发生器产生的电磁波强度进行对比。
4. 观察电磁场对电荷和电流的作用,记录实验数据。
5. 学习电磁场实验设备操作,熟悉各仪器使用方法。
六、实验结果与分析1. 电磁场在不同介质中的传播特性:电磁波在空气中传播速度最快,在水、金属等介质中传播速度较慢。
2. 电磁场强度测量:通过传感器测量得到的电磁场强度与信号发生器产生的电磁波强度基本一致。
3. 电磁场与电荷、电流的相互作用:电磁场对电荷的作用表现为电场力,对电流的作用表现为安培力。
最新电磁场与电磁波实验报告

最新电磁场与电磁波实验报告
在本次实验中,我们深入研究了电磁场与电磁波的基本特性,并进行了一系列的实验来验证理论和观测实际现象。
以下是实验的主要部分和观察结果的概述。
实验一:静电场的建立与测量
我们首先建立了一个简单的静电场,通过使用高压电源对两个相对的金属板进行充电。
通过改变电源的电压,我们观察到金属板上的电荷积累情况,并使用电位差计测量了电场强度。
实验数据显示,电场强度与电压成正比,这与库仑定律的预测一致。
实验二:电磁波的产生与传播
接下来,我们通过振荡电路产生了电磁波。
在一个封闭的微波腔中,我们使用电磁波发生器产生不同频率的电磁波,并通过特殊的探测器来测量波的传播特性。
实验结果表明,电磁波的传播速度在不同的介质中有所变化,这与介质的电磁特性有关。
实验三:电磁波的极化与干涉
在这部分实验中,我们研究了电磁波的极化现象。
通过使用不同极化的波前,我们观察到了波的干涉效应。
特别是在双缝干涉实验中,我们观察到了明显的干涉条纹,这证明了电磁波的波动性质。
实验四:电磁波的吸收与反射
最后,我们探讨了电磁波与物质相互作用的过程。
通过将电磁波照射在不同材料的样品上,我们测量了波的吸收和反射率。
实验发现,吸收和反射率与材料的电磁性质密切相关,并且可以通过改变波的频率来调整这些性质。
通过这些实验,我们不仅验证了电磁场与电磁波的基本理论,而且加深了对这些现象在实际应用中的理解。
这些实验结果对于无线通信、雷达技术以及其他相关领域的研究和开发具有重要的指导意义。
电磁场与电磁波实验报告

电磁场与电磁波实验报告实验题目:电磁场与电磁波实验实验目的:1.了解电磁场的产生原理和特性。
2.理解电磁波的概念和基本特性。
3.掌握测量和分析不同电磁波的实验方法。
实验器材:1.U形磁铁2.电磁铁3.直流电源4.交流电源5.电磁感应器6.示波器7.微波源8.微波接收器9.光栅片10.各种电磁波滤波器实验原理:1.电磁场的产生:电流通过电线时,会在周围产生磁场。
在一对平行导线中,当电流方向相同时,导线之间的磁场是叠加的;当电流方向相反时,导线之间的磁场互相抵消。
2.电磁场的特性:电磁场具有两种性质,即不能长距离传播和具有作用力。
通过电磁感应现象,可以观察到电磁场的作用力。
3.电磁波的产生与传播:当电场和磁场变化时,会激发并产生电磁波。
电磁波可根据频率不同被分为不同波段,如:无线电波、微波、红外线、可见光、紫外线、X射线和γ射线。
实验步骤:实验1:观察电磁场的产生和作用1.将磁铁插入U形磁铁中,并将直流电源连接到U形磁铁的两端;2.在U形磁铁下方放置一根金属杆,并用电磁感应器在金属杆上方测量磁感应强度;3.开启直流电源,记录不同电流强度下的磁感应强度,并绘制电流与磁感应强度的图线;4.在磁铁两端放置一磁性物体,观察其受力情况。
实验2:测量电磁波的特性1.将微波源和微波接收器分别连接至交流电源和示波器;2.将微波源调至一定频率,并记录该频率;3.调整示波器至合适的量程和垂直偏置,观察示波器上的微波信号;4.更换不同频率和波长的电磁波,重复步骤3;5.将光栅片放置在微波源与接收器之间,观察光栅片的衍射效应。
实验结果与分析:实验1:观察电磁场的产生和作用根据实验数据,绘制出电流与磁感应强度的图线,可以观察到磁感应强度与电流之间呈现线性关系,并且磁性物体受到磁力的作用。
实验2:测量电磁波的特性根据实验数据,可以观察到不同频率和波长的电磁波在示波器上表现出不同的振动形态,频率越高,波长越短。
通过光栅片的衍射效应,可以观察到电磁波的波长。
电磁场实验指导书及实验报告

CENTRAL SOUTH UNIVERSITY题目利用Matlab模拟点电荷电场的分布姓名xxxx学号xxxxxxxxxx班级电气xxxx班任课老师xxxx实验日期2010-10电磁场理论 实验一——利用Matlab 模拟点电荷电场的分布一.实验目的:1.熟悉单个点电荷及一对点电荷的电场分布情况; 2.学会使用Matlab 进行数值计算,并绘出相应的图形;二.实验原理:根据库伦定律:在真空中,两个静止点电荷之间的作用力与这两个电荷的电量乘积成正比,与它们之间距离的平方成反比,作用力的方向在两个电荷的连线上,两电荷同号为斥力,异号为吸力,它们之间的力F 满足:R R Q Q k F ˆ212= (式1)由电场强度E 的定义可知:R R kQ E ˆ2= (式2)对于点电荷,根据场论基础中的定义,有势场E 的势函数为R kQU = (式3)而 U E -∇= (式4) 在Matlab 中,由以上公式算出各点的电势U ,电场强度E 后,可以用Matlab 自带的库函数绘出相应电荷的电场分布情况.三.实验内容:1. 单个点电荷点电荷的平面电力线和等势线真空中点电荷的场强大小是E=kq /r^2 ,其中k 为静电力恒量, q 为电量, r 为点电荷到场点P (x ,y )的距离。
电场呈球对称分布, 取电量q> 0, 电力线是以电荷为起点的射线簇。
以无穷远处为零势点, 点电荷的电势为U=kq /r,当U 取常数时, 此式就是等势面方程。
等势面是以电荷为中心以r 为半径的球面。
◆ 平面电力线的画法在平面上, 电力线是等角分布的射线簇, 用MATLAB 画射线簇很简单。
取射线的半径为( 都取国际制单位) r0=0.12, 不同的角度用向量表示( 单位为弧度) th=linspace(0,2*pi,13)。
射线簇的终点的直角坐标为: [x,y]=pol2cart(th,r0).插入x 的起始坐标x=[x ; 0.1*x]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁场与微波技术实验实验报告书学院:电子信息学院专业:电子信息工程实验一:功率分接器一、实验目的:1、了解功分器的原理及基本设计方法。
2、用实验模组实际测量以了解功分器的特性。
3、学会使用MICROWAVE 软件对功分器设计及仿真,并分析结果。
二、实验仪器及器材:项次 设备名称 数量 备注1 MOTECH RF2000 测量仪 1套 亦可用网络分析仪2 功分器模组1A 、2A 2组 RF2KM4-1ARF2KM4-2A3 50Ω终端负载 1个 LOAD4 THRU 端子 1个 THRU (RF2KM )5 50Ω BNC 连接线 2条 CA-1、CA-26 1M Ω BNC 连接线 2条 CA-3、CA-4 7MICROWAVE 软件1套 微波软件三、实验原理:功率分接器是三端口网络结构(3-port network ),如图所示。
信号输入端(Port-1)的功率为P1,而其他两个输出端(Port-2及Port-3)的功率分别为P2及P3。
由能量守恒定律可知P1=P2 + P3。
若P2=P3并以毫瓦分贝(dBm )来表示三端功率间的关系,则可写成: P2(dBm) = P3(dBm) = P in (dBm) – 3dB功率衰减器方框图当然P2并不一定要等于P3,只是相等的情况在实际电路中最常用。
因此,功分器在大致上可分为等分型(P2=P3)及比例型(P2=K ·P3)两种类型。
四、实验步骤:(1) 将RF2000与PC 机通过RS232连接,接好RF2000的电源,开机。
启动SCOPE2000软件。
(2) 开始做电阻式功率分接器的S11参数测量。
将标号为“RF2KM4-1A ”的模块P1端接在RF2000的SWEEP/CW1 OUT 端子上,P2\P3接上50欧姆匹配负载。
接好模块后,过几秒钟后按“Band ”把频段打到300M-500M ,此时是电阻式功率分接器在300MHz-500MHz 时的S11的曲线图。
(3)接下来做电阻式功率分接器的S21参数测量。
将标号为“RF2KM4-1A ”的模块PowerDivider Port-1 P1 Port-3 P3Port-2P2P1端接至RF-2K SWEEP端,P2接至RF-2K的RF-IN,P3接50欧姆匹配负载。
过几秒钟后把频段打到300M-500M,此时是电阻式功率分接器在300MHz-500MHz时的S21的曲线图。
(4) 接下来做威尔金生式功率分接器的S11参数测量。
将标号为“RF2KM4-1A”的模块P1端接至RF-2K SWEEP端,P2、P3接50欧姆匹配负载。
过几秒钟后把频段打到300M-500M,此时是威尔金生式功率分接器在300MHz-500MHz时的S11的曲线图。
(5) 接下来做威尔金生式功率分接器的S21参数测量。
去掉P2端50欧姆匹配负载,将P2端接到RF-IN端子。
过几秒钟后把频段打到300M-500M,此时是威尔金生式功率分接器在300MHz-500MHz时的S21的曲线图。
五、实验结果:。
六、实验结果分析:由实验数据可知,实验有效实现了将一路输入信号能量分成两路或多路输出相等或不相等能量的目的,即实现了功率分接器的效果。
实验二:放大器一、实验目的:1.了解射频放大器的基本原理与设计方法。
2.利用实验模组实际测量以了解放大器的特性。
3.学会使用微波软件对射频放大器的设计和仿真,并分析结果。
二、实验仪器及器材:项次 设备名称 数量 备注1 MOTECH RF2000 测量仪 1套 亦可用网络分析仪2 放大器模组 1组RF2KM7-1A3 50Ω BNC 及1M Ω BNC 连接线 4条 CA-1、CA-2 、CA-3、CA-44 直流电源连接线 1条 DC-1 5MICROWAVE 软件1套 微波软件三、实验原理:一个射频晶体放大电路可分为三大部分:二端口有源电路、输入匹配电路及输出匹配电路,如图所示。
一般而言,二端口有源电路采用共射极(或共源极)三极管(BJT 、FET )电路,此外,还包括直流偏压电路。
而输入匹配电路及输出匹配电路大多采用无源电路,即利用电容、电感或传输线来设计电路。
一般放大器电路,根据输入信号功率不同可以分为小信号放大器、低噪声放大器及功率放大器三类。
而小信号放大器依增益参数及设计要求,可分成最大增益及固定增益两类。
而就S 参数设计而言,则可有单向设计及双边设计两种。
本单元仅就小信号放大器来说明射频放大器之基本理论及设计方法。
四、实验步骤: (1) 将RF2000与PC 机通过RS232连接,接好RF2000的电源,开机。
启动SCOPE2000软件。
(2) 我们开始做MMIC 放大器S11参数测量。
将标号为“RF2KM7-1A ”的模块P1端接在RF2000的SWEEP/CW1 OUT 端子上,P2接上RF-IN 。
接好模块后,过几秒钟后按“Band ”把频段打到140M-300M 。
此时是MMIC 放大器在140M-300MHz 时的S11的曲线图。
把频段打到300M-540M 。
此时是MMIC 放大器在300M-540MHz 时的S11的曲线图。
把频段打到599M-1000M 。
此时是MMIC 放大器在599M-1000MHz 时的S11的曲线图。
(3)接着做MMIC 放大器的S21参数测量。
将标号为“RF2KM7-1A ”的模块P1端接至RF-2K SWEEP 端,P2接的RF-IN 。
过几秒钟后把频段打到140M-300M ,此时是MMIC 放大器在140M-300MHz 时的S21的曲线图。
把频段打到300M-540M ,此时是L L S S S S S Γ-Γ+=22211211'111LL S S S S S Γ-Γ+=22211211'111S S S S S S S Γ-Γ+=11211222'221 二端口 有源电路 输出 匹配电路 输入 匹配电路ΓS ΓIN = S ’11 ΓLG O ΓS = ΓIN * ΓL = ΓOUT * G S G L ΓOUT = S ’22 放大器电路方框图 R S R LMMIC放大器在300M-540MHz时的S21的曲线图。
把频段打到599M-1000M,此时是MMIC放大器在599M-1000MHz时的S11的曲线图。
(4)接着做BJT放大器的S11参数测量。
将标号为“RF2KM7-1A”的模块P3端接至RF-2K SWEEP端,P4接50欧姆匹配负载。
模块接好后,过几秒钟按“Band”把频段打到599M-1000M,此时是BJT放大器在599M-1000MHz时的S11的曲线图。
(5)接着做BJT放大器的S21参数测量。
去掉P4端的50欧姆匹配负载,将P4端用BNC线接到RF-IN端。
模块接好后,过几秒钟按“Band”把频段打到599M-1000M,此时是BJT放大器在599M-1000MHz时的S21的曲线图。
五、实验结果:六、实验结果分析:由实验数据可知,该实验有效实现了放大器的效果。
实验三:滤波器一、实验目的:1.了解基本低通及带通滤波器之设计方法。
2.利用实验模组实际测量以了解滤波器的特性。
3.学会使用微波软件对低通和高通滤波器的设计和仿真,并分析结果。
二、实验仪器及器材:项次设备名称数量备注1 MOTECH RF2000 测量仪1套亦可用网络分析仪1组RF2KM6-1A2 低通滤波器模组带通滤波器模组3 50ΩBNC 连接线2条CA-1、CA-24 1MΩ BNC 连接线2条CA-3、CA-45 MICROWAVE软件1套微波设计软件三、实验原理:滤波器是指减少或消除谐波对电力系统影响的电气部件。
是一种用来消除干扰杂讯的器件,将输入或输出经过过滤而得到纯净的直流电。
对特定频率的频点或该频点以外的频率进行有效滤除的电路,就是滤波器,其功能就是得到一个特定频率或消除一个特定频率。
(一)分类:以信号被滤掉的频率范围来区分,可分为低通、高通、带通及带阻四种。
若以滤波器的频率响应来分,则常见的有巴特渥兹型、切比雪夫I型、切比雪夫Ⅱ型及椭圆型等。
若按使用元件来分,则可分为有源型及无源型两类。
其中无源型又可分为L-C 型及传输线型。
而传输线型以其结构不同又可分为平行耦合型、交叉指型、梳型及发针型等等不同结构。
(二)滤波器的主要参数:中心频率、截止频率、通带带宽、插入损耗、阻带抑制度等。
(三)特性指标:通带截频、阻带截频、转折频率、固有频率等。
(四)增益与衰耗:滤波器在通带内的增益并非常数。
1)对低通滤波器通带增益Kp一般指w=0时的增益;高通指w→∞时的增益;带通则指中心频率处的增益;2)对带阻滤波器,应给出阻带衰耗,衰耗定义为增益的倒数;四、实验步骤:(1)先将RF2000与PC及通过RS232连接,接好RF2000的电源,开机。
启动SCOPE2000软件。
(2)开始做“低通滤波器”实验,将标号为“RF2KM6-1A”的模块按图示的接法P1端接在RF2000的SWEEP/CW1 OUT端子上,P2接上50欧姆匹配负载。
(3)接好模块以后,过几秒钟按“BAND”把频段打到49M-110M软件界面。
按BAND可以在各频段间切换,按S11、S21可以切换S11、S21的曲线图。
(4)开始低通滤波器的S21参数测量,模块标号为“RF2KM6-1A”模块P1端接至RF-2K SWEEP端,P2接至RF-2K的RF-IN。
(5)过几秒钟后把频段打到49M-110M。
按BAND可以在各频段间切换,按S11、S21可以切换S11、S21的曲线图。
(6)开始做带通滤波器的S参数测量,模块标号为“R F2KM6-1A”,P3端接至RF-2K SWEEP端,P4接50欧姆匹配负载。
(7)过几秒钟后把频段打到140M-300,M软件界面。
按BAND可以在各频段间切换,按S11、S21可以切换S11、S21的曲线图。
(8)接着做带通滤波器的S31参数测量,模块标号为“RF2KM6-1A”,P3端接至RF-2K SWEEP端,P4RF-2K的RF-IN。
(9)过几秒钟后把频段打到140M-300,M软件界面。
按BAND可以在各频段间切换,按S11、S21可以切换S11、S21的曲线图。
五、实验结果:六、实验结果分析:由实验数据可知,实验有效实现了低通,带通滤波器的效果。
实验四、微波波导系统中波长与频率的测量一、实验内容用吸收式波长计测f ,用测量线测λg 。
要求测量f 与λg 各三组。
测量流程图二、实验原理(1)频率的测量频率的测量比较简易的方法是测量波长,然后由波长推算出频率。
在分米波与厘米波段,常用谐振式频率计(波长表),见实验教材附录30B 图30-10。
波长表由传输波导与圆柱形谐振腔构成,连接处用长方形孔作耦合。