第1章 流体流动..

合集下载

化工原理第一章 流体流动

化工原理第一章 流体流动
两根不同的管中,当流体流动的Re相 同时,只要流体的边界几何条件相 似,则流体流动状态也相同,这称为 流体流动的相似原理。
例1-10 20℃的水在内径为 50mm的管内流动,流速为 2m/s,是判断管内流体流动的 型态。
三.流体在圆管内的速度分布
(a)层流
(b)湍流
u umax / 2 u 0.82umax
hf
le
d
u2 2
三.管内流体流动的总摩擦阻力损失计算 总摩擦阻力损失 =直管摩擦阻力损失+局部摩擦阻力损失
hf hf 直 hf局
l u2 ( le u2 z u2 )
d2 d 2
2
[
(
l
d
l
e
)
z
]
u2 2
管内流体流动的总摩擦阻力损失计算 直管管长 管件阀件当量长度法
hf
l
制氮气的流量使观察瓶内产生少许气泡。 已知油品的密度为850 kg/m3。并铡得水 银压强计的读数R为150mm,同贮槽内的 液位 h等于多少?
(三)确定液封高度 h p ρg
H 2O
气体 压力 p(表压)
为了安全, 实际安装
水 的管子插入 液面的深度
h 比上式略低
第二节 流体流动中的基本方程式
截面突然变化的局部摩擦损失
突然扩大
突然缩小
A1 / A2 0
z (1 A1 )2
A2
z 0.5(1 A2 )2
A1
当流体从管路流入截面较 大的容器或气体从管路排 到大气中时z1.0
当流体从容器进入管的入 口,是自很大截面突然缩 小到很小的截面z=0.5
局部阻力系数法
hf
z
u2 2

第一章流体流动

第一章流体流动

第一章流体流动液体和气体统称为流体。

流体的特征是具有流动性,即其抗剪和抗张的能力很小。

流体流动的原理及其流动规律主要应用于这几个方面:1、流体的输送;2、压强、流速和流量的测量;3、为强化设备提供适宜的流动条件。

在研究流体流动时,常将流体视为由无数分子集团所组成的连续介质。

第一节流体静力学基本方程式1-1-1 流体的密度单位体积流体具有的质量称为流体的密度,其表达式为:对于一定质量的理想气体:某状态下理想气体的密度可按下式进行计算:空气平均分子量的计算:M=32×0.21+28×0.78+40×0.01=28.9629 (g/mol)1-1-2 流体的静压强法定单位制中,压强的单位是Pa,称为帕斯卡。

1atm 1.033kgf/cm2760mmHg 10.33mH2O 1.0133bar 1.0133×105 Pa工程上常将1kgf/cm2近似作为1个大气压,称为1工程大气压。

1at1kgf/cm2735.6mmHg10mH2O 0.9807bar9.807×105 PaP(表)=P(绝)-P(大)P(真)=P(大)-P(绝)=-P(表)1-1-3 流体静力学基本方程式描述静止流体内部压力(压强)变化规律的数学表达式称为流体静力学基本方程式。

对于不可压缩流体,常数;静止、连续的同一液体内,处于同一水平面上各点的压强相等(连通器)。

压强差的大小可用一定高度的液体柱表示(必需标注为何种液体)。

1-1-4 流体静力学基本方程式的应用一、压强与压强差的测量以流体静力学基本方程式为依据的测压仪器统称为液柱压差计,可用来测量流体的压强或压强差。

1、U型管压差计2、倾斜液柱压差计(斜管压差计)3、微差压差计二、液位的测量三、液封高度的计算第二节流体在管内流动反映流体流动规律的有连续性方程式与柏努利方程式。

1-2-1 流量与流速单位时间内流过管道任一截面的流体量,称为流量。

第一章 流体流动

第一章  流体流动

气体密度 一般温度不太低,压强不太高时气体可按理想气 体考虑,所以理想气体密度可由理想气体状态方程 导出: T0 p M pM m
v
RT
0
Tp 0
0 22.4 ,kg / m
3
混合气体密度
ρm= ρ1y1+ ρ2y2+ …+ ρnyn
MT0 p 22.4Tp 0
式 y1、y2……yn——气体混合物各组分的体积分数 ρ1、 ρ2、…、 ρn—气体混合物中各组分的密度,kg/m3; ρm——气体混合物的平均密度,kg/m3;
2.2 流体静力学基本方程的应用
1、压力的测量 (1) U型管压差计 构造: U型玻璃管内盛指示液A 指示液:指示液A(蓝色)与被测液B(白)互不相溶,且ρA>ρB 原理:图中a、b两点在相连通的同一静止流体内,并且在 同一水平面上,故a、b两点静压力相等,pa=pb。 对a、b两点分别由静力学基本方程,可得 pa= p1+ρB· g(Z+R) pb= p2+ρB· gZ+ρAgR
三、流体的研究方法
连续介质假说:流体由无数个连续的质点组
成。﹠质点的运动过程是连 续的 质点:由许多个分子组成的微团,其尺寸比 容器小的多,比分子自由程大的多。 (宏观尺寸非常小,微观尺寸又足够大)
四、流体的物理性质
◆密度ρ 单位体积流体的质量,称为流体的密度,其表 m 达式为
V
式中 ρ——流体的密度,kg/m3; m——流体的质量,kg; V——流体的体积,m3。 流体的密度除取决于自身的物性外,还与其温 度和压力有关。液体的密度随压力变化很小,可 忽略不计,但随温度稍有改变;气体的密度随温 度和压力变化较大。
pA=p0+ ρgz pB=p0+ ρi gR 又∵ pA=pB

化工原理第一章流体流动知识点总结

化工原理第一章流体流动知识点总结

第一章流体流动一、流体静力学:压强,密度,静力学方程二、流体基本方程:流速流量,连续性方程,伯努利方程三、流体流动现象:牛顿粘性定律,雷诺数,速度分布四、摩擦阻力损失:直管,局部,总阻力,当量直径五、流量的测定:测速管,孔板流量计,文丘里流量计六、离心泵:概述,特性曲线,气蚀现象和安装高度8■绝对压力:以绝对真空为基准测得的压力。

■表压/真空度 :以大气压为基准测得的压力。

表 压 = 绝对压力 - 大气压力真空度 = 大气压力 - 绝对压力1.1流体静力学1.流体压力/压强表示方法绝对压力绝对压力绝对真空表压真空度1p 2p 大气压标准大气压:1atm = 1.013×105Pa =760mmHg =10.33m H 2O112.流体的密度Vm =ρ①单组分密度),(T p f =ρ■液体:密度仅随温度变化(极高压力除外),其变化关系可从手册中查得。

■气体:当压力不太高、温度不太低时,可按理想气体状态方程计算注意:手册中查得的气体密度均为一定压力与温度下之值,若条件不同,则需进行换算。

②混合物的密度■ 混合气体:各组分在混合前后质量不变,则有nn 2111m φρφρφρρ+++= RTpM m m=ρnn 2211m y M y M y M M +++= ■混合液体:假设各组分在混合前后体积不变,则有nmn12121w w w ρρρρ=+++①表达式—重力场中对液柱进行受力分析:液柱处于静止时,上述三力的合力为零:■下端面所受总压力 A p P 22=方向向上■上端面所受总压力 A p P 11=方向向下■液柱的重力)(21z z gA G -=ρ方向向下p 0p 2p 1z 1z 2G3.流体静力学基本方程式g z p g z p 2211+=+ρρ能量形式)(2112z z g p p -+=ρ压力形式②讨论:■适用范围:适用于重力场中静止、连续的同种不可压缩性流体;■物理意义:在同一静止流体中,处在不同位置流体的位能和静压能各不相同,但二者可以转换,其总和保持不变。

化工原理之一 流体流动

化工原理之一 流体流动

第一章: 流体流动流体流动是化工厂中最基本的现象。

在化工厂内,不论是待加工的原料或是已制成的产品,常以液态或气态存在。

各种工艺生产过程中,往往需要将液体或气体输送至设备内进行物理处理或化学反应,这就涉及到选用什么型式、多大功率的输送机械,如何确定管道直径及如何控制物料的流量、压强、温度等参数以保证操作或反应能正常进行,这些问题都与流体流动密切相关。

流体是液体和气体的统称。

流体具有流动性,其形状随容器的形状而变化。

液体有一定的液面,气体则否。

液体几乎不具压缩性,受热时体积膨胀的不显著,所以一般将液体视为不可压缩的流体。

与此相反,气体的压缩民很强,受热时体积膨胀很大,所以气体是可压缩的流体。

如果在操作过程中,气体的温度和压强改变很小,气体也可近似地按不可压缩流体来处理。

流体是由大量的不断作不规则运动的分子组成,各个分子之以及分子内部的原子之间均保留着一定的空隙,所以流体内部是不连续而存在空隙的,要从单个分子运动出发来研究整个流体平衡或运动的规律,是很困难而不现实。

所以在流体力学中,不研究个别分子的运动,只研究由大量分子组成的分子集团,设想整个流体由无数个分子集团组成,每个分子集团称为“质点”。

质点的大小与它所处的空间在、相比是微不足道的,但比分子自由程要大得多。

这样可以设想在流体的内部各个质点相互紧挨着,它们之间没有任何空隙而成为连续体。

用这种处理方法就可以不研究分子间的相互作用以及复杂的分子运动,主要研究流体的宏观运动规律,而把流体模化为连续介质,但不是所有情况都是如此的,高真空度下的气体就不能视为连续介质了。

液体和气体统称为流体。

流体的特征是具有流动性,即其抗剪和抗张的能力很小;无固定形状,随容器的状而变化;在外力作用下其内部发生相对运动。

化工生产的原料及产品大多数是流体。

在化工生产中,有以下几个主要方面经常要应用流体流动的基本原理及其流动规律:(1) 管内适宜流速、管径及输送设备的选定;(2) 压强、流速和流量的测量;(3) 传热、传质等过程中适宜的流动条件的确定及设备的强化。

流体流动

流体流动

M=ρ v
2 1 有:
V=uA
q m1 q m2
1u1 A1 2 u 2 A2
液体:A1u1 A2 u 2
气体:1u1 A1 2 u 2 A2
三、管内流体的机械能衡算 1、理想流体的机械能衡算——柏努利方程 理想流体:
mgZ1

1 2
mu12

P1V

mgZ2

1 2
mu22
u 2 或Hf
2
u2
2g
ξ ——阻力系数,突然扩大,突然缩小,管出口,管入口
u取管径小处的流速
2、当量长度法:
hf
le
d
u 2 或Hf 2
le
d
u2 2g
le 当量长度
产生与局部阻力相同的沿程阻力所需的长度,叫做局部阻力当量长度。有 了各种管件的当量长度数据,就可以计算局部阻力了。
g
Hf
Z 位压头 u 2 动压头 2g
P 静压头
g
ΣHf ——单位质量流体的能量损失 J/Kg;ΣHf——压头损失 m
柏努利方程的应用,有几点注意。
1、选截面,就是选衡算范围,选边界条件,选已知条
件最多的边界。
2、选基准面,一般选位能较低的截面为基准面。 3、压强单位要统一。 4、大口截面的流速为零。 5、上游截面和下游截面要分清。应该是上游截面的三

P2V

常数
gZ1
1 2
u12

P1

gZ
2

1 2
u22

P2

常数
V m

1

流体流动

流体流动

流体流动规律是本课程的重要基础,因为: ①流体的输送 需要研究流体的流动规律以 便进行管路的设计、输送机械的选择及所 需功率的计算。 ②压强、流速及流量的测 量 为了了解和控制生产过程,需要对管路 或设备内的压强、流量及流速等一系列的 参数进行测量,而测量仪表的操作原理多 以流体的静止或流动规律为依据。 ③为强 化设备提供适宜的流动条件 化工生产中的 传热、传质过程都是在流体流动的情况下 进行的。
qm Au w u A A
由于气体的体积与温度、压力有关, 当温度、压力变化时,气体的体积流量 及流速亦随之改变,但其质量流量及质 量流速是不变的。
3.管道直径的估算:以d表示管道的内径
qv qv qv ∵ u 2 2 A 4d 0.785d
qv ∴ d 0.785u
上式仅适用于重力场中静止的不可压缩流体。 但对于气体,若压强变化不大,密度可近似取平均 值而视为常数,则上式亦适用。
静止流体内部静压强仅与垂直位置有关,而与水 平位置无关。水越深压强越大,天空越高气压越低。
p= p0+ρgh
①当p0 一定,任一点压力p∝ρ、h,∴在 同一液体内,同一水平面上的各点压力相等, 为等压面。等压面:静止的,连续的同种流 体内处于同一水平面上的各点压强处处相等。
1
m

i 1
n
wi
i
0.2 0.3 0.5 0.001236 700 760 900
m 809kg / m
3
(2)忽略混合时的体积效应,
m 700 0.2 760 0.3 900 0.5 m 818kg / m 3 V 1
三 、流体静力学基本方程式
测量气体时, ∵
0 0

第一章 流体流动

第一章 流体流动

wn
n

i 1
n
wi
i
wi为混合物中各组分的质量分数, ρ i为构成液体 混合物的各组分密度
第一节 流体的基本物理量
例1-1 已知乙醇水溶液中各组分的质量分数为乙醇0.6,水 0.4。试求该溶液在293K时的密度。 解:已知w1=0.6,w2=0.4;293K时乙醇的密度ρ1为789 kg/m3,水的密度为ρ2998.2 kg/m3


2
0.93 (m / s )
第一节 流体的基本物理量
例 1-6 某厂精馏塔进料量为50000kg/h,该料液的性质 与水相近,其密度为960kg/m3,试选择进料管的管径。 解:
50000/ 3600 qv 0.0145 ( m 3 / h) 960
qm
因为料液与水接近,选取流速μ=1.8 m/s,则:
解:已知 p0 760mmHg 1.013105 Pa
2
H O 1000kg / m 3 , Hg 13600 kg / m 3
h 1m, R 0.2m 水平面A - A ' , 根据流体静力学原理, p A p A p0 由静力学基本方程可得 : p A p H 2O gh Hg gR
800 0.7 h 0.6 1.16(m) 1000
第二节 流体静力学
一、流体静力学基本方程式的应用
1.压力的测量 正U形管压差计 要求:指示液与被测流体不互溶,不起化学反应, 密度要大于被测液体

பைடு நூலகம்
测量方法:U形管两端与被测两点直接相连。
第二节 流体静力学
A、A’处的压强分别为:
p p0 h g

第一章流体流动

第一章流体流动

压强的基准:
绝对压强——以绝对真空(零压)为基准测得 表 压——以大气压强为基准测得(高于大气压) 真 空 度——以大气压强为基准测得(低于大气压) 表 压=绝对压强-大气压强 P表=P绝-P大 P真=P大-P绝 P绝=P大-P真 P绝=P大+P表
真 空 度=大气压强-绝对压 绝对压力=大气压-真空度 =大气压+表压
推而广之即: uA =常数 若为不可压缩流体则: uA =常数 上两式即为连续性方程式。
[例] 在定态流动系统中,水连续地从粗管流入细管。 粗管内径为细管的两倍,求细管内水的流速是粗管内的 若干倍。 解:以下标1及2分别表示粗管和细管。不可压缩流体 的连续性方程式为: u 1A 1 = u 2A 2
第一章 第一节
四、流体静力学基本方程式的应用
(一)压力测量
1、U型管差压计 如图1-4所示 压差(p1-p2)与R的关系根据流体静力学基本方程式 进行推导。 a,a’是等压点,即Pa=Pa’ Pa=P1+ ρBg(m+R) Pa’=P2+ ρBg(Z+m)+ ρAgR
所以:P1+ ρBg(m+R)=P2+ ρBg(Z+m)+ ρAgR
目的: ① 恒定设备内的压力, 防止超压;

气 液
p

溢流
0 安全液封 h0 0
② 防止气体外泄; 水封 液封高度计算:
0
p
0 h.0
p h0 g

气体
煤气柜
第一章 第一节
• 如本题附图所示,某厂为了控制乙炔发生炉a内的压强不超过 10.7×103Pa(表压),需在炉外装有安全液封(又称水封)装置,其 作用是当炉内压强超过规定值时,气体就从液封b中排山。试求此 炉的安全液封管应插入槽内水面下的深度h。 解:当炉内压强超过规定值时,气体将由液封管排出, 故先按炉内允许的最高压强计算液封管插入槽内水面

化工原理-第1章-流体流动

化工原理-第1章-流体流动

第二节 流体静力学
(1)作用在液柱上端面上的总压力
P1 p1( A方向向下)
(2)作用在液柱下端面上的总压力
P2 p2 A
(方向向上)
(静止状态,在垂直方向上的三个作用力的力 为零,即
p1 A gAZ1 Z 2 p2 A 0
第二节 流体静力学
2) kPa ;

(1——气体的绝对压力,
——气体的千摩尔质量,kg/kmol ; ——气体的热力学温度,K ; ——通用气体常数,8.314 kJ/(kmol· K); 下标0表示标准状态,即273 K、101.3 kPa。 任何气体的R值均相同。的数值,随所用P、V 、T等的 单位不同而异。选用R值时,应注意其单位。

第二节 流体静力学
在图1-3中,水平面A-B以下的管内都是指示液,设ApA pB B液面上作用的压力分别为 和 ,因为在相同流体的 p A pB 同一水平面上,所以与应相等。即: 根据流体静力学基本方程式分别对U管左侧和U管右侧 进行计算、整理得 (1-10) 由式1-10可知,压差( p p )只与指示液的位差读 数R及指示液同被测流体的密度差有关。 若被测流体是气体, 气体的密度比液体的密度小得 指 指 ,于是上式可简化为 多,即
第二节 流体静力学
混合液体的密度的准确值要用实验方法求得。如液体 混合时,体积变化不大,则混合液体密度的近似值可由下 式求得: (1-3) ——液体混合液的密度; ——混合液中各纯组分的密度; ——混合液中各纯组分的质量分数。
d4 (2)相对密度
20
d4
20
相对密度为流体密度与4℃时水的密度之比,用符号 表示,习惯称为比重。即 (1-4) 20

化工原理第一章 流体流动-学习要点

化工原理第一章 流体流动-学习要点

1.3 流体动力学 ( Fluid dynamics )
1.3.3 伯努利方程 ( Bernoulli equation ) 机械能的形式
位能: 流体在重力场中, 位能: 流体在重力场中,相对于基准水平面所具有的能量 动能: 动能: 流体由于流动所具有的能量 静压能:流体由于克服静压强流动所具有的能量 静压能: 能量损失: 能量损失:流体克服流动阻力损失的机械能 外加功:流体输送机械向流体传递的能量 外加功:
ε r :=
1
2ε 18.7 ) = 1.74 − 2 ⋅ lg( + d Re λ λ
Re :=
−3
0.005 × 10
−3
ε r = 2.857 × 10
1.1 流体性质 ( Properties of fluid )
1.1.2 压强 ( pressure )
表 压=绝对压力-大气压力 绝对压力真空度= 真空度=-表压强 真空度=大气压力真空度=大气压力-绝对压力 压强表:读数为表压强, 压强表:读数为表压强,用于被测体系绝对压强高于环境 大气压 真空表:读数为真空度, 真空表:读数为真空度,用于被测体系绝对压强低于环境 大气压 说明:(1)表压于当地大气压强有关 说明:(1)表压于当地大气压强有关 (2)绝压、表压、真空度, (2)绝压、表压、真空度,一定要标注 绝压 (3)压力相除运算时, (3)压力相除运算时,一定要用绝压 压力相除运算时 压力加减运算时,都可以,但要统一并注明 压力加减运算时,都可以,
1.4 流体流动现象 ( Fluid-flow phenomena )
1.4.1 流动类型 (The types of fluid flow)
Re = duρ
µ
Reynolds number is a dimensionless group .

化工原理——第一章 流体流动

化工原理——第一章 流体流动

黏度在物理单位制中的导出单位,即
dyn / cm 2 dyn s
g
P(泊)
du
cm/ s
dy
cm
cm2 cm s
1cP 0.01P 0.01 dyn s
1
1 100000
N
s
1
Pa s
cm2
100
(
1 100
)
2
mபைடு நூலகம்
2
1000
即1Pa s 1000cP
流体的黏性还可用黏度μ与密度ρ的比值表示。这 个比值称为运动黏度,以ν表示即
pM
RT
注意:手册中查得的气体密度都是在一定压力与温度 下之值,若条件不同,则密度需进行换算。
三、混合物的密度
混合气体 各组分在混合前后质量不变,则有
m A xVA B xVB n xVn
xVA, xVB xVn——气体混合物中各组分的体积分率。

m
pM m RT
M m ——混合气体的平均摩尔质量
例如用手指头插入不同黏度的流体中,当流体大 时,手指头感受阻力大,当小时,手指头感受阻 力小。这就是人们对粘度的通俗感受。
在法定单位制中,黏度的单位为
du
Pa m
Pa • s
dy
s
m
某些常用流体的黏度,可以从本教材附录或手册中查
得,但查到的数据常用其他单位制表示,例如在手册中
黏度单位常用cP(厘泊)表示。1cP=0.01P(泊),P是
M m M A yA M B yB M n yn
yA, yB yn——气体混合物中各组分的摩尔(体积)分率。
混合液体 假设各组分在混合前后体积不变,则有
1 xwA xwB xwn

第一章 流体流动

第一章 流体流动

例3 已知20℃时苯和甲苯的密度分别为879 kg/m3和
867 kg/m3,试计算含苯40%及甲苯60%(质量%)的 混合液密度。
6
例1 解: p表 ' ( pa+p真 )-pa ' 101.3+ ) 75 156.3kPa ( 130 例2 解: 混合气体平均摩尔质量
M m yi M i (0.13 44 0.76 28 0.1118) 103 28.98103 kg/mol
1
管路中流体没有增加和漏失
的情况下:
2
qm1 qm2
1u1 A1 2 u2 A2
1
2
推广至任意截面
qm 1u1 A1 2u2 A2 uA 常数
——连续性方程
28
不可压缩性流体,ρ 常 数
qv u1 A1 u2 A2 uA 常数
10
第一章、流体流动
3、压力用柱高表示:
p p0 h g
11
三、流体静力学基本方程式的应用
1、静压强的计算(举例): 例题 流力(周谟仁)p19 2-2
例4、容重为γa和γb的两种液体,装在如图所示的容
器中。已知:γb=9.807KN/m2、大气压强 Pa=98.07 KN/m2,其它尺寸如图,求γa和PA。
(2)
式(2)即为以重量流体为基准的机械能衡算式。
z ——位压头
u2 ——动压头 2g p ——静压头 g
总压头
36

实际流体机械能衡算式
2 2 1
'
p2,u2
p1,u1
z2
1
'z10来自We'
37

第1章:流体流动

第1章:流体流动
时使用。
R1 R
sin
R1 R
sin
34
河北工业大学化工原理教研室
1.2.5 静力学基本方程式的应用
河北工业大学化工原理教研室
35
1.2.5 静力学基本方程式的应用
3.液封 如图,为了控制器内气体 压力不超过给定的数值,常常 使用安全液封装置(或称水封 装置)。其目的是确保设备的 安全,若气体压力超过给定值, 气体则从液封装置排出。
河北工业大学化工原理教研室
31
1.2.5 静力学基本方程式的应用
1. U形管压差计 可测量流体中某点的压力 亦可测量两点之间的压力差 在正U形管中要求指示 剂密度大于工作介质密度 在倒U形管中,则反 之(通常用空气)。
河北工业大学化工原理教研室
32
B
p1 p A gh1 p2 pB g (h2 R) i gR
河北工业大学化工原理教研室
4
1.1.2 流体的密度
流体的密度:流体空间某点上单位体积流体的质量。流体由质点组成, 密度是位置(x,y,z)和时间θ的函数。单位:kg/m3
表达式:

m V
△V→0时,流体某点的密度。
m Δ V 0 V
lim
常用流体的密度,可由有关书刊或手册中查得, 本书附录中列出某些常见得气体和液体的密度, 可供做习题时查用。
h2
A
h1
p1 p2
整理得:
( p A ghA ) ( pB ghB ) Rg ( i )
' ' p A pB Rg ( i )
1
2
思考:如果B端圆管直径扩大到A端的两倍,R=?
R

大学化学《化工原理-流体流动1》课件

大学化学《化工原理-流体流动1》课件
第一章 第二节
对于Z方向微元
pA ( p dp) A gAdz dp gdz 0
不可压缩液体
const., p / gz const. p1 p2 g(z2 z1)
第一章 第二节
不可压缩流体
条件 静止
单一连续流体
结论
单一连续流体时→同一水平面静压力相等 间断、非单一流体→逐段传递压力关系
[确切标明 (表)、(绝)、(真)]
第一章 第一节
三、剪力、剪应力、粘度
流体沿固体表面流过存在速度分布
F du
A
dy
:动力粘度、粘性系数
第一章 第一节
牛顿型 非牛顿型
假塑性
塑性 涨塑性
= du
dy

y
du dy
= du n
dy
= du n
dy
n n
第一章 第一节
ห้องสมุดไป่ตู้ 粘度
Pa s
N / m2 m/s/m
第一章 第二节
二 、流体静力学方程的应用
1、压差计
p1 p2 (A B )gR
微差压差计
(1)D : d 10 :1
(2)
B

很接近
A
第一章 第二节
2、液面计
3、液封
4、液体在离心力场内的静力学平衡
p
p
r
r
第一章 第二节
N s m2
T↑ 液体 ↓, 气体 ↑
P↑ 基本不变, 基本不变
40atm以上考虑变化
第一章 第一节
混合粘度
1、不缔合混合液体
log m
xi log i
2、低压下混合气体
m
yi

化工原理 第一章 流体流动

化工原理 第一章  流体流动

化工原理第一章流体流动第一章 流体流动一、流体流动的数学描述在化工生产中,经常遇到流体通过管道流动这一最基本的流体流动现象。

当流体在管内作稳定流动时,遵循两个基本衡算关系式,即质量衡算方程式和机械能衡算方程式。

质量衡算方程式在稳定的流动系统中,对某一划定体积而言,进入该体积的流体的质量流量等于流出该体积的质量流量。

如图1—1所示,若取截面1—1′、2—2′及两截面间管壁所围成的体积为划定体积,则ρρρuA A u A u ==222111 (1-1a)对不可压缩、均质流体(密度ρ=常数)的圆管内流动,上式简化为2221211ud d u d u == (1-1b)机械能衡算方程式在没有外加功的情况下,流动系统中的流体总是从机械能较高处流向机械能较低处,两处机械能之差为流体克服流动阻力做功而消耗的机械能,以下简称为阻力损失。

如图1—1所示,截面1—1′与2—2′间单位质量流体的机械能衡算式为f 21w Et Et += (1-2)式中 221111u p gz Et ++=ρ,截面1—1′处单位质量流体的机械能,J /kg ;222222u p gz Et ++=ρ,截面2—2′处单位质量流体的机械能,J /kg ;∑⎥⎦⎤⎢⎣⎡∑+∑=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∑+=2)(222f u d l l u d l w e λζλ,单位质量流体在划定体积内流动时的总阻力损失,J /kg 。

其中,λ为雷诺数Re 和相对粗糙度ε / d 的函数,即⎪⎪⎭⎫ ⎝⎛=d du εμρφλ,。

上述方程式中,若将Et 1、Et 2、w f 、λ视为中间变量,则有z 1、z 2、p 1、p 2、u 1、u 2、d 1、d 2、d 、u 、l 、∑ζ(或∑l e )、ε、ρ、μ等15个变量,而独立方程仅有式(1-1)(含两个独立方程)、式(1-2)三个。

因此,当被输送流体的物性(ρ,μ)已知时,为使方程组有唯一解,还需确定另外的10个变量,其余3个变量才能确定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对于圆形管道
u1

d
2 2
u2 d12
(三)机械能衡算方程
z1 g

1 2
u1
2

p1

We

z2 g

1 2
u
2
2

p2

W f
[J/kg]
24
z1

1 2g
u12

p1
g

He

z2

1 2g
u22

p2
g
h f
[m]
考 研
z1g

1 2
u12

p1
We

z 2 g
1

化工原理


考研辅导

绪论
2
单元操作:
考 化工生产中除化学反应单元以外的所有物理性操作。
三传:动量传递、热量传递、质量传递



Chap 1 流体流动
3
一、流体静力学
(一)流体的密度(有时在计算时涉及到)


液体混合物: 1 w1 w2 wn
m 1 2
n

i.g. pM

当Re 2000时,滞流(层流) 当Re 4000时,湍流
研 当2000<Re 4000时,可能是滞流,也可能是湍流,
辅 与外界条件有关。

——过渡区
2. 层流与湍流的比较:
本质区别: 层流无径向脉动,湍流有径向脉动
29
速度分布

层流
u

p
4l
(R2

r2)

umax
1

空表读数为9.81×104Pa。若在大气压为8.73×104Pa的地 区使塔内绝对压强维持相同的数值,则真空表读数为
8.41×104 Pa,相当于 06年)
kgf/cm2。(石油大学华东
8.411.033
10.13
7
(3)某设备内真空表的读数为375mmHg,其绝压等于
( )MPa(设当地大气压为1.013×105Pa)(华
pB

gz
uB2
2


Wf
R
0 gR
Wf


uB2 uA2 2
13
(4) 如图管道中充满水,U形压差计的读数为零,则
A 管内流体肯定处于静止状态;

B 管内流体肯定从1流向2;
(浙大98年)

C 管内流体肯定从2流向1; D 以上三种答案都不对。

研 运动粘度
[m2/s] [cm2/s]——斯
牛顿型流体:剪应力与速度梯度的关系符合牛顿

粘性定律的流体;

非牛顿型流体:不符合牛顿粘性定律的流体。
掌握各种非牛顿型流体的表观粘度随剪切速率的变化及举例
理想流体: 不可压缩的无粘性流体 牛顿粘性定律适用于牛顿型流体的层流流动
22
对湍流流动:
考 管路水平时
p1 p2 0 gR
减少被测流体与指示液间的密度差
研 当P1-P2值较小时 辅
倾斜U管压差计 R' R
sin
微差压差计 p1 p2 2 1 gR
导 【例题】
1、2相差小
(1)空气以相同的流速分别流过水平放置和垂直放置的两
根等径直管1和2,在长度相同的两端各装一U形压差计,
0.25 m/s,管壁面处剪应力τ= 1 Pa。
考 研
uy

200
y2
1 10
y

200

y

1 20
2


1
400


200

y

1 20
2

1 2

umax
uy0.05 0.5 m
s u

1 2
umax



(一)流体的流动类型

研 1. 判据:雷诺数

Re du
dG du
v
惯性力 粘性力
无因次
导 其值与选取单位制无关,只要各物理量单位一致
,所得Re必相同。
【例题】
若用SI制计算出的Nu数为125,则用CGS制计算时, 其Nu数为 125 。(南大98)
28
流体在圆形直管内流动时:
两压差计的指示液相同,读数分别为R1和R2,则
A p1 p2 B p1 p2 C R1 R2 √D R1 R2
江南大学04
10

R1

R2 R3

(1)
(2)
(3)

1 2

p1
p2
0
gR1

u2
2
1 2 p1 gz p2 0 gR2 u2
dy dr
气体:t↑,μ↑
辅 空气在内径一定的圆管中稳定流动,若气体质量流量一定,

当气体温度升高时,Re值将 减小 。 Re du dG dms
A
粘度单位:
SI制: Pa s CGS制:P(泊) 或 cP(厘泊)
21
1Pa s 1000cP 10P
考 粘度本质:分子间的引力和分子运动与碰撞

t

e




du dy
ε:湍流粘度,表征脉动的强弱
研 取决于管内的雷诺数及管壁的距离,非流体物性


23
(二)质量衡算连续性方程

ms u1A11 u2 A22 L uA 常数
若流体为不可压缩流体

u1A1 u2 A2 L uA 常数
辅 导
626

u2
2


1
V
u 2 udA
A2
1
uA
1 A2
u 3 dA
研 辅
动能校正系数



u2 2

2
u 2
1
导 有效功率 : Ne msWe
轴功率 : N N e

27
三、管内流体流动
线不相交。
考 【例题】
何为流线?何为轨线?为什么流线不相交?(华东99)
研 4. 流量与流速
辅 导
ms Vs
u Vs A
d 4Vs
G ms A
G u
u
适宜流速范围:
液体 0.5~3 m/s 气体 10~30 m/s
可确定一定管径的输送能力
19
【例题】
将5m3/h的4℃的水送往高位槽,其质量流量为( )
壁面附近存在着较大速度梯度的流体层区域
一般规定为流速降为主体流速的99%以内的区域。
ux=0.99u
边界层厚度:边界层外缘与壁面间的垂直距离。
辅 U形压差计的读数为R=R1,从B段流向A段

测得U形压差计读数为R=R2,若两种情况 下的水流量相同,则(华南07、川大08)A
B
√A R1 R2 B R1=R 2
C R1 R 2 D R 2 -R1
利用例(3)结论:
R
反映A、B两点的阻力损失和动能差之和
15
关键沿流体流动方向列机械能衡算式,再结合静力 学方程

何变化?(厦门大学03)

P0

R3
R1
R1、 R2均增大,R3不变
R2
12
(3)在一倾斜放置的变径管路的A、B两点连接一U形压差计,
压差计读数R反映的是
(北化2000)

A、B两点的阻力损失和动能差之和


A

B
pA pB gz 0 gR
pA


u
2 A
2

真空度=大气压强-绝对压强= -表压
6
【例题】
(1)已知某高原地区大气压为680mmHg,问真空泵的

真空度能否抽到0.95kgf/cm2?(南大2000年)

绝压=大气压-真空度=680/760-0.95/1.033
=-0.025atm <0 不能抽到
辅 (2)在大气压为101.3×103Pa的地区,某真空精馏塔塔顶真
1 2
p1 p2 gz 0 gR3
2u 2
2
指示液高度相等但压差不同
11
(2)某封闭容器内盛有水,水面上方压强为p0,如图所示器壁
上分别装有两个水银压强计和一个水银压差计,其读数分

别为R1、 R2和R3,若水面压强p0增大,则R1、 R2和R3有
25
若当量长度包括出口阻力损失在内,则选外侧为控制面;
若当量长度不包括出口阻力损失在内,则选内侧为控制面。
考 3. 柏努利方程说明各种形式的能量可相互转化
研 4. 压力可同为绝压或同为表压 p
辅 5. 两截面间流体连续
g
p u2
g 2g

管路中最低压强不得低于操 作条件下的饱和蒸汽压,若
求极限高度,则对应饱和蒸 汽压

1 2
u 2 2

p2

p
f
[Pa]
对理想流体:
相关文档
最新文档