主成分分析法的原理应用及计算步骤
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主成分分析法的原理应用及计算步骤
1.计算协方差矩阵:
首先,我们需要将原始数据进行标准化处理,即使每个特征都有零均值和单位方差。
假设我们有m个n维样本,数据集为X,标准化后的数据集为Z。
那么,计算协方差矩阵的公式如下:
Cov(Z) = (1/m) * Z^T * Z
其中,Z^T为Z的转置。
2.计算特征向量:
通过对协方差矩阵进行特征值分解,可以得到特征值和特征向量。
特征值表示了新坐标系中每个特征的重要性程度,特征向量则表示了数据在新坐标系中的方向。
将协方差矩阵记为C,特征值记为λ1, λ2, ..., λn,特征向量记为v1, v2, ..., vn,那么特征值分解的公式如下:C*v=λ*v
计算得到的特征向量按特征值的大小进行排序,从大到小排列。
3.选择主成分:
从特征向量中选择与前k个最大特征值对应的特征向量作为主成分,即新坐标系的基向量。
这些主成分可以解释原始数据中大部分的方差。
我们可以通过设定一个阈值或者看特征值与总特征值之和的比例来确定保留的主成分个数。
4.映射数据:
对于一个n维的原始数据样本x,通过将其投影到前k个主成分上,可以得到一个k维的新样本,使得新样本的方差最大化。
新样本的计算公式如下:
y=W*x
其中,y为新样本,W为特征向量矩阵,x为原始数据样本。
PCA的应用:
1.数据降维:PCA可以通过主成分的选择,将高维数据降低到低维空间中,减少数据的复杂性和冗余性,提高计算效率。
2.特征提取:PCA可以通过寻找数据中的最相关的特征,提取出主要的信息,从而减小噪声的影响。
3.数据可视化:通过将数据映射到二维或三维空间中,PCA可以帮助我们更好地理解和解释数据。
总结:
主成分分析是一种常用的数据降维方法,它通过投影数据到一个新的坐标系中,使得投影后的数据具有最大的方差。
通过计算协方差矩阵和特征向量,我们可以得到主成分,并将原始数据映射到新的坐标系中。
PCA 在数据降维、特征提取和数据可视化等方面有着广泛的应用。