青岛版七年级数学第一单元测试题.doc
青岛版初中数学七年级上册单元测试-第一章
第1章 基本的几何图形检测题一、精心选一选(每小题3分,共30分)1.六棱柱由几个面围成( )A.6个B.7个C.8个D.9个2.下面形状的四张纸板,按图中线经过折叠可以围成一个直三棱柱的是( )3.下列说法错误的是( )A.若AP=BP,则点P 是线段的中点B.若点C 在线段AB 上,则AB=AC+BCC.若AC+BC>AB,则点C 一定在线段AB 外D.两点之间,线段最短4.一个五棱锥的面数、棱数和顶点数分别是( )A.6,10,5B.6,10,6C.5,10,6D.5,6,55.下列平面展开图是由5个大小相同的正方形组成,其中沿正方形的边不能折成无盖小方盒的是( )6.在八面体顶点数V 、面数F 、棱数E 中,V+F-E=( )A.16B.6C.4D.27.如图,直线AB 、CD 相交于点O ,在这两条直线上,与点O 的距离为3cm 的点有( ) A. 2个 B.3个C.4个D.5个8.如图所示,图中共有几条线段( )A. 4B. 5C. 10D.159.已知AB=21cm ,BC=9cm ,A 、B 、C 三点在同一条直线上,那么AC 等于( )A.30cmB. 15cmC. 30cm 或15cmD. 30cm 或12cm10、任意画三条直线,则交点可能是( )B A DC A B CD DC B AA.1个B.1个或3个C.1个或2个或3个D.0个或1个或2个或3个二、细心填一填(每小题3分,共24分)11.填名称:如图,图(1)是 ,图(2) ,图(3) 。
12.图甲能围成 ;图乙能围成 ;图丙能围成 。
13.写出你所熟悉的、由三个面围成的几何体的名称是14.直角三角形绕一条直角边旋转一周得到的几何体是15.已知点B 在线段AC 上,AB=6cm,BC=10cm,P 、Q 分别是AB 、BC 中点,则线段PQ= cm16.在直线上顺次取A 、B 、C 三点,使得AB=9cm,BC=4cm,若点O 是线段AC 的中点,则线段OB 的长是17.如图,观察图形后,小明得出下列结论:①直线AB 与直线BA 是同一条直线;②射线AC 与射线AD 是同一条射线;③AC+BC>AB;④三条直线两两相交时,一定有三个交点。
完整版青岛版七年级上册数学第1章 基本的几何图形含答案
青岛版七年级上册数学第1章基本的几何图形含答案一、单选题(共15题,共计45分)1、线段AB上有点C,点C使AC:CB=2:3,点M和点N分别是线段AC和线段CB的中点,若MN=4,则AB的长是()A.6B.8C.10D.122、下列说法正确的是()A.射线PA和射线AP是同一条射线B.射线OA的长度是12cmC.直线AB、CD相交于点MD.两点确定一条直线3、下面说法错误的是()A.两点确定一条直线B.射线AB也可以写作射线BAC.等角的余角相等D.同角的补角相等4、京广高铁全线通车.一列往返于北京和广州的火车,沿途要经过石家庄、郑州、武汉、长沙四站,铁路部门要为这趟列车准备印制()种车票.A.6B.12C.15D.305、下列四个图中,是三棱锥的表面展开图的是()A. B. C. D.6、在墙壁上固定一根横放的木条,则至少需要()枚钉子A.lB.2C.3D.随便多少枚7、下列说法中正确的是().A.如果,那么一定是7B. 不一定是负数C.射线和射线是同一条射线 D.一个角的余角大于8、下列命题中,假命题的个数有()1)无限小数是无理数;(2)式子是二次根式;3)三点确定一条直线;(4)多边形的边数越多,内角和越大.A.1个B.2个C.3个D.4个9、经过折叠可以得到四棱柱的是()A. B. C. D.10、把一条弯曲的公路改为直路,可以缩短路程,其理由是()A.两点之间,线段最短B.两点确定一条直线C.线段有两个端点 D.线段可以比较大小11、下列说法中正确的是()A.直线比射线长B.AB=BC,则点B是线段AC的中点C.平角是一条直线D.两条直线相交,只有一个交点12、已知:点A和点B都在同一数轴上,点A表示-2,点B和点A相距5个单位长度,则点B表示的数是()A.3B.-7C.-7或3D.7或-313、下面几何体的表面不能展开成平面的是 ( )A.正方体B.圆柱C.圆锥D.球14、长方形绕旋转一周,得到的几何体是()A.圆柱B.圆锥C.棱柱D.长方体15、如图,是一个正方形盒子的展开图,若要在展开后的其中的三个正方形A、B、C内分别填入适当的数,使得展开图折成正方体后相对的面上的两个数互为相反数,则填入正方形A,B,C内的三个数依次为()A.1,﹣2,0B.0,﹣2,1C.﹣2,0,1D.﹣2,1,0二、填空题(共10题,共计30分)16、有一道题,已知线段AB=a,在直线AB上取一点C,使BC=b(a>b),点M,N分别是线段AB,BC的中点,求线段MN的长.对这道题,小善同学的答案是7,小昌同学的答案是3.老师说他们的结果都没错,如图,则依次可得到a 的值是________.17、如图,C、D是线段上两点,若AB=10cm,BC=4cm,且D是线段AC的中点,则BD的长为________.18、用两个钉子就可以把木条钉在墙上,其依据是________;将弯曲的河道改直,可以缩短航程,其依据是________.19、如图,点A、B为定点,直线l∥AB,P是直线l上一动点,对于下列各值:①线段AB的长;②△PAB的周长;③△PAB的面积;④∠APB的度数,其中不会随点P的移动而变化的是(填写所有正确结论的序号)________.20、在平面坐标系中,,,是轴上一点,要使的值最小,则的坐标为________.21、圆锥由________面组成的,圆锥的侧面展开图是________ ;22、如图是一个正方体的表面展开图,相对面上两个数互为相反数,则x+y=________.23、将一个长4cm宽2cm的矩形绕它的一边所在的直线旋转一周,所得几何体的体积为________ cm3.24、在直线l上顺次取A、B、C三点,使得AB=3cm,BC=5cm,若点D是线段AC 的中点,则线段DB的长度等于________ cm.25、以下说法:①两点确定一条直线;②一条直线有且只有一条垂线;③不相等的两个角一定不是对顶角;④若|a|=﹣a,则a<0;⑤若a,b互为相反数,则a,b的商必定等于﹣1.其中正确的是________.(请填序号)三、解答题(共5题,共计25分)26、一个长方形的两边分别是2cm、3cm,若将这个长方形绕一边所在直线旋转一周后是一个什么几何体?请求出这个几何体的底面积和侧面积.27、有一根底面周长为30cm,高2米的圆柱形枯木,一条长藤自根部缠绕向上,缠了五周刚好到达顶部,这条长藤最短有多长?28、正方体是由六个平面图形围成的立体图形.设想沿着正方体的一些棱将它剪开,就可以把正方体剪成一个平面图形.但同一个正方体,按不同的方式展开所得的平面展开图悬不一样的,下面的图形是由6个大小一样的正方彤,拼接而成的,请问这些图形中哪些可以折成正方体?29、将图中的几何体进行分类,并说明理由.30、如图,已知线段AB和CD的公共部分为BD,且BD=AB=CD,线段AB、CD的中点E、F之间距离是20,求AB、CD的长.参考答案一、单选题(共15题,共计45分)1、B2、D3、B4、D5、B6、B7、B8、C9、B10、A12、C13、D14、A15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、。
(青岛版)七年级数学上册第一章测试题
(青岛版)七年级数学上册第一章测试题(共30题,共100分)一、选择题(共15题,共30分)1.(2分)用一个平面去截一个圆柱体,不可能的截面是 A.B.C.D.2.(2分)下面平面图形经过折叠不能围成正方体的是 A.B.C.D.3.(2分)如图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的表面上,与“看”相对的面上的汉字是 A.伦B.奥C.运D.会4.(2分)用平面去截一几何体,不可能出现三角形截面的是 A.长方体B.棱柱C.圆柱D.圆锥5.(2分)下列图中是正方体的展开图的有 A.1个B.2个C.3个D.4个6.(2分)图(1)是一个正方体的展开图,该正方体从图(2)所示的位置依次翻到第1格、第2格、第3格、第4格,此时这个正方体朝上一面的字(不考虑文字的方向)是 A.梦B.中C.国D.我7.(2分)如图,一个几何体由5个大小相同,棱长为1的小正方体搭成,下列说法正确的是 A.从正面看到的形状图的面积为7B.从左面看到的形状图的面积为3C.从上面看到的形状图的面积为3D.这个几何体的表面积是138.(2分)某正方体的平面展开图如图所示.由此可知,正方体中“爱”字所在面的对面的汉字是 A.习B.会C.思D.考9.(2分)如图是由6个小正方体搭成的几何体,从该几何体上面看到的形状图是 A.B.C.D.10.(2分)下面几何体中,截面图形不可能是圆 A.圆柱B.圆锥C.球D.正方体11.(2分)下面平面图形经过折叠不能围成正方体的是 A .B .C .D .12.(2分)如图,是一个正方形盒子的展开图,若要在展开后的其中的三个正方形,,内分别填入适当的数,使得展开图折成正方体后相对的面上的两个数互为相反数,则填入正方形,,内的三个数依次为 A .1,−2,0B .0,−2,1C .−2,0,1D .−2,1,013.(2分)用一个平面去截一个几何体,得到的截面是五边形,这个几何体可能是 A .圆锥B .圆柱C .球体D .长方体14.(2分)下列平面图形经过折叠不能围成正方体的是 A .B .C .D .15.(2分)下面几何体中,截面图形不可能是圆的是 A .圆柱B .圆锥C .球D .正方体二、填空题(共10题,共20分)16.(2分)如图是一个正方体的展开图,它的六个面上分别写有“构建和谐社会”六个字,将其围成正方体后,与“社”在相对面上的字是.17.(2分)用一个平面去截三棱柱不可能截出以下图形中的(填序号).①等腰三角形,②等边三角形,③圆,④正方形,⑤五边形,⑥梯形18.(2分)一个直棱柱有八个面,所有侧棱长的和为24 cm ,则每条侧棱的长是cm .19.(2分)如果一个棱柱的底面是六边形,且侧棱长为5 cm,那么它所有的侧棱长之和是.20.(2分)用一个平面去截一个正方体,所得截面的边数最少是,最多是.21.(2分)如图,从一个棱长为4 cm的正方体的一个顶点挖去一个棱长为1 cm的正方体后,从任何角度所能看到的所有面的面积为.22.(2分)一个几何体,是由许多规格相同的小正方体堆积而成的,从正面看和从左面看的形状如图所示,要搭成这样的几何体,最少需用块小正方体.23.(2分)圆柱的侧面展开图是.24.(2分)将三棱柱沿它的棱剪成平面图形,至少要剪开条棱.25.(2分)一个几何体是由一些大小相同的小正方块摆成的.其从上面和正面看到的形状图如图所示,则组成这个几何体的小正方块最多有个.三、解答题(共5题,共50分)26.(10分)从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.27.(10分)下图是用小正方体搭成的几何体.请分别画出从左面、上面看到的几何体的形状图.28.(10分)从正面,左面,上面观察如图所示的几何体,分别画出所看到的几何体的形状图.29.(10分)如图是一个由若干个小正方体搭成的几何体从上面看到的形状图,其中小正方形内的数字是该位置小正方体的个数,请你画出它从正面和从左面看到的形状图.30.(10分)如图是一个由若干个小正方体搭成的几何体从上面看到的形状图,其中小正方形内的数字是该位置小正方体的个数,请你画出它从正面和从左面看到的形状图.答案一、选择题(共15题,共30分)1.【答案】D【解析】用一个平面去截一个圆柱体,轴截面是矩形;过平行于上下底面的面去截可得到圆;过侧面且不平行于上下底面的面去截可得到椭圆;不可能的截面是等腰梯形.故选D.【知识点】面截体2.【答案】B【解析】由分析可知不能折叠成正方体的是:B.故选:B.【知识点】正方体的展开图3.【答案】C【解析】这是一个正方体的平面展开图,共有六个面,其中面“伦”与“奥”相对,面“会”与“敦”相对,“看”与面“运”相对.【知识点】正方体相对两个面上的文字4.【答案】C【知识点】面截体5.【答案】D【解析】这四个图形全部都是正方体的展开图.【知识点】正方体的展开图6.【答案】D【解析】由图(1)可得,“中”和“的”相对;“国”和“我”相对;“梦”和“梦”相对;由图(2)可得,小正方体从图(2)的位置依次翻到第5格时,“国”在下面,则这时小正方体朝上面的字是“我”.故选D.【知识点】正方体相对两个面上的文字7.【答案】B【知识点】从不同方向看物体8.【答案】C【解析】由展开图可知,学与会相对,习与考相对,爱与思相对,故选C.【知识点】正方体相对两个面上的文字9.【答案】B【解析】从上往下看,该几何体的俯视图如下:【知识点】从不同方向看物体10.【答案】D【解析】本题中,用平面去截正方体,得的截面可能为三角形、四边形、五边形、六边形,无论如何,截面也不会有弧度不可能是圆.【知识点】面截体11.【答案】B【知识点】正方体的展开图12.【答案】A【解析】由于只有符号不同的两个数互为相反数,由正方体的展开图解题得填入正方形中,,内的三个数依次为1,−2,0.故选:A.【知识点】正方体相对两个面上的文字13.【答案】D【解析】A、用一个平面去截一个圆锥,得到的图形可能是圆形,椭圆,抛物线,双曲线的一支,三角形,故A选项错误;B、用一个平面去截一个圆柱,得到的图形只能是圆,椭圆,长方形,故B选项错误;C、用一个平面去截一个球体,得到的图形可能是圆,故C选项错误;D、用一个平面去截一个长方体,得到的图形可能是五边形,长方形,三角形,故D选项正确.故选:D.【知识点】面截体14.【答案】C【知识点】正方体的展开图15.【答案】D【知识点】面截体二、填空题(共10题,共20分)16.【答案】和【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,与“社”在相对面上的字是和.【知识点】正方体相对两个面上的文字17.【答案】③【解析】当截面与底面平行时,得到的截面形状是三角形故①②正确;当截面与底面垂直且经过三棱柱的四个面时,得到的截面形状是正方形,故④正确;当截面与底面斜交且经过三棱柱的四个面时,得到的截面形状是等腰梯形,故⑥正确;当截面与三棱柱的五个面相交时,得到的截面形状是五边形形,故⑤正确.【知识点】面截体18.【答案】4【解析】∵这个棱柱有八个面,∴这个棱柱是6棱柱,有6条侧棱,∵所有侧棱的和为24 cm,∴每条侧棱长为24÷6=4cm.【知识点】认识立体图形19.【答案】30 cm【解析】∵棱柱的底面是六边形∴棱柱有6条侧棱,∵侧棱长为5 cm,∴它所有的侧柱长之和是6×5=30cm,故答案为:30 cm.【知识点】认识立体图形20.【答案】3;6【解析】∵用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形,∴所得截面的边数最少是3,最多是6.故答案为:3;6.【知识点】面截体21.【答案】96 cm2【解析】挖去小正方体后,剩下物体的表面积与原来的表面积相比较没变化,即从任何角度所能看到的所有面的面积为16×6=96 cm2.【知识点】从不同方向看物体22.【答案】6【解析】根据三视图可得:第二层有2个小正方块,根据主视图和左视图可得第一层最少有4个正方体,故最少需用2+4=6块正方体.【知识点】从不同方向看物体23.【答案】矩形【知识点】圆柱的展开图24.【答案】5【解析】由图形可知:没有剪开的棱的条数是4条,则至少需要剪开的棱的条数是:9−4=5(条),故至少需要剪开的棱的条数是5条.【知识点】直棱柱的展开图25.【答案】6【解析】利用俯视图标数法,标出小正方块最多的情况如下:21212+2+1+1=6.【知识点】从不同方向看物体三、解答题(共5题,共50分)26.【答案】如图所示.【知识点】从不同方向看物体27.【答案】该几何体从左面看和从上面看所得图形如图所示:【知识点】从不同方向看物体28.【答案】【知识点】从不同方向看物体29.【答案】如图所示:【知识点】从不同方向看物体30.【答案】【知识点】从不同方向看物体。
(人教版)青岛市七年级数学上册第一单元《有理数》测试(有答案解析)
一、选择题1.数学考试成绩85分以上为优秀,以85分为标准,老师将某一小组五名同学的成绩记为+9、-4、+11、-7、0,这五名同学的实际成绩最高的应是( )A .94分B .85分C .98分D .96分 2.下列各组运算中,其值最小的是( ) A .2(32)---B .(3)(2)-⨯-C .22(3)(2)-+-D .2(3)(2)-⨯-3.数轴上点A 和点B 表示的数分别为-4和2,若要使点A 到点B 的距离是2,则应将点A向右移动( )A .4个单位长度B .6个单位长度C .4个单位长度或8个单位长度D .6个单位长度或8个单位长度4.若b<0,刚a ,a+b ,a-b 的大小关系是( )A .a<a <+b -b aB .<a<a-b a+bC .a<<a-b a+bD .<a<a+b a-b 5.下列说法中,其中正确的个数是( )(1)有理数中,有绝对值最小的数;(2)有理数不是整数就是分数;(3)当a 表示正有理数,则-a 一定是负数;(4)a 是大于-1的负数,则a 2小于a 3A .1B .2C .3D .46.下列说法中,正确的是( )A .正数和负数统称有理数B .既没有绝对值最大的数,也没有绝对值最小的数C .绝对值相等的两数之和为零D .既没有最大的数,也没有最小的数7.-1+2-3+4-5+6+…-2011+2012的值等于A .1B .-1C .2012D .1006 8.计算2136⎛⎫--- ⎪⎝⎭的结果为( ) A .-12 B .12 C .56 D .569.下列关系一定成立的是( )A .若|a|=|b|,则a =bB .若|a|=b ,则a =bC .若|a|=﹣b ,则a =bD .若a =﹣b ,则|a|=|b|10.下列分数不能化成有限小数的是( )A.625B.324C.412D.11611.在数3,﹣13,0,﹣3中,与﹣3的差为0的数是()A.3 B.﹣13C.0 D.﹣312.计算(-2)2018+(-2)2019等于( )A.-24037B.-2 C.-22018D.22018二、填空题13.绝对值小于2018的所有整数之和为________.14.小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数有______.15.计算:(1)(-0.8)+1.2+(-0.7)+(-2.1)=[________]+1.2=________+1.2=____;(2)32.5+46+(-22.5)=[____]+46=_____+46=____.16.有下列数据:我国约有14亿人口;第一中学有68个教学班;直径10 cm的圆,它的周长约31.4 cm,其中是准确数的有_____,是近似数的有_____.17.点A表示数轴上的一个点,将点A向右移动10个单位长度,再向左移动8个单位长度,终点恰好是原点,则点A到原点的距离为______.18.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2020厘米的线段AB,则线段AB盖住的整点个数是______.19.在数轴上与表示 - 2的点的距离为3个单位长度的点所表示的数是 _________ .20.在数轴上,与表示-2的点的距离是4个单位的点所对应的数是___________.三、解答题21.阅读下列材料:(0)0(0)(0)x xx xx x>⎧⎪==⎨⎪-<⎩,即当0x<时,1xx xx==--.用这个结论可以解决下面问题:(1)已知a,b是有理数,当0ab≠时,求a ba b+的值;(2)已知a ,b ,c 是有理数,0a b c ++=,0abc <,求b c a c a b a b c +++++的值. 22.一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,﹣4,+10,﹣8,﹣6,+13,﹣10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?23.计算:(1)23(2)14⎛⎫-⨯- ⎪⎝⎭;(2)2331(2)592-+-⨯--÷. 24.定义:数轴上给定不重合两点A ,B ,若数轴上存在一点M ,使得点M 到点A 的距离等于点M 到点B 的距离,则称点M 为点A 与点B 的“平衡点”.请解答下列问题:(1)若点A 表示的数为-3,点B 表示的数为1,点M 为点A 与点B 的“平衡点”,则点M 表示的数为_______;(2)若点A 表示的数为-3,点A 与点B 的“平衡点”M 表示的数为1,则点B 表示的数为________;(3)点A 表示的数为-5,点C ,D 表示的数分别是-3,-1,点O 为数轴原点,点B 为线段CD 上一点.①设点M 表示的数为m ,若点M 可以为点A 与点B 的“平衡点”,则m 的取值范围是________;②当点A 以每秒1个单位长度的速度向正半轴方向移动时,点C 同时以每秒3个单位长度的速度向正半轴方向移动.设移动的时间为t (0t >)秒,求t 的取值范围,使得点O 可以为点A 与点B 的“平衡点”.25.计算:(1)()110822⎫⎛---÷-⨯-⎪⎝⎭ (2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭26.某粮仓原有大米132吨,某一周该粮仓大米的进出情况如下表:(运进大米记作“+”,运出大米记作“-”,例如:当天运进大米8吨,记作8+吨;当天运出大米15吨,记作15-吨)若经过这一周,该粮仓存有大米88吨.(1)求星期五粮仓大米的进出情况;(2)若大米进出粮仓的装卸费用为每吨15元,求这一周该粮仓需要支付的装卸总费用.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据85分为标准,以及记录的数字,求出五名学生的实际成绩,即可做出判断.【详解】解:根据题意得:859=94,854=81,8511=96,857=78,850=85+-+--即五名学生的实际成绩分别为:94;81;96;78;85,则这五名同学的实际成绩最高的应是96分.故选D .【点睛】本题考查了正数和负数的识别,有理数的加减的应用,正确理解正负数的意义是解题的关键.2.A解析:A【分析】根据有理数乘除和乘方的运算法则计算出结果,再比较大小即可.【详解】A ,()23225---=-;B ,()()326-⨯-=;C ,223(3)(2)941=++=--D ,2(3)(2)9(2)18-⨯-=⨯-=-最小的数是-25故选:A .本题考查了有理数的混合运算和有理数大小的比较,熟练掌握相关的法则是解题的关键. 3.C解析:C【分析】A 点移动后可以在B 点左侧,或右侧,分两种情况讨论即可.【详解】∵到2距离为2的数为2+2=4或2-2=0∴-4移动到0需向右移动4个单位长度,移动到4需向右移动8个单位长度故选C .【点睛】本题考查了数轴表示距离,分两种情况一左一右讨论是本题的关键.4.D解析:D【分析】根据有理数减法法则,两两做差即可求解.【详解】∵b<0∴()0a a b b -+=->,()0a b a b --=->∴()a a b >+,()a b a ->∴()()a b a a b ->>+故选D .【点睛】本题考查了有理数减法运算,减去一个负数等于加上这个数的相反数.5.C解析:C【解析】【分析】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.【详解】解:(1)有理数中,绝对值最小的数是0,符合题意;(2)有理数不是整数就是分数,符合题意;(3)当a 表示正有理数,则-a 一定是负数,符合题意;(4)a 是大于-1的负数,则a 2大于a 3,不符合题意,故选:C .【点睛】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.此题考查了有理数的乘方,正数与负数,有理数,以及绝对值,熟练掌握运算法则是解本6.D解析:D【分析】分别根据有理数的定义,绝对值的定义,有理数的大小比较逐一判断即可.【详解】整数和分数统称为有理数,故原说法错误,故选项A 不合题意;没有绝对值最大的数,绝对值最小的数是0,故原说法错误,故选项B 不合题意; 绝对值相等的两数之和等于零或大于0,故原说法错误,故选项C 不合题意;既没有最大的数,也没有最小的数,正确,故选项D 符合题意.故选:D .【点睛】本题考查有理数的定义、绝对值的定义,熟知有理数和绝对值的定义是解题的关键. 7.D解析:D【解析】解:原式=(﹣1+2)+(﹣3+4)+(﹣5+6)+…+(﹣2011+2012)=+1+1+1+…+1=1006.故选D .点睛:本题考查了有理数的混合运算,正确根据式子的特点进行正确分组是关键. 8.A解析:A【分析】根据有理数加减法法则计算即可得答案.【详解】2136⎛⎫--- ⎪⎝⎭=2136-+ =12-. 故选:A .【点睛】本题考查有理数的加减,有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,一个数同零相加,仍得这个数,有理数减法法则:减去一个数,等于加上这个数的相反数.9.D解析:D根据绝对值的定义进行分析即可得出正确结论.【详解】选项A、B、C中,a与b的关系还有可能互为相反数,故选项A、B、C不一定成立,D.若a=﹣b,则|a|=|b|,正确,故选D.【点睛】本题考查了绝对值的定义,熟练掌握绝对值相等的两个数的关系是相等或互为相反数是解题的关键.10.C解析:C【分析】首先,要把分数化成最简分数,再根据一个最简分数,如果分母中除了2与5以外,不能含有其它的质因数,这个分数就能化成有限小数;如果分母中含有2与5以外的质因数,这个分数就不能化成有限小数.【详解】A、625的分母中只含有质因数5,所以625能化成有限小数;B、31248=,18的分母中只含有质因数2,所以324能化成有限小数;C、41123=,13的分母中含有质因数3,所以412不能化成有限小数;D、116的分母中只含有质因数2,所以116能化成有限小数.故选:C.【点睛】此题主要考查判断一个分数能否化成有限小数的方法,根据一个最简分数,如果分母中除了2与5以外,不能含有其它的质因数,这个分数就能化成有限小数;否则就不能化成有限小数.11.D解析:D【分析】与-3的差为0的数就是0+(-3),据此即可求解.【详解】解:根据题意得:0+(﹣3)=﹣3,则与﹣3的差为0的数是﹣3,故选:D.【点睛】本题考查了有理数的运算.熟练掌握有理数减法法则是解本题的关键.12.C解析:C【分析】直接利用偶次方,奇次方的性质化简各数得出答案.【详解】解:(-2)2018+(-2)2019=(-2)2018+(-2)2018·(-2)=(-2)2018·(1-2)=-22018故选:C.【点睛】此题主要考查了偶次方的性质,正确化简各数是解题关键.二、填空题13.0【分析】根据绝对小于2018可得许多互为相反数的数根据互为相反数的和等于可得答案【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2解析:0【分析】根据绝对小于2018,可得许多互为相反数的数,根据互为相反数的和等于,可得答案.【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2017=0,故答案为0.【点睛】本题考查了有理数的加法,先根据绝对值小于2018写出各数,再根据有理数的加法,得出答案.14.012【分析】根据题意可以确定被污染部分的取值范围继而求出答案【详解】设被污染的部分为a由题意得:-1<a<3在数轴上这一部分的整数有:012∴被污染的部分中共有3个整数分别为:012故答案为012解析:0,1,2【分析】根据题意可以确定被污染部分的取值范围,继而求出答案.【详解】设被污染的部分为a,由题意得:-1<a<3,在数轴上这一部分的整数有:0,1,2.∴被污染的部分中共有3个整数,分别为: 0,1,2.故答案为0,1,2.【点睛】考查了数轴,解决此题的关键是确定被污染部分的取值范围,理解整数的概念.15.(-08)+(-07)+(-21)(-36)-24325+(-225)1056【分析】(1)先根据加法的运算律把同号的数相加再根据加法法则计算;(2)先根据加法的运算律把相加得整数的数相加再根据加法解析:(-0.8)+(-0.7)+(-2.1) (-3.6) -2.4 32.5+(-22.5) 10 56【分析】(1)先根据加法的运算律把同号的数相加,再根据加法法则计算;(2)先根据加法的运算律把相加得整数的数相加,再根据加法法则计算.【详解】解:(1)(-0.8)+1.2+(-0.7)+(-2.1)=[(-0.8)+(-0.7)+(-2.1)]+1.2=(-3.6)+1.2=-2.4;(2)32.5+46+(-22.5)=[32.5+(-22.5)]+46=10+46=56.故答案为:(-0.8)+(-0.7)+(-2.1),(-3.6),-2.4;32.5+(-22.5),10,56.【点睛】本题考查了有理数的加法,属于基本题型,熟练掌握加法运算律和加法法则是解题的关键.16.68和1014亿和314【分析】准确数是指对事物进行计数时能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近并且用来代替准确值的数值;据此直接进行判断【详解】我国约有14亿人口;第一中解析:68和10 14亿和31.4【分析】准确数是指对事物进行计数时,能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近,并且用来代替准确值的数值;据此直接进行判断.【详解】我国约有14亿人口;第一中学有68个教学班;直径10 cm的圆,它的周长约31.4 cm,其中准确数的有68和10;近似数的有14亿和31.4故答案为:68和10;14亿和31.4【点睛】理解“准确数”和“近似数”的意义是解决此题的关键.17.2【分析】设点A表示的数为x然后根据向右平移加向左平移减列出方程再解方程即可得出答案【详解】设A表示的数是x依题意可得:x+10-8=0解得:x=-2则点A到原点的距离为2故答案为:2【点睛】本题主解析:2【分析】设点A表示的数为x,然后根据向右平移加,向左平移减列出方程,再解方程即可得出答案.【详解】设A表示的数是x,依题意可得:x+10-8=0,解得:x=-2,则点A到原点的距离为2.故答案为:2.【点睛】本题主要考查的是数轴,解题时需注意点在数轴上移动,向右平移加,向左平移减. 18.2020或2021【分析】分线段AB的端点与整点重合和不重合两种情况考虑重合时盖住的整点是线段的长度+1不重合时盖住的整点是线段的长度由此即可得出结论【详解】若线段的端点恰好与整点重合则1厘米长的线解析:2020或2021【分析】分线段AB的端点与整点重合和不重合两种情况考虑,重合时盖住的整点是线段的长度+1,不重合时盖住的整点是线段的长度,由此即可得出结论.【详解】若线段AB的端点恰好与整点重合,则1厘米长的线段盖住2个整点,若线段AB的端点+=,所以2020厘米不与整点重合,则1厘米长的线段盖住1个整点,因为202012021长的线段AB盖住2020或2021个整点.故答案为:2020或2021.【点睛】本题考查了数轴,解题的关键是找出长度为n(n为正整数)的线段盖住n或n+1个整点.本题属于基础题,难度不大,解决该题型题目时,分端点是否与整点重合两种情况来考虑是关键.19.-5或1【分析】根据题意得出两种情况:当点在表示-2的点的左边时当点在表示-2的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-2的点的左边时数为-2-3=-5;②当点在表示-2的点的解析:-5或1【分析】根据题意得出两种情况:当点在表示-2的点的左边时,当点在表示-2的点的右边时,列出算式求出即可.【详解】分为两种情况:①当点在表示-2的点的左边时,数为-2-3=-5;②当点在表示-2的点的右边时,数为-2+3=1;故答案为-5或1.【点睛】本题考查了数轴的应用,注意符合条件的有两种情况.在数轴上到一个点的距离相等的点有两个,一个在这个点的左边,一个在这个点的右边.20.2或-6【分析】分在-2的左边和右边两种情况讨论求解即可【详解】解:如图在-2的左边时-2-4=-6在-2右边时-2+4=2所以点对应的数是-6或2故答案为-6或2【点睛】本题考查了数轴难点在于分情解析:2或-6【分析】分在-2的左边和右边两种情况讨论求解即可.【详解】解:如图,在-2的左边时,-2-4=-6,在-2右边时,-2+4=2,所以,点对应的数是-6或2.故答案为-6或2.【点睛】本题考查了数轴,难点在于分情况讨论,作出图形更形象直观.三、解答题21.(1)2或2-或0;(2)-1.【分析】(1)分三种情况讨论,①0,0a b >>,②0,0a b <<,③0ab <,分别根据题意化简即可;(2)由0a b c ++=整理出,,a b c b c a a c b +=-+=-+=-,判断a b c ,,中有两正一负,再整体代入,结合题意计算即可.【详解】(1)0ab ≠∴①0,0a b >>,==1+1=2a b a b a b a b ++; ②0,0a b <<,==11=2a b a b a b a b+-----; ③0ab <,=1+1=0a b a b+-,综上所述,当0ab ≠时,a b a b+的值为:2或2-或0; (2)0a b c ++=,0abc <,,a b c b c a a c b ∴+=-+=-+=- 即a b c ,,中有两正一负, ∴==()1b c a c a b a b c a b c a b c a b c a b c+++---++++-++=-. 【点睛】本题考查绝对值的非负性以及有理数的运算等知识,是重要考点,难度一般,掌握相关知识是解题关键.22.(1)回到了球门线的位置;(2)11米;(3)56米【分析】(1)由于守门员从球门线出发练习折返跑,问最后是否回到了球门线的位置,只需将所有数加起来,看其和是否为0即可;(2)计算每一次跑后的数据,绝对值最大的即为所求;(3)求出所有数的绝对值的和即可.【详解】解:(1)(+5)+(﹣4)+(+10)+(﹣8)+(﹣6)+(+13)+(﹣10)=(5+10+13)-(4+8+6+10)=28-28=0.答:守门员最后回到了球门线的位置;(2)(3)|+5|+|﹣4|+|+10|+|﹣8|+|﹣6|+|+13|+|﹣10|=5+4+10+8+6+13+10=56(米).答:守门员全部练习结束后,他共跑了56米.【点睛】本题考查了正数和负数以及有理数加减运算的应用等知识点,解题的关键是理解“正”和“负”的相对性,确定具有相反意义的量.23.(1)1-;(2)47-.【分析】(1)原式先计算乘方和括号内,然后再计算乘法即可得到答案;(2)原式先计算乘方和化简绝对值,再计算乘除法,最后计算加减运算即可得到答案.【详解】解:(1)23(2)14⎛⎫-⨯- ⎪⎝⎭ 3414⎛⎫=⨯- ⎪⎝⎭ 144⎛⎫=⨯- ⎪⎝⎭1=-.(2)2331(2)592-+-⨯--÷ 21(8)593=-+-⨯-⨯ 1406=---47=-.【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.24.(1)-1;(2)5;(3)①43t -≤≤-;②26t ≤≤且 5t ≠【分析】(1)根据平衡点的定义进行解答即可;(2)根据平衡点的定义进行解答即可;(3)①先得出点B 的范围,再得出m 的取值范围即可;②根据点A 和点C 移动的距离,求得点A 、C 表示的数,再由平衡点的定义得出答案即可.【详解】解:(1)(1)点M 表示的数=312-+=−1; 故答案为:−1;(2)点B 表示的数=1×2−(−3)=5;故答案为:5;(3)①设点B 表示的数为b ,则31b -≤≤-,∵点A 表示的数为-5,点M 可以为点A 与点B 的“平衡点”,∴m 的取值范围为:43m -≤≤-,故答案为:43m -≤≤-;②由题意得:点A 表示的数为5t -,点C 表示的数为33t -,∵点O 为点A 与点B 的平衡点,∴点B 表示的数为:5t -,∵点B 在线段CD 上,当点B 与点C 相遇时,2t =,当点B 与点D 相遇时,6t =,∴26t ≤≤,且 5t ≠,综上所述,当26t ≤≤且 5t ≠时,点O 可以为点A 与点B 的“平衡点”.【点睛】本题考查了实数与数轴,掌握数轴上点的表示方法,以及两点的中点表示方法是解题的关键.25.(1)12- ;(2)0【分析】(1)先去绝对值,同时把除变乘,再计算乘法,最后加减即可(2)先计算乘方和括号内的,把除变乘,再计算乘法,最后加减法即可【详解】(1)()110822⎫⎛---÷-⨯-⎪⎝⎭ =1110822⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭ =102--=-12(2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭=()()2386154-⨯---⨯-=243660--+=0【点睛】本题考查有理数的混合运算,解答的关键是熟练掌握运算法则和运算顺序.26.(1)星期五粮仓当天运出大米20吨;(2)2700元.【分析】(1)根据有理数的加法,可得答案;(2)根据单位费用乘以总量,可得答案.【详解】(1)m =88﹣(132﹣32+26﹣23﹣16+42﹣21)=﹣20,∴星期五粮仓当天运出大米20吨;(2)(|﹣32|+|+26|+|﹣23|+|﹣16|+|﹣20|+|+42|+|﹣21|)×15=2700(元),答:这一周该粮仓需要支付的装卸总费用为2700元.【点睛】本题考查了用正负数表示相反意义的量及有理数加减法的应用,第(2)问利用单位费用乘以总量是解题关键.。
青岛版数学七年级上册第一章《基本的几何图形》单元测试1
第1章根本的几何图形一、选择题1.以下物体的形状类似于球的是〔〕A.茶杯B.羽毛球C.乒乓球D.白炽灯泡2.由棱长为1的小正方体组成新的大正方体,如果不允许切割,至少要几个小正方体〔〕个个个个3.圆柱的侧面展开图可能是〔〕4.以下平面图形不能够围成正方体的是〔〕5.以下图形中,经过折叠可围成长方体的是〔〕6.将“创立文明城市〞六个字分别写在一个正方体的六个面上,这个正方体的平面展开图如下图,那么在这个正方体中,和“创〞相对的字是〔〕A.文B.明C.城D.市7.观察图形,以下说法正确的个数是〔〕A B C DA B DC①直线和直线是同一条直线;②射线和射线是同一条射线; ③.A.1B.2C.3D.08.过平面上A ,B ,C 三点中的任意两点作直线,可作〔 〕 A.1条B.3条C.1条或3条D.无数条9.在直线上顺次取三点,使得,,如果是线段的中点,那么线段的长度是〔 〕 A. B.C. D.10.线段那么线段的长度〔 〕A.一定是5B.一定是1C.一定是5或1D.以上都不对 11.以下说法正确的选项是〔 〕①教科书是长方形;②教科书是长方体,也是棱柱;③教科书的封面是长方形. A .①② B .①③ C .②③ D .①②③12.以下四个有关生活、生产中的现象:①用两个钉子就可以把一根木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A 地到B 地架设电线,总是尽可能沿着线段架设;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短〞来解释的现象有〔 〕 A. ①② B. ①③ C.②④ D.③④ 二、填空题13.如图,图中共有_____条线段,____条射线.O A B C第13题图D EA BC D第7题图14.以下外表展开图对应的立体图形的名称分别是:______、______、______、______.15.如图给出的分别有射线、直线、线段,其中能相交的图形有 个.16.将如下图的图形剪去一个小正方形,使余下的局部恰好能折成一个正方体,应剪去____〔填序号〕.17.如图,C ,D 是线段AB 上两点,假设CB=4cm ,DB=7cm ,且D 是线段AC 的中点,那么AC=_____.18.〔2021·江西中考〕一个正方体有 个面. 三、解答题19.现要在一块空地上种棵树,使其中的每三棵树在一条直线上,这样的要求,你觉得可否实现,假设可以实现,请你设计一下种树的位置图?DA B Cb a①②③④A BDDCB第15题图第17题图BD C20.右图是一个正方体骰子的外表展开图,请根据要求答复以下问题:〔1〕如果1点在上面,3点在左面,那么几点在前面?〔2〕如果5点在下面,那么几点在上面?21.线段AB=10cm,试探讨以下问题:〔1〕是否存在一点C,使它到A,B两点的距离之和等于8cm?〔2〕是否存在一点C,使它到A,B两点的距离之和等于10cm?假设存在,它的位置唯一吗?〔3〕当点C到A,B两点的距离之和等于20cm时,点C一定在直线AB外吗?举例说明.22.如图是一个长方体的外表展开图,每个面上都标注了字母,请根据要求答复以下问题:〔1〕如果面在长方体的底部,那么哪一个面会在上面?〔2〕如果面在前面,面在左面,那么哪一个面会在上面?〔字母朝外〕23.如图,在无阴影的方格中选出两个方格画上阴影,使它们与图中四个有阴影的正方形一起可以构成一个正方体的外表展开图.〔填出两种答案〕24.如图,点C是线段AB的中点,点D是线段AC的中点,点E是线段BC的中点.〔1〕假设线段DE=9cm,,求线段AB的长.〔2〕假设线段CE=5cm,求线段DB的长.25.如图,线段,线段,分别是线段的中点,求线段的长.A EBC F D第25题参考答案1.C 解析:根据生活常识可知乒乓球是球体.应选C .2.B 解析:此题要求所得到的大正方体最小,那么每条棱是由两个小正方体的棱组成,所以要组成新的大正方体至少要小正方体2×2×2=8〔个〕.3.B 解析:圆柱的侧面展开图是长方形,应选B.4.B 解析:利用空间想象能力或者自己动手实践一下,可知答案选B.5.B 解析:A 、C 、D 不能折叠成长方体,只有B 符合条件.6.B 解析:结合展开图可知,与“创〞相对的字是“明〞.应选B .7.C 解析:①直线BA 和直线AB 是同一条直线,正确;②射线AC 和射线AD 是同一条射线,都是以A 为端点,同一方向的射线,正确; ③由“两点之间,线段最短〞知AB+BD >AD ,故此说法正确. 所以共有3个正确的.应选C .8.C 解析:当三点共线时,可以作1条直线;当三点不共线时,可以作3条直线.9.D 解析:因为是在直线上顺次取三点,所以.因为O 是线段AC 的中点,所以OA=OC=4cm , 所以OB=AB-OA=5-4=1cm.应选D.10.D 解析:如图,线段AC=3,BC=2,但线段AB 的长度既不是1也不是5,应选D.11.C 解析:教科书是立体图形,所以①不对,②③都是正确的,应选C. 12.D 解析:①②是“两点确定一条直线〞的表达,③④可以用“两点之间,线段最短〞来解释.应选D.13.6 5 解析:线段有:线段OA 、线段OB 、线段AB 、线段AC 、线段BC 、线段OC 、共6条;射线有:,共5条.14.圆柱 圆锥 四棱锥 三棱柱 15.2 解析:①③能相交,②④不能相交.或2或6 解析:根据有“田〞字格的展开图都不是正方体的外表展开图可知,应剪去1或2或6,答案不唯一.17.6cm 解析:因为点D 是线段AC 的中点,所以AC=2DC.第10题答图ABC因为CB=4cm ,DB=7cm ,所以CD=BD-BC=3cm ,所以AC=6cm. 18.6 解析:正方体有上、下、左、右、前、后6个面,均为正方形. 19.解:可以实现,设计图仅供参考.20.解:〔1〕如果1点在上面,3点在左面,那么2点在前面. 〔2〕如果5点在下面,那么2点在上面.21.解:〔1〕不存在.因为两点之间,线段最短.因此.〔2〕存在.线段AB 上任意一点都是. 〔3〕不一定,也可以在直线AB 上,如图,线段.22.解:〔1〕因为面A 与面F 相对,所以面A 在长方体的底部时,面F 在上面. 〔2〕由图可知,如果面F 在前面,面B 在左面,那么面E 在下面. 由图可知,面C 与面E 相对,所以面C 会在上面. 23.解:如图〔答案不唯一〕.24.解:〔1〕因为点是线段的中点,点是线段的中点, 所以,,所以.〔2〕因为点是线段的中点,所以.•• • •• •• ••• •• • • 第19题答图C AB第21题答图因为点是线段的中点,点是线段的中点,所以,所以.25.解:因为线段,线段,所以所以又因为分别是线段的中点,所以所以所以答:线段的长为4cm.。
七年级上册数学单元测试卷-第1章 基本的几何图形-青岛版(含答案)
七年级上册数学单元测试卷-第1章基本的几何图形-青岛版(含答案)一、单选题(共15题,共计45分)1、如图,下列图形中全部是柱体的有()A. B. C.D.2、如图,将4×3的网格图剪去5个小正方形后,图中还剩下7个小正方形,为了使余下的部分(小正方形之间至少要有一条边相连)恰好能折成一个正方体,需要再剪去1个小正方形,则应剪去的小正方形的编号是()A.7B.6C.5D.43、长方形剪去一个角后所得的图形一定不是()A.五边形B.梯形C.长方形D.三角形4、如右图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的“着”相对的面上的汉字是()A.冷B.静C.应D.考5、如图几何体的展开图形最有可能是()A. B. C. D.6、如图,把原来弯曲的河道改直,A,B两地间的河道长度变短,这样做的道理是()A.两点确定一条直线B.两点之间线段最短C.两点之间直线最短 D.垂线段最短7、已知A,B,C是直线l上三点,线段AB=6cm,且AB= AC,则BC=()A.6cmB.12cmC.18cmD.6cm或18cm8、如图是一个正方体的表面展开图,若正方体中相对的面上的数或式子互为相反数,则代数式的值为()A.-2B.-1C.1D.09、“笔尖在纸上快速滑动写出数字 6”,运用数学知识解释这一现象()A.点动成线B.线动成面C.面动成体D.面面相交得线10、如图是一个正方体的平面展开图,正方体中相对面上的数字互为相反数,则2x+y的值为()A.0B.﹣1C.﹣2D.111、下图中各图形经过折叠后可以围成一个棱柱的是()A. B. C. D.12、下列四个图形中是三棱柱的表面展开图的是()A. B. C. D.13、下列说法正确的是()A.过一点有且只有一条直线与已知直线平行B.不相交的两条直线叫做平行线C.两点确定一条直线D.两点间的距离是指连接两点间的线段14、下列说法:①如果∠1+ ∠2+∠3=180°,那么∠1,∠2,∠3三个角互为补角;②如果∠A+ ∠B=90°,那么∠A与∠B互为余角;③“对顶角相等”成立,反之“相等的角是对顶角”也成立;④两条直线被第三条直线所截,同位角相等;⑤两点之间,线段最短. 正确的个数是()A.2个B.3个C.4个D.5个15、如图,一个正六棱柱的表面展开后正好放入一个矩形内,把其中一部分图形挪动了位置,发现矩形的长留出,宽留出,则该六棱柱的侧面积是( )A. B. C. D.二、填空题(共10题,共计30分)16、在直角三角形ABC中,∠C=90°,如图所示,AB>AC的依据是________,AC+BC>AB 的依据是________.17、如图是一个正方体的展开图,如果将它折成一个正方体,相对面上的数相等,则x+y 的值为________.18、用一个平面去截一个三棱柱,截面可能是________.(填一个即可)19、点C在射线AB上,若AB=3,BC=2,则AC为________20、如图,是一个物体的展开图(单位:cm),那么这个物体的体积为________.21、如图所示,A地到B地有①②③④四条道路,其中第________ 条道路最近,理由是________22、如图,长方形 ABCD 的长 AB=4,宽 BC=3,以 AB 所在的直线为轴,将长方形旋转一周后所得几何体的主视图的面积是________.23、如图所示,在扇形中,,长为2的线段的两个端点分别在线段、上滑动,E为的中点,点F在上,连结、.若的长是,则线段的最小值是________,此时图中阴影部分的面积是________.24、如图是某个正方体的表面展开图,各个面上分别标有1~6的不同数字,若将其折叠成正方体,则相交于同一个顶点的三个面上的数字之和最大的是________.25、笔尖在纸上写字说明________;车轮旋转时看起来象个圆面,这说明________;一枚硬币在光滑的桌面上快速旋转形成一个球,这说明________.三、解答题(共5题,共计25分)26、如图是一个正方体的平面展开图,若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和均为5,求x+y+z的值.27、图中有多少个三角形?28、如图,圆柱形容器高为16cm,底面周长为24cm,在杯内壁离杯底的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯子的上沿蜂蜜相对的点A处,则蚂蚁A处到达B处的最短距离为多少?29、现有一个长为5cm,宽为4cm的长方形,绕它的一边旋转一周,得到的几何体的体积是多少?30、如图是一个正方体的表面展开图,请回答下列问题:(1)与面B、C相对的面分别是;(2)若A=a3+a2b+3,B=a2b﹣3,C=a3﹣1,D=﹣(a2b﹣6),且相对两个面所表示的代数式的和都相等,求E、F分别代表的代数式.参考答案一、单选题(共15题,共计45分)1、C2、C3、C4、B5、B6、B7、D8、C9、A10、C11、B12、A13、C15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。
青岛市七年级数学上册第一单元《有理数》检测卷(包含答案解析)
一、选择题1.若b<0,刚a ,a+b ,a-b 的大小关系是( )A .a<a <+b -b aB .<a<a-b a+bC .a<<a-b a+bD .<a<a+b a-b2.2--的相反数是( ) A .12- B .2- C .12 D .23.下列说法正确的是( )A .近似数5千和5000的精确度是相同的B .317500精确到千位可以表示为31.8万,也可以表示为53.1810⨯C .2.46万精确到百分位D .近似数8.4和0.7的精确度不一样4.计算4(8)(4)(1)+-÷---的结果是( )A .2B .3C .7D .43 5.计算112123123412542334445555555555⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+++---+++++⋯++⋯+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭的值( )A .54B .27C .272D .06.一件商品原售价为2000元,销售时先提价10%;再降价10%,现在的售价与原售价相比( )A .提高20元B .减少20元C .提高10元D .售价一样 7.绝对值大于1小于4的整数的和是( )A .0B .5C .﹣5D .10 8.某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个).经过3个小时,这种细菌由1个可分裂为( )A .8个B .16个C .32个D .64个9.下列说法中正确的是( )A .a -表示的数一定是负数B .a -表示的数一定是正数C .a -表示的数一定是正数或负数D .a -可以表示任何有理数10.已知实数m 、n 在数轴上的对应点的位置如图所示,则下列判断正确的是( )A .m >0B .n <0C .mn <0D .m -n >0 11.把实数36.1210-⨯用小数表示为()A .0.0612B .6120C .0.00612D .612000 12.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中正确的是( )A .a+b <0B .a+b >0C .a ﹣b <0D .ab >0二、填空题13.绝对值小于2018的所有整数之和为________.14.已知|a |=3,|b |=2,且ab <0,则a ﹣b =_____.15.计算3253.1410.31431.40.284⨯+⨯-⨯=__. 16.已知一个数的绝对值为5,另一个数的绝对值为3,且两数之积为负,则两数之差为____.17.用计算器求2.733,按键顺序是________;使用计算器计算时,按键顺序为,则计算结果为________. 18.下面是七年级一班在学校举行的足球赛中的成绩,现规定赢球为“正”,输球为“负”,打平为“0”,请按照示例填空:例:若上半场输了2个球,下半场输了1个球,则全场输了3个球,也就是(-2)+(-1)=-3;(1)若上半场赢了3个球,下半场输了2个球,则全场赢了____个球,也就是____;(2)若上半场输了3个球,下半场赢了2个球,则全场输了___个球,也就是_____;(3)若上半场赢了3个球,下半场打平,则全场赢了___个球,也就是____. 19.如果点A 表示+3,将A 向左移动7个单位长度,再向右移动3个单位长度,则终点表示的数是__________.20.在数轴上,距离原点有2个单位的点所对应的数是________.三、解答题21.计算(1)112(24)243⎛⎫-⨯-+- ⎪⎝⎭; (2)3221(2)(3)⎡⎤÷---⎣⎦;(3)2202035|5|(1)( 3.14)02π⎛⎫---⨯-+-⨯ ⎪⎝⎭. 22.计算:(1)()()()923126--⨯-+÷-(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭. 23.将n 个互不相同的整数置于一排,构成一个数组.在这n 个数字前任意添加“+”或“-”号,可以得到一个算式.若运算结果可以为0,我们就将这个数组称为“运算平衡”数组. (1)数组1,2,3,4是否是“运算平衡”数组?若是,请在以下数组中填上相应的符号,并完成运算;1 2 3 4 =(2)若数组1,4,6,m 是“运算平衡”数组,则m 的值可以是多少?(3)若某“运算平衡”数组中共含有n 个整数,则这n 个整数需要具备什么样的规律? 24.计算:(﹣1)2014+15×(﹣5)+8 25.计算 ①()115112236⎛⎫--+--- ⎪⎝⎭ ②()32112114132⎛⎫⎛⎫-÷-⨯--- ⎪ ⎪⎝⎭⎝⎭③524312(4)()12(152)2-÷-⨯-⨯-+④()()213132123242834⎛⎫⎛⎫-÷--+-⨯- ⎪ ⎪⎝⎭⎝⎭ ⑤222019111()22(1)2⎡⎤---÷--⨯-÷-⎢⎥⎣⎦26.某粮仓原有大米132吨,某一周该粮仓大米的进出情况如下表:(运进大米记作“+”,运出大米记作“-”,例如:当天运进大米8吨,记作8+吨;当天运出大米15吨,记作15-吨)若经过这一周,该粮仓存有大米88吨.(1)求星期五粮仓大米的进出情况;(2)若大米进出粮仓的装卸费用为每吨15元,求这一周该粮仓需要支付的装卸总费用.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据有理数减法法则,两两做差即可求解.【详解】∵b<0∴()0a a b b -+=->,()0a b a b --=->∴()a a b >+,()a b a ->∴()()a b a a b ->>+故选D .【点睛】本题考查了有理数减法运算,减去一个负数等于加上这个数的相反数.2.D解析:D【分析】|-2|去掉绝对值后为2,而-2的相反数为2.【详解】2--的相反数是2,故选:D .【点睛】本题考查了相反数和绝对值的概念,本题的关键是首先要对原题进行化简,然后在求这个数的相反数;其中,正数的相反数是负数,负数的相反数是正数,0的相反数是0. 3.B解析:B【解析】【分析】根据近似数的精确度对各选项进行判断.【详解】A .近似数5千精确度到千位,近似数5000精确到个位,所以A 选项错误;B .317500精确到千位可以表示为31.8万,也可以表示为53.1810⨯,所以B 选项正确;C .2.46万精确到百位,所以C 选项错误;D .近似数8.4和0.7的精确度是一样的,所以D 选项错误.故选B .【点睛】本题考查了近似数和有效数字:精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.4.C解析:C【分析】先计算除法、将减法转化为加法,再计算加法可得答案.【详解】解:原式421=++7=,故选:C .【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则. 5.C解析:C【分析】根据有理数的加减混合运算先算括号内的,进而即可求解.【详解】 解:原式=﹣12+1﹣32+2﹣52+3﹣72+…+27 =27×12 =272. 故选:C .【点睛】本题考查了有理数的加减混合运算,解决本题的关键是寻找规律.6.B解析:B【分析】根据题意可列式现在的售价为()()2000110110⨯+%⨯-%,即可求解.【详解】解:根据题意可得现在的售价为()()20001101101980⨯+%⨯-%=(元),所以现在的售价与原售价相比减少20元,故选:B .【点睛】本题考查有理数运算的实际应用,根据题意列出算式是解题的关键.7.A解析:A【解析】试题绝对值大于1小于4的整数有:±2;±3.-2+2+3+(3)=0.故选A.8.D解析:D【分析】每半小时分裂一次,一个变为2个,实际是21个.分裂第二次时,2个就变为了22个.那么经过3小时,就要分裂6次.根据有理数的乘方的定义可得.【详解】26=2×2×2×2×2×2=64.故选D.【点睛】本题考查了有理数的乘方在实际生活中的应用,应注意观察问题得到规律.9.D解析:D【分析】直接根据有理数的概念逐项判断即可.【详解】-表示的数不一定是负数,当a为负数时,-a就是正数,故该选项错误;解:A. a-表示的数不一定是正数,当a为正数时,-a就是负数,故该选项错误;B. a-表示的数不一定是正数或负数,当a为0时,-a也为0,故该选项错误;C. a-可以表示任何有理数,故该选项正确.D. a故选:D.【点睛】此题主要考查有理数的概念,熟练掌握有理数的概念是解题关键.10.C解析:C【解析】从数轴可知m小于0,n大于0,从而很容易判断四个选项的正误.解:由已知可得n大于m,并从数轴知m小于0,n大于0,所以mn小于0,则A,B,D 均错误.故选C.11.C解析:C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】6.12×10−3=0.00612,故选C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.A解析:A【分析】根据数轴判断出a、b的符号和取值范围,逐项判断即可.【详解】解:从图上可以看出,b<﹣1<0,0<a<1,∴a+b<0,故选项A符合题意,选项B不合题意;a﹣b>0,故选项C不合题意;ab<0,故选项D不合题意.故选:A.【知识点】本题考查了数轴、有理数的加法、减法、乘法,根据数轴判断出a、b的符号,熟知有理数的运算法则是解题关键.二、填空题13.0【分析】根据绝对小于2018可得许多互为相反数的数根据互为相反数的和等于可得答案【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2解析:0【分析】根据绝对小于2018,可得许多互为相反数的数,根据互为相反数的和等于,可得答案.【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2017=0,故答案为0.【点睛】本题考查了有理数的加法,先根据绝对值小于2018写出各数,再根据有理数的加法,得出答案.14.5或﹣5【分析】先根据绝对值的定义求出ab的值然后根据ab<0确定ab 的值最后代入a﹣b中求值即可【详解】解:∵|a|=3|b|=2∴a=±3b=±2;∵ab<0∴当a=3时b=﹣2;当a=﹣3时b解析:5或﹣5【分析】先根据绝对值的定义,求出a、b的值,然后根据ab<0确定a、b的值,最后代入a﹣b 中求值即可.【详解】解:∵|a|=3,|b|=2,∴a=±3,b=±2;∵ab<0,∴当a=3时b=﹣2;当a=﹣3时b=2,∴a﹣b=3﹣(﹣2)=5或a﹣b=﹣3﹣2=﹣5.故填5或﹣5.【点睛】本题主要考查的是有理数的乘法、绝对值、有理数的减法,熟练掌握相关法则是解题的关键.15.0【分析】先把0314314都转化为314然后逆运用乘法分配律进行计算即可得解【详解】解:故答案为:0【点睛】本题考查了有理数的乘法运算把算式进行转化逆运用乘法分配律运算更加简便解析:0【分析】先把0.314,31.4都转化为3.14,然后逆运用乘法分配律进行计算即可得解.【详解】解:3253.1410.31431.40.284⨯+⨯-⨯,353.141 3.14 3.14288=⨯+⨯-⨯,353.14(12)88=⨯+-,3.140=⨯,=.故答案为:0.【点睛】本题考查了有理数的乘法运算,把算式进行转化,逆运用乘法分配律运算更加简便.16.±8【分析】首先根据绝对值的性质得出两数进而分析得出答案【详解】设|a|=5|b|=3则a=±5b=±3∵ab<0∴当a=5时b=-3∴5-(-3)=8;当a=-5时b=3∴-5-3=-8故答案为:解析:±8【分析】首先根据绝对值的性质得出两数,进而分析得出答案.【详解】设|a|=5,|b|=3,则a=±5,b=±3,∵ab<0,∴当a=5时,b=-3,∴5-(-3)=8;当a=-5时,b=3,∴-5-3=-8.故答案为:±8.【点睛】本题主要考查了绝对值的性质以及有理数的混合运算,熟练掌握绝对值的性质是解题关键.17.73xy3=-2【分析】首先确定使用的是xy键先按底数再按yx键接着按指数最后按等号即可【详解】解:(1)按照计算器的基本应用用计算机求2733按键顺序是273xy3=;(2)-8×5÷20=-40解析:73,x y,3,=-2【分析】首先确定使用的是x y键,先按底数,再按y x键,接着按指数,最后按等号即可.【详解】解:(1)按照计算器的基本应用,用计算机求2.733,按键顺序是2.73、x y、3、=;(2)-8×5÷20=-40÷20=-2.【点睛】此题主要考查了利用计算器进行数的乘方,关键是计算器求幂的时候指数的使用方法.18.3+(-2)=11(-3)+2=-133+0=3【分析】根据定义赢球记为正输球记为负打平记为0先用有理数表示出输赢情况然后根据有理数的加减运算求解【详解】(1)上半场赢了3个为3下半场输了2个记为(解析:3+(-2)=1 1 (-3)+2=-1 3 3+0=3【分析】根据定义,赢球记为“正”,输球记为“负”,打平记为“0”,先用有理数表示出输赢情况,然后根据有理数的加减运算求解.【详解】(1)上半场赢了3个,为3,下半场输了2个,记为(-2),也就是:3+(-2)=1;(2)上半场输了3个,为(-3),下半场赢了2个,记为2,也就是:(-3)+2=-1;(3)上半场赢了3个,为3,下半场打平,记为0,也就是:3+0=3.【点睛】本题考查用正负数表示相反意义的量,并求解有理数的加法,解题关键是用正负数正确表示出输赢球的数量关系.19.-1【分析】根据向右为正向左为负根据正负数的意义列式计算即可【详解】根据题意得终点表示的数为:3-7+3=-1故答案为-1【点睛】本题考查了数轴正负数在实际问题中的应用在本题中向左向右具有相反意义可解析:-1【分析】根据向右为正,向左为负,根据正负数的意义列式计算即可.【详解】根据题意得,终点表示的数为:3-7+3=-1.故答案为-1.【点睛】本题考查了数轴,正负数在实际问题中的应用,在本题中向左、向右具有相反意义,可以用正负数来表示,从而列出算式求解.20.【分析】由绝对值的定义可知:|x|=2所以x=±2【详解】设距离原点有2个单位的点所对应的数为x 由绝对值的定义可知:|x|=2∴x=±2故答案为±2【点睛】本题考查了绝对值的性质属于基础题型解析:2±【分析】由绝对值的定义可知:|x |=2,所以x =±2.【详解】设距离原点有2个单位的点所对应的数为x ,由绝对值的定义可知:|x |=2,∴x =±2.故答案为±2.【点睛】本题考查了绝对值的性质,属于基础题型.三、解答题21.(1)22;(2)2117-;(3)54-. 【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算乘方运算,再计算括号内的运算,最后除法运算即可得到结果; (3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;【详解】(1)112(24)243⎛⎫-⨯-+- ⎪⎝⎭ 112(24)(24)(24)243⎛⎫⎛⎫=-⨯-+-⨯+-⨯- ⎪ ⎪⎝⎭⎝⎭12616=-+=22;(2)3221(2)(3)⎡⎤÷---⎣⎦()2189=÷--()2117=÷-2117=-; (3)2202035|5|(1)( 3.14)02π⎛⎫---⨯-+-⨯ ⎪⎝⎭ 255104=-⨯+ 54=-. 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.(1)1;(2)-1.【分析】(1)先算乘除,再算加减即可求解;(2)先算乘方,后算除法,最后算加减即可求解.【详解】(1)()()()923126--⨯-+÷-=962--=1;(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭ =11891632-+-÷ =1893216-+-⨯ =892-+-=-1.【点睛】 此题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.23.(1)是,+1-2-3+4=0;(2)m=±1,±3,±9,±11;(3)这n 个整数互不相同,在这n 个数字前任意添加“+”或“-”号后运算结果为0.【分析】(1)根据“运算平衡”数组的定义即可求解;(2)根据“运算平衡”数组的定义得到关于m的方程,解方程即可;(3)根据“运算平衡”数组的定义可以得到n个数的规律.【详解】解:(1)数组1,2,3,4是“运算平衡”数组,+1-2-3+4=0;(2)要使数组1,4,6,m是“运算平衡”数组,有以下情况:1+4+6+m=0;-1+4+6+m=0;1-4+6+m=0;1+4-6+m=0;1+4+6-m=0;-1-4+6+m=0;-1+4-6+m=0;-1+4+6-m=0;1-4-6+m=0;1-4+6-m=0;1+4-6-m=0;-1-4-6+m=0;-1-4+6-m=0,-1+4-6-m=0,1-4-6-m=0;-1-4-6-m=0;共16中情况,经计算得m=±1,±3,±9,±11;(3)这n个整数互不相同,在这n个数字前任意添加“+”或“-”号后运算结果为0.【点睛】本题考查了新定义问题,理解“运算平衡”数组的定义是解题关键.24.8【分析】先算乘方,再算乘法,最后算加法,由此顺序计算即可.【详解】原式=1+15×(﹣5)+8=1﹣1+8=8.【点睛】此题考查有理数的混合运算,注意运算的顺序与符号的判定.25.①-2;②458-;③-10;④-9;⑤-13.【分析】①先去括号和绝对值,在进行加减运算即可.②先运算乘方,去括号,再将除法改为乘法,最后进行混合运算即可.③先运算乘方,再去括号,最后进行混合运算即可.④先运算乘方,利用乘法分配律去括号,再将除法改为乘法,最后进行混合运算即可.⑤先运算乘方,再将除法改为乘法,再去括号,去绝对值,最后进行混合运算即可.【详解】①原式14171 236 =+--38617 6666 =+--2=-.②原式327 4()(3)()48 =-⨯-⨯---2798 =-+458=-. ③原式3132(4)12(1516)4=-÷-⨯-⨯-+ 181214=⨯-⨯ 10=-.④原式()()()()1171542242424834=⨯--⨯--⨯-+⨯- 8335690=-++-9=-.⑤原式11(12)2(1)4=---÷-⨯÷- 1(142)2=-+-⨯-⨯1(6)2=-+-⨯112=--13=-.【点睛】本题考查有理数的混合运算,掌握有理数混合运算的顺序是解答本题的关键. 26.(1)星期五粮仓当天运出大米20吨;(2)2700元.【分析】(1)根据有理数的加法,可得答案;(2)根据单位费用乘以总量,可得答案.【详解】(1)m =88﹣(132﹣32+26﹣23﹣16+42﹣21)=﹣20,∴星期五粮仓当天运出大米20吨;(2)(|﹣32|+|+26|+|﹣23|+|﹣16|+|﹣20|+|+42|+|﹣21|)×15=2700(元), 答:这一周该粮仓需要支付的装卸总费用为2700元.【点睛】本题考查了用正负数表示相反意义的量及有理数加减法的应用,第(2)问利用单位费用乘以总量是解题关键.。
七年级上册数学单元测试卷-第1章 基本的几何图形-青岛版(含答案)
七年级上册数学单元测试卷-第1章基本的几何图形-青岛版(含答案)一、单选题(共15题,共计45分)1、一个几何体的展开图如图所示,这个几何体是()A.三棱柱B.三棱锥C.四棱柱D.四棱锥2、如图所示是一间房子的平面示意图,组成这幅图的简单几何图形是()A.三角形、长方形B.三角形、正方形、长方形C.三角形、正方形、长方形、梯形D.正方形、长方形、梯形3、下列图形(如图所示)经过折叠不能围成正方体的是( )A.AB.BC.CD.D4、如图是某正方体的展开图,在顶点处标有数字,当把它折成正方体时,与4重合的数字是()A.9和13B.2和9C.1和13D.2和85、如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.经过两点,有且仅有一条直线D.两点之间,线段最短6、下列各图形中,可以是一个正方体的平面展开图的是()A. B. C. D.7、如图,矩形ABCD中,AB=1,BC=2,把矩形ABCD 绕AB所在直线旋转一周所得圆柱的侧面积为( )A.10πB.4πC.2πD.28、正三棱锥的截面中,边数最多的多边形是()A.三角形B.四边形C.五边形D.六边形9、下列图形中,能通过折叠围成一个三棱柱的是()A. B. C. D.10、以下说法正确的是()A.两点之间直线最短B.延长直线到点,使C.相等的角是对顶角 D.连结两点的线段的长度就是这两点间的距离11、把14个棱长为1的正方体,在地面上堆叠成如图所示的立方体,然后将露出的表面部分染成红色,那么红色部分的面积为()A.21B.24C.33D.3712、如图,已知线段AB=10 cm,点N在AB上,NB=2 cm,M是AB中点,那么线段MN的长为()A.5 cmB.4 cmC.3 cmD.2 cm13、某校要举办国庆联欢会,主持人站在舞台的黄金分割点处最自然得体.如图,若舞台AB的长为20m,C为AB的一个黄金分割点(AC<BC),则AC的长为(结果精确到0.1m)()A.6.7mB.7.6mC.10mD.12.4m14、如图,把图形折叠起来,变成的正方体是()A. B. C. D.15、如图是一个长方体的表面展开图,6个面上分别标有数字1,2,3,4,5,6(数字都在表表面),与标有数字6的面相对面上的数字是()A.3B.5C.2D.1二、填空题(共10题,共计30分)16、在直线l两侧各取一定点A、B,直线l上动点P,则使PA+PB最小的点P的位置是________17、两点之间的所有连线中,________最短;两点之间的________长度,叫做两点之间的距离。
青岛版七年级数学上册全册单元测试题(带答案)
青岛版七年级数学上册单元测试题全套(含答案)青岛版七年级青岛版七年级数学上册单元测试题全套(含答案)第 1 章检测卷一 . 选择题1. 某工程队,在修建兰宁高速公路时,有时需将弯曲的道路改直,根据什么公理可以说明这样做能缩短路程() .A. 直线的公理B. 直线的公理或线段的公理C. 线段最短的公理D. 平行公理2.10 个棱长为 1 的正方体木块堆成如图所示的形状,则它的表面积是()(第 2 题图)A. 30B. 34C. 36D. 483. 延长线段 AB 到 C ,下列说法正确的是()A. 点 C 在线段 AB 上B. 点 C 在直线 AB 上C. 点 C 不在直线 AB 上D. 点 C 在直线 BA 的延长线上4. 如图是一个正方体的平面展开图,折叠成正方体后与“建”字所在面相对的面的字是()(第 4 题图)A. 创B. 教C. 强D. 市5. 如图,点 C 为线段 AB 的中点,点 D 为线段 AC 的中点、已知 AB=8 ,则 BD= ()(第 5 题图)A. 2B. 4C. 6D. 86. 如图,点 C 是线段 AB 上的点,点 D 是线段 BC 的中点, AB=10 , AC=6 ,则线段 CD 的长是()(第 6 题图)A.4B.3C.2D.17. 下面四个图形是如图的展开图的是()(第 7 题图)A. B. C. D.8. 如图,从 A 到 B 的四条路径中,最短的路线是()(第 8 题图)A. A ﹣ E ﹣ G ﹣ BB. A ﹣ E ﹣ C ﹣ BC. A ﹣ E ﹣ G ﹣ D ﹣ BD. A ﹣ E ﹣ F ﹣ B9. 下列图形中,经过折叠可围成长方体的是()10. 观察图形,下列说法正确的个数是()① 直线和直线是同一条直线;② 射线和射线是同一条射线;③ .A.1B.2C.3D.0二 . 填空题11. 笔尖在纸上快速滑动写出英文字母 C ,这说明了 ________ .12. 如图,点 E , F 分别是线段 AC , BC 的中点,若 EF=3 厘米,则线段 AB= 厘米.(第 12 题图)13. 下列图形中,是柱体的有 ________ .(填序号)14. 用 6 根火柴最多组成 ________ 个一样大的三角形,所得几何体的名称是________ .15. 将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,应剪去 ____ (填序号) .(第 15 题图)16. 如图是一个长方体的表面展开图,其中四边形 ABCD 是正方形,根据图中标注的数据可求得原长方体的体积是 ________cm 3 .(第 16 题图)17. 如图,线段 AC=BD ,那么 AB=________ .(第 17 题图)18. 如图所示, C 和 D 是线段的三等分点, M 是 AC 的中点,那么 CD=________BC ,AB=________MC .(第 18 题图)3. 解答题19. 如图,各图中的阴影图形绕着直线 I 旋转 360 °,各能形成怎样的立体图形 ?(第 19 题图)20. 将长为 10 厘米的一条线段用任意方式分成 5 小段,以这 5 小段为边可以围成一个五边形.问其中最长的一段的取值范围.21. 如图,一个正五棱柱的底面边长为 2cm ,高为 4cm .( 1 )这个棱柱共有多少个面?计算它的侧面积;( 2 )这个棱柱共有多少个顶点?有多少条棱?( 3 )试用含有 n 的代数式表示 n 棱柱的顶点数、面数与棱的条数.(第 21 题图)22. 如图是由 6 个相同的正方形拼成的图形,请你将其中一个正方形移动到合适的位置,使它与另 5 个正方形能拼成一个正方体的表面展开图.(请在图中将要移动的那个正方形涂黑,并画出移动后的正方形).(第 22 题图)23. 如图,在无阴影的方格中选出两个画出阴影,使它们与图中 4 个有阴影的正方形一起可以构成一个正方体的表面展开图.(在图 1 和图 2 中任选一个进行解答,只填出一种答案即可)(第 23 题图)24. 如图, A 、 B 是公路 L 两旁的两个村庄,若两村要在公路上合修一个汽车站,使它到 A 、 B 两村的距离和最小,试在 L 上标注出点 P 的位置,并说明理由.(第 24 题图)25. 如图,已知 AD=5cm , B 是 AC 的中点, CD= AC .求 AB 、 BC 、 CD 的长.(第 25 题图)26. 已知,如图,线段 AD=10cm ,点 B , C 都是线段 AD 上的点,且 AC=7cm ,BD=4cm ,若 E , F 分别是线段 AB , CD 的中点,求 BC 与 EF 的长度.(第 26 题图)答案一 . 1.C 【解析】由题意修建兰宁高速公路时,有时需将弯曲的道路改直,修路肯定要尽量缩短两地之间的里程,从而减少成本,就用到两点间线段最短公理.故选C.2.C 【解析】第一层露出 5 个面;第二层露出 4 × 2+2 个面;第三层露出 4 ×2+3+2 × 1+2 ;底面 6 个面.所以露出的面积 =5+4 × 2+2+4 × 2+3+2 ×1+2+6=36 .故选 C.3.B 【解析】延长线段 AB 到 C ,则点 C 在直线 AB 上 . 故选 B.4.C 【解析】因为正方体的表面展开图,相对的面之间一定相隔一个正方形,所以“建”与“强”是相对面.故选 C .5.C 【解析】因为点 C 为线段 AB 的中点, AB=8 ,则 BC=AC=4 .点 D 为线段 AC 的中点,则 AD=DC=2 .所以 BD=CD+BC=6 .故选 C .6.C 【解析】因为 AB=10 , AC=6 ,所以 BC=AB ﹣ AC=10 ﹣ 6=4 ,又因为点 D 是线段 BC 的中点,所以 CD= BC= × 4=2 .故选 C .7.A 【解析】 A 、能折叠成原正方体的形式,符合题意; B 、 C 带图案的三个面不相邻,没有一个公共顶点,不能折叠成原正方体的形式,不符合题意; D 、折叠后带圆圈的面在上面时,带三角形的面在左边与原正方体中的位置不同,不符合题意.故选 A .8.D 【解析】最短的路线是 A ﹣ E ﹣ F ﹣ B .故选 D .9.B 【解析】 A 、 C 、 D 不能折叠成长方体,只有 B 符合条件 .10.C 【解析】① 直线和直线是同一条直线,正确;② 射线和射线是同一条射线,都是以为端点,同一方向的射线,正确;③ 由“两点之间,线段最短”知,故此说法正确 . 所以共有 3 个正确的.故选 C .二 . 11. 点动成线【解析】笔尖在纸上快速滑动写出英文字母 C ,这说明了点动成线;故答案为:点动成线.12. 6 【解析】因为点 E , F 分别是线段 AC , BC 的中点,所以 CE=12AB ,BF=12BC ,所以 EF=CE ﹣ CF=12AC ﹣ 12BC=12 ( AC ﹣ BC ) =3 ,所以 AC ﹣ BC=6 ,即 AB=6 .13. ②③⑥ 【解析】①是圆锥,②是正方体,属于棱柱,③是圆柱,④是棱锥,⑤是球,⑥是三棱柱.所以是柱体的有②③⑥.14. 4 ;三棱锥或四面体【解析】要使搭的个数最多,就要搭成三棱锥,这时最多可以搭 4 个一样的三角形.图形如下:故答案为: 4 ,三棱锥或四面体.(第 14 题答图)15. 1 或 2 或 6 【解析】根据有“田”字格的展开图都不是正方体的表面展开图可知,应剪去 1 或 2 或 6 ,答案不唯一.16. 12 【解析】因为四边形 ABCD 是正方形,所以 AB=AE=4cm ,所以立方体的高为:( 6 ﹣ 4 )÷ 2=1 ( cm ),所以 EF=4 ﹣ 1=3 ( cm ),所以原长方体的体积是: 3 × 4 × 1=12( cm 3 ).(第 16 题答图)17.CD 【解析】由题意得: AB ﹣ BC=BD ﹣ BC ,故可得: AB=CD .故答案为:CD .18. ; 6 【解析】【由已知条件可知 CD= AB , BC= AB ,所以 CD= BC ;又因为 AB=3AC , MC= AC ,所以 AB=6MC .故答案为 CD= BC ; AB=6MC .三 . 19. 第一个可以得到圆柱;第二个可以得到圆锥;第三个可以得到球.20. 【解】设最长的一段 AB 的长度为 x 厘米(如图),则其余 4 段的和为( 10 ﹣x )厘米.因为它是最长的边,假定所有边相等,则此时它最小为 2 .又由线段基本性质知 x < 10 ﹣ x ,所以 x < 5 ,所以2 ≤ x < 5 .即最长的一段 AB 的长度必须大于等于 2 厘米且小于 5 厘米.(第 20 题答图)21. 【解】( 1 )侧面有 5 个,底面有 2 个,共有 5+2=7 个面;侧面积: 2 × 5 × 4=40 ( cm 2 ).( 2 )顶点共 10 个,棱共有 15 条;( 3 ) n 棱柱的顶点数 2n ;面数 n+2 ;棱的条数 3n .22. 【解】答案如下:或或等.23. 【解】只写出一种答案即可.图 1 :图 2 :24. 【解】点 P 的位置如下图所示:作法是:连接 AB 交 L 于点 P ,则 P 点为汽车站位置,理由是:两点之间,线段最短.25. 【解】设 AC=x ,有 x+ x=5 ,解得: x=3 ,即 AC=3cm ,所以 CD=2 ,又 B 是 AC 的中点, AB=BC= cm26. 【解】由线段的和差,得 AC+BD=AC+BC+CD=AD+BC=7+4=11cm ,由 AD=10cm ,得 10+BC=11 ,解得 BC=1cm ;由线段的和差,得AB+CD=AD ﹣ BC=10 ﹣ 1=9cm ,由 E , F 分别是线段 AB , CD 的中点,得AE= AB , DF= CD .由线段得和差,得EF=AD ﹣( AE+DF ) =AD ﹣(AB+ CD ) =10 ﹣( AB+CD ) =10 ﹣= cm .第2章检测卷一.选择题1.- 的绝对值是()A. -B.C. 3D. -32.如果m表示有理数,那么|m|+m的值()A. 可能是负数;B. 不可能是负数;C. 必定是正数;D. 可能是负数也可能是正数3.下列各数中:+3、-2.1、−、9、、-(-8)、0、-|+3|负有理数有()A. 2个B. 3个C. 4个D. 5个4.2的相反数是()A. 2B.C. -2D. -5.﹣3的绝对值是()A. -3B.C.D. 36.﹣的绝对值为()A. -2B. -C.D. 17.数轴上的点A到原点的距离是4,则点A表示的数为()A. 4B. -4C. 4或﹣4D. 2或﹣28.某大米包装袋上标注着“净含量10kg±150g”,小华从商店买了2袋大米,这两袋大米相差的克数不可能是()A. 100gB. 150gC. 300gD. 400g9.在纪念“中国人民抗日战争暨世界反法西斯战争胜利70周年”知识竞赛中,如果把加10分记为“+10分”,那么扣20分应记为()A. 10分B. ﹣20分C. ﹣10分D. +20分10.若向东走15米记为+15米,则向西走28米记为()A. ﹣28米B. +28米C. 56米D. ﹣56米二.填空题11.如果a﹣3与a+1互为相反数,那么a=________12.同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间的距离是________(2)数轴上表示x与2的两点之间的距离可以表示为________(3)如果|x﹣2|=5,则x=________(4)同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是________13.比较大小:﹣________ ﹣|﹣|.14.数轴上离开原点3个单位长的点所表示的数是________.15.在数轴上,﹣2对应的点为A,点B与点A的距离为,则点B表示的数为________.16.如果“盈利5%”记作+5%,那么亏损3%记作________.17.用“>”“<”或“=”连接:﹣π________﹣3.14.18.数轴上有两个点A和B,点A表示的数是,点B与点A相距2个单位长度,则点B所表示的实数是________.三.解答题19.某校对七年级男生进行定跳远测试,以能跳1.7m及以上为达标.超过1.7m的厘米数用正数表示,不足1.7m的厘米数用负数表示.第一组10名男生成绩如下(单位:cm):+2 -1 0 -5 +8 0 +4 -7 +10 -3问:第一组有百分之几的学生达标?20.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A,B两点的位置,分别写出它们所表示的有理数.(2)请问A,B两点之间的距离是多少?(3)在数轴上画出与点A的距离为2的点(用不同于A,B的其它字母表示),并写出这些点表示的数.21.随着人们的生活水平的提高,家用轿车越来越多地进入普通家庭.小明家买了一辆小轿车,他连续记录了7天中每天行驶的路程,以50km为标准,多于50km的记为“+”,不足50km的记为“﹣”,刚好50km的记为“0”,记录数据如下表:时间第一天第二天第三天第四天第五天第六天第七天路程(km)﹣8 ﹣11 ﹣14 0 ﹣16 +41 +8(1)请你估计小明家的小轿车一月(按30天计)要行驶多少千米?(2)若每行驶100km需用汽油8L,汽油每升7.14元,试求小明家一年(按12个月计)的汽油费用是多少元?22.在数轴上把下列各数表示出来,并用“<”连接各数.﹣|﹣2.5|,112 , 0,﹣(﹣212),﹣(﹣1) 100 ,﹣2 2 .23.某服装店以每件82元的价格购进了30套保暖内衣,销售时,针对不同的顾客,这30套保暖内衣的售价不完全相同,若以100元为标准,将超过的钱数记为正,不足的钱数记为负,则记录结果如表所示:售出件数7 6 7 8 2售价(元)+5 +1 0 ﹣2 ﹣5请你求出该服装店在售完这30套保暖内衣后,共赚了多少钱?24.某人用400元购买了8套儿童服装,准备以一定价格出售,如果每套儿童服装以55元的价格为标准,超出的记作正数,不足的记作负数,记录下:+2,﹣4,+2,+1,﹣2,﹣1,0,﹣2当它卖它这8套儿童服装后是盈利还是亏损?盈利(亏损)多少钱?答案一. 1.B 【解析】 |- |= .故- 的绝对值是.故选B.2.B 【解析】当m>0时,原式=2m>0.当m=0时,原式=0.当m<0时,原式=0.故选B.3.B 【解析】把各式化简得:3,-2.1,- ,9,1.4,8,0,-3.-2.1为负数有限小数,- 为负数无限循环小数,-|+3|是负整数,所以是负有理数.共3个.故选B.4.C 【解析】根据相反数的含义,可得2的相反数是:﹣2.故选C.5.D 【解析】:因为﹣3的绝对值表示﹣3到原点的距离,所以|﹣3|=3.故选D.6.C 【解析】因为|﹣|= ,所以﹣的绝对值为.故选C.7.C 【解析】在数轴上,4和﹣4到原点的距离为4.所以点A所表示的数是4和﹣4.故选C.8.D 【解析】根据题意得:10+0.15=10.15(kg),10﹣0.15=9.85(kg),因为两袋两大米最多差10.15﹣9.85=0.3(kg)=300(g),所以这两袋大米相差的克数不可能是400g.故选D.9.B 【解析】把加10分记为“+10分”,那么扣20分应记为﹣20分.故选B.10.A 【解析】向东走15米记为+15米,则向西走28米记为﹣28米.故选A.二. 11. 1 【解析】由题意得,a﹣3+a+1=0,解得a=1.故答案为1.12. 7;|x﹣2|;7或﹣3;﹣3、﹣2、﹣1、0、1 【解析】(1)数轴上表示5与﹣2两点之间的距离是|5﹣(﹣2)|=|5+2|=7,故答案为:7;(2)数轴上表示x与2的两点之间的距离可以表示为|x﹣2|,故答案为:|x﹣2|;(3)因为|x﹣2|=5,所以x﹣2=5或x﹣2=﹣5,解得:x=7或x=﹣3,故答案为:7或﹣3;(4)因为|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,|x+3|+|x﹣1|=4,所以这样的整数有﹣3、﹣2、﹣1、0、1,故答案为:﹣3、﹣2、﹣1、0、1;13.<【解析】因为﹣|﹣34|=﹣34 ,所以两数均为负,取其相反数做商,即45÷34=1615>1.即45>34 ,所以﹣45<﹣34=﹣|﹣34|.故答案为:<.14.±3 【解析】设数轴上离开原点3个单位长的点所表示的数是x,则|x﹣0|=3,解得x=±3.故答案为:±3.15. 7 ﹣2或﹣7 ﹣2 【解析】设B点表示的数是x,因为﹣2对应的点为A,点B 与点A的距离为 7 ,所以|x+2|= 7 ,解得x= 7﹣2或x=﹣7﹣2.故答案为:7﹣2或﹣7﹣2.16.﹣3% 【解析】“盈利5%”记作+5%,那么亏损3%记作﹣3%,故答案为:﹣3%.17. <【解析】因为|﹣π|=π,|﹣3.14|=3.14,而π>3.14,所以﹣π<﹣3.14.故答案为<.18. ,【解析】当点 B 在点 A 的右侧时,点 B 所表示的实数是;当点 B 在点 A 的左侧时,点 B 表示的实数是;所以点 B 所表示的实数是或.三. 19. 【解】根据题意,得超过1.7m的用正数表示,不足的用负数表示.由表格可知这10名男生的成绩是正数的有4个,刚好为0m的有2个,所以一共有6名成绩达标,则6÷10×100%=60%.答:第一组有60%的学生达标.20. 【解】(1)根据所给图形可知A:1,B:﹣2.5 .(2)依题意得:AB之间的距离为:1+2.5=3.5 .(3)设这两点为C、D,则这两点为C:1﹣2=﹣1,D:1+2=3.21. 【解】(1)=50,50×30=1500(km).答:小明家的小轿车一月要行驶1500千米 .(2)×8×7.14×12=10281.6(元),答:小明家一年的汽油费用是10281.6元.22. 【解】:因为﹣|﹣2.5|﹣2.5,﹣(﹣212)=212=2.5,﹣(﹣1) 100 =﹣1,﹣2 2 =﹣4,所以如图所示:所以用“<”连接各数为:﹣2 2 <﹣|﹣2.5|<﹣(﹣1) 100 <0<112<﹣(﹣212).23. 【解】 7×(100+5)+6×(100+1)+7×100+8×(100﹣2)+2×(100﹣5)=735+606+700+784+190=3015,30×82=2460(元),3015﹣2460=555(元) .答:共赚了555元 .24. 【解】售价:55×8+(2﹣4+2+1﹣2﹣1+0﹣2)=440﹣4=436,盈利:436﹣400=36(元).答:当它卖完这8套儿童服装后盈利36元 .第3章检测卷一.选择题1.计算:(﹣)×(﹣2)的结果等于()A. 1B. -1C. 4D. -2.计算:的结果是()A. -1B. 1C.D. -493.(﹣1) 2015 的值是()A. -1B. 1C. 2015D. -20154.形如式子叫作二阶行列式,它的运算法则用公式表示为=ad﹣bc,依此法则计算的结果为()A.-5B.-11C.5D.115.长汀冬季的某天的最高气温是8℃,最低气温是﹣1℃,则这一天的温差是()A. 9℃B. ﹣7℃C. 7℃D. ﹣9℃6.计算:﹣1﹣1的值为()A. 0B. -1C. -2D. -37.计算:1﹣1×(﹣3)=()A. 0B. 4C. -4D. 58.下列计算正确的是()A.2 3 =6B.﹣4 2 =﹣16C.﹣8﹣8=0D.﹣5﹣2=﹣39.计算(﹣20)+16的结果是()A.4B.4C.﹣2016D.201610.马小虎做了6道题:①(﹣1) 2013 =﹣2013;②0﹣(﹣1)=1;③﹣+ =﹣;④ ÷(﹣)=﹣1;⑤2×(﹣3) 2 =36;⑥﹣3÷ ×2=﹣3.那么,他做对了()题.A. 1道B.2道C.3道D.4道二.填空题11.-6×0×10=________ .12.小芳在用计算器计算“14.9×73”时,发现计算器的小数点键坏了,你还能用这个计算器把正确的结果算出来吗?请把你想到的方法用算式表示出来:________ .13.若m<n<0,则(m+n)(m﹣n)________ 0.(填“<”、“>”或“=”)14.如图是一个计算程序,若输入的值为﹣1,则输出的结果应为________.15.为了求1+3+3 2 +3 3 +…+3 100 的值,可令M=1+3+3 2 +3 3 +…+3 100 ,则3M=3+3 2 +3 3 +…+3 101 ,因此3M﹣M=3 101 ﹣1,所以M= ,即1+3+32 +3 3 +…+3 100 = ,仿照以上推理计算:1+5+5 2 +5 3 +…+5 2016 的值是________.16.计算:﹣5÷ ×5=________,(﹣1) 2000 ﹣0 2015 +(﹣1) 2016 =___ _,(﹣2) 11 +(﹣2) 10 =________.17.规定a*b=5a+2b﹣1,则(﹣3)*7的值为________ .三.解答题18.一个病人每天下午需要测量一次血压,下表是该病人周一至周五高压变化情况,该病人上个周日的高压为160单位.星期一二三四五高压的变化(与前一天比较)升25单位降15单位升13单位升15单位降20单位(1)该病人哪一天的血压最高?哪一天血压最低?(2)与上周比,本周五的血压是升了还是降了?19.你吃过“手拉面”吗?如果把一个面团拉开,然后对折,再拉开,再对折,……如此往复下去,对折10次,会拉出多少根面条?20.用简便方法计算:(﹣﹣+ )÷(﹣).21.小强有5张卡片写着不同的数字的卡片,他想从中取出2张卡片,使这2张卡片上数字乘积最大.(1)使数字的积最小,应如何抽?最小积是多少?(2)使数字的积最大,应如何抽?最大积是多少?22.(1)计算下列各题:①2 2 ×3 2 与(2×3) 2 ;②(﹣2) 4 ×3 4 与(﹣2×3) 4 ;③2 7 ×2与2 8 .(2)比较(1)中的结果,由此可以推断a n ×b n (a×b) n , a n+1 a n ×a.(3)试根据(2)的结论,不用计算器计算0.125 2010 ×8 2011 的值.23.已知|x|=3,y 2 =4,且x+y<0,求的值.答案一. 1.A 【解析】(﹣)×(﹣2)=1.故选A.2.C 【解析】原式=﹣1× × =﹣.故选C.3.A 【解析】(﹣1) 2015 =﹣1.故选A.4.A 【解析】根据题意,得=2×(﹣4)﹣(﹣3)×1=﹣8+3=﹣5.故选A.5.A 【解析】 8﹣(﹣1)=9(℃).故选:A.6.C 【解析】﹣1﹣1=﹣2.故选C.7.B 【解析】 1﹣1×(﹣3)=1﹣(﹣3)=4.故选:B.8.B 【解析】 A、2 3 =8≠6,错误; B、﹣4 2 =﹣16,正确;C、﹣8﹣8=﹣16≠0,错误;D、﹣5﹣2=﹣7≠﹣3,错误.故选B.9.A 【解析】(﹣20)+16 =﹣(20﹣16)=﹣4.故选A.10.C 【解析】因为(﹣1) 2013 =﹣1,所以①不正确;因为0﹣(﹣1)=1,所以②正确;因为﹣+ =﹣,所以③正确;因为÷(﹣)=﹣1,所以④正确;因为2×(﹣3) 2 =18,所以⑤不正确;因为﹣3÷ ×2=﹣12,所以⑥不正确.综上,可得他做对了3题:②、③、④.故选C.二. 11. 0 【解析】原式=0×(-10)=0,0和任何数相乘都等于0.12. 149÷10×73 【解析】根据题意得:149÷10×73.13. >【解析】解:因为m<n<0,所以m+n<0,m﹣n<0,所以(m+n)(m﹣n)>0.故答案是>.14. 7 【解析】依题意,所求代数式为(a 2 ﹣2)×(﹣3)+4=[(﹣1) 2 ﹣2]×(﹣3)+4=[1﹣2]×(﹣3)+4=﹣1×(﹣3)+4=3+4=7.15. 【解析】设M=1+5+5 2 +5 3 +…+5 2016 ,则5M=5+5 2 +5 3 +54 …+5 2017 ,两式相减得:4M=5 2017 ﹣1,则M= .16.﹣125;2;﹣2 10 【解析】原式=﹣5×5×5=﹣125,原式=1﹣0+1=2,原式=(﹣2) 10 ×(﹣2+1)=﹣2 10 .故答案为:﹣125;2;﹣2 1017. -2 【解析】(﹣3)*7 =5×(﹣3)+2×7﹣1=﹣15+14﹣1=﹣2.18. 8 【解析】因为a+8+b﹣5=8+b﹣5+c=b﹣5+c+d=﹣5+c+d+4,所以a+8+b﹣5=8+b﹣5+c①,8+b﹣5+c=b﹣5+c+d②,b﹣5+c+d=﹣5+c+d+4③,所以a﹣5=c﹣5,8+c=c+d,b﹣5=﹣5+4,所以b=4,d=8,a=c.故答案为8.三. 19. 【解】(1)因为第一天,185;第二天,170;第三天,183;第四天,198;第五天,178,所以该病人周四的血压最高,周二的血压最低低;(2)因为+25﹣15+13+15﹣20=18,所以与上周比,本周五的血压升了.20. 【解】对折一次拉出的面条根数是,2 1 =2 ;对折二次拉出的面条根数是,2 2 =4 ;对折三次拉出的面条根数是,2 3 =8 ;……对折10次拉出的面条根数是,2 10 =1024 ;所以对折10次,会拉出1024根面条.21. 【解】原式=(﹣﹣+ )×(﹣36)=16+15﹣6=25.22. 【解】(1)抽取﹣8和4,数字的积最小,﹣8×4=﹣32;(2)抽取﹣8和﹣3.5,数字的积最大,﹣8×(﹣3.5)=28.23. 【解】(1)①2 2 ×3 2 =36,(2×3) 2 =36;②(﹣2) 4 ×3 4 =1296,(﹣2×3) 4 =1296;③2 7 ×2=256,2 8 =256;(2)由(1)可以推断a n ×b n =(a×b) n , a n+1 =a n ×a;(3)0.125 2010 ×8 2011 =(18×8) 2010 ×8=8.24. 【解】因为|x|=3,y 2 =4,所以x=±3,y=±2.因为x+y<0,所以当x=﹣3时,y=2或x=﹣3,y=﹣2,所以当x=﹣3,y=2时,=﹣;当x=﹣3,y=﹣2时,= .第 4 章检测卷一 . 选择题1. 为了了解我市城区某一天的气温变化情况,应选择()A. 条形统计图B. 折线统计图C. 扇形统计图D. 以上图形均可2. 要了解一批电视机的使用寿命,从中任意抽取 40 台电视机进行试验,在这个问题中,样本是()A. 每台电视机的使用寿命B. 40 台电视机C. 40 台电视机的使用寿命D. 403. 如图的两个统计图,女生人数多的学校是()(第 3 题图)A. 甲校B. 乙校C. 甲、乙两校女生人数一样多D. 无法确定4. 八年级( 1 )班有 60 位学生,秋游前,班长把全班学生对秋游地点的意向绘制成了扇形统计图,其中想去“动物园”的学生数的扇形的圆心角为 60 °,则下列说法正确的是()A. 想去动物园的学生占全班学生的 60%B. 想去动物园的学生有 36 人C. 想去动物园的学生肯定最多D. 想去动物园的学生占全班学生的5. 某市从参加数学质量检测的 4355 名学生中,随机抽取了部分学生的成绩为研究对象,结果如表所示:分数段0 ~ 60 60 ~ 72 72 ~ 84 84 ~ 96 96 ~ 108 108 ~ 120 人数(人) 5 8 35 42 15百分比20% 40%则被抽取的学生人数是()A. 70 人B. 105 人C. 175 人D. 200 人6. 下列调查中,适宜采用全面调查(普查)方式的是()A. 调查长江流域的水污染情况B. 调查重庆市民对中央电视台 2016 年春节联欢晚会的满意度C. 为保证我国首艘航母“瓦良格”的成功试航,对其零部件进行检查D. 调查一批新型节能灯泡的使用寿命7. 今天我们全区约 1500 名初二学生参加数学考试,拟从中抽取 300 名考生的数学成绩进行分析,则在该调查中,样本指的是()A. 300 名考生的数学成绩B. 300C. 1500 名考生的数学成绩D. 300 名考生8. 为直观反映某种股票的涨跌情况,选择()最合适.A. 扇形统计图B. 条形统计图C. 折线统计图D. 统计表9. 下列调查中,其中适合采用抽样调查的是()①检测深圳的空气质量;②为了解某中东呼吸综合征( MERS )确诊病人同一架飞机乘客的健康情况;③为保证“神舟 9 号”成功发射,对其零部件进行检查;④调查某班 50 名同学的视力情况.A. ①B. ②C. ③D. ④10. 某校对学生上学方式进行了一次抽样调查,如图是根据此次调查结果所绘制的一个未完成的扇形统计图,已知该校学生共有 2560 人,被调查的学生中骑车的有21 人,则下列四种说法中,不正确的是()(第 10 题图)A. 被调查的学生有 60 人B. 被调查的学生中,步行的有 27 人C. 估计全校骑车上学的学生有 1152 人D. 扇形图中,乘车部分所对应的圆心角为 54 °二 . 填空题11. 小亮对 60 名同学进行节水方法选择的问卷调查(每人选择一项),人数统计如图,如果绘制成扇形统计图,那么表示“一水多用”的扇形圆心角的度数是________ .(第 11 题图)12. 如图是某城市 2010 年以来绿化面积变化折线图,根据图中所给信息可知,2011 年、 2012 年、 2013 年这三年中,绿化面积增加最多的是年.(第 12 题图)13. 清明期间,某校师生组成 200 个小组参加“保护环境,美化家园”植树活动.综合实际情况,校方要求每小组植树量为 2 至 5 棵,活动结束后,校方随机抽查了其中 50 个小组,根据他们的植树量绘制出如图所示的两幅不完整统计图.请根据图中提供的信息,解答下面的问题:(第 13 题图)( 1 )请把条形统计图补充完整,并算出扇形统计图中,植树量为“ 5 棵树”的圆心角是 °.( 2 )请你帮学校估算此次活动共种 ________ 棵树.14. 根据环保公布的重庆市 2014 年至 2015 年 PM2.5 的主要来源的数据,制成扇形统计图,其中所占百分比最大的主要来源是 ________ (观察图形填主要来源的名称).(第 14 题图)15. 调查某城市的空气质量,应选择(填抽样或全面)调查.16. 从某市不同职业的居民中抽取 200 户调查各自的年消费额,在这个问题中样本是 ________.17. 为了考察某区 3500 名毕业生的数学成绩,从中抽出 20 本试卷,每本 30 份,在这个问题中,样本容量是 ________ .18. 某市为了了解七年级学生的身体素质情况,随机抽取了 500 名七年级学生进行检测,身体素质达标率为 92% ,请你估计该市 6 万名七年级学生中,身体素质达标的大约有 ________ 万人.三 . 解答题19. 某市为了了解七年级学生的身体素质情况,随机抽取了本市七年级部分学生的身体素质测试成绩为样本,按 A (优秀)、 B (良好)、 C (合格)、 D (不合格)四个等级进行统计,并将统计结果绘制成如图的统计图表,请你结合图表所给的信息解答下列问题:等级 A (优秀) B (良好) C (合格) D (不及格)人数80 200 160 60(1)请你根据图表中的信息计算出所抽取的样本容量是多少;( 2 )请将表格中缺少的数据补充完整;( 3 )如果本市共有 50000 名七年级学生,试估计出合格以上(包括合格)的学生有多少人.(第 19 题图)20. 从 2013 年 1 月 7 日起,中国中东部大部分地区持续出现雾霾天气,某市记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表.组别观点频数(人数)A 大气气压低,空气不流动80B 地面灰尘大,空气湿度低mC 汽车尾气排放nD 工厂造成污染120E 其他60请根据图表中提供的信息解答下列问题:(Ⅰ)求接受调查的总人数;(Ⅱ) m 、 n 各等于多少?扇形统计图中 E 组所占的百分比是多少?(Ⅲ)若该市人口约有 100 万人,请你估计其中持 D 组“观点”的市民人数.(第 20 题图)21. 三名同学想了解所在城市的小学生是否感觉学习压力大,他们各自提出了自己的调查设想.甲:周末去公园,随机询问 10 个小学生,就可以知道大致情况了.乙:我有个弟弟,正在上小学,成绩中等,问问他就可以了解绝大部分学生的感受了.丙:我妈妈是小学老师,向她询问就可以了.你觉得这三位同学提出的调查方式,能比较客观地反映“他们所在城市的小学生是否感觉学习压力大”吗?为什么?22. 小华在 A 班随机询问了 30 名同学,其中有 10 人患有近视,他又在同年级的 B 班询问了 2 名同学,发现其中有 1 人患有近视,于是,他认为 B 班的近视率比 A 班高,你同意他的观点吗?23. 某学生组织全体学生参加了“走出校门,服务社会”的活动,八年级一班同学统计了该天本班学生打扫街道,去敬老院服务和到社区文艺演出的人数,并做了如下直方图和扇形统计图.请根据该班同学所作的两个图形解答:( 1 )八年级一班有多少名学生?( 2 )求去敬老院服务的学生人数,并补全直方图的空缺部分.( 3 )若八年级有 800 名学生,估计该年级去敬老院的人数.(第 23 题图)24. 某校为了解九年级学生近两个月“推荐书目”的阅读情况,随机抽取了该年级的部分学生,调查了他们每人“推荐书目”的阅读本数.设每名学生的阅读本数为 n ,并按以下规定分为四档:当 n < 3 时,为“偏少”;当3 ≤ n < 5 时,为“一般”;当 5 ≤ n < 8 时,为“良好”;当n ≥ 8 时,为“优秀”.将调查结果统计后绘制成不完整的统计图表:阅读本数 n (本) 1 2 3 4 5 6 7 8 9 人数(名) 1 2 6 7 12 x 7 y 1请根据以上信息回答下列问题:( 1 )求出本次随机抽取的学生总人数;( 2 )分别求出统计表中的 x , y 的值;( 3 )估计该校九年级 400 名学生中为“优秀”档次的人数.(第 23 题图)答案一 . 1.B 【解析】天气的温度变化会随着每天的基本情况进行变化,故,只有折线统计图适合题意。
第1章 基本的几何图形数学七年级上册-单元测试卷-青岛版(含答案)
第1章基本的几何图形数学七年级上册-单元测试卷-青岛版(含答案)一、单选题(共15题,共计45分)1、如图是正方体的表面展开图,则与“前”字相对的字是()A.认B.真C.复D.习2、已知点A(-3,2),B(3,2),则A,B两点相距()A.3个单位长度B.4个单位长度C.5个单位长度D.6个单位长度3、如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是()A.五棱柱B.六棱柱C.七棱柱D.八棱柱4、在数轴上有两个点A、B,点A表示-3,点B与点A相距5个单位长度,则点B表示的数为().A.-2或8B.2或-8C.-2D.-85、如图,从A到B有三条路径,最短的路径是②,理由是()A.两点确定一条直线B.两点之间线段最短C.过一点有无数条直线 D.直线比曲线和折线短6、如图是一个正方体的表面展开图,若折叠成正方体后相对面上的两个数互为相反数,则的值分别为()A. B. C. D.7、下列图形中,能通过折叠围成一个三棱柱的是()A. B. C. D.8、直线a上有四个不同的点依次为A、B、C、D.那么到A、B、C、D的距离之和最小的点()A.可以是直线AD外的某一点B.只是B点和C点C.只是线段AD的中点 D.有无数多个点9、两条相交直线与另一条直线在同一平面,它们的交点个数是()A.1B.2C.3或2D.1或2或310、下列语句中表述正确的是()A.延长直线ABB.延长线段ABC.作直线AB=BCD.延长射线OC11、下面的几何体,是由A、B、C、D中的哪个图旋转一周形成的( )A. B. C. D.12、下面是小明按照语句画出的四个图形:(1)直线EF经过点C;(2)点A在直线l外;(3)经过点O的三条线段a、b、c;(4)线段AB、CD相交于点B.他所画图形中,正确的个数是()A.1B.2C.3D.413、数轴是一条( )A.射线B.直线C.线段D.以上都是14、如图,将正方体相邻的两个面上分别画出3×3的正方形网格,并分别用图形“”和“○”在网格内的交点处做上标记,则该正方体的表面展开图是()A. B. C. D.15、如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.5B.25C.10 +5D.35二、填空题(共10题,共计30分)16、一块方形蛋糕,一刀切成相等的两块,两刀最多切成4块,试问:五刀最多可切成________块相等体积的蛋糕,十刀最多可切成________块(要求:竖切,不移动蛋糕).17、从运动的观点看,点动成________,线动成________,面动成________.18、如图,一束光线从y轴上点A(0,1)发出,经过x轴上点C反射后,经过点B(6,2),则光线从A点到B点经过的路线的长度为________.19、修高速公路时,为减小成本尽可能要将弯曲的公路改直,数学依据是________.20、直线AB外有C、D两个点,由点A、B、C、D可确定的直线条数是________21、如图是正方体的展开图,则原正方体相对两个面上的数字和的最大值是________ .22、如图,已知点在线段上,点、分别是线段、的中点,且,则图中共有________条线段,线段的长度=________ .23、我们知道平面内到两个定点距离之比为常数(常数大于零且不为1)的点轨迹是一个圆,那么在平面直角坐标系内到原点(0,0)和点(3,0)距离之比为2的圆的圆心坐标是________.24、如图,阴影部分扇形的面积占整个面积的15%,则此扇形的圆心角的度数是________.25、已知线段AB=8cm,在直线AB上有一点C,且BC=4cm,点M是线段AC的中点,线段AM 的长是________.三、解答题(共5题,共计25分)26、有一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱.现在有一个长为6cm,宽为5cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱,它们的体积分别是多大?27、探究:有一弦长6cm,宽4cm的矩形纸板,现要求以其一组对边中点所在直线为轴,旋转180°,得到一个圆柱,现可按照两种方案进行操作:方案一:以较长的一组对边中点所在直线为轴旋转,如图①;方案二:以较短的一组对边中点所在直线为轴旋转,如图②.(1)请通过计算说明哪种方法构造的圆柱体积大;(2)如果该矩形的长宽分别是5cm和3cm呢?请通过计算说明哪种方法构造的圆柱体积大;(3)通过以上探究,你发现对于同一个矩形(不包括正方形),以其一组对边中点所在直线为轴旋转得到一个圆柱,怎样操作所得到的圆柱体积大(不必说明原因)?28、如图,把一个木制正方体的表面涂上颜色,然后将正方体的棱分成相等的四份,并做上标记,得到许多小正方体.问(1)有个小正方体;(2)有个小正方体只有两面涂有颜色(3)有个小正方体只有3面都涂了颜色.(4)有个小正方体6面都未涂色.29、如图是一个正方体的展开图,标注了字母A的面是正方体的正面,如果正方体的左面与右面所标注式子的值相等,求x的值.30、将一个圆分割成三个扇形,它们的圆心角的度数之比为2:3:4,求这三个扇形圆心角的度数.参考答案一、单选题(共15题,共计45分)1、B2、D3、B4、B5、B6、B7、C8、D9、D10、B11、A12、C13、B14、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。
青岛版七年级数学上册第1章测试题及答案
青岛版七年级数学上册第1章测试题及答案1.1我们身边的图形世界一、选择题1.下列几何图形是立体图形的是()A.扇形B.长方形C.正方体D.圆2.在下列立体图形中,只需要一个面就能围成的是()A.正方体B.圆锥C.圆柱D.球3.下列物体的形状类似于球的是()A.乒乓球B.羽毛球C.茶杯D.白织灯泡4.下列几何图形中,属于圆锥的是()A.B.C.D.5.按组成面的平或曲划分,与圆柱为同一类的几何体是()A.长方体B.正方体C.棱柱D.圆锥6.下列物体的形状属于圆柱体的是()A.B.C.D.二、填空题7.若一个棱柱的底面是一个七边形,则它的侧面必须有个长方形,它一共有个面.8.圆锥是由个面围成.9.正方体与长方体的相同点是,不同点是.10.圆柱体的底面形状是.三、解答题11.将下列物体与相应的几何体用线连接起来.12.围成下面这些立体图形的各个面中,哪些面是平的,哪些面是曲的?答案一、1.C 【解析】A、扇形是平面图形,故A错误;B、长方形是平面图形,故B错误;C、长方体是立体图形,故C正确;D、圆是平面图形,故D错误.故选C.2.D 【解析】A、正方体需要六个面,故A不符合题意;B、圆锥需要两个面,故B不符合题意;C、圆柱需要三个面,故C不符合题意;D、球只需一个面,故D符合题意.故选D.3.A 【解析】A、乒乓球的形状类似于球,故A正确;B、羽毛球类似于圆锥,故B错误;C、茶杯类似于圆柱,故C错误;D、白炽灯类似于圆锥加球,故D错误.故选A.4.D 【解析】A、该图形是立方体,故本题选项错误;B、该图形是四棱锥,故本选项错误;C、该图形是球体,故本选项错误;D、该图形是圆锥.故本选项正确.故选D.5.D 【解析】圆柱由平面和曲面组成,长方体由平面组成;正方体由平面组成;棱柱由平面组成,圆锥由平面和曲面组成.故选D.6.C【解析】A、正方体;B、球体;C、圆柱体;D、圆锥体.故选C.二、7.7,9 【解析】一个棱柱的底面是一个七边形,则它的侧面必须有7个长方形,它一共有9个面.8.2 【解析】解:圆锥的侧面为曲面,底面为平面.∴圆锥由2个面围成,其中1个平面,1个曲面.三、9.长方体和正方体都由6个面组成,都有8个顶点、12条棱;长方体是相对的面完全相同,相对的4条棱相等;而正方体的6个面都相等,并且12条棱都相等【解析】由长方体和正方体的特征可知:长方体和正方体都由6个面组成,都有8个顶点、12条棱;不同点:长方体是相对的面完全相同,相对的4条棱相等;而正方体的6个面都相等,并且12条棱都相等.10.圆【解析】圆柱的上下底面为圆.11.【解】如图所示:12.【解】球的表面、圆柱和圆锥的侧面部是曲面.其余的面都是平面.1.2 几何图形一、选择题1.下列图形:①正方形;②圆;③球;④棱柱;⑤圆锥; ⑥六边形.属于立体图形的有( )A 、①③④B 、②④⑤C 、③④⑤D 、③④⑤⑥2. 将如图的直角三角形ABC 绕直角边AB 所在的直线旋转一周得到一个几何体,从上面看这个几何体得到的平面图形是( )(第2题图)A B C D3. 下列图形中,不是正方体平面展开图的是( )A B C D4. 将如图的几何图形,绕直线l 旋转一周得到的立体图形是( )(第4题图)5.正方形的顶点数、面数和棱数分别是( ) A 、8,6,12 B 、6,8,12 C 、8,12,6 D 、6,8,10 6. 将下列的平面图形绕轴旋转一周,可得到圆锥的是( )A B C D7. 汽车的雨刷把玻璃上的雨水刷干净属于的实际应用是( )A. 点动成线B. 线动成面C. 面动成体D. 以上答案都不对8.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是( )AB C DA、和B、谐C、凉D、山二、填空题9. 几何图形是由_______、_______、_______、_______组成的。
(人教版)青岛市七年级数学上册第一单元《有理数》检测题(含答案解析)
一、选择题1.下列运算正确的有( )①()15150--=;②11111122344⎛⎫÷-+= ⎪⎝⎭; ③2112439⎛⎫-= ⎪⎝⎭; ④()30.10.0001-=-;⑤22433-=- A .1个 B .2个 C .3个 D .4个 2.计算:11322⎛⎫⎛⎫-÷-÷- ⎪ ⎪⎝⎭⎝⎭的结果是( ) A .﹣3 B .3C .﹣12D .12 3.在-1,2,-3,4,这四个数中,任意三数之积的最大值是( ) A .6B .12C .8D .24 4.如图是北京地铁一号线部分站点的分布示意图,在图中以正东为正方向建立数轴,有如下四个结论: ①当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣3.5时,表示东单的点所表示的数为6;②当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣7时,表示东单的点所表示的数为12;③当表示天安门东的点所表示的数为1,表示天安门西的点所表示的数为﹣2.5时,表示东单的点所表示的数为7;④当表示天安门东的点所表示的数为2,表示天安门西的点所表示的数为﹣5时,表示东单的点所表示的数为14;上述结论中,所有正确结论的序号是( )A .①②③B .②③④C .①④D .①②③④ 5.下列有理数大小关系判断正确的是( )A .11910⎛⎫-->-⎪⎝⎭ B .010>- C .33-<+D .10.01->- 6.一件商品原售价为2000元,销售时先提价10%;再降价10%,现在的售价与原售价相比( )A .提高20元B .减少20元C .提高10元D .售价一样 7.下列各组数中,不相等的一组是( )A .-(+7),-|-7|B .-(+7),-|+7|C .+(-7),-(+7)D .+(+7),-|-7| 8.将(-3.4)3,(-3.4)4,(-3.4)5从小到大排列正确的是( )A .(-3.4)3<(-3.4)4<(-3.4)5B .(-3.4)5<(-3.4)4<(-3.4)3C .(-3.4)5<(-3.4)3<(-3.4)4D .(-3.4)3<(-3.4)5<(-3.4)4 9.若a ,b 互为相反数,则下面四个等式中一定成立的是( )A .a+b=0B .a+b=1C .|a|+|b|=0D .|a|+b=0 10.已知有理数a ,b 满足0ab ≠,则||||a b a b +的值为( ) A .2± B .±1 C .2±或0 D .±1或0 11.下面说法中正确的是 ( )A .两数之和为正,则两数均为正B .两数之和为负,则两数均为负C .两数之和为0,则这两数互为相反数D .两数之和一定大于每一个加数 12.据中国电子商务研究中心() 发布2017《年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学记数法可表示为( )A .81159.5610⨯元B .1011.595610⨯元C .111.1595610⨯元D .81.1595610⨯元二、填空题13.在数轴上,若点A 与表示3-的点相距6个单位,则点A 表示的数是__________. 14.(1)-23与25的差的相反数是_____. (2)若|a +2|+|b -3|=0,则a -b =_____.(3)-13的绝对值比2的相反数大_____. 15.若两个不相等的数互为相反数,则两数之商为____.16.在-1,2,-3,0,5这五个数中,任取两个数相除,其中商最小是________. 17.绝对值小于100的所有整数的积是______.18.根据二十四点算法,现有四个数3、4、6、10,每个数用且只用一次进行加、减、乘、除,使其结果等于24,则列式为___=24.19.用计算器计算:(1)-5.6+20-3.6=____;(2)-6.25÷25=____;(3)-7.2×0.5×(-1.8)=____;(4)-15×(-2.4)÷(-1.2)=____;(5)4.6÷113-6×3=____; (6)42.74.23.5-≈____(精确到个位). 20.绝对值小于4.5的所有负整数的积为______.三、解答题21.计算(1)112(24)243⎛⎫-⨯-+- ⎪⎝⎭; (2)3221(2)(3)⎡⎤÷---⎣⎦;(3)2202035|5|(1)( 3.14)02π⎛⎫---⨯-+-⨯ ⎪⎝⎭. 22.计算(1)3124623⎛⎫⎛⎫-÷-+⨯- ⎪ ⎪⎝⎭⎝⎭(2)()()34011 1.950.50|5|5---+-⨯⨯--+.23.定义:数轴上给定不重合两点A ,B ,若数轴上存在一点M ,使得点M 到点A 的距离等于点M 到点B 的距离,则称点M 为点A 与点B 的“平衡点”.请解答下列问题:(1)若点A 表示的数为-3,点B 表示的数为1,点M 为点A 与点B 的“平衡点”,则点M 表示的数为_______;(2)若点A 表示的数为-3,点A 与点B 的“平衡点”M 表示的数为1,则点B 表示的数为________;(3)点A 表示的数为-5,点C ,D 表示的数分别是-3,-1,点O 为数轴原点,点B 为线段CD 上一点.①设点M 表示的数为m ,若点M 可以为点A 与点B 的“平衡点”,则m 的取值范围是________;②当点A 以每秒1个单位长度的速度向正半轴方向移动时,点C 同时以每秒3个单位长度的速度向正半轴方向移动.设移动的时间为t (0t >)秒,求t 的取值范围,使得点O 可以为点A 与点B 的“平衡点”.24.计算:(1)()21112424248⎛⎫-+--+⨯- ⎪⎝⎭ (2)()()1178245122-÷-⨯--⨯+÷ 25.以1厘米为1个单位长度用直尺画数轴时,数轴上互为相反数的点A 和点B 刚好对着直尺上的刻度2和刻度8.(1)写出点A 和点B 表示的数;(2)写出在点B 左侧,并与点B 距离为9.5厘米的直尺左端点C 表示的数;(3)若直尺长度为a 厘米,移动直尺,使得直尺的长边CD 的中点与数轴上的点A 重合,求此时左端点C 表示的数.26.计算:329(1)4(2)34⎛⎫--÷-+-⨯ ⎪⎝⎭.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据有理数加减乘除运算法则,和乘方的运算法则逐一判断即可.【详解】()151530--=-,故①错误;11111511211223412121255⎛⎫÷-+=÷=⨯= ⎪⎝⎭,故②错误; 2217492339⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,故③错误; ()30.10.001-=-,故④错误;22433-=-,故⑤正确; 故选A .【点睛】本题考查了有理数的运算,乘方的运算,关键是熟练掌握有理数的运算法则. 2.C解析:C【分析】根据有理数的除法法则,可得除以一个数等于乘以这个数的倒数,再根据有理数的乘法运算,可得答案.【详解】原式﹣3×(﹣2)×(﹣2)=﹣3×2×2=﹣12,故选:C.【点睛】本题考查了有理数的乘除法法则,除以一个数等于乘这个数的倒数,计算过程中,最后结果的正负根据原式中负号的个数确定,原则是奇负偶正.3.B解析:B【分析】三个数乘积最大时一定为正数,二2和4的积为8,因此一定要根据-1和-3相乘,积为3,然后和4相乘,此时三数积最大.【详解】∵乘积最大时一定为正数∴-1,-3,4的乘积最大为12故选B.【点睛】本题考查了有理数的乘法,两个负数相乘积为正数,先将两个负数化为正数是本题的关键.4.D解析:D【分析】数轴上单位长度是统一的,利用图象,根据两点之间单位长度是否统一,判断即可.【详解】:①当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣3.5时,表示东单的点所表示的数为6,故①说法正确;②当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣7时,表示东单的点所表示的数为12,故②说法正确;③当表示天安门东的点所表示的数为1,表示天安门西的点所表示的数为﹣2.5时,表示东单的点所表示的数为7,故③说法正确;④当表示天安门东的点所表示的数为2,表示天安门西的点所表示的数为﹣5时,表示东单的点所表示的数为14,故④说法正确.故选:D.【点睛】本题考查了数轴表示数,数轴的三要素是:原点,正方向和单位长度,因此本题的关键是确定原点的位置和单位长度.5.A解析:A【分析】先化简各式,然后根据有理数大小比较的方法判断即可.【详解】 ∵1199⎛⎫--= ⎪⎝⎭,111010--=-,11910>-, ∴11910⎛⎫-->-- ⎪⎝⎭,故选项A 正确; ∵1010-=,010<, ∴010<-,故选项B 不正确; ∵33-=,33+=, ∴33-=+,故选项C 不正确; ∵11-=,0.010.01-=,10.01>,∴10.01-<-,故选项D 不正确.故选:A .【点睛】本题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.6.B解析:B【分析】根据题意可列式现在的售价为()()2000110110⨯+%⨯-%,即可求解.【详解】解:根据题意可得现在的售价为()()20001101101980⨯+%⨯-%=(元),所以现在的售价与原售价相比减少20元,故选:B .【点睛】本题考查有理数运算的实际应用,根据题意列出算式是解题的关键.7.D解析:D【详解】A.-(+7)=-7,-|-7|=-7,故不符合题意;B.-(+7)=-7,-|+7|=-7,故不符合题意;C.+(-7)=-7,-(+7)=-7,故不符合题意;D.+(+7)=7,−(−7 )=−7,故符合题意,故选D.8.C解析:C【解析】(-3.4)3、 (-3.4)5的积为负数,且(-3.4)3的绝对值小于 (-3.4)5的绝对值,所以(-3.4)3>(-3.4)5 ;(-3.4)4的积为正数,根据正数大于负数,即可得(-3.4)5<(-3.4)3<(-3.4)4,故选C.9.A解析:A【解析】a ,b 互为相反数0a b ⇔+= ,易选B.10.C解析:C【分析】根据题意得到a 与b 同号或异号,原式利用绝对值的代数意义化简即可得到结果.【详解】∵0ab ≠,∴当0a >,0b <时,原式110=-=;当0a >,0b >时,原式112=+=;当0a <,0b <时,原式112=--=-;当0a <,0b >时,原式110=-+=.故选:C .【点睛】本题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.11.C解析:C【详解】A. 两数之和为正,则两数均为正,错误,如-2+3=1;B. 两数之和为负,则两数均为负,错误,如-3+1=-2;C. 两数之和为0,则这两数互为相反数,正确;D. 两数之和一定大于每一个加数,错误,如-1+0=-1,故选C.【点睛】根据有理数加法法则:绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0.可得出结果.12.C解析:C【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】1159.56亿=115956000000,所以1159.56亿用科学记数法表示为1.15956×1011,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题13.−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时当点在表示-3的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-3的点的左边时数为-3−6=−9;②当点在表示-3的点的解析:−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时,当点在表示-3的点的右边时,列出算式求出即可.【详解】分为两种情况:①当点在表示-3的点的左边时,数为-3−6=−9;②当点在表示-3的点的右边时,数为-3+6=3;故答案为:−9或3.【点睛】本题考查了数轴的应用,注意符合条件的有两种情况,不要漏数.14.-5【分析】(1)先计算两个数的差再计算相反数即可;(2)由绝对值的非负性求出ab的值再求出答案即可;(3)由题意列出式子进行计算即可得到答案【详解】解:(1)根据题意则;(2)∵|a+2|+|b-解析:1615-5123【分析】(1)先计算两个数的差,再计算相反数即可;(2)由绝对值的非负性,求出a、b的值,再求出答案即可;(3)由题意列出式子进行计算,即可得到答案.【详解】解:(1)根据题意,则221616()()351515---=--=;(2)∵|a+2|+|b-3|=0,∴20a +=,30b -=,∴2a =-,3b =,∴235a b -=--=-;(3)根据题意,则111(2)22333---=+=; 故答案为:1615;5-;123. 【点睛】 本题考查了绝对值的意义,相反数,列代数式求值,解题的关键是熟练掌握题意,正确的列出式子,从而进行解题.15.-1【分析】设其中一个数为a (a≠0)它的相反数为-a 然后作商即可【详解】解:设其中一个数为a (a≠0)则它的相反数为-a 所以这两个数的商为a÷(-a)=-1故答案为:-1【点睛】本题考查了相反数和解析:-1【分析】设其中一个数为a (a ≠0),它的相反数为-a ,然后作商即可.【详解】解:设其中一个数为a (a ≠0),则它的相反数为-a ,所以这两个数的商为a÷(-a)=-1.故答案为:-1.【点睛】本题考查了相反数和除法法则,根据题意设出这两个数是解决此题的关键.16.-5【分析】所给的五个数中最大的数是5绝对值最小的负数是-1所以取两个相除其中商最小的是:5÷(-1)=-5【详解】∵-3<-1<0<2<5所给的五个数中最大的数是5绝对值最小的负数是-1∴任取两个解析:-5【分析】所给的五个数中,最大的数是5,绝对值最小的负数是-1,所以取两个相除,其中商最小的是:5÷(-1)=-5.【详解】∵-3<-1<0<2<5,所给的五个数中,最大的数是5,绝对值最小的负数是-1,∴任取两个相除,其中商最小的是:5÷(-1)=-5,故答案为:-5.【点睛】本题主要考查有理数的大小比较和有理数除法,解决本题的关键是要熟练掌握有理数大小比较和有理数除法法则.17.0【分析】先找出绝对值小于100的所有整数再求它们的乘积【详解】:绝对值小于100的所有整数为:0±1±2±3…±100因为在因数中有0所以其积为0故答案为0【点睛】本题考查了绝对值的性质要求掌握绝解析:0【分析】先找出绝对值小于100的所有整数,再求它们的乘积.【详解】:绝对值小于100的所有整数为:0,±1,±2,±3,…,±100,因为在因数中有0所以其积为0.故答案为0.【点睛】本题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.18.6÷3×10+4【分析】灵活利用运算符号将34610连接使结果为24即可解答本题【详解】由题意可得6÷3×10+4故答案为:6÷3×10+4【点睛】本题考查了有理数的混合运算关键是明确题意进行灵活变解析:6÷3×10+4【分析】灵活利用运算符号将3、4、6、10连接,使结果为24即可解答本题.【详解】由题意可得,6÷3×10+4.故答案为:6÷3×10+4.【点睛】本题考查了有理数的混合运算,关键是明确题意,进行灵活变化,最终求出问题的答案. 19.【分析】(1)利用计算器计算有理数的加减法即可得;(2)利用计算器计算有理数的除法即可得;(3)利用计算器计算有理数的乘法即可得;(4)利用计算器计算有理数的乘除法即可得;(5)利用计算器先计算有理 解析:10.8 0.25- 6.48 30- 14.55- 76【分析】(1)利用计算器计算有理数的加减法即可得;(2)利用计算器计算有理数的除法即可得;(3)利用计算器计算有理数的乘法即可得;(4)利用计算器计算有理数的乘除法即可得;(5)利用计算器先计算有理数的乘除法、再计算有理数的减法即可得;(6)利用计算器先计算有理数的乘方与减法、再计算有理数的除法即可得.【详解】(1)原式14.4 3.610.8=-=;(2)原式0.25=-;(3)原式 3.6 1.8() 6.48-==-⨯;(4)原式 1.236()30=÷-=-;(5)原式434.618 4.618 4.60.7518 3.451814.5534÷-=⨯-=⨯-=-=-; (6)原式53.1441760.7=≈; 故答案为:10.8,0.25-,6.48,30-,14.55-,76.【点睛】本题考查了利用计算器计算有理数的加减乘除法与乘方运算、近似数,掌握计算器的使用是解题关键.20.24【分析】找出绝对值小于45的所有负整数求出之积即可【详解】解:绝对值小于45的所有负整数为:-4-3-2-1∴积为:故答案为:24【点睛】此题考查了有理数的乘法以及绝对值熟练掌握运算法则是解本题解析:24【分析】找出绝对值小于4.5的所有负整数,求出之积即可.【详解】解:绝对值小于4.5的所有负整数为:-4,-3,-2,-1,∴积为:4(3)(2)(1)24-⨯-⨯-⨯-=,故答案为:24.【点睛】此题考查了有理数的乘法,以及绝对值,熟练掌握运算法则是解本题的关键.三、解答题21.(1)22;(2)2117-;(3)54-. 【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算乘方运算,再计算括号内的运算,最后除法运算即可得到结果; (3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;【详解】(1)112(24)243⎛⎫-⨯-+- ⎪⎝⎭ 112(24)(24)(24)243⎛⎫⎛⎫=-⨯-+-⨯+-⨯- ⎪ ⎪⎝⎭⎝⎭12616=-+=22;(2)3221(2)(3)⎡⎤÷---⎣⎦()2189=÷--()2117=÷-2117=-; (3)2202035|5|(1)( 3.14)02π⎛⎫---⨯-+-⨯ ⎪⎝⎭ 255104=-⨯+ 54=-. 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.(1)14;(2)0【分析】(1)先计算乘法和除法,再计算加法;(2)分别计算乘方、乘法和绝对值,再计算加法和减法.【详解】解:(1)原式=2124633⎛⎫⎛⎫-⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭()162=+-14=;(2)原式011055=-++-+=0.【点睛】本题考查有理数的混合运算.(1)中注意要先把除法化为乘法再计算;(2)中注意多个有理数相乘时,只要有一个因数为0,那么积就为0.23.(1)-1;(2)5;(3)①43t -≤≤-;②26t ≤≤且 5t ≠【分析】(1)根据平衡点的定义进行解答即可;(2)根据平衡点的定义进行解答即可;(3)①先得出点B 的范围,再得出m 的取值范围即可;②根据点A 和点C 移动的距离,求得点A 、C 表示的数,再由平衡点的定义得出答案即可.【详解】解:(1)(1)点M 表示的数=312-+=−1; 故答案为:−1;(2)点B 表示的数=1×2−(−3)=5;故答案为:5;(3)①设点B 表示的数为b ,则31b -≤≤-,∵点A 表示的数为-5,点M 可以为点A 与点B 的“平衡点”,∴m 的取值范围为:43m -≤≤-,故答案为:43m -≤≤-;②由题意得:点A 表示的数为5t -,点C 表示的数为33t -,∵点O 为点A 与点B 的平衡点,∴点B 表示的数为:5t -,∵点B 在线段CD 上,当点B 与点C 相遇时,2t =,当点B 与点D 相遇时,6t =,∴26t ≤≤,且 5t ≠,综上所述,当26t ≤≤且 5t ≠时,点O 可以为点A 与点B 的“平衡点”.【点睛】本题考查了实数与数轴,掌握数轴上点的表示方法,以及两点的中点表示方法是解题的关键.24.(1)9;(2)34 【分析】(1)根据绝对值的性质、乘法分配律计算各项,即可求解;(2)先算乘除,再算加减,即可求解.【详解】解:(1)()21112424248⎛⎫-+--+⨯- ⎪⎝⎭ ()()()11144242424248=-+-⨯-+⨯--⨯- 01263=+-+9=;(2)()()1178245122-÷-⨯--⨯+÷ ()()1174204+=---- 34=. 【点睛】本题考查有理数的混合运算,掌握有理数的运算法则是解题的关键.25.(1)点A 表示的数是-3,点B 表示的数是3;(2)点C 表示的数是-6.5;(3)3-0.5a【分析】(1)根据AB=8-2=6,点A和点B表示的数是互为相反数,即可得到结果;(2)利用点B表示的数3减去9.5即可得到答案;(3)利用中点表示的数向左移动0.5a个单位计算即可.【详解】(1)∵AB=8-2=6,点A和点B表示的数是互为相反数,∴点A表示的数是-3,点B表示的数是3;(2)点C表示的数是:3-9.5=-6.5;(3)∵直尺长度为a厘米,直尺中点表示的数是-3,∴直尺此时左端点C表示的数-3-0.5a.【点睛】此题考查利用数轴表示数,数轴上两点之间的距离,数轴上点移动的规律,熟记数轴上点移动的规律进行计算是解题的关键.26.12 -.【分析】根据有理数的四则混合运算顺序:“先算乘方,再算乘除,然后算加减”进行计算即可.【详解】原式311222⎛⎫=-++-=-⎪⎝⎭.【点睛】本题考查了有理数的混合运算,掌握运算法则是解题的关键.。
青岛版七年级数学第一章检测题
七年级数学第一章检测题 时间60分 姓名 成绩等级一选择题1、下列说法正确的是: ( ) A 、连结两点的线段叫两点间的距离 B 、两点间的连线中线段最短C 、射线一端不能伸展,所以射线与直线不相交。
D 、经过平面内三点,只能画三条直线。
2、下列立方体图形有9个面的是 ( ) A 、六棱锥 B 、八棱锥 C 、六棱柱 D 、八棱柱3、圆柱体是由哪个图形旋转而成的 ( ) A 、三角形 B 、长方形 C 、梯形 D 、五边形4、如图,点P 与点Q 都在线段MN 上,则下列关系中不正确的是 ( )A 、MN -PN =MQ -PQB 、MQ -MP =PN -QNC 、MQ -PQ =PN -PQD 、MN -PQ =MP+QN5、如图所示,点A 、B 、C 在射线上AM 上,则图中有射线 条 ( )A 、1B 、2C 、3D 、46、点P 是线段AB 的中点,则下列等式错误的是 ( ) A 、AP=PB B 、AB=2PB C 、AP=21AB D 、AP=2PBA B C M M P Q N7、下列说法①过两点有且只有一条直线;②两点之间线段最短;③到线段两个端点距离相等的点叫线段的中点;④线段的中点到线段的两个端点的距离相等,其中正确的有 个。
( )A 、1B 、2C 、3D 、4 8、水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表 示,如图所示是一个正方体的表面展开图,若图中“2”在正方体的前面,则这个正方体的后面是 ( )A 、0B 、9C 、快 二、填空题1、将弯曲的公路改直,可以缩短路程,这是根据 。
2、已知线段AB =8cm ,点C 为任意一点,那么线段AC 与BC 的和的最小值等于 cm ,此时点C 的位置在 。
3、如图所示,C ,D 是线段AB 上的两点,则AD=CD+ ,DB =AB-AC- 。
4、 在墙上要钉牢一根木条,只要 只钉子,原因是 。
5、2008年奥运会在北京举行,乒乓球是我国的优势项目,请问乒乓球类似几何体中的 体。
(青岛版)最新七年级数学上册:第一单元 基本的几何图形测试卷(一)含答案与解析
青岛版七年级数学上册第一章单元测试卷(一)基本的几何图形班级___________ 姓名___________ 学号____________ 分数____________ (考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
答卷前,考生务必将自己的班级、姓名、学号填写在试卷上。
2.回答第I卷时,选出每小题答案后,将答案填在选择题的答题表中。
3.回答第II卷时,将答案直接写在试卷上。
第Ⅰ卷(选择题共36分)一、选择题(每小题3分,共36分)1.下列几何体中,是圆锥的为()A.B.C.D.2.如图,用圆规比较两条线段AB和A′B′的长短,其中正确的是()A.A′B′>AB B.A′B′=ABC.A′B′<AB D.没有刻度尺,无法确定3.下列说法正确的个数是()①射线MN与射线NM是同一条射线;②两点确定一条直线;③两点之间直线最短;④若2AB=AC,则点B是AC的中点A.1个B.2个C.3个D.4个4.(2020年湖州中考试卷)七巧板是我国祖先的一项卓越创造,流行于世界各地.由边长为2的正方形可以制作一副中国七巧板或一副日本七巧板,如图1所示.分别用这两副七巧板试拼如图2中的平行四边形或矩形,则这两个图形中,中国七巧板和日本七巧板能拼成的个数分别是()A.1和1 B.1和2 C.2和1 D.2和25.按如图所示的图形中的虚线折叠可以围成一个棱柱的是( ).6.根据下图,下列说法中不正确的是()A.图①中直线l经过点A B.图②中直线a,b相交于点AC.图③中点C在线段AB上D.图④中射线CD与线段AB有公共点7.如图,有、、三户家用电路接人电表,相邻电路的电线等距排列,则三户所用电线()A. 户最长B. 户最长C. 户最长D. 三户一样长8.(2020四川达州市中考数学试卷)下列正方体的展开图上每个面上都有一个汉字.其中,手的对面是口的是()A.B.C.D.9.在如图所示的图形中是正方体的展开图的有()A.3种B.4种C.5种D.6种10.棱长是1cm的小立方体组成如图所示的几何体,那么这个几何体的表面积为()A.36cm2B.33cm2C.30cm2D.27cm211.图中的长方体是由三个部分拼接而成的,每一部分都是由四个同样大小的小正方体组成的,那么其中第一部分所对应的几何体可能是()A.B.C.D.12.线段AB=6cm,BC=2cm,则A、C两点间的距离d是()A.d=8cm B.d=4cmC.d=8cm或d=4cm D.4cm≤d≤8cm第II卷(非选择题共64分)二、填空题(每小题3分,共18分)13.把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释应是___________.14.如图所示:(1)AC=________+BC;(2)CD=AD-________;(3)AC+BD-BC=________.15.长方体和正方体都有________个面,________条棱,________个顶点.16.小宇同学在一次手工制作活动中,先把一张长方形纸片按如图所示的方式进行折叠,使折痕的左侧部分比右侧部分短;展开后按图的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长,再展开后,在纸上形成的两条折痕之间的距离是______.17.如图,一长方体木板上有两个洞,一个是正方形形状的,一个是圆形形状的,对于以下4种几何体,你觉得哪一种作为塞子既可以堵住圆形空洞又可以堵住方形空洞?(填序号).18.(2019·江苏南京一中初一期末)如图,BC=12AB,D为AC的中点,若DB=1,则AB的长是___.三、解答题(共46分)19.(6分)(2019秋•围场县校级期末)连线:将图中四个物体与(下面一排中)其相应的俯视图连接起来.20.(8分)如图,公园里修建了曲折迂回的桥,这与修一座直的桥相比,对游人观赏湖面风光能起什么作用?用你所学数学知识说明其中的道理.21.(8分)如图,已知线段AB、a、b.(1)请用尺规按下列要求作图:(不要求写作法,但要保留作图痕迹)①延长线段AB到C,使BC=a;②反向延长线段AB到D,使AD=b.(2)在(1)的条件下,如果AB=8cm,a=6m,b=10cm,且点E为CD的中点,求线段AE的长度.22.(8分)动手做一做:某校教具制作车间有等腰三角形正方形、平行四边形的塑料若干,数学兴趣小组的同学利用其中7块恰好拼成一个矩形(如图1),后来又用它们拼出了XYZ等字母模型(如图2、图3、图4),每个塑料板保持图1的标号不变,请你参与:(1)将图2中每块塑料板对应的标号填上去;(2)图3中,点画出了标号7的塑料板位置,请你适当画线,找出其他6块塑料板,并填上标号;(3)在图4中,找出7块塑料板,并填上标号.23.(8分)已知:如图,AB=18cm,点M是线段AB的中点,点C把线段MB分成MC:CB=2:1的两部分,求线段AC的长.请补充完成下列解答:解:∵M是线段AB的中点,AB=18cm,∴AM=MB=AB=cm.∵MC:CB=2:1,∴MC=MB=cm.∴AC=AM+ =+ =cm.24.(8分)如图①②③是将正方体截去一部分后得到的几何体.(1)根据要求填写表格:图面数(f) 顶点数(v) 棱数(e)①②③(2)猜想f,v(3)根据猜想计算,若一个几何体有2 021个顶点,4 035条棱,试求出它的面数.25.(8分)如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点.(1)求线段MN的长度;(2)根据第(1)题的计算过程和结果,设AC+BC=a,其他条件不变,求MN的长度;(3)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点?参考答案与解析一、选择题(每小题3分,共36分)1.下列几何体中,是圆锥的为()A.B.C.D.【分析】依据圆锥的特征进行判断即可,圆锥有2个面,一个曲面和一个平面.解:A.属于圆柱,不合题意;B.属于圆锥,符合题意;C.属于长方体(四棱柱),不合题意;D.属于四棱锥,不合题意;故选:B.2.如图,用圆规比较两条线段AB和A′B′的长短,其中正确的是()A.A′B′>AB B.A′B′=ABC.A′B′<AB D.没有刻度尺,无法确定【分析】根据比较线段的长短进行解答即可.解:由图可知,A′B′<AB;故选:C.3.下列说法正确的个数是()①射线MN与射线NM是同一条射线;②两点确定一条直线;③两点之间直线最短;④若2AB=AC,则点B是AC的中点A.1个B.2个C.3个D.4个【解答】解:①射线MN的端点是M,射线NM的端点是N,故不是同一条射线,故选项错误;②两点确定一条直线;正确;③两点之间线段最短,故选项正确;④若2AB=AC,则点B是AC的中点,错误,因为点A,B,C不一定在同一条直线上,故选项错误;.故选:B.4.(2020年湖州中考试卷)七巧板是我国祖先的一项卓越创造,流行于世界各地.由边长为2的正方形可以制作一副中国七巧板或一副日本七巧板,如图1所示.分别用这两副七巧板试拼如图2中的平行四边形或矩形,则这两个图形中,中国七巧板和日本七巧板能拼成的个数分别是()A.1和1 B.1和2 C.2和1 D.2和2【答案】D【分析】解答此题要熟悉中国和日本七巧板的结构,中国七巧板的结构:五个等腰直角三角形,有大、小两对全等三角形;一个正方形;一个平行四边形;日本七巧板的结构:三个等腰直角三角形,一个直角梯形,一个等腰梯形,一个平行四边形,一个正方形,根据这些图形的性质便可解答.【解析】解:中国七巧板和日本七巧板能拼成的个数都是2,如图所示:故选:D.此题是一道趣味性探索题,结合我国传统玩具七巧板,用七巧板来拼接图形,可以培养学生动手能力,展开学生的丰富想象力.5.按如图所示的图形中的虚线折叠可以围成一个棱柱的是( ).【答案】C【解析】A、D中两个底面不能放在同一侧,B中侧面个数与底面边数不等,故选C.6.根据下图,下列说法中不正确的是()A.图①中直线l经过点A B.图②中直线a,b相交于点AC.图③中点C在线段AB上D.图④中射线CD与线段AB有公共点【答案】C【分析】根据点和直线的位置关系、射线和线段的延伸性、直线与直线相交的表示方法等知识点对每一项进行分析,即可得出答案.【解析】解:A、图①中直线l经过点A,正确;B、图②中直线a、b相交于点A,正确;C、图③中点C在线段AB外,故本选项错误;D、图④中射线CD与线段AB有公共点,正确;故选:C.本题考查直线、射线、线段,解题关键是熟练掌握点和直线的位置关系,射线和线段的延伸性,直线与直线相交的表示方法等.7.如图,有、、三户家用电路接人电表,相邻电路的电线等距排列,则三户所用电线()A. 户最长B. 户最长C. 户最长D. 三户一样长【答案】D【解析】通过将线段平移可以发现三户所用的电线长度相同.考点:线段长度的比较.8.(2020四川达州市中考数学试卷)下列正方体的展开图上每个面上都有一个汉字.其中,手的对面是口的是()A.B.C.D.【分析】利用正方体及其表面展开图的特点解题.解:A、手的对面是勤,不符合题意;B、手的对面是口,符合题意;C、手的对面是罩,不符合题意;D、手的对面是罩,不符合题意;故选:B.9.在如图所示的图形中是正方体的展开图的有()A.3种B.4种C.5种D.6种【分析】由平面图形的折叠及正方体的展开图解题.注意带“田”字的不是正方体的平面展开图.【解答】解:由正方体的展开图的特征可知,图1、图2、图3、图4、图6都是正方体的展开图;图5出现了“田”字,不能围成正方体.故是正方体的展开图的有5种.故选:C.【点评】本题考查了正方体的展开图.解题时勿忘记四棱柱的特征及正方体展开图的各种情形.10.棱长是1cm的小立方体组成如图所示的几何体,那么这个几何体的表面积为()A.36cm2B.33cm2C.30cm2D.27cm2【分析】几何体的表面积是几何体正视图,左视图,俯视图三个图形中,正方形的个数的和的2倍.【解答】解:正视图中正方形有6个;左视图中正方形有6个;俯视图中正方形有6个.则这个几何体中正方形的个数是:2×(6+6+6)=36个.则几何体的表面积为36cm2.故选:A.【点评】本题考查的是几何体的表面积,这个几何体的表面积为露在外边的面积和底面之和.11.图中的长方体是由三个部分拼接而成的,每一部分都是由四个同样大小的小正方体组成的,那么其中第一部分所对应的几何体可能是()A.B.C.D.【解答】解:由长方体和第一部分所对应的几何体可知,第一部分所对应的几何体上面有二个正方体,下面有二个正方体,并且与选项B相符.故选:B.12.线段AB=6cm,BC=2cm,则A、C两点间的距离d是()A.d=8cm B.d=4cmC.d=8cm或d=4cm D.4cm≤d≤8cm【分析】分点A、B、C三点共线时,点C在线段AB上和不在线段AB上两种情况求出d,再写出取值范围即可.【解答】解:点A、B、C三点共线时,若点C在线段AB上,则距离d=6﹣2=4cm,若点C不在线段AB上,则d=6+2=8cm,所以,A、C两点间的距离d是4cm≤d≤8cm.故选:D.【点评】本题考查了两点间的距离,难点在于先求出三点共线时d的值.第II卷(非选择题共64分)二、填空题(每小题3分,共18分)13.把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释应是___________.【答案】两点之间,线段最短;【解析】根据“两点之间,线段最短”我们将弯路改成直线可以缩短路程.14.如图所示:(1)AC=________+BC;(2)CD=AD-________;(3)AC+BD-BC=________.【答案】 AB AC AD【解析】根据图示我们可以得出线段之间的长度关系,即AC=AB+BC,CD=AD-AC,AC+BD-BC=AD.15.长方体和正方体都有________个面,________条棱,________个顶点.【答案】6;12;8【解析】【分析】试题分析:根据长方体和正方体的特征即可得到结果.长方体和正方体由6个面,12条棱,8个顶点.考点:本题考查的是长方体和正方体的特征点评:解答本题的关键是熟记长方体和正方体由6个面,12条棱,8个顶点.16.小宇同学在一次手工制作活动中,先把一张长方形纸片按如图所示的方式进行折叠,使折痕的左侧部分比右侧部分短;展开后按图的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长,再展开后,在纸上形成的两条折痕之间的距离是______.【答案】1【解析】第一次折痕的左侧部分比右侧部分短1cm,第二次折痕的左侧部分比右侧部分长1cm,其实这两条折痕是关于纸张的正中间的折痕成轴对称的关系,它们到中线的距离是0.5cm,所以在纸上形成的两条折痕之间的距离是1cm,故答案为:1.【点睛】本题考查图形的拆叠知识及学生动手操作能力和图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.17.如图,一长方体木板上有两个洞,一个是正方形形状的,一个是圆形形状的,对于以下4种几何体,你觉得哪一种作为塞子既可以堵住圆形空洞又可以堵住方形空洞?(填序号).【答案】②.【解析】试题分析:本题中圆柱的俯视图是圆,可以堵住圆形空洞,它的正视图和左视图是长方形,可以堵住方形空洞,据此选择即可.解:圆柱的俯视图是圆,可以堵住圆形空洞,它的正视图和左视图是长方形,可以堵住方形空洞,故圆柱是最佳选项, 故答案为②.考点:简单几何体的三视图.18.(2019·江苏南京一中初一期末)如图,BC =12AB ,D 为AC 的中点,若DB =1,则AB 的长是___.【答案】4. 【思路分析】根据题意可得AC=AB+BC=31133,CD 22224AB AC AB AB ==⨯=,DB=CD-BC=311424AB AB AB -=,把DB 的值代入即可得出结果. 【解析】∵BC=12AB , ∴AC=AB+BC=32AB , ∵D 为AC 的中点,∴CD=11332224AC AB AB =⨯=, ∴DB=CD-BC=311424AB AB AB -=, 即114AB =, ∴AB=4. 故答案为:4【点睛】考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.三、解答题(共46分)19.(6分)(2019秋•围场县校级期末)连线:将图中四个物体与(下面一排中)其相应的俯视图连接起来.【解析】解:如图所示:20.(8分)如图,公园里修建了曲折迂回的桥,这与修一座直的桥相比,对游人观赏湖面风光能起什么作用?用你所学数学知识说明其中的道理.【解答】解:增加了游人行走的路程,便于游人从不同的角度欣赏湖面风光,逆用两点之间线段最短21.(8分)如图,已知线段AB、a、b.(1)请用尺规按下列要求作图:(不要求写作法,但要保留作图痕迹)①延长线段AB到C,使BC=a;②反向延长线段AB到D,使AD=b.(2)在(1)的条件下,如果AB=8cm,a=6m,b=10cm,且点E为CD的中点,求线段AE的长度.【分析】(1)根据题意画出图形即可;(2)根据线段的画出和线段的中点的定义即可得到结论.【解答】解:(1)①如图所示,线段BC即为所求,②如图所示,线段AD即为所求;(2)∵AB=8cm,a=6m,b=10cm,∴CD=8+6+10=24cm,∵点E为CD的中点,∴DE=DC=12cm,∴AE=DE﹣AD=12﹣10=2cm.【点评】本题考查了直线、射线、线段,利用了线段中点的性质,线段的和差.22.(8分)动手做一做:某校教具制作车间有等腰三角形正方形、平行四边形的塑料若干,数学兴趣小组的同学利用其中7块恰好拼成一个矩形(如图1),后来又用它们拼出了XYZ等字母模型(如图2、图3、图4),每个塑料板保持图1的标号不变,请你参与:(1)将图2中每块塑料板对应的标号填上去;(2)图3中,点画出了标号7的塑料板位置,请你适当画线,找出其他6块塑料板,并填上标号;(3)在图4中,找出7块塑料板,并填上标号.【答案】(1)见解析;(2)见解析;(3)见解析【解析】【分析】(1)根据划分,直接对号入座即可;(2)根据与7的斜边相等的编号是1或2的直角边的这突破口进行分析;(3)最上边从左边可作出两个大的直角三角形为突破口分析【详解】(1)如下图(2)如下图(3)如下图【点睛】本题考查了应用与设计作图,认准分成的各块板的形状与大小是解题关键,另外本题渗透利用了七巧板的思路.23.(8分)已知:如图,AB=18cm,点M是线段AB的中点,点C把线段MB分成MC:CB=2:1的两部分,求线段AC的长.请补充完成下列解答:解:∵M是线段AB的中点,AB=18cm,∴AM=MB=AB=cm.∵MC:CB=2:1,∴MC=MB=cm.∴AC=AM+ =+ =cm.【解答】解:∵M是线段AB的中点,且AB=18cm,∴AM=MB=AB=9cm.∵MC:CB=2:1,∴MC=MB=6cm.∵AC=AM+MC,∴AC=9+6=15cm,故答案为:,9,,6,MC,9,6,15.24.(8分)如图①②③是将正方体截去一部分后得到的几何体.(1)根据要求填写表格:图面数(f) 顶点数(v) 棱数(e)①②③(2)猜想f,v e(3)根据猜想计算,若一个几何体有2 021个顶点,4 035条棱,试求出它的面数.【解答】解:(1)7;9;14;6;8;12;7;10;15(2)f+v-e=2.(3)因为v=2 021,e=4 035,f+v-e=2,所以f+2 021-4 035=2,所以f=2 016,即它的面数是2 016.25.(8分)如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点.(1)求线段MN的长度;(2)根据第(1)题的计算过程和结果,设AC+BC=a,其他条件不变,求MN的长度;(3)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点?【分析】(1)(2)根据中点的定义、线段的和差,可得答案;(3)根据线段中点的性质,可得方程,根据解方程,可得答案.【解答】解:(1)∵线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点,∴CM=AC=5厘米,CN=BC=3厘米,∴MN=CM+CN=8厘米;(2)∵点M,N分别是AC,BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN=AC+BC=a;(3)①当0<t≤5时,C是线段PQ的中点,得10﹣2t=6﹣t,解得t=4;②当5<t≤时,P为线段CQ的中点,2t﹣10=16﹣3t,解得t=;③当<t≤6时,Q为线段PC的中点,6﹣t=3t﹣16,解得t=;④当6<t≤8时,C为线段PQ的中点,2t﹣10=t﹣6,解得t=4(舍),综上所述:t=4或或.。
(青岛版)最新七年级数学上册:第一单元 基本的几何图形测试卷(一)含答案与解析
青岛版七年级数学上册第一章单元测试卷(一)基本的几何图形班级___________ 姓名___________ 学号____________ 分数____________ (考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
答卷前,考生务必将自己的班级、姓名、学号填写在试卷上。
2.回答第I卷时,选出每小题答案后,将答案填在选择题的答题表中。
3.回答第II卷时,将答案直接写在试卷上。
第Ⅰ卷(选择题共36分)一、选择题(每小题3分,共36分)1.下列几何体中,是圆锥的为()A.B.C.D.2.如图,用圆规比较两条线段AB和A′B′的长短,其中正确的是()A.A′B′>AB B.A′B′=ABC.A′B′<AB D.没有刻度尺,无法确定3.下列说法正确的个数是()①射线MN与射线NM是同一条射线;②两点确定一条直线;③两点之间直线最短;④若2AB=AC,则点B是AC的中点A.1个B.2个C.3个D.4个4.(2020年湖州中考试卷)七巧板是我国祖先的一项卓越创造,流行于世界各地.由边长为2的正方形可以制作一副中国七巧板或一副日本七巧板,如图1所示.分别用这两副七巧板试拼如图2中的平行四边形或矩形,则这两个图形中,中国七巧板和日本七巧板能拼成的个数分别是()A.1和1 B.1和2 C.2和1 D.2和25.按如图所示的图形中的虚线折叠可以围成一个棱柱的是( ).6.根据下图,下列说法中不正确的是()A.图①中直线l经过点A B.图②中直线a,b相交于点AC.图③中点C在线段AB上D.图④中射线CD与线段AB有公共点7.如图,有、、三户家用电路接人电表,相邻电路的电线等距排列,则三户所用电线()A. 户最长B. 户最长C. 户最长D. 三户一样长8.(2020四川达州市中考数学试卷)下列正方体的展开图上每个面上都有一个汉字.其中,手的对面是口的是()A.B.C.D.9.在如图所示的图形中是正方体的展开图的有()A.3种B.4种C.5种D.6种10.棱长是1cm的小立方体组成如图所示的几何体,那么这个几何体的表面积为()A.36cm2B.33cm2C.30cm2D.27cm211.图中的长方体是由三个部分拼接而成的,每一部分都是由四个同样大小的小正方体组成的,那么其中第一部分所对应的几何体可能是()A.B.C.D.12.线段AB=6cm,BC=2cm,则A、C两点间的距离d是()A.d=8cm B.d=4cmC.d=8cm或d=4cm D.4cm≤d≤8cm第II卷(非选择题共64分)二、填空题(每小题3分,共18分)13.把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释应是___________.14.如图所示:(1)AC=________+BC;(2)CD=AD-________;(3)AC+BD-BC=________.15.长方体和正方体都有________个面,________条棱,________个顶点.16.小宇同学在一次手工制作活动中,先把一张长方形纸片按如图所示的方式进行折叠,使折痕的左侧部分比右侧部分短;展开后按图的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长,再展开后,在纸上形成的两条折痕之间的距离是______.17.如图,一长方体木板上有两个洞,一个是正方形形状的,一个是圆形形状的,对于以下4种几何体,你觉得哪一种作为塞子既可以堵住圆形空洞又可以堵住方形空洞?(填序号).18.(2019·江苏南京一中初一期末)如图,BC=12AB,D为AC的中点,若DB=1,则AB的长是___.三、解答题(共46分)19.(6分)(2019秋•围场县校级期末)连线:将图中四个物体与(下面一排中)其相应的俯视图连接起来.20.(8分)如图,公园里修建了曲折迂回的桥,这与修一座直的桥相比,对游人观赏湖面风光能起什么作用?用你所学数学知识说明其中的道理.21.(8分)如图,已知线段AB、a、b.(1)请用尺规按下列要求作图:(不要求写作法,但要保留作图痕迹)①延长线段AB到C,使BC=a;②反向延长线段AB到D,使AD=b.(2)在(1)的条件下,如果AB=8cm,a=6m,b=10cm,且点E为CD的中点,求线段AE的长度.22.(8分)动手做一做:某校教具制作车间有等腰三角形正方形、平行四边形的塑料若干,数学兴趣小组的同学利用其中7块恰好拼成一个矩形(如图1),后来又用它们拼出了XYZ等字母模型(如图2、图3、图4),每个塑料板保持图1的标号不变,请你参与:(1)将图2中每块塑料板对应的标号填上去;(2)图3中,点画出了标号7的塑料板位置,请你适当画线,找出其他6块塑料板,并填上标号;(3)在图4中,找出7块塑料板,并填上标号.23.(8分)已知:如图,AB=18cm,点M是线段AB的中点,点C把线段MB分成MC:CB=2:1的两部分,求线段AC的长.请补充完成下列解答:解:∵M是线段AB的中点,AB=18cm,∴AM=MB=AB=cm.∵MC:CB=2:1,∴MC=MB=cm.∴AC=AM+ =+ =cm.24.(8分)如图①②③是将正方体截去一部分后得到的几何体.(1)根据要求填写表格:图面数(f) 顶点数(v) 棱数(e)①②③(2)猜想f,v(3)根据猜想计算,若一个几何体有2 021个顶点,4 035条棱,试求出它的面数.25.(8分)如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点.(1)求线段MN的长度;(2)根据第(1)题的计算过程和结果,设AC+BC=a,其他条件不变,求MN的长度;(3)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点?参考答案与解析一、选择题(每小题3分,共36分)1.下列几何体中,是圆锥的为()A.B.C.D.【分析】依据圆锥的特征进行判断即可,圆锥有2个面,一个曲面和一个平面.解:A.属于圆柱,不合题意;B.属于圆锥,符合题意;C.属于长方体(四棱柱),不合题意;D.属于四棱锥,不合题意;故选:B.2.如图,用圆规比较两条线段AB和A′B′的长短,其中正确的是()A.A′B′>AB B.A′B′=ABC.A′B′<AB D.没有刻度尺,无法确定【分析】根据比较线段的长短进行解答即可.解:由图可知,A′B′<AB;故选:C.3.下列说法正确的个数是()①射线MN与射线NM是同一条射线;②两点确定一条直线;③两点之间直线最短;④若2AB=AC,则点B是AC的中点A.1个B.2个C.3个D.4个【解答】解:①射线MN的端点是M,射线NM的端点是N,故不是同一条射线,故选项错误;②两点确定一条直线;正确;③两点之间线段最短,故选项正确;④若2AB=AC,则点B是AC的中点,错误,因为点A,B,C不一定在同一条直线上,故选项错误;.故选:B.4.(2020年湖州中考试卷)七巧板是我国祖先的一项卓越创造,流行于世界各地.由边长为2的正方形可以制作一副中国七巧板或一副日本七巧板,如图1所示.分别用这两副七巧板试拼如图2中的平行四边形或矩形,则这两个图形中,中国七巧板和日本七巧板能拼成的个数分别是()A.1和1 B.1和2 C.2和1 D.2和2【答案】D【分析】解答此题要熟悉中国和日本七巧板的结构,中国七巧板的结构:五个等腰直角三角形,有大、小两对全等三角形;一个正方形;一个平行四边形;日本七巧板的结构:三个等腰直角三角形,一个直角梯形,一个等腰梯形,一个平行四边形,一个正方形,根据这些图形的性质便可解答.【解析】解:中国七巧板和日本七巧板能拼成的个数都是2,如图所示:故选:D.此题是一道趣味性探索题,结合我国传统玩具七巧板,用七巧板来拼接图形,可以培养学生动手能力,展开学生的丰富想象力.5.按如图所示的图形中的虚线折叠可以围成一个棱柱的是( ).【答案】C【解析】A、D中两个底面不能放在同一侧,B中侧面个数与底面边数不等,故选C.6.根据下图,下列说法中不正确的是()A.图①中直线l经过点A B.图②中直线a,b相交于点AC.图③中点C在线段AB上D.图④中射线CD与线段AB有公共点【答案】C【分析】根据点和直线的位置关系、射线和线段的延伸性、直线与直线相交的表示方法等知识点对每一项进行分析,即可得出答案.【解析】解:A、图①中直线l经过点A,正确;B、图②中直线a、b相交于点A,正确;C、图③中点C在线段AB外,故本选项错误;D、图④中射线CD与线段AB有公共点,正确;故选:C.本题考查直线、射线、线段,解题关键是熟练掌握点和直线的位置关系,射线和线段的延伸性,直线与直线相交的表示方法等.7.如图,有、、三户家用电路接人电表,相邻电路的电线等距排列,则三户所用电线()A. 户最长B. 户最长C. 户最长D. 三户一样长【答案】D【解析】通过将线段平移可以发现三户所用的电线长度相同.考点:线段长度的比较.8.(2020四川达州市中考数学试卷)下列正方体的展开图上每个面上都有一个汉字.其中,手的对面是口的是()A.B.C.D.【分析】利用正方体及其表面展开图的特点解题.解:A、手的对面是勤,不符合题意;B、手的对面是口,符合题意;C、手的对面是罩,不符合题意;D、手的对面是罩,不符合题意;故选:B.9.在如图所示的图形中是正方体的展开图的有()A.3种B.4种C.5种D.6种【分析】由平面图形的折叠及正方体的展开图解题.注意带“田”字的不是正方体的平面展开图.【解答】解:由正方体的展开图的特征可知,图1、图2、图3、图4、图6都是正方体的展开图;图5出现了“田”字,不能围成正方体.故是正方体的展开图的有5种.故选:C.【点评】本题考查了正方体的展开图.解题时勿忘记四棱柱的特征及正方体展开图的各种情形.10.棱长是1cm的小立方体组成如图所示的几何体,那么这个几何体的表面积为()A.36cm2B.33cm2C.30cm2D.27cm2【分析】几何体的表面积是几何体正视图,左视图,俯视图三个图形中,正方形的个数的和的2倍.【解答】解:正视图中正方形有6个;左视图中正方形有6个;俯视图中正方形有6个.则这个几何体中正方形的个数是:2×(6+6+6)=36个.则几何体的表面积为36cm2.故选:A.【点评】本题考查的是几何体的表面积,这个几何体的表面积为露在外边的面积和底面之和.11.图中的长方体是由三个部分拼接而成的,每一部分都是由四个同样大小的小正方体组成的,那么其中第一部分所对应的几何体可能是()A.B.C.D.【解答】解:由长方体和第一部分所对应的几何体可知,第一部分所对应的几何体上面有二个正方体,下面有二个正方体,并且与选项B相符.故选:B.12.线段AB=6cm,BC=2cm,则A、C两点间的距离d是()A.d=8cm B.d=4cmC.d=8cm或d=4cm D.4cm≤d≤8cm【分析】分点A、B、C三点共线时,点C在线段AB上和不在线段AB上两种情况求出d,再写出取值范围即可.【解答】解:点A、B、C三点共线时,若点C在线段AB上,则距离d=6﹣2=4cm,若点C不在线段AB上,则d=6+2=8cm,所以,A、C两点间的距离d是4cm≤d≤8cm.故选:D.【点评】本题考查了两点间的距离,难点在于先求出三点共线时d的值.第II卷(非选择题共64分)二、填空题(每小题3分,共18分)13.把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释应是___________.【答案】两点之间,线段最短;【解析】根据“两点之间,线段最短”我们将弯路改成直线可以缩短路程.14.如图所示:(1)AC=________+BC;(2)CD=AD-________;(3)AC+BD-BC=________.【答案】 AB AC AD【解析】根据图示我们可以得出线段之间的长度关系,即AC=AB+BC,CD=AD-AC,AC+BD-BC=AD.15.长方体和正方体都有________个面,________条棱,________个顶点.【答案】6;12;8【解析】【分析】试题分析:根据长方体和正方体的特征即可得到结果.长方体和正方体由6个面,12条棱,8个顶点.考点:本题考查的是长方体和正方体的特征点评:解答本题的关键是熟记长方体和正方体由6个面,12条棱,8个顶点.16.小宇同学在一次手工制作活动中,先把一张长方形纸片按如图所示的方式进行折叠,使折痕的左侧部分比右侧部分短;展开后按图的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长,再展开后,在纸上形成的两条折痕之间的距离是______.【答案】1【解析】第一次折痕的左侧部分比右侧部分短1cm,第二次折痕的左侧部分比右侧部分长1cm,其实这两条折痕是关于纸张的正中间的折痕成轴对称的关系,它们到中线的距离是0.5cm,所以在纸上形成的两条折痕之间的距离是1cm,故答案为:1.【点睛】本题考查图形的拆叠知识及学生动手操作能力和图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.17.如图,一长方体木板上有两个洞,一个是正方形形状的,一个是圆形形状的,对于以下4种几何体,你觉得哪一种作为塞子既可以堵住圆形空洞又可以堵住方形空洞?(填序号).【答案】②.【解析】试题分析:本题中圆柱的俯视图是圆,可以堵住圆形空洞,它的正视图和左视图是长方形,可以堵住方形空洞,据此选择即可.解:圆柱的俯视图是圆,可以堵住圆形空洞,它的正视图和左视图是长方形,可以堵住方形空洞,故圆柱是最佳选项, 故答案为②.考点:简单几何体的三视图.18.(2019·江苏南京一中初一期末)如图,BC =12AB ,D 为AC 的中点,若DB =1,则AB 的长是___.【答案】4. 【思路分析】根据题意可得AC=AB+BC=31133,CD 22224AB AC AB AB ==⨯=,DB=CD-BC=311424AB AB AB -=,把DB 的值代入即可得出结果. 【解析】∵BC=12AB , ∴AC=AB+BC=32AB , ∵D 为AC 的中点,∴CD=11332224AC AB AB =⨯=, ∴DB=CD-BC=311424AB AB AB -=, 即114AB =, ∴AB=4. 故答案为:4【点睛】考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.三、解答题(共46分)19.(6分)(2019秋•围场县校级期末)连线:将图中四个物体与(下面一排中)其相应的俯视图连接起来.【解析】解:如图所示:20.(8分)如图,公园里修建了曲折迂回的桥,这与修一座直的桥相比,对游人观赏湖面风光能起什么作用?用你所学数学知识说明其中的道理.【解答】解:增加了游人行走的路程,便于游人从不同的角度欣赏湖面风光,逆用两点之间线段最短21.(8分)如图,已知线段AB、a、b.(1)请用尺规按下列要求作图:(不要求写作法,但要保留作图痕迹)①延长线段AB到C,使BC=a;②反向延长线段AB到D,使AD=b.(2)在(1)的条件下,如果AB=8cm,a=6m,b=10cm,且点E为CD的中点,求线段AE的长度.【分析】(1)根据题意画出图形即可;(2)根据线段的画出和线段的中点的定义即可得到结论.【解答】解:(1)①如图所示,线段BC即为所求,②如图所示,线段AD即为所求;(2)∵AB=8cm,a=6m,b=10cm,∴CD=8+6+10=24cm,∵点E为CD的中点,∴DE=DC=12cm,∴AE=DE﹣AD=12﹣10=2cm.【点评】本题考查了直线、射线、线段,利用了线段中点的性质,线段的和差.22.(8分)动手做一做:某校教具制作车间有等腰三角形正方形、平行四边形的塑料若干,数学兴趣小组的同学利用其中7块恰好拼成一个矩形(如图1),后来又用它们拼出了XYZ等字母模型(如图2、图3、图4),每个塑料板保持图1的标号不变,请你参与:(1)将图2中每块塑料板对应的标号填上去;(2)图3中,点画出了标号7的塑料板位置,请你适当画线,找出其他6块塑料板,并填上标号;(3)在图4中,找出7块塑料板,并填上标号.【答案】(1)见解析;(2)见解析;(3)见解析【解析】【分析】(1)根据划分,直接对号入座即可;(2)根据与7的斜边相等的编号是1或2的直角边的这突破口进行分析;(3)最上边从左边可作出两个大的直角三角形为突破口分析【详解】(1)如下图(2)如下图(3)如下图【点睛】本题考查了应用与设计作图,认准分成的各块板的形状与大小是解题关键,另外本题渗透利用了七巧板的思路.23.(8分)已知:如图,AB=18cm,点M是线段AB的中点,点C把线段MB分成MC:CB=2:1的两部分,求线段AC的长.请补充完成下列解答:解:∵M是线段AB的中点,AB=18cm,∴AM=MB=AB=cm.∵MC:CB=2:1,∴MC=MB=cm.∴AC=AM+ =+ =cm.【解答】解:∵M是线段AB的中点,且AB=18cm,∴AM=MB=AB=9cm.∵MC:CB=2:1,∴MC=MB=6cm.∵AC=AM+MC,∴AC=9+6=15cm,故答案为:,9,,6,MC,9,6,15.24.(8分)如图①②③是将正方体截去一部分后得到的几何体.(1)根据要求填写表格:图面数(f) 顶点数(v) 棱数(e)①②③(2)猜想f,v e(3)根据猜想计算,若一个几何体有2 021个顶点,4 035条棱,试求出它的面数.【解答】解:(1)7;9;14;6;8;12;7;10;15(2)f+v-e=2.(3)因为v=2 021,e=4 035,f+v-e=2,所以f+2 021-4 035=2,所以f=2 016,即它的面数是2 016.25.(8分)如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点.(1)求线段MN的长度;(2)根据第(1)题的计算过程和结果,设AC+BC=a,其他条件不变,求MN的长度;(3)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点?【分析】(1)(2)根据中点的定义、线段的和差,可得答案;(3)根据线段中点的性质,可得方程,根据解方程,可得答案.【解答】解:(1)∵线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点,∴CM=AC=5厘米,CN=BC=3厘米,∴MN=CM+CN=8厘米;(2)∵点M,N分别是AC,BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN=AC+BC=a;(3)①当0<t≤5时,C是线段PQ的中点,得10﹣2t=6﹣t,解得t=4;②当5<t≤时,P为线段CQ的中点,2t﹣10=16﹣3t,解得t=;③当<t≤6时,Q为线段PC的中点,6﹣t=3t﹣16,解得t=;④当6<t≤8时,C为线段PQ的中点,2t﹣10=t﹣6,解得t=4(舍),综上所述:t=4或或.。
青岛版七年级数学单元试卷第1章基本的平面图形
第9页 共10页 ◎ 第10页 共10页青岛版七年级数学单元试卷第1章基本的平面图形满分:120分考试时间:100分钟题号一 二 三 总分 得分评卷人得分 一、单选题(共30分) 1.(本题3分)下列说法中,正确的是( )A .延长射线OAB .作直线AB 的延长线C .延长线段AB 到C ,使BC=ABD .画直线AB=3cm 2.(本题3分)如果线段5cm AB =,4cm BC =,且A 、B 、C 在同一条直线上,那么A 、C 两点间的距离是( ) A .1cm B .9cm C .1cm 或9cm D .12cm 3.(本题3分)如果点B 在线段AC 上,那么下列表达式中:①AB=12AC ,②AB=BC ,③AC=2AB ,④AB+BC=AC ,能表示B 是线段AC 的中点的有( ) A .1个 B .2个 C .3个 D .4个4.(本题3分)小陆制作了一个如图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的表面展开图可能是( ) A . B . C . D .5.(本题3分)如图,C 是线段AB 的中点,D 是CB 上一点,下列说法中错误的是( )A .CD =AC -BDB .CD =12BCC .CD =12AB -BD D .CD =AD -BC 6.(本题3分)下列语句错误..的是( ). A .两点之间线段最短 B .射线AB 与射线BA 是同一条射线C .直线AB 与直线BA 是同一条直线D .两点确定一条直线 7.(本题3分)如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是( )第3页 共10页 ◎ 第4页 共10页A .的B .中C .国D .梦 8.(本题3分)如图,线段AB CD =,那么AC 与BD 的大小关系为( )A .AC BD <B .AC BD > C .AC BD = D .无法判断9.(本题3分)点M 是线段EF 的中点,用等式表示时,不可以写成( )A .EM MF =B .12EM EF =C .2EF MF =D .EF MF = 10.(本题3分)如图,某同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长小,能正确解释这一现象的数学知识是:( )A .两点之间,直段最短B .两点确定一条直线C .两点之间,线段最短D .经过一点有无数条直线评卷人得分二、填空题(共32分) 11.(本题4分)线段有________个端点.12.(本题4分)如图所示,建筑工人砌墙时,经常在两个墙角的位置分别插一根小桩,然后拉一条直的参照线,可以这样做的数学道理_____________. 13.(本题4分)反向延长线段AB 到C ,使得12AC AB =,若6AB =,则BC =_______.14.(本题4分)如图,从A 地到B 地共有五条路,人们常常选择第③条,请用几何知识解释原因____.15.(本题4分)要把衣架固定在墙上至少需要 颗钉,根据是 .16.(本题4分)如图所示,线段AB =4cm ,BC =7cm ,则AC =_________cm.17.(本题4分)如图,平面内有公共端点的四条射线OA ,OB ,OC ,OD ,第9页 共10页 ◎ 第10页 共10页从射线OA 开始按顺时针方向依次在射线上写出数1,2-,3,4-,5,6-,…则数字2019在射线__________. 18.(本题4分)已知如图 (1)如图(1),两条直线相交,最多有 个交点.如图(2),三条直线相交,最多有 个交点.如图(3),四条直线相交,最多有 个交点.如图(4),五条直线相交,最多有 个交点;(2)归纳,猜想,30条直线相交,最多有 个交点.评卷人得分 三、解答题(共58分) 19.(本题8分)已知线段()a b b a >、,求作线段AB b a =-.(不写作法,保留作图痕迹)20.(本题8分)从正面、左面、上面观察如图所示的几何体,分别画出你所看到的平面图形.第3页 共10页 ◎第4页 共10页 21.(本题8分)作图:如图,平面内有 A ,B ,C ,D 四点 按下列语句画图:(1)画射线 AB ,直线 BC ,线段 AC(2)连接 AD 与 BC 相交于点 E .22.(本题8分)如图所示的五棱柱的底面边长都是5cm ,侧棱长12cm ,它有多少个面?它的所有侧面的面积之和是多少?23.(本题8分)如图,直线上有4个点,问:图中有几条线段?几条射线?几条直线?24.(本题9分)(2016·河北模拟)3个篮球队进行单循环比赛,总的比赛场次是多少?4个球队呢?5个球队呢? 25.(本题9分)十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V )、面数(F )、棱数(E )之间存在一个有趣的关系式,这个关系式被称为欧拉公式.请你观察下列几种简单的多面体模型,解答下列问题:(1)完成表格:你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是F= ;(用含V、E 的式子表示)(2)如果一个多面体每个顶点处都有a条棱,那么这个多面体的棱数(E)与顶点数(V)之间的关系式为E= 12a×V .现有一个二十面体,有12个顶点,每个顶点处有5 条棱,那么该二十面体有多少条棱?(3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和六边形两种多边形用含n 的代数式表示)拼接而成,且有18个顶点,每个顶点处都有4 条棱,设该多面体表面三角形的个数为m,六边形的个数为n,求m+n 的值.第9页共10页◎第10页共10页参考答案1.解:A 、延长射线OA ,可以反向延长射线,故此选项错误,不合题意;B 、作直线AB 的延长线,无法延长直线,故此选项错误,不合题意;C 、延长线段AB 到C ,使BC=AB ,正确,符合题意;D 、画直线AB=3cm ,直线没有长度,故此选项错误,不合题意.故选:C .2.当C 在A 、B 之间时,AC=AB-BC=5-4=1(cm),当 B 在A 、C 之间时,AC=AB+BC=5+4=9(cm),故选:C .3.根据中点的性质可得:①、②和③能表示B 是线段AC 的中点,故选C.4.解:根据分析,图A 折叠成正方体礼盒后,心与心相对,笑脸与笑脸相对,太阳与太阳相对,即对面图案相同;图B 、图C 和图D 中对面图案不相同;故选A .5.解:∵C 是线段AB 的中点,∴AC=BC=12AB , A 、CD=BC-BD=AC-BD ,正确;B 、D 不一定是BC 的中点,故CD=12BC 不一定成立; C 、CD=BC-BD=12AB-BD ,正确;D 、CD=AD-AC=AD-BC ,正确.故选B . 6.解:A . 两点之间线段最短,故正确;B . 射线AB 与射线BA 端点不同,不是同一条射线,故错误;C . 直线AB 与直线BA 是同一条直线,故正确;D . 两点确定一条直线,故正确.故选B .7.正方体的表面展开图,相对的面之间一定相隔一个正方形,“们”与“中”是相对面,“我”与“梦”是相对面,“的”与“国”是相对面.故选D .8.∵AB CD =,∴AB BC CD BC +=+,∴AC BD =.故选C.9.解:A 、点M 是线段EF 的中点,用等式表示时,可以写成EM MF =,故本选项不符合题意;B 、点M 是线段EF 的中点,用等式表示时,可以写成12EM EF =,故本选项不符合题意; C 、点M 是线段EF 的中点,用等式表示时,可以写成2EF MF =,故本选项不符合题意; D 、点M 是线段EF 的中点,不可以写成EF MF =,故本选项符合题意.故选:D . 10.解:由于两点之间线段最短,所以剩下树叶的周长比原树叶的周长小.故选: C 11.因为线段有两个端点,故答案为2.12.经常在两个墙角的位置分别插一根小桩,然后拉一条直的参照线,可以这样做的数学道理两点确定一条直线;故答案是两点确定一条直线.13.如图所示,∵6AB =,∴116322==⨯=AC AB ,∴369BC AC AB =+=+=;故答案是:9. 14.在连接A 、B 的所有连线中,③是线段,是最短的,所以选择③的原因是:两点之间,选段最短.故答案为两点之间,线段最短.15.因为两点确定一条直线,所以要把衣架固定在墙上至少需要两颗钉,根据是经过两点有且只有一条直线或两点确定一条直线.16.解:AC =AB +BC =4+7=11(cm )故答案为:11.17.通过观察已知图形发现由4条射线,∴数字12019-每四个数字一个循环, ∵201945043÷=,∴2019在射线OC 上;故答案为:OC .18.(1)根据图形即可求得直线相交点的个数; (2)根据已知条件,求得n 条直线相交,最多有(1)2n n -个交点的个数,再将n=30代入上式即可求得相交点的个数.试题解析:(1)如图(1),两条直线相交,最多有1个交点.如图(2),三条直线相交,最多有3个交点.如图(3),四条直线相交,最多有6个交点. 如图(4),五条直线相交,最多有10个交点.…n 条直线相交,最多有(1)2n n -个交点; (2)∴30条直线相交,∴最多有30292⨯=435个交点. 19解:如图,=AB b a -.20.从正面看:共有3列,从左往右分别有1,3,1个小正方形;从左面看:共有2列,左面一列有3个,右边一列有1个小正方形;从上面看:共分3列,左面一列有2个,右边二列靠上方各有1个小正方形.如图所示:21.如图:22.这个五棱柱共7个面,沿一条侧棱将其侧面全部展开成一个平面图形,这个图形是矩形, 面积为5×12×5=300cm 2 . 答:这个五棱柱共7个面,侧面的面积之和是300cm 2 . 23.线段AB ,线段AC ,线段AD ,线段BC ,线段BD ,线段CD 共6条线段;以每个点为端点的射线有2条,共8条;直线有1条.24.用直线上的点代表球队,进行单循环比赛可用线段来表示.3个球队共比赛用线段AB ,BC ,AC 表示,共有3场;4个球队比赛用线段AB ,AC ,AD ,BC ,BD ,CD 表示,共有6场;5个球队比赛用线段AB ,AC ,AD ,AE ,BC ,BD ,BE ,CD ,CE ,DE 表示,共有10场.25.(1)12,2F E V =-+;(2)30;(3)20【解析】【分析】(1)观察可得顶点数+面数-棱数=2;(2)代入(1)中的式子即可得到多少条棱;(3)得到多面体的棱数,求得面数即为m+n 的值.【详解】解:(1)2 F E V=-+(2)∵125302⨯=(条)∴该二十面体共有30条棱.(3))∵有18个顶点,每个顶点处都有4条棱,两点确定一条直线;∴共有18×4÷2=36(条棱),∵F=E−V+2∴18+F-36=2,解得:F=20,∴m+n=20;【点睛】本题考查了欧拉公式,掌握多面体的顶点数,面数,棱数之间的关系是解题的关键.。
七年级上册数学单元测试卷-第1章 基本的几何图形-青岛版(含答案)
七年级上册数学单元测试卷-第1章基本的几何图形-青岛版(含答案)一、单选题(共15题,共计45分)1、下列说法中正确的个数为()(1)过两点有且只有一条直线;(2)连接两点的线段叫两点间的距离;(3)两点之间所有连线中,线段最短;(4)射线比直线小一半.A.1个B.2个C.3个D.4个2、若一个三角形的任意两条边都不相等, 则称之为“不规则三角形”. 那么顶点在一个正方体的顶点上的所有三角形中, 这样的“不规则三角形”的个数为 ( )A.30个B.24个C.18个D.12个3、如图,圆柱的底面半径是4,高是5,一只在A点的蚂蚁想吃到B点的食物,需要爬行的最短路径是(π取3)()A.9B.13C.14D.254、在数学拓展课上,小明发现:若一条直线经过平行四边形对角线的交点,则这条直线平分该平行四边形的面积. 如图是由5个边长为1的小正方形拼成的图形,P是其中4个小正方形的公共顶点,小强在小明的启发下,将该图形沿着过点P的某条直线剪一刀,把它剪成了面积相等的两部分,则剪痕的长度是()A.2B.C.D.5、下列的正方体表面展开图中,折成正方体后“快”与“乐”相对的是()A. B. C. D.6、平面内不同的两点确定一条直线,不同的三点最多确定三条直线,若在平面内的不同的n个点最多可确定36条直线,则n的值为()A.6B.7C.8D.97、下列说法:①经过一点有无数条直线;②两点之间线段最短;③经过两点,有且只有一条直线;④若线段AM等于线段BM,则点M是线段AB的中点;⑤连接两点的线段叫做这两点之间的距离.其中正确的个数为()A.1个B.2个C.3个D.4个8、已知A、B两点之间的距离是10cm,C是线段AB上的任意一点,则AC中点与BC中点间的距离是()A.3cmB.4cmC.5cmD.不能计算9、将如图所示的正方体展开,可能正确的是()A. B. C. D.10、如图,已知圆柱底面的周长为6cm,圆柱高为3cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()cm.A. B. C. D.611、如果线段AB=3cm,BC=1cm,那么A,C两点的距离d的长度为()A.4cmB.2cmC.4cm或2cmD.大于或等于2cm,且小于或等于4cm12、下列四个图中的线段(或直线、射线)能相交的是()A. B. C. D.13、C是线段AB上一点,D是BC的中点,若AB=12cm,AC=2cm,则BD的长为()A.3cmB.4cmC.5cmD.6cm14、用一个平面去截一个几何体,得到的截面形状是长方形,那么这个几何体可能是()A.正方体、长方体、圆锥B.圆柱、球、长方体C.正方体、圆柱、球D.正方体、长方体、圆柱15、一个棱柱有12条棱,那么它的底面一定是()A.十八边形B.六边形C.四边形D.八边形二、填空题(共10题,共计30分)16、一个多边形有8条边,从其中的一个顶点出发,连接这个点和其他顶点,可以得到________ 个三角形.17、用一个平面去截一个三棱柱,截面可能是________形状。
青岛版七年级数学上册第一单元测试题
青岛版七年级数学上册第一单元测试题一、填空题1、 像棱柱、棱锥等的面都是______的,这样的几何体也称多面体.2、 三角形、正方形、长方形、平行四边形、梯形、圆等都是__________.3、 一个立方体共有______个面,______条棱,______个顶点.4、 如右图中共有_____条直线,_____条射线,______条线段.5、 从哈尔滨开往A 市的特快列车途中要停靠于两个站点,•如果任意两站之间的票价都不同,那么有________种不同的票价.6、 要在墙上固定一根直木条,至少要钉______个钉子7、 如图1所示,线段AB 的长为8cm ,点C 为线段AB 上任意一点,若M 为线段AC 的中点,N 为线段CB 的中点,则线段MN 的长是_______________.二、选择题 1、下列判断正确的有( )①长方体是棱柱,正方体不是长方体②正方体是棱柱,长方体也是棱柱③正方体是柱体,圆柱也是柱体④正方体不是柱体,圆柱是柱体A.1个 B.2个 C.3个 D.4个2、将三角形绕直线l 旋转一周,可以得到图2所示的立体图形的是( ).3、五棱柱的棱数和侧面数分别是( )A .5,5B .15,5C .10,7D .5,74、下列说法中,错误的是( ).A .经过一点的直线可以有无数条B .经过两点的直线只有一条C .一条直线只能用一个字母表示D .线段CD 和线段DC 是同一条线段5、下列图形中,能够相交的是( ).6、下面4个图均由6个小正方形组成,若以每个小正方形为面,则可以折叠成正方体的是( ).A .B .C .D . 图2 图17、如图3,小华的家在A 处,书店在B 处,星期日小明到书店去买书,他想尽快的赶到书店,请你帮助他选择一条最近的路线( ).A .A →C →D →B B .A →C →F →BC .A →C →E →F →BD .A →C →M →B三、计算题或操作题1、 已知点A 、B 、C 都是直线l 上的点,且AB=5cm ,BC=3cm ,那么点A 与点C 之间的距离是多少?2、 如图4所示是一个几何体的展开图,每个面上都标有相应的字母.(1)如果A 面有几何体的底部,上面的是哪一面?(2)若F 面在前面,B 面在左面,上面是哪一面?(3)C 面在右面,D 面在后面,上面是哪一面?3、 图中有A 、B 、C 、D 四个点,请按照下列要求画图:(1) 画出直线AB 。
七年级上册数学单元测试卷-第1章 基本的几何图形-青岛版(含答案)
七年级上册数学单元测试卷-第1章基本的几何图形-青岛版(含答案)一、单选题(共15题,共计45分)1、以下图形中,不是平面图形的是()A.线段B.角C.圆锥D.圆2、下列图形中,正方体展开后得到的图形不可能是()A. B. C. D.3、下列图形中,不属于三棱柱的展开图的是()A. B. C. D.4、如图,点C是线段AB上一点,点M是AC的中点,点N是BC的中点,如果MC比NC长2cm,AC比BC长()A.2cmB.4cmC.1cmD.6cm5、下列说法中,正确的有()①圆锥和圆柱的底面都是圆②棱锥底面边数与侧棱数相等③棱柱的上下底面是形状、大小相同的多边形④正方体是四棱柱,四棱柱是正方体.A.1个B.2个C.3个D.4个6、把一条弯曲的道路改成直道,可以缩短路程,其道理是A.两点确定一条直线B.两点之间,线段最短C.垂线段最短D.以上都不正确7、一个直棱柱有12个顶点,那么它的面的个数是()A.10个B.9个C.8个D.7个8、下列四个生产生活现象,可以用公理“两点之间,线段最短”来解释的是()A.用两个钉子就可以把木条固定在墙上B.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线C.从A地到B地架设电线,总是尽可能沿着线段AB来架设D.打靶的时候,眼睛要与枪上的准星、靶心在同一条直线上9、如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直10、下列图形中不是正方体展开图的是()A. B. C. D.11、如图,是一个正方体的表面积展开图,相对面上所标的两个数互为倒数,那么()A. B. C. D.12、将下面的平面图形绕虚线旋转一周,得到的立体图形是( )A. B. C. D.13、如果有一个正方体,它的展开图可能是下面四个展开图中的()A. B. C. D.14、一个几何体的三视图如图所示,则该几何体的表面积是()A.24+2πB.16+4πC.16+8πD.16+12π15、下列现象中,可用“两点之间,线段最短”来解释的现象是()A.将弯曲的河道改直,可以缩短航程B.用两个钉子就可以把木条固定在墙上C.植树时,只要先定出两棵树的位置,就能确定同一行树所在的直线D.利用圆规可以比较两条线段的长短关系二、填空题(共10题,共计30分)16、在数轴上表示﹣10的点与表示﹣4的点的距离是________.17、如图,几个棱长为1的小正方体在地板上堆积成一个模型,表面喷涂红色染料,那么染有红色染料的模型的表面积为________18、A、B、C三点在数轴上对应的数分别是2、、x,若相邻两点的距离相等,则________19、如图,,,在数轴上对应的点分别为,,,其中,且,则________.20、已知线段AB=8,M是AB的中点,C是AM的中点,D是CB的中点,则MD=________21、如果-6.5,1.5在数轴上分别对应点A,B,则,B两点之间的距离为________.22、五棱柱有________个面,________个顶点,________条棱.23、如图所示,该图案中有________个正方形.24、已知A,B,C为直线l上的三点,线段AB=9cm,BC=1cm,那么A,C两点间的距离是________.25、如图,已知圆柱底面周长为6cm,圆柱高为2cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为________cm.三、解答题(共5题,共计25分)26、已知有一个长为5cm,宽为3cm的长方形,若以这个长方形的一边所在的直线为轴,将它旋转一周,你能求出所得的几何体的表面积吗?27、要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之和为6,x 等于?y等于?28、分别举出在我们生活中常见的,类似于下面几何图形的两个实例.三角形:四边形:六边形:扇形:29、如图所示,已知C、D是线段AB上的两个点,M、N分别为AC、BD的中点.(1)若AB=10cm,CD=4cm,求AC+BD的长及M、N的距离.(2)如果AB=a,CD=b,用含a、b的式子表示MN的长.30、如图,一个圆柱体的侧面展开图为长方形ABCD,若AB=6.28cm,BC=18.84cm,则该圆柱体的体积是多少?(π取3.14,结果精确到十分位).参考答案一、单选题(共15题,共计45分)1、C2、D3、B5、C6、B7、C8、C9、A10、A11、A12、C13、C14、D15、A二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。