小学数学人教版-平均数

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、创设情境,提出问题

昨天的作业,张康、朱星宇、施逸婷做得最好。今天老师带来些铅笔想奖给他们。(三人上台领奖,并告诉同学各自得到的铅笔的支数。)板书:张康11支、朱星宇7支、施逸婷6支。

你们觉得公平吗?怎样才能公平?

学生讨论,指名汇报。

(从1张康手中拿2支给施逸婷,再从张康手中拿1支给朱星宇。这样每人都是8支。)

很好。谁能给这种方法取个名字?(“移多补少法”。)

(先把三个人的铅笔全合起来有24支,再平均分给这3个人,这样每个人都是8支。

这种方法也很好!我们也给它取个名字。(“先合再分”)。

刚才我们用不同的方法,都能使这三个人铅笔的支数相等,都是8。

教师指出:这里的“8”就是“11、7、6”这三个数的平均数。板书课题:平均数。

昨天蔡裕杰同学的作业也很有进步,现在我想也奖给他铅笔,怎样才能让他们四个人得到的铅笔支数相等?(学生上台演示,每人得到6支。)

提问:这里的“6”就是“11、7、6、0”这四个数的什么?

通过我们刚才的讨论,你觉得什么是平均数?

小结:已知几个大小不等的数,在总和不变的条件下,通过把多的移给少的或者先把它们合起来再平均分,使它们成为几个相等的数,这个相等的数就是这几个数的平均数。

二、寻找方法,解决问题

说到平均数,老师想起前不久学校举行篮球赛的时候,五(2)班女男生之间发生的一次争执。

为了备战篮球赛,五(2)班男子篮球队和女子篮球队之间先进行了一次投篮比赛。每人投15个球。这是他们投中个数的统计图。出示两幅条形统计图。

(略)

这两幅统计图能看得懂吗?从这两幅统计图上你能知道些什么信息?

投篮比赛结束了,男子篮球队队员说男生投篮准,女子篮球队队员说女生投篮投得准,争执不下。现在,我想请大家做一个公平的裁判,你们觉得,是男子篮球队整体水平高

一些,还是女子篮球队整体水平高一些?。

指名汇报,说明理由。

(有3名男生都投中得比女生少,所以女生投得准一些)

这是你的意见,有不同的意见吗?

(女生一共投中28个,男生一共投中30个,男生投得准一些)

可是男生有5个人,女生只有4个人啊!还有不同的意见吗?

(去掉一个男生。)

去谁合理呢?能去吗?

(应该求出女男生投中个数的平均数,然后再进行比较)

有道理,他们两个队的人数不同,所以我们不能一个人一个人的比较,分别求出他们投中个数的平均数,用平均数来体现他们投篮命中的整体水平,好办法!掌声鼓励。

那我们应该怎么求他们的平均数呢?先来求女生投中个数的平均数。

观察女生投篮成绩统计图,小组讨论,代表汇报。

(将徐丹多投中的两个分一个给王戈,分一个给赵越,这样,她们每个人都是投中了7个,也就是女生投中个数的平均数是7个。)

不错,方法很简洁,移多补少法。有不同的方法吗?

(先求出四个人投中的总个数,再求出平均每人投中的个数。)

半数:6+9+7+6=28(个)

28÷4=7(个)

他用的方法就是——先合再分法。

看来,大家都非常聪明,男生平均投中的个数会求吗?

你们觉得这时我们求平均数用哪种方法比较合适?为什么?

小结:求平均数的方法很多,要根据实际情况来定。人数少,差距小,用移多补少简单;人数多,差距大,用先合再分的方法比较简单。

学生在练习本上计算,指名板演,集体订正。

为什么这里求得的总数除以的是5而不是4?

现在你能帮五(8)班的同学解决他们争论的问题了吗?

(女生平均每人投中7个,男生平均每人投中6个,所以女生投得更准一些。)

观察统计图,女生平均每人投中7个,(用直线画出7的水平位置),提问:平均数7比哪个数大,比哪个数小?我们再来看看男生投中的平均数6是不是也有这样的特点?(用直线画出6的水平位置。)

小结:平均数的大小应该在最大的数和最小的数之间。此外,一组数的平均数是我们计算出的结果,表示的是这组数的平均水平,并不一定这一组数都等于平均数,有些可能比平均数大,有些可能比平均数小。

三、应用方法,解决问题

刚才我们一起认识了平均数,也知道了如何求平均数,接下来我们要遇到的是生活中有关平均数的问题,一起来看一看。

请大家轻声地把问题读一读,思考之后,可以和同座交流自己的看法。

挑战第一关:“明辨是非”

(1)一条小河平均水深1米,小强身高1.2米,他不会游泳,但他下河玩耍池肯定安全。()

(2)城南小学全体同学向希望工程捐款,平均每人捐款3元。那么,全校每个同学一定都捐了3元。()

(3)学校排球队队员的平均身高是160厘米,李强是学校排球队队员,他的身高不可能是155厘米。()

学校篮球队可能有身高超过160厘米的队员。()

(4)四(3)班同学做好事,第一天做好事30件,第二天上午做好事12件,下午做好事15件,四(3)班同学平均每天做好事的件数是(30+12+15)÷3=19(件)。

()

挑战第二关:“合情推测”

四(2)班第一小组同学身高情况统计表

学号 1 2 3 4 5 6

身高(厘米) 131 136 138 140 141 142

明明算了他们的平均身高是143厘米,不计算,你能不能知道他算得对不对?

平均数的大小应该在最大的数和最小的数之间,这里最大的数就是142,平均数不可能超过142,所以平均身高143厘米是错误的。

那么我们应该怎么求他们的平均数呢?

指名列式,老师告诉答案为138厘米。

由此,你能不能猜测一下,四(2)班全班同学的平均身高大约是多少?

你想了解我国四年级同学的平均身高吗?

出示:根据健康网的报道,全国四年级小学生的平均身高约是139厘米。看到全国四年级小学生的平均身高,结合自己的身高,你有什么想法?

四、学生看书,质疑问难

五、全课总结,交流收获

通过今天这节课的学习,你有什么收获?

六、布置作业,检查反馈

《大数的认识》教学设计

教学目标:

1.使学生认识计数单位万.十万.百万.千万和亿,认识亿以内各个计数单位单位的名称和相邻两个单位之间的关系;

2.掌握数位顺序表及数位分级,为以后学习读数和写数打下基础;

3.能正确地说出每个数位上的数字的含义;

教学重点:

熟记数位顺序表和有关计数单位的知识,知道每个数位上数字的含义.

教学过程:

一.情境创设,提出学习目标。

(一) 师:今天,老师给大家带来了一个故事,题目叫《青年的财富》,想听吗?

(生):想

师:故事中也有数学信息哦,看谁的耳朵灵!

有一个青年总是抱怨自己时运不济发不了财,终日愁眉不展.这天,在他无意中遇到一个须发俱白的老人,老人见他愁容满面,于是问到:“年轻人,你为什么这样不开心?”“我不明白,为什么我总是那么穷?”年轻人说。

老人由衷地说:“穷?你很富有啊!”

年轻人问道:“富有?我怎么不知道?这从何说起?”

相关文档
最新文档