最新新人教版七年级下册数学知识点整理
人教版初一数学下册知识点总结
人教版初一数学下册知识点总结人教版初一数学下册知识点直线、射线、线段(1)直线、射线、线段的表示方法①直线:用一个小写字母表示,如:直线l,或用两个大写字母(直线上的)表示,如直线AB.②射线:是直线的一部分,用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA.注意:用两个字母表示时,端点的字母放在前边.③线段:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA)。
(2)点与直线的位置关系:①点经过直线,说明点在直线上;②点不经过直线,说明点在直线外。
两点间的距离(1)两点间的距离:连接两点间的线段的长度叫两点间的距离。
(2)平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度,学习此概念时,注意强调最后的两个字“长度”,也就是说,它是一个量,有大小,区别于线段,线段是图形.线段的长度才是两点的距离.可以说画线段,但不能说画距离。
人教版初一数学知识点正方体(1)对于此类问题一般方法是用纸按图的样子折叠后可以解决,或是在对展开图理解的基础上直接想象.(2)从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.(3)正方体的展开图有11种情况,分析平面展开图的各种情况后再认真确定哪两个面的对面.一元一次方程的解定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解。
把方程的解代入原方程,等式左右两边相等。
初一数学下册知识点1.解一元一次方程的一般步骤去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化。
2.解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号。
3.在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c。
新人教版数学与几何七年级下复习知识点详细
新人教版数学与几何七年级下复习知识点详细一、数的性质与运算法则1. 数的分类:自然数、整数和有理数。
2. 数的比较:使用大小符号(<、>、=)进行比较。
3. 数的运算法则:加法和乘法的交换律、结合律和分配律。
二、代数式与方程式1. 代数式:由数和运算符号组成的式子。
2. 方程式:含有未知数的等式,求解方程时需要使用逆运算。
三、图形的认识与运动1. 几何图形:点、线、面的基本要素。
2. 三角形:直角三角形、等腰三角形、等边三角形等的基本概念及性质。
3. 平行四边形:基本概念及性质,如对角线互相平分。
四、比例与相似1. 比例关系:左右比、纵横比等的基本概念。
2. 比例的性质:比例的等价性、比例的反比例、比例的平方、比例的立方等。
3. 相似形:相似的基本概念及相似比例。
五、数据的收集、整理与描述1. 统计表:制作统计表,包括分类统计和频率统计。
2. 条形统计图:绘制条形统计图,用于直观展示数据。
3. 折线统计图:绘制折线统计图,用于表示数据的变化趋势。
六、平行线与比例1. 平行线的判定:平行线的基本判定方法。
2. 平行线的性质:平行线与转角、内错角、同位角等的关系。
3. 比例的应用:在平行线之间的线段上应用比例。
七、三角形的面积与体积1. 三角形的面积:计算三角形的面积,包括正三角形、直角三角形等。
2. 体积:计算简单的物体的体积,如长方体、正方体等。
八、坐标与直线的位置关系1. 直角坐标系:建立直角坐标系,表示点的坐标。
2. 平移:通过平移操作改变点的位置。
3. 直线的位置关系:平行、垂直、相交等直线的位置关系。
九、统计与概率1. 简单事件与样本空间:描述简单事件和样本空间。
2. 频率与概率:频率与概率的关系,概率的计算方法。
以上是新人教版数学与几何七年级下的复习知识点详细内容,希望对你有所帮助。
新人教版七年级下册数学知识点整理
一、有理数1.有理数的定义和性质;2.整数的加、减、乘、除运算;3.有理数的加、减、乘、除运算;4.有理数的比较大小;5.有理数的绝对值;6.有理数的相反数;7.有理数的乘方运算;8.有理数的乘方与开方运算。
二、平面图形的认识1.几何图形的基本概念;2.三角形的分类与特性;3.平行四边形的性质;4.矩形、正方形、菱形、长方形的性质;5.正多边形的性质;6.直角三角形的性质;7.中位线的性质;8.三角形面积的计算。
三、勾股定理与三角形1.勾股定理的直角三角形判定;2.特殊直角三角形的性质;3.两线相交的性质;4.逆条件的判定;5.根据条件求解实际问题。
四、相似形1.相似三角形的判定;2.相似三角形的性质;3.相似三角形的相似比例与证明;4.根据相似比例求解实际问题;5.相似三角形与勾股定理的关系;6.相似三角形与线段的比例关系。
五、线性方程与线性方程组1.一元一次方程的定义和解;2.一元一次方程的判断与图象;3.一元一次方程解的性质;4.解一元一次方程的步骤及方法;5.列方程解实际问题;6.两个变量的一元一次方程组的解;7.解一元一次方程组的步骤及方法;8.一元一次方程组解实际问题。
六、数据的分析与概率1.列频数标表和频数直方图;2.列频率分布直方图和频率分布折线图;3.数据的整理与统计;4.众数、中位数与平均数的计算;5.数据的误差分析;6.概率的基本概念与计算;7.事件的排列与组合。
以上是《新人教版七年级下册数学知识点整理(1)》,总计1200字以上。
人教版七年级数学下册各章节知识点归纳
人教版七年级数学下册各章节知识点归纳第一章:直线与角1. 定义平行线和垂直线的概念,了解直线的性质。
2. 知道角的概念和角的分类,包括锐角、直角、钝角和平角。
3. 掌握角的度量单位:度和弧度。
4. 学习如何用直尺和量角器画角。
第二章:平行线与平面1. 学习如何用直尺和圆规做等分线段、垂线、平行线、垂直平分线和角的平分线。
2. 理解平行线与转角的关系,学会证明平行线与转角的基本性质。
3. 掌握平面的概念,理解平面的性质和表示方法。
4. 学习如何判断平面与平面的位置关系,包括平行、垂直和交叉。
第三章:三角形1. 知道三角形的定义和分类,包括等边三角形、等腰三角形、直角三角形和普通三角形。
2. 掌握三角形内角的和定理和外角的性质。
3. 学习三角形的判定方法,包括SSS、SAS、ASA和AAS。
4. 理解三角形中的全等概念,学会判断和证明两个三角形是否全等。
第四章:四边形1. 知道四边形的定义和分类,包括矩形、正方形、菱形、平行四边形和梯形。
2. 掌握矩形、正方形和菱形的性质,包括边长、对角线、内角和面积的计算方法。
3. 学习平行四边形的性质,包括对角线的关系、内角和、面积和周长的计算方法。
4. 理解梯形的定义和性质,学会计算梯形的面积和周长。
第五章:图形的变化1. 了解图形中的平移、旋转、翻折和对称等基本变化。
2. 学习如何用折纸法进行图形变化。
3. 理解相似图形的概念和性质,学会判断和证明两个图形是否相似。
4. 掌握相似图形的计算方法,包括比例尺和相似比的计算。
第六章:数的运算1. 复习整数的概念和运算法则,包括加法、减法、乘法和除法。
2. 学习分数的概念和运算规则,包括分数的四则运算和混合运算。
3. 掌握百分数的概念和表示方法,包括百分数与分数的转换。
4. 学习用图形表示分数和百分数的大小关系,包括数轴和百分数相应的阶梯图。
第七章:方程与不等式1. 知道方程和不等式的定义和表示方法。
2. 学习一元一次方程和一元一次不等式的解法,包括等式和不等式的性质及运算规则。
人教版数学七年级下册知识点总结
人教版数学七年级下册知识点总结一、集合集合是由一些确定的事物组成的整体。
1. 集合的表示方法- 枚举法:将集合的元素一一列举出来,并用大括号{}括起来。
- 描述法:根据集合元素的某种特性描述集合。
2. 集合间的基本关系- 相等关系:两个集合具有完全相同的元素。
- 包含关系:一个集合的所有元素都是另一个集合的元素。
- 交集:两个集合共有的元素组成的新集合。
- 并集:包含两个集合所有元素的新集合。
- 差集:一个集合中除去另一个集合中的元素后的新集合。
二、整数整数是由正整数、负整数和0组成的数集。
1. 整数的概念- 正整数:大于0的整数。
- 负整数:小于0的整数。
- 0:既不是正整数也不是负整数。
2. 整数的运算- 加法:整数之间可以相加,结果的符号取决于加数的符号。
- 减法:整数之间可以相减,结果的符号取决于被减数和减数的符号。
- 乘法:整数之间可以相乘,结果的符号规律为“同号得正,异号得负”。
- 除法:整数之间可以相除,结果的符号规律同乘法。
三、分数分数是表示有理数的一种形式,由一个分子和一个非零的分母组成。
1. 分数的概念- 真分数:分子小于分母的分数。
- 假分数:分子大于分母的分数。
- 带分数:由一个整数部分和一个真分数部分组成的分数。
2. 分数的运算- 分数的加法和减法:分数的加减法需先找到分子同分母,然后按照相同的分母进行运算。
- 分数的乘法和除法:分数的乘除法分别对应分子和分母进行运算。
- 分数的化简:将分子和分母的公因数全部约去,使其最简化。
四、平方根与立方根平方根和立方根是数的运算,使得运算之后的结果的平方或立方等于原来的数。
1. 平方根给定一个非负数a,满足a的平方为b,那么b就是a的平方根。
2. 立方根给定一个数a,满足a的立方为b,那么b就是a的立方根。
以上是人教版数学七年级下册的知识点总结,希望对你有帮助!。
人教版新教材七年级下册数学复习重难点(考前必背)
人教版新教材七年级下册数学复习重难点(考前必背)本文档旨在为七年级下册数学考试前的复提供重要知识点的梳理和总结,帮助学生有针对性地复,并提高考试成绩。
一、整数的加减运算1. 整数加法的规律:- 两个正整数相加,结果仍为正整数。
- 两个负整数相加,结果仍为负整数。
- 正整数与负整数相加,结果的符号由绝对值较大的整数决定。
2. 整数减法的规律:- 正整数减去正整数,结果可能为正整数、零或负整数。
- 负整数减去负整数,结果可能为正整数、零或负整数。
- 正整数减去负整数,结果的符号由绝对值较大的整数决定。
二、倍数与约数1. 倍数:- 若整数A能被整数B整除,那么A是B的倍数。
- 若整数n是整数m的倍数,那么m是n的约数。
2. 最大公约数:- 两个或多个整数公有的约数中最大的一个称为最大公约数。
3. 最小公倍数:- 两个或多个整数公有的倍数中最小的一个称为最小公倍数。
三、平方与阶乘1. 平方:- 一个数的平方是指该数与自身相乘的运算。
- 求一个数的平方可以使用乘法运算符(*)。
2. 阶乘:- 一个正整数n的阶乘是指小于等于n的所有正整数相乘的结果,用n!表示。
- 求一个数的阶乘可以使用循环结构。
四、分数的加减乘除运算1. 分数的相加、相减:- 分子相乘后相加(减),分母保持不变。
2. 分数的相乘:- 分子相乘,分母相乘。
3. 分数的相除:- 分子相乘,分母相乘。
五、平行线与相交线1. 平行线:- 两条直线永远不会相交的线称为平行线。
- 平行线上的任意一对夹角相等。
2. 相交线:- 两条直线在空间某一点相交而形成的角称为相交线。
- 相交线上的任意一对夹角互补,即相加为180°。
以上是人教版新教材七年级下册数学考前复习的重难点,请同学们针对这些知识点进行复习,并多做练习题,加深对知识的理解和掌握。
祝大家取得优异的考试成绩!。
七年级下册数学知识点总结人教版
七年级下册数学知识点总结人教版七年级下册数学知识点总结(人教版)一、实数1. 有理数和无理数的概念- 有理数:整数和分数统称为有理数,包括正整数、负整数、正分数、负分数和零。
- 无理数:不能表示为分数形式的实数,如√2、π等。
2. 实数的运算- 加法:同号相加,异号相减,取绝对值大的数的符号。
- 减法:减去一个数等于加上它的相反数。
- 乘法:正数与正数得正,负数与负数得正,正数与负数得负。
- 除法:除以一个数等于乘以它的倒数。
- 乘方:求一个数的幂。
3. 算术平方根和平方根- 算术平方根:一个数的平方根中最大的正数。
- 平方根:一个数的平方根有两个,一个正数和一个负数。
4. 实数的性质和比较大小- 性质:实数的加法、减法、乘法、除法和乘方的性质。
- 比较大小:正实数大于零,负实数小于零,正实数大于所有负实数。
二、代数1. 代数式- 单项式:只含有乘法运算的代数式。
- 多项式:由若干个单项式相加或相减组成的代数式。
2. 代数式的运算- 加法和减法:合并同类项。
- 乘法:单项式与单项式相乘,多项式与单项式相乘。
- 除法:多项式除以单项式。
3. 因式分解- 提公因式法:找出多项式中所有项共有的因子。
- 公式法:使用平方差公式、完全平方公式等进行分解。
4. 代数方程- 一元一次方程:只含有一个未知数,且未知数的最高次数为1的方程。
- 二元一次方程组:含有两个未知数,每个未知数的次数都为1的方程组。
5. 不等式- 不等式的性质:包括加法、减法、乘法和除法的性质。
- 解一元一次不等式:通过移项、合并同类项、系数化为1等步骤求解。
三、几何1. 平面图形- 点、线、面的基本性质。
- 直线、射线、线段的定义和性质。
- 角的定义、分类和性质,包括邻角、对顶角、同位角等。
2. 三角形- 三角形的基本性质和分类,如等边三角形、等腰三角形和直角三角形。
- 三角形的内角和定理:三角形内角和为180度。
- 三角形的外角性质:一个三角形的外角等于其不相邻的两个内角的和。
新人教版七年级下册数学知识点整理
新人教版七年级下册数学知识点整理的两个角叫做同位角,它们的度数相等。
②在两条直线(被截线)的异侧,都在第三条直线(截线)的同一侧,这样的两个角叫做内错角,它们的度数相等。
③在两条直线(被截线)的同一侧,都在第三条直线(截线)的同一侧,这样的两个角叫做同旁内角,它们的度数互补。
7、平移是指在平面内,将一个图形沿着某个方向按照某个距离移动,移动后的图形与原图形形状、大小、方向都相同。
平移的性质:平移不改变图形的形状、大小和方向,只改变图形的位置。
本文介绍了平面几何中的角度和平行线的相关概念和性质。
其中,角度分为同位角、内错角和同旁内角,平行线的判定包括同位角相等、内错角相等、同旁内角互补和平行于同一条直线的两条直线互相平行。
此外,文章还介绍了命题和定理的概念,以及平移变换的性质。
最后,文章对实数进行了分类,包括按定义分类和按性质符号分类。
科学记数法是一种将数表示为(1≤<10,n为整数)形式的记数方法。
平面直角坐标系由有序数对和两条互相垂直且有公共原点的数轴组成。
其中,有序数对是有顺序的两个数a与b组成的数对,记做(a,b)。
横轴是水平的数轴,也称为x轴或横轴;纵轴是竖直的数轴,也称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。
对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标,记作P(a,b)。
坐标轴上的点不在任何一个象限内,而两条坐标轴将平面分成四个部分,右上部分叫第一象限,按逆时针方向依次叫第二象限、第三象限、第四象限。
坐标轴上的点有特殊的坐标特点,如x轴正半轴上的点的坐标为(a,0),y轴负半轴上的点的坐标为(0,-b)。
点P(a,b)到x 轴的距离是|b|,到y轴的距离是|a|。
对称点的坐标特点包括:关于x轴对称的两个点,横坐标相等,纵坐标互为相反数;关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;关于原点对称的两个点,横坐标、纵坐标分别互为相反数。
人教版七年级数学下册各章节知识点归纳
七年级数学下册知识点归纳第五章相交线与平行线相交线一、相交线两条直线相交,形成4个角。
1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。
性质是对顶角相等。
①邻补角:两个角有一条公共边,它们的另一条边互为反向延长线。
具有这种关系的两个角,互为邻补角。
如:∠1、∠2。
②对顶角:两个角有一个公共顶点,并且一个角的两条边,分别是另一个角的两条边的反向延长线,具有这种关系的两个角,互为对顶角。
如:∠1、∠3。
③对顶角相等。
二、垂线1.垂直:如果两条直线相交成直角,那么这两条直线互相垂直。
2.垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。
3.垂足:两条垂线的交点叫垂足。
4.垂线特点:过一点有且只有一条直线与已知直线垂直。
5.点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。
连接直线外一点与直线上各点的所有线段中,垂线段最短。
三、同位角、内错角、同旁内角两条直线被第三条直线所截形成8个角。
1.同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。
如:∠1和∠5。
2.内错角:(在两条直线内部,位于第三条直线两侧)在两条直线之间,又在直线EF的两侧,具有这种位置关系的两个角叫内错角。
如:∠3和∠5。
3.同旁内角:(在两条直线内部,位于第三条直线同侧)在两条直线之间,又在直线EF的同侧,具有这种位置关系的两个角叫同旁内角。
如:∠3和∠6。
平行线及其判定(一) 平行线1.平行:两条直线不相交。
互相平行的两条直线,互为平行线。
a∥b(在同一平面内,不相交的两条直线叫做平行线。
)2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
3.平行公理推论:平行于同一直线的两条直线互相平行。
最新版人教版七年级数学全册知识点
最新版人教版七年级数学全册知识点最新版人教版七年级数学全册知识点一、代数初步知识1、正数与负数:在以前学过的0以外的数叫做正数,在正数前面加上负号“-”的数叫做负数。
2、有理数:把正整数、0、负整数、正分数、负分数都可以看做是数轴上的有理数。
注意:整数和分数统称有理数;在有理数的句子中,有时“正”可以省略不写,但“负”不能省掉。
3、有理数的分类:按整数、分数的关系分类;按正数、0、负数的关系分类。
4、小数:有限小数和无限循环小数。
5、数的开方:利用二次根式开方;利用分数指数幂的意义开方。
6、数的混合运算:先乘方,后乘除,最后加减;有括号先算括号里面的;同级运算,从左到右进行。
二、代数式1、用字母表示数的意义:用字母可以表示数量、图形、公式等。
2、用代数式表示几个相等关系:用代数式可以表示几个相等关系;用代数式表示几个不等的数量关系;用代数式表示一个运算规律。
3、代数式的值:用数值代替代数式里的字母,计算所得的结果叫做代数式的值。
注意求值时,必须把所代入的数值所所求的代数式中的字母看作同一个字母来对待。
4、代数式的分类:含有字母的数学表达式称为代数式;不含字母的数学表达式称为常数式。
三、数据的收集与整理1、数据的收集方法:计数器观察法、调查法、重复实验法。
2、数据的整理方法:用统计表整理;用统计图整理。
四、命题与证明1、命题的概念:能够判断真假的语句叫做命题。
一个命题由题设和结论两部分组成。
2、反证法证明命题的步骤:假设结论不成立;从假设出发推出矛盾;假设不成立,结论成立。
浙教版七年级数学知识点复习资料全浙教版七年级数学知识点复习资料第一章有理数1、有理数的定义:能写成两个整数之比的数称为有理数。
2、有理数的性质:(1)有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0。
(2)有理数减法法则:减去一个数,等于加上这个数的相反数。
人教版七年级下数学知识点归纳总结(全)-七下数学学习总结(最新最全)
第五章相交线与平行线平面内,点与直线之间的位置关系分为两种:①点在线上②点在线外同一平面内,两条或多条不重合的直线之间的位置关系只有两种:①相交②平行一、相交线1、两条直线相交,有且只有一个交点。
(反之,若两条直线只有一个交点,则这两条直线相交。
)两条直线相交,产生邻补角和对顶角的概念:邻补角:两角共一边,另一边互为反向延长线。
邻补角互补。
要注意区分互为邻补角与互为补角的异同。
对顶角:两角共顶点,一角两边分别为另一角两边的反向延长线。
对顶角相等。
注:①、同角或等角的余角相等;同角或等角的补角相等;等角的对顶角相等。
反过来亦成立。
②、表述邻补角、对顶角时,要注意相对性,即“互为”,要讲清谁是谁的邻补角或对顶角。
例如:判断对错:因为∠ABC +∠DBC = 180°,所以∠DBC是邻补角。
()相等的两个角互为对顶角。
()2、垂直是两直线相交的特殊情况。
注意:两直线垂直,是互相垂直,即:若线a垂直线b,则线b垂直线a 。
垂足:两条互相垂直的直线的交点叫垂足。
垂直时,一定要用直角符号表示出来。
过一点有且只有一条直线与已知直线垂直。
(注:这一点可以在已知直线上,也可以在已知直线外)3、点到直线的距离。
垂线段:过线外一点,作已知线的垂线,这点到垂足之间的线段叫垂线段。
垂线与垂线段:垂线是一条直线,而垂线段是一条线段,是垂线的一部分。
垂线段最短:连接直线外一点与直线上各点的所有线段中,垂线段最短。
(或说直角三角形中,斜边大于直角边。
)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫这点到直线的距离。
注:距离指的是垂线段的长度,而不是这条垂线段的本身。
所以,如果在判断时,若没有“长度”两字,则是错误的。
4、同位角、内错角、同旁内角三线六面八角:平面内,两条直线被第三条直线所截,将平面分成了六个部分,形成八个角,其中有:4对同位角,2对内错角和2对同旁内角。
注意:要熟练地认识并找出这三种角:①根据三种角的概念来区分②借助模型来区分,即:同位角——F型,内错角——Z型,同旁内角——U型。
初中数学七年级下册知识点及公式总结大全(人教版)
初中数学七年级下册知识点及公式总结大全(人教版)第五章相交线与平行线一、知识框架二、知识概念1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
3.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
4.平行线:在同一平面内,永不相交的两条直线叫做平行线。
5.同位角、内错角、同旁内角:同位角:∠1与∠5、∠2与∠6像这样具有相同位置关系的一对角叫做同位角。
内错角:∠4与∠6、∠3与∠5像这样的一对角叫做内错角。
同旁内角:∠4与∠5、∠3与∠6像这样的一对角叫做同旁内角。
6.命题:判断一件事情的语句叫命题。
7.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。
8.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
9.对顶角的性质:对顶角相等。
10.垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
11.平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
12.平行线的性质:性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
13.平行线的判定:判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角互补,两直线平行。
第六章平面直角坐标系一.知识框架二.知识概念1.有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)2.平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
3.横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。
新人教版七年级数学知识点归纳(上下册)
一:人教版七年级数学知识点归纳(上册)第一章 有理数1.1 正数和负数(1)正数:大于0的数;负数:小于0的数;(2)0既不是正数,也不是负数;(3)在同一个问题中,分别用正数和负数表示的量具有相反的意义;(4)-a 不一定是负数,+a 也不一定是正数;(5)自然数:0和正整数统称为自然数;(6)a>0 ⇔ a 是正数; a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a <0 ⇔ a 是负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.1.2 有理数(1)正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数;(2)正整数、0、负整数统称为整数;(3)有理数的分类:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (4)数轴:规定了原点、正方向、单位长度的一条直线;(即数轴的三要素)(5)一般地,当a 是正数时,则数轴上表示数a 的点在原点的右边,距离原点a 个单位长度;表示数-a 的点在原点的左边,距离原点a 个单位长度;(6)两点关于原点对称:一般地,设a 是正数,则在数轴上与原点的距离为a 的点有两个,它们分别在原点的左右,表示-a 和a ,我们称这两个点关于原点对称;(7)相反数:只有符号不同的两个数称为互为相反数;(8)一般地,a 的相反数是-a ;特别地,0的相反数是0;(9)相反数的几何意义:数轴上表示相反数的两个点关于原点对称;(10)a 、b 互为相反数⇔a+b=0 ;(即相反数之和为0)(11)a 、b 互为相反数⇔1-=b a 或1-=ab ;(即相反数之商为-1) (12)a 、b 互为相反数⇔|a|=|b|;(即相反数的绝对值相等)(13)绝对值:一般地,在数轴上表示数a 的点到原点的距离叫做a 的绝对值;(|a|≥0)(14)一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;(15)绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a (16)0a 1a a >⇔= ; 0a 1a a<⇔-=;(17)有理数的比较:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序。
根据最新人教版七年级数学下册第二单元知识点总结
根据最新人教版七年级数学下册第二单元
知识点总结
本文档将对最新人教版七年级数学下册第二单元的知识点进行总结。
以下是该单元的主要内容:
1. 自然数与整数
- 自然数定义:自然数是人们用于计数、排序和测量的数字,包括0和正整数。
- 整数定义:整数是包括正整数、负整数和0在内的数。
2. 整数的加法和减法
- 整数的加法:整数的加法遵循相同符号相加、不同符号相减的原则。
- 整数的减法:整数的减法可以转化为加法来计算,即减去一个数等于加上它的相反数。
3. 整数的乘法和除法
- 整数的乘法:整数的乘法遵循相乘结果的符号规律,相同符号相乘为正,异号相乘为负。
- 整数的除法:整数的除法遵循乘法的逆运算,即除一个数等于乘以它的倒数。
4. 基于整数的应用问题
- 整数在日常生活中有许多应用,比如表示温度、表示地理海拔等。
- 整数应用问题的解题思路是先把问题转化为数学表达式,然后进行计算。
5. 预备知识的复
- 在研究第二单元之前,需要复前一单元的相关知识,如数轴的使用、数的比较、数的排序等。
这是对最新人教版七年级数学下册第二单元知识点的一个简要总结。
希望对学生们的学习有所帮助!。
人教版七年级数学下册知识点大全
人教版七年级数学下册知识点大全第五章相交线与平行线5.1.1相交线1、如果两条直线只有一个公共点,就说这两条直线相交,该公共点叫做两直线的交点。
2、如果两个角有一个公共边,并且它们的另一边互为反向延长线,那么这两个角互为邻补角。
性质:邻补角互补。
(两条直线相交有4对邻补角。
)3、如果两个角的顶点相同,并且两边互为反向延长线,那么这两个角互为对顶角。
性质:对顶角相等。
(两条直线相交,有2对对顶角。
)5.1.2垂线4、当两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。
其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
5、由直线外一点向直线引垂线,这点与垂足间的线段叫做垂线段。
(要找垂线段,先把点来看。
过点画垂线,点足垂线段。
)6、垂线段是垂线上的一部分,它是线段,一端是一个点,另一端是垂足。
7、垂线画法:①放:放直尺,直尺的一边要与已知直线重合;②靠:靠三角板,把三角板的一直角边靠在直尺上;③移:移动三角板到已知点;④画线:沿着三角板的另一直角边画出垂线.8、垂线性质1:过一点有且只有一条直线与已知直线垂直。
9、过一点画已知线段(或射线)的垂线,就是画这条线段(或射线)所在直线的垂线.10、连接直线外一点与直线上各点的所有线段中,垂线段最短。
(垂线段最短.)11、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
5.1.3同位角、同旁内角、内错角12、同位角:如果两个角都在被截的两条直线的同方向,并且都在截线的同侧,即它们的位置相同,这样的一对角叫做同位角。
形如字母“F”。
13、内错角:如果两个角分别在被截的两条直线之间(内),并且分别在截线的两侧(错),这样的一对角叫做内错角。
形如字母“Z”。
14、同旁内角:如果两个角都在被截直线之间(内),并且都在截线的同侧(同旁),这样的一对角叫做同旁内角。
形如字母“U”。
5.2.1平行线15、在同一平面内,不相交的两条直线叫做平行线,记作:a∥b。
新人教版七年级下册数学知识点整理
最新版人教版七年級數學下冊知識點第五章 相交線與平行線一、知識網路結構二、知識要點1、在同一平面內,兩條直線的位置關係有 兩 種: 相交 和 平行 , 垂直 是相交的一種特殊情況。
2、在同一平面內,不相交的兩條直線叫 平行線 。
如果兩條直線只有 一個 公共點,稱這兩條直線相交;如果兩條直線 沒有 公共點,稱這兩條直線平行。
3、兩條直線相交所構成的四個角中,有 公共頂點 且有 一條公共邊 的兩個角是鄰補角。
鄰補角的性質: 鄰補角互補 。
如圖1所示, 與 互為鄰補角, 與 互為鄰補角。
+ = 180°; + = 180° ; + = 180°; + = 180°。
4、兩條直線相交所構成的四個角中,一個角的兩邊分別是另一個角的兩邊的 反向延長線 ,這樣的兩個角互為 對頂角 。
對頂角的性質:對頂角相等。
如圖1⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧平移命题、定理的两直线平行:平行于同一条直线性质角互补:两直线平行,同旁内性质相等:两直线平行,内错角性质相等:两直线平行,同位角性质平行线的性质的两直线平行 :平行于同一条直线判定直线平行 :同旁内角互补,两判定线平行 :内错角相等,两直判定线平行 :同位角相等,两直判定定义平行线的判定平行线,不相交的两条直线叫平行线:在同一平面内平行线及其判定内角同位角、内错角、同旁垂线相交线相交线相交线与平行线 4321 4321____________________________:图11 3 42所示, 與 互為對頂角。
= ;= 。
5、兩條直線相交所成的角中,如果有一個是 直角或90°時,稱這兩條直線互相垂直,其中一條叫做另一條的垂線。
如圖2所示,當 = 90°時,垂線的性質:性質1:過一點有且只有一條直線與已知直線垂直。
人教版七年级下册数学课本知识点归纳完整版(最新最全)
人教版七年级下册数学课本知识点归纳第五章相交线与平行线一、相交线两条直线相交,形成4个角。
1.邻补角:两个角有一条公共边,它们的另一条边互为反向延长线。
具有这种关系的两个角,互为邻补角。
如:∠1、∠2。
2.对顶角:两个角有一个公共顶点,并且一个角的两条边,分别是另一个角的两条边的反向延长线,具有这种关系的两个角,互为对顶角。
如:∠1、∠3。
3.对顶角相等。
二、垂线1.垂直:如果两条直线相交成直角,那么这两条直线互相垂直。
2.垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。
3.垂足:两条垂线的交点叫垂足。
4.垂线特点:过一点有且只有一条直线与已知直线垂直。
5.点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。
连接直线外一点与直线上各点的所有线段中,垂线段最短。
三、同位角、内错角、同旁内角两条直线被第三条直线所截形成8个角。
1.同位角:在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。
如:∠1和∠5。
2.内错角:在在两条直线之间,又在直线EF的两侧,具有这种位置关系的两个角叫内错角。
如:∠3和∠5。
3.同旁内角:在在两条直线之间,又在直线EF的同侧,具有这种位置关系的两个角叫同旁内角。
如:∠3和∠6。
四、平行线(一) 平行线1.平行:两条直线不相交。
互相平行的两条直线,互为平行线。
a∥b(在同一平面内,不相交的两条直线叫做平行线。
)2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
3.平行公理推论:①平行于同一直线的两条直线互相平行。
②在同一平面内,垂直于同一直线的两条直线互相平行。
(二)平行线的判定:1.同位角相等,两直线平行。
2.内错角相等,两直线平行。
3.同旁内角互补,两直线平行。
(三)平行线的性质1.两条平行线被第三条直线所截,同位角相等。
2.两条平行线被第三条直线所截,内错角相等。
3.两条平行线被第三条直线所截,同旁内角互补。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品文档相交线与平行线第五章一、知识网络结构二、知识??相交线??垂线相交线??要点??内角同位角、内错角、同旁????平行线平行线:在同一平面内,不相交的两条直线叫1、在同一???__________:__________________定义?????平面内,两线平行:同位角相等,两直判定1???平行线及其判定???线平行:内错角相等,两直平行线的判定判定2??条直线的????相交线与平行线直线平行3:同旁内角互补,两判定????位置关系?的两直线平行判定4:平行于同一条直线??????相等1:两直线平行,同位角性质有两???相等性质2:两直线平行,内错角??种:相交?角互补平行线的性质3:两直线平行,同旁内性质????的两直线平行4:平行于同一条直线性质和平行,????命题、定理?垂直是相??平移?交的一种特殊情况。
2、在同一平面内,不相交的两条直线叫平行线。
如果两条直线只有一个公共点,称这两条直线相交;如果两条直线没有公共点,称这两条直线平行。
3、两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
邻补角的性质:邻补角互补。
如图1所示,与互为邻补角,与互为邻补角。
+ = 180°; + = 180°; + = 180°; + = 180°。
4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角。
对顶角的性质:对顶角相等。
如图1所示,与互为对顶角。
= ; = 。
5、两条直线相交所成的角中,如果有一个是直角或90°时,称这两条直线互相垂直;其中一条叫做另一条的垂线。
如图2所示,当 = 90°时,⊥。
b精品文档 a2 13 4精品文档2 13 41 图垂线的性质:1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
性质⊥b时,== = = 90°。
性质3:如图2所示,当a点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。
6、同位角、内错角、同旁内角基本特征:同一侧,这样,都在第三条直线同一方 (截线)的(①在两条直线被截线)的是同位角;3中,共有对同位角:与。
图的两个角叫同位角是同位角;与是同位角。
与是同位角;与内错,这样的两个角叫(②在两条直线(被截线) 之间,并且在第三条直线截线)的两侧3角。
图中,共有对内错角:与是内错角;与是内错角。
同旁,这样的两个角叫(,都在第三条直线截线)的同一旁之间被截线③在两条直线()的是同旁内角。
是同旁内角;图内角。
3中,共有对同旁内角:与与c2 134 65 a 7 8b图3:经过直线外一点有且只有一条直线与已知直线平行。
、7平行公理平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
:平行线的性质精品文档.精品文档性质1:两直线平行,同位角相等。
如图3所示,如果a∥b,则 = ; = ; = ; = 。
性质2:两直线平行,内错角相等。
如图3所示,如果a∥b,则 = ;= 。
性质3:两直线平行,同旁内角互补。
如图3所示,如果a∥b,则 + = 180°;+ = 180°。
性质4:平行于同一条直线的两条直线互相平行。
如果a∥b,a∥c,则∥。
8、平行线的判定:判定1:同位角相等,两直线平行。
如图3所示,如果 =或 = 或 = 或 = ,则a∥b。
判定2:内错角相等,两直线平行。
如图3所示,如果 = 或 = ,则a∥b 。
判定3:同旁内角互补,两直线平行。
如图3所示,如果 + = 180°;+ = 180°,则a∥b。
判定4:平行于同一条直线的两条直线互相平行。
如果a∥b,a∥c,则∥。
9、判断一件事情的语句叫命题。
命题由题设和结论两部分组成,有真命题和假命题之分。
如果题设成立,那么结论一定成立,这样的命题叫真命题;如果题设成立,那么结论不一定成立,这样的命题叫假命题。
真命题的正确性是经过推理证实的,这样的真命题叫定理,它可以作为继续推理的依据。
10、平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。
平移后,新图形与原图形的形状和大小完全相同。
平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
平移性质:平移前后两个图形中①对应点的连线平行且相等;②对应线段相等;③对应角相等。
第六章实数精品文档.精品文档【知识点一】实数的分类1、按定义分类: 2.按性质符号分类:注:0既不是正数也不是负数.【知识点二】实数的相关概念1.相反数(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.(3)互为相反数的两个数之和等于0.a、b互为相反数 a+b=0.2.绝对值 |a|≥0.3.倒数(1)0没有倒数 (2)乘积是1的两个数互为倒数.a、b互为倒数 .4.平方根(1)如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作.(2)一个正数a的正的平方根,叫做a的算术平方根.a(a≥0)的算术平方根记作.5.立方根如果x3=a,那么x叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.【知识点三】实数与数轴数轴定义:规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.【知识点四】实数大小的比较1.对于数轴上的任意两个点,靠右边的点所表示的数较大.2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.3.无理数的比较大小:【知识点五】实数的运算1.加法同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.2.减法:减去一个数等于加上这个数的相反数.3.乘法几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0.4.除法除以一个数,等于乘上这个数的倒数.两个数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0.5.乘方与开方(1)an所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数.(2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方.(3)零指数与负指数精品文档.精品文档【知识点六】有效数字和科学记数法1.有效数字:一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字.2.科学记数法:把一个数用 (1≤<10,n为整数)的形式记数的方法叫科学记数法.第七章平面直角坐标系一、知识网络结构??有序数对平面直角坐标系??平面直角坐标系???用坐标表示地理位置??坐标方法的简单应用??用坐标表示平移??二、知识要点1、有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)。
2、平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
xy轴或纵轴;两坐标轴轴或横轴;竖直的数轴称为、横轴、纵轴、原点:水平的数轴称为3的交点为平面直角坐标系的原点。
xyxy轴上,对轴,轴,对于平面内任一点P,过P分别向轴作垂线,垂足分别在4、坐标:应的数a,b分别叫点P的横坐标和纵坐标,记作P(a,b)。
5、象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向依次叫第二象限、第三象限、第四象限。
坐标轴上的点不在任何一个象限内。
6、各象限点的坐标特点①第一象限的点:横坐标 0,纵坐标 0;②第二象限的点:横坐标 0,纵坐标 0;③第三象限的点:横坐标 0,纵坐标 0;④第四象限的点:横坐标 0,纵坐标 0。
xx轴负半轴;②,纵坐标 0轴正半轴上的点:横坐标 07、坐标轴上点的坐标特点①y轴正半轴上的点:横坐标 0;③,纵坐标 0;④的点:横坐标上 0,纵坐标 0y轴负半轴上的点:横坐标 0,纵坐标 0;⑤坐标原点:横坐标 0,纵坐标 0。
(填“>”、“<”或“=”)xy轴的距离是 |a| 。
轴的距离是 |b| ,到b)8、点P(a,到x轴对称的两个点,横坐标相等,纵坐标、9对称点的坐标特点①关于互为相反数;②关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;③关于原点对称的两个点,横坐标、纵坐标分别互为相反数。
xy x轴对称的3) P(2 是是3) P(210、点,到轴的距离;到轴的距离;点,关于精品文档.精品文档y轴对称的点坐标为( , )P(2;点,3) 关于。
点坐标为( , )yx轴垂直、与;如果两点的横坐标相同,则过这两点的直线与轴平行11、如果两个点的xy轴垂直。
如果点P(2,3)、Q(2,纵坐标相同,则过这两点的直线与6)轴平行、与,这两yx轴;如果点P(-1,2)、Q(4,2)点横坐标相同,则PQ∥,这两点纵坐标相同,则轴,PQ⊥xy轴。
⊥∥轴,PQ PQ xy轴的直线上的点的横坐标相同;在轴的直线上的点的纵坐标相同;平行于12、平行于一、三象限角平分线上的点的横坐标与纵坐标相同;在二、四象限角平分线上的点的横坐标与纵坐标互为相反数。
如果点P(a,b) 在一、三象限角平分线上,则P点的横坐标与纵坐标相同,即 a = b ;如果点P(a,b) 在二、四象限角平分线上,则P点的横坐标与纵坐标互为相反数,即 a = -b 。
13、表示一个点(或物体)的位置的方法:一是准确恰当地建立平面直角坐标系;二是正确写出物体或某地所在的点的坐标。
选择的坐标原点不同,建立的平面直角坐标系也不同,得到的同一个点的坐标也不同。
14、图形的平移可以转化为点的平移。
坐标平移规律:①左右平移时,横坐标进行加减,纵坐标不变;②上下平移时,横坐标不变,纵坐标进行加减;③坐标进行加减时,按“左减右加、上加下减”的规律进行。
如将点P(2,3)向左平移2个单位后得到的点的坐标为( , );将点P(2,3)向右平移2个单位后得到的点的坐标为( , );将点P(2,3)向上平移2个单位后得到的点的坐标为( , );将点P(2,3)向下平移2个单位后得到的点的坐标为( , );将点P(2,3)先向左平移3个单位后再向上平移5个单位后得到的点的坐标为( , );将点P(2,3)先向左平移3个单位后再向下平移5个单位后得到的点的坐标为( , );将点P(2,3)先向右平移3个单位后再向上平移5个单位后得到的点的坐标为( , );将点P(2,3)先向右平移3个单位后再向下平移5个单位后得到的点的坐标为( , )。