第十八章 光的偏振 作业及参考答案 2014(题目)
许涛(光的偏振(有答案))3(1)
许涛(光的偏振(有答案))3(1)光的偏振一、选择题1、两偏振片堆叠在一起,一束自然光垂直入射时没有光线通过。
当其中一偏振片慢慢转动180°时透射光强度发生的变化为[c](a)反射率单调减少;(b)反射率先减少,然后增大,再减少,再增大至零(c)反射率先减少,后又增大至零;(d)反射率先减少,后增大,再减少。
2、两偏振片组成起偏器及检偏器,当它们的偏振化方向成60时观察一个强度为i0的自然光光源;所得的光强是[b](a)i0/2;(b)i0/8;(c)i0/6;(d)3i0/4.3、光强为i0自然光垂直照射到两块互相重叠的偏振片上,观察到的光强为零时,两块偏振片的偏振化方向成[d](a)30°;(b)45°;(c)60°;(d)90°。
4、自然光垂直照射到两块互相重叠的偏振片上,如果透射光强为入射光强的一半,两偏振片的偏振化方向间的夹角为多少?如果透射光强为最大透射光强的一半,则两偏振片的偏振化方向间的夹角又为多少?[d](a)45°,45°;(b)45°,0°;(c)0°,30°;(d)0°,45°。
5、一束光强为i0的自然光垂直穿过两个偏振片,且两偏振片的振偏化方向成60°角,若不考虑偏振片的反射和吸收,则穿过两个偏振片后的光强i为[b](a)2i04;(b)i08;(c)i02;(d)2i02。
o7、自然光以60o的入射角照射某两介质交界面时,反射光为全然偏振光,则折射光为[d]a、全然偏振光且折射角就是300b、部分偏振光且只是在该光由真空入射到折射率为1.732的介质时,折射角为300c、部分偏振光,但须知两种介质的折射率才能确定折射;d、部分偏振光且折射角是3008、自然光以布儒斯特角由空气入射到一玻璃表面上,反射光是[c](a)在入射光面内振动的全然偏振光(b)平行于入射光面的振动占优的部分偏振光(c)旋转轴入射光振动的全然偏振光(d)旋转轴入射光面的振动占优的部分偏振光9、一束反射率为i0自然光,相继通过三个偏振片p1、p2、p3后,辐照度光的反射率i=i0/8,未知p1和p3的偏振化方向相互横向,若以入射光线为轴,转动p2,必须施展射光的反射率为零,p2最少必须抬起的角度就是[b](a)30°(b)45°(c)60°(d)90°二、填空题1、检验自然光、线偏振光和部分偏振光时,并使被检验光入射光至偏振片上,然后转动偏振片。
光的偏振(有答案)
光的偏振一、光的偏振的相关知识(1)自然光:太阳、电灯等普通光源发出的光,包含着在垂直于传播方向上沿一切方向振动的光,而且沿各个方向振动的光波的强度都相同,这种光叫做自然光.(2)偏振:光波只沿某一特定的方向振动,称为光的偏振(3)偏振光:在垂直于传播方向的平面上,只沿某个特定方向振动的光,叫做偏振光.光的偏振证明光是横波.自然光通过偏振片后,就得到了偏振光.二、光的偏振的理解1、偏振光的产生方式(1)自然光通过起偏器:通过两个共轴的偏振片观察自然光,第一个偏振片的作用是把自然光变成偏振光,叫起偏器.第二个偏振片的作用是检验光是否为偏振光,叫检偏器.(2)自然光射到两种介质的交界面上,如果光入射的方向合适,使反射光和折射光之间的夹角恰好是90°时,反射光和折射光都是偏振光,且偏振方向相互垂直.特别提醒不能认为偏振片就是刻有狭缝的薄片,偏振片并非刻有狭缝,而是具有一种特征,即存在一个偏振方向,只让平行于该方向振动的光通过,其他振动方向的光被吸收了.2、偏振光的理论意义及应用(1)理论意义:光的干涉和衍射现象充分说明了光是波,但不能确定光波是横波还是纵波.光的偏振现象说明了光波是横波.(2)应用:照相机镜头、立体电影、消除车灯眩光等.三、相关练习1、如图所示,偏振片P的透振方向(用带有箭头的实线表示)为竖直方向.下列四种入射光束中,能在P的另一侧观察到透射光的是() A.太阳光B.沿竖直方向振动的光C.沿水平方向振动的光D.沿与竖直方向成45°角振动的光答案ABD解析偏振片只让沿某一方向振动的光通过,当偏振片的透振方向与光的振动方向不同时,透射光的强度不同,它们平行时最强,而垂直时最弱.太阳光是自然光,光波可沿任何方向振动,所以在P的另一侧能观察到透射光;沿竖直方向振动的光,振动方向与偏振片的透振方向相同,当然可以看到透射光;沿水平方向振动的光,其振动方向与透振方向垂直,所以看不到透射光;沿与竖直方向成45°角振动的光,其振动方向与透振方向不垂直,仍可看到透射光.2、如图所示,电灯S发出的光先后经过偏振片A和B,人眼在P处迎着入射光方向,看不到光亮,则()A.图中a光为偏振光B.图中b光为偏振光C.以SP为轴将B转过180°后,在P处将看到光亮D.以SP为轴将B转过90°后,在P处将看到光亮思路点拨偏振片A为起偏器,B为检偏器,当A、B的透振方向平行时透过B的亮度最大,垂直时没有光透过.解析自然光沿各个方向发散是均匀分布的,通过偏振片后,透射光是只沿着某一特定方向振动的光.从电灯直接发出的光为自然光,则A错;它通过A偏振片后,即变为偏振光,则B对;设通过A的光沿竖直方向振动,P点无光亮,则B偏振片只能通过沿水平方向振动的偏振光,将B转过180°后,P处仍无光亮,C错;若将B转过90°,则该偏振片将变为能通过竖直方向上振动的光的偏振片,则偏振光能通过B,即在P处有光亮,D对.答案BD3、(2012·江苏·12B(1))如图所示,白炽灯的右侧依次平行放置偏振片P和Q,A点位于P、Q之间,B点位于Q右侧.旋转偏振片P,A、B两点光的强度变化情况是________.A.A、B均不变B.A、B均有变化C.A不变,B有变化D.A有变化,B不变答案 C解析白炽灯光包含各方向的光,且各个方向的光强度相等,所以旋转偏振片P时各方向透射光强度相同,故A点光的强度不变;白炽灯光经偏振片P后变为偏振光,当Q旋转时,只有与P的偏振方向一致时才有光透过Q,因此B 点的光强有变化,选项C正确.4、光的偏振现象说明光是横波.下列现象中不能反映光的偏振特性的是()A.一束自然光相继通过两个偏振片,以光束为轴旋转其中一个偏振片,透射光的强度发生变化B.一束自然光入射到两种介质的分界面上,当反射光线与折射光线之间的夹角恰好是90°时,反射光是偏振光C.日落时分,拍摄水面下的景物,在照相机镜头前装上偏振滤光片可以使景像更清晰D.通过手指间的缝隙观察日光灯,可以看到彩色条纹答案 D解析在垂直于传播方向的平面上,沿着某个特定方向振动的光是偏振光,A、B选项反映了光的偏振特性,C是偏振现象的应用,D是光的衍射现象.5、下列有关光现象的解释正确的是()A.光在同一介质中沿直线传播B.无影灯利用的是光的衍射原理C.任何两束光都可以发生干涉D.为了司机在夜间安全行驶,汽车前窗玻璃常采用偏振玻璃答案 D解析光在同一种均匀介质中才会沿直线传播,选项A错误;海市蜃楼是光在密度分布不均匀的空气中传播时发生全反射而产生的,所以选项B正确;只有相干波才可以发生干涉,选项C错误;汽车前窗玻璃采用偏振玻璃,在夜间行驶时可以减弱对面车辆照射过来的光强,选项D正确.。
5光的偏振习题答案
选择题:
1、B
2、C
3、B
4、D
5、B 填空题: 1、9I 0 / 32 2、3 3、(I 0/4) 4、021I ;032
9I 简答题:
1、答案:对入射自然光的光矢量在某方向上有强烈的吸收,而对与该方向垂直的分量吸收很少。
2、答案:光矢量的振动在各方向的分布是对称的称为自然光;若各方向振动不均匀则称为偏振
3、答案:反射光是垂直振动平面的线偏振光。
折射光是平行振动平面占优势的部分偏振光。
计算题
1、解:第一个普通光源的光强用I 1表示,通过第一个偏振片之后,光强为I 0 = I 1/2. 当偏振光通过第二个偏振片后,根据马吕斯定律,光强为I = I 0cos 2θ1 = I 1cos 2θ1/2. 同理,对于第二个普通光源可得光强为I = I 2cos 2θ2/2.
因此光源的光强之比I 2/I 1 = cos 2θ1/cos 2θ2 = cos 230º/cos 260º = 1/3.
2、解:当光由水射向玻璃时,水的折射率为n 1,玻璃的折射率为n 2,根据布儒斯特定律
tan i 0 = n 2/n 1 = 1.1278,
得起偏角为i 0 = 48.44º.
当光由玻璃射向水时,玻璃的折射率为n 1,水的折射率为n 2,根据布儒斯特定律
tan i 0 = n 2/n 1 = 0.8867,
得起偏角为i 0 = 41.56º.
可见:两个角度互为余角.。
光的偏振习题(附答案)-(1)
光的偏振习题(附答案)-(1)解:由于e光在方解石中的振动方向与光轴相同, o光在方解石中的振动方向与光轴垂直, 所以e光和o光在方解石内的波面在垂直于光轴的平面中的截线都是圆弧. 但v e > v o ,所以e波包围o波.由图可知, 本题中对于e光仍满足折射定律sin sine ei nγ=由于 e 光在棱镜内折射线与底边平行,30eγ=︒sin sin30 1.490.50.745ei n==⨯=入射角4810oi'=又因为sin sino oi nγ=sin sin4810sin0.4491.66oooinγ'∴===故o光折射角2640ooγ'=1.有三个偏振片堆叠在一起, 第一块与第三块的偏振化方向相互垂直, 第二块和第一块的偏振化方向相互平行, 然后第二块偏振片以恒定角速度ω绕光传播的方向旋转, 如图所示. 设入射自然光的光强为I0. 求此自然光通过这一系统后, 出射光的光强.解:经过P1, 光强由I0变为I0/2, P2以ω转动, P1, P2的偏振化方向的夹角θ=ωt202cos 2I I t ω=P 2以ω转动, P 2, P 3的偏振化方向的夹角β=π/2-ωt22203222000cos cos sin 2(2sin cos )sin 2(1cos 4)8816I I I t t I I I t t t t βωωωωωω==⋅===- 2. 有一束钠黄光以50角入射在方解石平板上, 方解石的光轴平行于平板表面且与入射面垂直, 求方解石中两条折射线的夹角.(对于钠黄光n o =1.658, n e =1.486)解: 在此题的特殊条件下, 可以用折射定律求出o 光, e 光折射线方向. 设i 为入射角, o γ和e γ分别为o 光和e 光的折射角.由折射定律:sin sin o o i n γ=sin sin e e i n γ=sin sin /0.463o o i n γ∴==, 27.5o o γ=sin sin /0.516e e i n γ==, 31.0o e γ=31.027.5 3.5o o o e o γγγ∆=-=-=3. 如图所示的各种情况下, 以非偏振光和偏振光入射两种介质的分界面, 图中i 0为起偏角, i 试画出折射光线和反射光线, 并用点和短线表示他们的偏振状态.4. 如图示的三种透光媒质I 、II 、III, 其折射率分别为n 1=1.33、n 2=1.50、n 3=1,两个交界面相互平行, 一束自然光自媒质I 中入射到I 与II 的交界面上, 若反射光为线偏振光,(1) 求入射角I;(2) 媒质II 、III 交界面上的反射光是不是线偏振光?为什么?解:(1)由布儒斯特定律:()21/ 1.50/1.33tgi n n ==4826o i '=令介质II 中的折射角为γ,则/241.56o i γπ=-=此γ在数值上等于在II 、III 界面上的入射角.若II 、III 界面上的反射光是线偏振光, 则必满足布儒斯特定律()032/ 1.0/1.5tgi n n ==033.69o i =因为0i γ≠, 故II 、III 界面上的反射光不是线偏振光.5. 一块厚0.025mm 的方解石晶片, 表面与光轴平行并放置在两个正交偏振片之间, 晶片的光轴与两偏振片的偏振化方向均成45度角. 用白光垂直入射到第一块偏振片上, 从第二块偏振片出射的光线中, 缺少了那些波长的光.(假定n o =1.658, n e =1.486为常数)解:2()C o e n n d πφλ∆=-2()o e n n d πφπλ⊥∆=-+ 045α=相干相消:(21)k φπ⊥∆=+ 缺少的波长:()o e n n dk λ-=, 6,7,8,9,10k =717,614,538,478,430nm λ=6. 一方解石晶体的表面与其光轴平行, 放在偏振化方向相互正交的偏振片之间, 晶体的光轴与偏振片的偏振化方向成450角. 试求:(1)要使λ = 500nm 的光不能透过检偏器, 则晶片的厚度至少多大?(2)若两偏振片的偏振化方向平行, 要使λ =500nm 的光不能透过检偏器, 晶片的厚度又为多少?(方解石对o 光和e 光的主折射率分别为1.658和1.486.)解:(1)如图(a )所示, 要使光不透过检偏器, 则通过检偏器的两束光须因干涉而相消, 通过P 2时两光的光程差为0()e n n d ∆=-对应的相位差为:02π()2πππe n n d δφλλ-∆=+=+由干涉条件:(21)π(0,1,2......)k k φ∆=+=02π()π(21)πe dn n k λ-+=+当k=1时, 镜片厚度最小, 为760510 2.910(m)()(1.658 1.486)e d n n λ--⨯===⨯-- (2)由图(b)可知当P 1, P 2平行时, 通过P 2的两束光没有附加相位差π, '02π()(21)π(0,1,2..)e d n n k k φλ∴∆=-=+=当k=0时, 此时晶片厚度最小,7065102()2(1.658 1.486)1.4510(m)e d n n λ--⨯==-⨯-=⨯7. 一束平行的线偏振光在真空中的波长为589nm, 垂直入射到方解石晶体上,晶体的光轴与表面平行, 如图所示. 已知方解石晶体对该单色o 光和e 光的折射率分别为1.658、1.486, 方解石晶体中寻常光的波长和非常光的波长分别等于多少?解:方解石晶体中o 光和e 光的波长分别为o o n λλ=658.1589=)nm (2.355=e e n λλ=486.1589=)nm (4.396= 一. 证明与问答题8. (证明题)一块玻璃的折射率为2 1.55n =, 一束自然光以θ角入射到玻璃表面, 求θ角为多少时反射光为完全偏振光?证明在下表面反射并经上表面透射的光也是完全偏振光.解:根据布儒斯特定律201tg n i n =121tg 571017n n θ-'''== 由折射定律:12sin sin n n θγ=π/2θγ+=πsin sin()cos 2θγγ=-=γ角满足布儒斯特定律.9. (问答题)用自然光源以及起偏器和检偏器各一件, 如何鉴别下列三种透明片:偏振片、半波片和1/4波片?答:令自然光先通过起偏器, 然后分别通过三种透明片, 改变起偏器的透振方向, 观察现象, 出现消光的透明片为偏振片, 再通过检偏器, 改变检偏器的透振方向, 出现消光的透明片为半波片.。
光的偏振参考答案
光的偏振参考解答一 选择题1.一束光强为I 0的自然光,相继通过三个偏振片P 1、P 2、P 3后,出射光的光强为I= I 0/8,已知P 1和P 3的偏振化方向相互垂直,若以入射光线为轴,旋转P 2,要使出射光的光强为零,P 2最少要转过的角度是(A )30° (B )45° (C )60° (D )90°[ B ] [参考解] 设P 1与 P 2的偏振化方向的夹角为α ,则82s i n 8s i n c o s 2020220I I I I ===ααα ,所以4/πα=,若I=0 ,则需0=α或πα= 。
可得。
2.一束光是自然光和线偏振光的混合光,让它垂直通过一偏振片,若以此入射光束为轴旋转偏振片,测得透射光强度最大值是最小值的5倍,那么入射光束中自然光与线偏振光的光强比值为 (A )1/2 (B )1/5 (C )1/3 (D )2/3[ A ] [参考解] 设自然光与线偏振光的光强分别为I 1与 I 2 ,则12121521I I I ⨯=+ ,可得。
3.某种透明媒质对于空气的全反射临界角等于45°,光从空气射向此媒质的布儒斯特角是(A )35.3° (B )40.9° (C )45° (D )54.7°[ D ] [参考解] 由n145sin =,得介质折射率2=n ;由布儒斯特定律,21t a n0==n i ,可得。
4.自然光以60°的入射角照射到某两介质交界面时,反射光为完全偏振光,则知折射光为(A )完全偏振光且折射角是30°(B )部分偏振光且只是在该光由真空入射到折射率为3的介质时,折射角是30° (C )部分偏振光,但须知两种介质的折射率才能确定折射角 (D )部分偏振光且折射角是30°[ D ][参考解] 由布儒斯特定律可知。
二 填空题1.一束自然光从空气投射到玻璃表面上(空气折射率为1),当折射角为30°时,反射光是完全偏振光,则此玻璃的折射率等于3 。
光的偏振习题(附答案)
光的偏振(附答案)一. 填空题1. 一束光垂直入射在偏振片P 上,以入射光为轴旋转偏振片,观察通过偏振片P 的光强的变化过程. 若入射光是自然光或圆偏振光, 则将看到光强不变;若入射光是线偏振光, 则将看到明暗交替变化, 有时出现全暗;若入射光是部分偏振光或椭圆偏振光, 则将看到明暗交替变化, 但不出现全暗.2. 圆偏振光通过四分之一波片后, 出射的光一般是线偏振光.3. 要使一束线偏振光通过偏振片之后振动方向转过90度角,则至少需要让这束光通过2块理想偏振片,在此情况下,透射光强最大是原来的1/4 倍.4. 两个偏振片叠放在一起,强度为I 0的自然光垂直入射其上,若通过两个偏振片后的光强为I/8,则此两偏振片的偏振化方向间的夹角为(取锐角)是60度,若在两片之间再插入一片偏振片, 其偏振化方向间的夹角(取锐角)相等,则通过三个偏振片后的投射光强度为9/32 I 0.5. 某种透明媒质对于空气的临界角(指全反射)等于450, 则光从空气射向此媒质的布儒斯特角是54.70, 就偏振状态来说反射光为完全偏振光, 反射光矢量的振动方向垂直入射面, 透射光为部分偏振光.6. 一束自然光从空气透射到玻璃表面上(空气折射率为1), 当折射角为300时, 反射光是完全偏振光, 则此玻璃的折射率等于1.732.7. 一束钠自然黄光(λ=589.3×10-9m)自空气(设n=1)垂直入射方解石晶片的表面,晶体厚度为0.05 mm, 对钠黄光方解石的主折射率n 0=1.6584、n e =1.4864, 则o 、e 两光透过晶片后的光程差为 8.6 μm , o 、e 两光透过晶片后的相位差为91.7 rad.8. 在杨氏双缝干涉实验中, 若用单色自然光照射狭缝S, 在屏幕上能看到干涉条纹. 若在双缝S 1和 S 2后分别加一个同质同厚度的偏振片P 1、P 2, 则当P 1与P 2的偏振化方向互相平行或接近平行时, 在屏幕上仍能看到清晰的干涉条纹.二. 计算题9. 有一束自然光和线偏振光组成的混合光, 当它通过偏振片时改变偏振片的取向, 发现透射光强可以变化7倍. 试求入射光中两种光的光强度各占总入射光强的比例.解:设入射光的光强为0I , 其中线偏振光的光强为01I ,自然光的光强为02I .在该光束透过偏振片后, 其光强由马吕斯定律可知:201021cos 2I I I α=+ 当α=0时, 透射光的光强最大,max 010212I I I =+,当α=π/2时, 透射光的光强最小,min 0212I I =max min 0102020102177322I I I I I I I =∴+=⇒=入射总光强为:00102I I I =+01020031,44I I I I ∴== 10. 如图所示, 一个晶体偏振器由两个直角棱镜组成(中间密合). 其中一个直角棱镜由方解石晶体制成, 另一个直角棱镜由玻璃制成, 其折射率n 等于方解石对e 光的折射率n e . 一束单色自然光垂直入射, 试定性地画出折射光线, 并标明折射光线光矢量的振动方向. (方解石对o 光和e 光的主折射率分别为1.658和1.486.)解:由于玻璃的折射率n 等于方解石对e 光的折射率, 因此e 光进入方解石后传播方向不变. 而n=n e >n o , 透过因此o 光进入方解石后的折射角<450, 据此得光路图.11. 用方解石割成一个正三角形棱镜, 其光轴与棱镜的棱边平行, 亦即与棱镜的正三角形横截面垂直. 如图所示. 今有一束自然光入射于棱镜, 为使棱镜内的 e 光折射线平行于棱镜的底边, 该入射光的入射角i 应为多少? 并在图中画出 o 光的光路并标明o 光和e 光的振动方向. 已知n e = 1.49 (主折射率, n o =1.66.解:由于e 光在方解石中的振动方向与光轴相同, o 光在方解石中的振动方向与光轴垂直, 所以e 光和o 光在方解石内的波面在垂直于光轴的平面中的截线都是圆弧. 但 v e > v o ,所以e 波包围o 波.由图可知, 本题中对于e 光仍满足折射定律sin sin e e i n γ=由于 e 光在棱镜内折射线与底边平行,30e γ=︒ 0sin sin 30 1.490.50.745e i n ==⨯=入射角 4810o i '= 又因为sin sin o o i n γ= sin sin 4810sin 0.4491.66o o o i n γ'∴===故o 光折射角2640o o γ'=12. 有三个偏振片堆叠在一起, 第一块与第三块的偏振化方向相互垂直, 第二块和第一块的偏振化方向相互平行, 然后第二块偏 振片以恒定角速度ω绕光传播的方向旋转, 如图所示. 设入射自然光的光强为I 0. 求此自然光通过这一系统后, 出射光的光强.解:经过P 1, 光强由I 0变为I 0/2, P 2以ω转动, P 1, P 2的偏振化方向的夹角θ=ωt202cos 2I I t ω=P 2以ω转动, P 2, P 3的偏振化方向的夹角β=π/2-ωt22203222000cos cos sin 2(2sin cos )sin 2(1cos 4)8816I I I t t I I I t t t t βωωωωωω==⋅===- 13. 有一束钠黄光以50角入射在方解石平板上, 方解石的光轴平行于平板表面且与入射面垂直, 求方解石中两条折射线的夹角.(对于钠黄光n o =1.658, n e =1.486)解: 在此题的特殊条件下, 可以用折射定律求出o 光, e 光折射线方向. 设i 为入射角, o γ和e γ分别为o 光和e 光的折射角.由折射定律:sin sin o o i n γ=sin sin e e i n γ=sin sin /0.463o o i n γ∴==, 27.5o o γ=sin sin /0.516e e i n γ==, 31.0o e γ=31.027.5 3.5o o o e o γγγ∆=-=-=14. 如图所示的各种情况下, 以非偏振光和偏振光入射两种介质的分界面, 图中i 0为起偏角, i 试画出折射光线和反射光线, 并用点和短线表示他们的偏振状态.15. 如图示的三种透光媒质I 、II 、III, 其折射率分别为n 1=1.33、n 2=1.50、n 3=1, 两个交界面相互平行, 一束自然光自媒质I 中入射到I 与II 的交界面上, 若反射光为线偏振光,(1) 求入射角I;(2) 媒质II 、III 交界面上的反射光是不是线偏振光?为什么?解:(1)由布儒斯特定律:()21/ 1.50/1.33tgi n n ==4826o i '=令介质II 中的折射角为γ,则/241.56o i γπ=-=此γ在数值上等于在II 、III 界面上的入射角.若II 、III 界面上的反射光是线偏振光, 则必满足布儒斯特定律()032/ 1.0/1.5tgi n n ==033.69o i =因为0i γ≠, 故II 、III 界面上的反射光不是线偏振光.16. 一块厚0.025mm 的方解石晶片, 表面与光轴平行并放置在两个正交偏振片之间, 晶片的光轴与两偏振片的偏振化方向均成45度角. 用白光垂直入射到第一块偏振片上, 从第二块偏振片出射的光线中, 缺少了那些波长的光.(假定n o =1.658, n e =1.486为常数)解: 2()C o e n n d πφλ∆=-2()o e n n d πφπλ⊥∆=-+ 045α=相干相消:(21)k φπ⊥∆=+缺少的波长:()o e n n dk λ-=, 6,7,8,9,10k =717,614,538,478,430nm λ=17. 一方解石晶体的表面与其光轴平行, 放在偏振化方向相互正交的偏振片之间, 晶体的光轴与偏振片的偏振化方向成450角. 试求:(1)要使λ = 500nm 的光不能透过检偏器, 则晶片的厚度至少多大?(2)若两偏振片的偏振化方向平行, 要使λ =500nm 的光不能透过检偏器, 晶片的厚度又为多少?(方解石对o 光和e 光的主折射率分别为1.658和1.486.)解:(1)如图(a )所示, 要使光不透过检偏器, 则通过检偏器的两束光须因干涉而相消, 通过P 2时两光的光程差为0()e n n d ∆=-对应的相位差为:02π()2πππe n n d δφλλ-∆=+=+由干涉条件:(21)π(0,1,2......)k k φ∆=+=02π()π(21)πe d n n k λ-+=+当k=1时, 镜片厚度最小, 为760510 2.910(m)()(1.658 1.486)e d n n λ--⨯===⨯-- (2)由图(b)可知当P 1, P 2平行时, 通过P 2的两束光没有附加相位差π, '02π()(21)π(0,1,2..)e d n n k k φλ∴∆=-=+=当k=0时, 此时晶片厚度最小,7065102()2(1.658 1.486)1.4510(m)e d n n λ--⨯==-⨯-=⨯18. 一束平行的线偏振光在真空中的波长为589nm, 垂直入射到方解石晶体上,晶体的光轴与表面平行, 如图所示. 已知方解石晶体对该单色o 光和e 光的折射率分别为1.658、1.486, 方解石晶体中寻常光的波长和非常光的波长分别等于多少?解:方解石晶体中o 光和e 光的波长分别为o o n λλ=658.1589=)nm (2.355=e e n λλ=486.1589=)nm (4.396= 三. 证明与问答题19. (证明题)一块玻璃的折射率为2 1.55n =, 一束自然光以θ角入射到玻璃表面, 求θ角为多少时反射光为完全偏振光?证明在下表面反射并经上表面透射的光也是完全偏振光.解:根据布儒斯特定律201tg n i n =121tg 571017n n θ-'''== 由折射定律:12sin sin n n θγ=π/2θγ+=πsin sin()cos 2θγγ=-=γ角满足布儒斯特定律.20. (问答题)用自然光源以及起偏器和检偏器各一件, 如何鉴别下列三种透明片:偏振片、半波片和1/4波片?答:令自然光先通过起偏器, 然后分别通过三种透明片, 改变起偏器的透振方向, 观察现象, 出现消光的透明片为偏振片, 再通过检偏器, 改变检偏器的透振方向, 出现消光的透明片为半波片.。
光的偏振3(2014)
ΔL ( n0 ne )d
四分之一波片 2 (no ne )d 2
(no ne )d 4
线偏振光 光轴 d
o光
e光
对不同波长的光,四分之一波片的厚度不同(P133) 二分之一波片 2 (no ne )d
例2 、如图所示,在两偏振片P1、P2之间插入四分之 一波片,并使其光轴与 P1 的偏振化方向间成 45o 角。 光强为 I 的单色自然光垂直入射于 P1 ,转动 P2 求透过 C P1 P2 P2的光强I'。
45o
解:线偏振光在本题条件下通过四分之一波片后成为 圆偏振光,因 45 它的两个互相垂直的分振动的振幅相等,为 转动P2,透过光强不变。透过光强度可如下求出:
•
S
A
B
P
C
作业
6.9; 6.10
o
760
(吸收涂层) 方解石 no=1.658,
加拿大树胶
ne 1.486
ng 1.55
no n
可产生全反射! 其临界角 θC 69012
结论:入射方向在水平线上下不超过 140 出射的是一束振动方向在纸面内的线偏振光。
2、渥拉斯登棱镜:能给出振动面垂直的两线偏振光。
四分之一玻片
部分偏振光
部分偏振光
线偏光
四分之一玻片
出射光光强变 化,无消光。 线性起偏器
4–6–4
P1
自然光 线偏光
C
椭偏光
P2
线偏光
线性起偏器
波片
线性起偏器
E1
C Ee
E1
P2
光的偏振答案
光的偏振习题答案一.选择题1.B2.B3.A4.D5.D6.A7.C8.C二.填空题1. 自然光, 线偏振光, 部分偏振光或椭圆偏振光;2. 线偏振光光(矢量)振动, 偏振化;3. 3/2;4. 45°;5. 3;6. 54.7°7. n 2 / n 1 ;8. 部分,π / 2 (或90°).三.计算题1.解:设第二个偏振片与第一个偏振片的偏振化方向间的夹角为θ.透过第一个偏振片后的光强I 1=I 0 / 2.透过第二个偏振片后的光强为I 2,由马吕斯定律,I 2=(I 0 /2)cos 2θ透过第三个偏振片的光强为I 3,I 3 =I 2 cos 2(90°-θ ) = (I 0 / 2) cos 2θ sin 2θ = (I 0 / 8)sin 22θ由题意知 I 3=I 0 / 8所以 sin 22θ = 1 ,()11sin 12θ-==45° 2.解:(1) 透过第一个偏振片的光强I 1I 1=I 0 cos 230° =3 I 0 / 4透过第二个偏振片后的光强I 2, I 2=I 1cos 260°=3I 0 / 16(2) 原入射光束换为自然光,则I 1=I 0 / 2I 2=I 1cos 260°=I 0 / 83.解:设太阳光(自然光)以入射角i 入射到水面上,则所求仰角θ =π / 2-i ,当反射太阳光是线偏振光时,根据布儒斯特定律,有i =i 0 =arctan (n 2 / n 1),其中n 1为空气的折射率,n 2为水的折射率。
所以 i =i 0 =π / 2-θ= arctan (n 2 / n 1)则θ =π / 2- arctan (n 2 / n 1)=36.9°. 反射光中的E 矢量的方向是垂直于入射面.4. 解: (1) 根据布儒斯特定律tan i =n 2 / n 1=1.60 / 1.00所以 i =58.0°(2) o o 0.3290=-=i r(3) 因两个界面平行,所以下表面处入射角等于r ,tan r =ctan i =n 1 / n 2满足布儒斯特定律,所以图中玻璃板下表面处的反射光也是线偏振光.。
光的偏振习题(附答案)
光的偏振(附答案)一. 填空题1. 一束光垂直入射在偏振片P 上,以入射光为轴旋转偏振片,观察通过偏振片P 的光强的变化过程. 若入射光是自然光或圆偏振光, 则将看到光强不变;若入射光是线偏振光, 则将看到明暗交替变化, 有时出现全暗;若入射光是部分偏振光或椭圆偏振光, 则将看到明暗交替变化, 但不出现全暗.2. 圆偏振光通过四分之一波片后, 出射的光一般是线偏振光.3. 要使一束线偏振光通过偏振片之后振动方向转过90度角,则至少需要让这束光通过2块理想偏振片,在此情况下,透射光强最大是原来的1/4 倍.4. 两个偏振片叠放在一起,强度为I 0的自然光垂直入射其上,若通过两个偏振片后的光强为I/8,则此两偏振片的偏振化方向间的夹角为(取锐角)是60度,若在两片之间再插入一片偏振片, 其偏振化方向间的夹角(取锐角)相等,则通过三个偏振片后的投射光强度为9/32 I 0.5. 某种透明媒质对于空气的临界角(指全反射)等于450, 则光从空气射向此媒质的布儒斯特角是54.70, 就偏振状态来说反射光为完全偏振光, 反射光矢量的振动方向垂直入射面, 透射光为部分偏振光.6. 一束自然光从空气透射到玻璃表面上(空气折射率为1), 当折射角为300时, 反射光是完全偏振光, 则此玻璃的折射率等于1.732.7. 一束钠自然黄光(λ=589.3×10-9m)自空气(设n=1)垂直入射方解石晶片的表面,晶体厚度为0.05 mm, 对钠黄光方解石的主折射率n 0=1.6584、n e =1.4864, 则o 、e 两光透过晶片后的光程差为 8.6 μm , o 、e 两光透过晶片后的相位差为91.7 rad.8. 在杨氏双缝干涉实验中, 若用单色自然光照射狭缝S, 在屏幕上能看到干涉条纹. 若在双缝S 1和 S 2后分别加一个同质同厚度的偏振片P 1、P 2, 则当P 1与P 2的偏振化方向互相平行或接近平行时, 在屏幕上仍能看到清晰的干涉条纹.二. 计算题9. 有一束自然光和线偏振光组成的混合光, 当它通过偏振片时改变偏振片的取向, 发现透射光强可以变化7倍. 试求入射光中两种光的光强度各占总入射光强的比例.解:设入射光的光强为0I , 其中线偏振光的光强为01I ,自然光的光强为02I .在该光束透过偏振片后, 其光强由马吕斯定律可知:201021cos 2I I I α=+ 当α=0时, 透射光的光强最大,max 010212I I I =+,当α=π/2时, 透射光的光强最小,min 0212I I =max min 0102020102177322I I I I I I I =∴+=⇒=入射总光强为:00102I I I =+01020031,44I I I I ∴== 10. 如图所示, 一个晶体偏振器由两个直角棱镜组成(中间密合). 其中一个直角棱镜由方解石晶体制成, 另一个直角棱镜由玻璃制成, 其折射率n 等于方解石对e 光的折射率n e . 一束单色自然光垂直入射, 试定性地画出折射光线, 并标明折射光线光矢量的振动方向. (方解石对o 光和e 光的主折射率分别为1.658和1.486.)解:由于玻璃的折射率n 等于方解石对e 光的折射率, 因此e 光进入方解石后传播方向不变. 而n=n e >n o , 透过因此o 光进入方解石后的折射角<450, 据此得光路图.11. 用方解石割成一个正三角形棱镜, 其光轴与棱镜的棱边平行, 亦即与棱镜的正三角形横截面垂直. 如图所示. 今有一束自然光入射于棱镜, 为使棱镜内的 e 光折射线平行于棱镜的底边, 该入射光的入射角i 应为多少? 并在图中画出 o 光的光路并标明o 光和e 光的振动方向. 已知n e = 1.49 (主折射率, n o =1.66.解:由于e 光在方解石中的振动方向与光轴相同, o 光在方解石中的振动方向与光轴垂直, 所以e 光和o 光在方解石内的波面在垂直于光轴的平面中的截线都是圆弧. 但 v e > v o ,所以e 波包围o 波.由图可知, 本题中对于e 光仍满足折射定律sin sin e e i n γ=由于 e 光在棱镜内折射线与底边平行,30e γ=︒ 0sin sin 30 1.490.50.745e i n ==⨯=入射角 4810o i '= 又因为sin sin o o i n γ= sin sin 4810sin 0.4491.66o o o i n γ'∴===故o 光折射角2640o o γ'=12. 有三个偏振片堆叠在一起, 第一块与第三块的偏振化方向相互垂直, 第二块和第一块的偏振化方向相互平行, 然后第二块偏 振片以恒定角速度ω绕光传播的方向旋转, 如图所示. 设入射自然光的光强为I 0. 求此自然光通过这一系统后, 出射光的光强.解:经过P 1, 光强由I 0变为I 0/2, P 2以ω转动, P 1, P 2的偏振化方向的夹角θ=ωt202cos 2I I t ω=P 2以ω转动, P 2, P 3的偏振化方向的夹角β=π/2-ωt22203222000cos cos sin 2(2sin cos )sin 2(1cos 4)8816I I I t t I I I t t t t βωωωωωω==⋅===- 13. 有一束钠黄光以50角入射在方解石平板上, 方解石的光轴平行于平板表面且与入射面垂直, 求方解石中两条折射线的夹角.(对于钠黄光n o =1.658, n e =1.486)解: 在此题的特殊条件下, 可以用折射定律求出o 光, e 光折射线方向. 设i 为入射角, o γ和e γ分别为o 光和e 光的折射角.由折射定律:sin sin o o i n γ=sin sin e e i n γ=sin sin /0.463o o i n γ∴==, 27.5o o γ=sin sin /0.516e e i n γ==, 31.0o e γ=31.027.5 3.5o o o e o γγγ∆=-=-=14. 如图所示的各种情况下, 以非偏振光和偏振光入射两种介质的分界面, 图中i 0为起偏角, i 试画出折射光线和反射光线, 并用点和短线表示他们的偏振状态.15. 如图示的三种透光媒质I 、II 、III, 其折射率分别为n 1=1.33、n 2=1.50、n 3=1, 两个交界面相互平行, 一束自然光自媒质I 中入射到I 与II 的交界面上, 若反射光为线偏振光,(1) 求入射角I;(2) 媒质II 、III 交界面上的反射光是不是线偏振光?为什么?解:(1)由布儒斯特定律:()21/ 1.50/1.33tgi n n ==4826o i '=令介质II 中的折射角为γ,则/241.56o i γπ=-=此γ在数值上等于在II 、III 界面上的入射角.若II 、III 界面上的反射光是线偏振光, 则必满足布儒斯特定律()032/ 1.0/1.5tgi n n ==033.69o i =因为0i γ≠, 故II 、III 界面上的反射光不是线偏振光.16. 一块厚0.025mm 的方解石晶片, 表面与光轴平行并放置在两个正交偏振片之间, 晶片的光轴与两偏振片的偏振化方向均成45度角. 用白光垂直入射到第一块偏振片上, 从第二块偏振片出射的光线中, 缺少了那些波长的光.(假定n o =1.658, n e =1.486为常数)解: 2()C o e n n d πφλ∆=-2()o e n n d πφπλ⊥∆=-+ 045α=相干相消:(21)k φπ⊥∆=+缺少的波长:()o e n n dk λ-=, 6,7,8,9,10k =717,614,538,478,430nm λ=17. 一方解石晶体的表面与其光轴平行, 放在偏振化方向相互正交的偏振片之间, 晶体的光轴与偏振片的偏振化方向成450角. 试求:(1)要使λ = 500nm 的光不能透过检偏器, 则晶片的厚度至少多大?(2)若两偏振片的偏振化方向平行, 要使λ =500nm 的光不能透过检偏器, 晶片的厚度又为多少?(方解石对o 光和e 光的主折射率分别为1.658和1.486.)解:(1)如图(a )所示, 要使光不透过检偏器, 则通过检偏器的两束光须因干涉而相消, 通过P 2时两光的光程差为0()e n n d ∆=-对应的相位差为:02π()2πππe n n d δφλλ-∆=+=+由干涉条件:(21)π(0,1,2......)k k φ∆=+=02π()π(21)πe d n n k λ-+=+当k=1时, 镜片厚度最小, 为760510 2.910(m)()(1.658 1.486)e d n n λ--⨯===⨯-- (2)由图(b)可知当P 1, P 2平行时, 通过P 2的两束光没有附加相位差π, '02π()(21)π(0,1,2..)e d n n k k φλ∴∆=-=+=当k=0时, 此时晶片厚度最小,7065102()2(1.658 1.486)1.4510(m)e d n n λ--⨯==-⨯-=⨯18. 一束平行的线偏振光在真空中的波长为589nm, 垂直入射到方解石晶体上,晶体的光轴与表面平行, 如图所示. 已知方解石晶体对该单色o 光和e 光的折射率分别为1.658、1.486, 方解石晶体中寻常光的波长和非常光的波长分别等于多少?解:方解石晶体中o 光和e 光的波长分别为o o n λλ=658.1589=)nm (2.355=e e n λλ=486.1589=)nm (4.396= 三. 证明与问答题19. (证明题)一块玻璃的折射率为2 1.55n =, 一束自然光以θ角入射到玻璃表面, 求θ角为多少时反射光为完全偏振光?证明在下表面反射并经上表面透射的光也是完全偏振光.解:根据布儒斯特定律201tg n i n =121tg 571017n n θ-'''== 由折射定律:12sin sin n n θγ=π/2θγ+=πsin sin()cos 2θγγ=-=γ角满足布儒斯特定律.20. (问答题)用自然光源以及起偏器和检偏器各一件, 如何鉴别下列三种透明片:偏振片、半波片和1/4波片?答:令自然光先通过起偏器, 然后分别通过三种透明片, 改变起偏器的透振方向, 观察现象, 出现消光的透明片为偏振片, 再通过检偏器, 改变检偏器的透振方向, 出现消光的透明片为半波片.。
光的偏振习题答案及解法
光的偏振习题答案及解法————————————————————————————————作者:————————————————————————————————日期:光的偏振习题、答案及解法一、 选择题1. 在双缝干涉实验中,用单色自然光照色双缝,在观察屏上会形成干涉条纹若在两缝封后放一个偏振片,则(B ) A 、 干涉条纹的间距不变,但明纹的亮度加强; B 、 干涉条纹的间距不变,但明纹的亮度减弱; C 、干涉条纹的间距变窄,但明纹的亮度减弱; D 、 没有干涉条纹。
2.一束光是自然光和线偏振光的混合光,让它垂直通过一偏振片,若以入射光束为轴旋转偏振片,测得透射光强度最大值是最小值的7倍,那么入射光束中自然光与线偏振光的光强比值为(B ) A 、 21 ; B 、 31 ; C 、 41 ; D 、 51 。
参考答案:()θηη200cos 12-+=I I I ()ηη-+=1200max I I I η20min I I = ()7212000minmax=-+=ηηηI I I I I ηη-=27 31=η 3.若一光强为0I 的线偏振光先后通过两个偏振片1P 和2P 。
1P 和2P 的偏振化方向与原入射光矢量振动方向的夹角分别为090和α,则通过这两个偏振片后的光强I (A ) A 、)2(sin 4120a I ; B 、 0 ; C 、 a I 20cos 41 ; D 、 a I 20sin 41。
参考答案: ⎪⎭⎫ ⎝⎛-=απα2cos cos 220I I )2(sin 4120a I I =4.一光强为0I 的自然光垂直通过两个偏振片,且两偏振片偏振化方向成030则穿过两个偏振片后的光强为(D )A 、 430I ;B 、 40I ;C 、 80I ;D 、 830I 。
参考答案: 836cos 2cos 202020II I I ===πα 5.一束光强为0I 自然光,相继通过三个偏振片321P P 、、P 后,出射光的光强为8I I =。
光的偏振习题(附答案)-(1)汇编
光的偏振(附答案)填空题1. 一束光垂直入射在偏振片P上,以入射光为轴旋转偏振片,观察通过偏振片P 的光强的变化过程•若入射光是自然光或圆偏振光,则将看到光强不变;若入射光是线偏振光,则将看到明暗交替变化,有时出现全暗;若入射光是部_ 分偏振光或椭圆偏振光,则将看到明暗交替变化,但不出现全暗•2. 圆偏振光通过四分之一波片后,出射的光一般是线偏振光.3. 要使一束线偏振光通过偏振片之后振动方向转过90度角,则至少需要让这束光通过2块理想偏振片,在此情况下,透射光强最大是原来的14倍•4. 两个偏振片叠放在一起,强度为I o的自然光垂直入射其上,若通过两个偏振片后的光强为I/8,则此两偏振片的偏振化方向间的夹角为(取锐角)是60度, 若在两片之间再插入一片偏振片,其偏振化方向间的夹角(取锐角)相等,则通过三个偏振片后的投射光强度为9/32 I o.5. 某种透明媒质对于空气的临界角(指全反射)等于45°,贝比从空气射向此媒质的布儒斯特角是54.7°,就偏振状态来说反射光为完全偏振光,反射光矢量的振动方向垂直入射面,透射光为部分偏振光.6. 一束自然光从空气透射到玻璃表面上(空气折射率为1),当折射角为30°时,反射光是完全偏振光,则此玻璃的折射率等于1.732.7. 一束钠自然黄光(入=589.3 X9m)自空气(设n=1)垂直入射方解石晶片的表面,晶体厚度为0.05 mm,对钠黄光方解石的主折射率n o=1.6584 n e =1.4864, 则o、e两光透过晶片后的光程差为86um。
、e两光透过晶片后的相位差为91.7 rad.8. 在杨氏双缝干涉实验中,若用单色自然光照射狭缝S,在屏幕上能看到干涉条纹.若在双缝S1和S2后分别加一个同质同厚度的偏振片P1、P2,则当P1与P2的偏振化方向互相平行或接近平行时,在屏幕上仍能看到清晰的干涉条纹.计算题9. 有一束自然光和线偏振光组成的混合光,当它通过偏振片时改变偏振片的取向,发现透射光强可以变化7倍.试求入射光中两种光的光强度各占总入射光强的比例.解:设入射光的光强为10,其中线偏振光的光强为101,自然光的光强为I 02.在该光束透过偏振片后,其光强由马吕斯定律可知:= I°1COSJ 」|2当口=0时,透射光的光强最大当「二二/2时,透射光的光强最小入射总光强为:I^ I 01 I 0210. 如图所示,一个晶体偏振器由两个直角棱镜组成(中间密合)•其中一个直 角棱镜由方解石晶体制成,另一个直角棱镜由玻璃制成,其折射率n 等于方 解石对e 光的折射率n e . 一束单色自然光垂直入射,试定性地画出折射光线, 并标明折射光线光矢量的振动方向.(方解石对o 光和e 光的主折射率分别 为 1.658 和 1.486.)解:由于玻璃的折射率n 等于方解石对e 光的折射率,因此e 光进入方解石 后传播方向不变.而n=n e >n 。
光的偏振习题详解
习题九一、选择题1.自然光从空气连续射入介质1和介质2(折射率分别为1n 和2n )时,得到的反射光a 和b 都是完全偏振光。
已介质1和介质2的折射率之比为31,则光的入射角i 0为[ ](A )30︒; (B )60︒; (C )45︒; (D )75︒。
答案:A解:由题意知,光在两种介质介面上的入射角都等于布儒斯特角,所以有1201tan ,tan tan 1n ni i r n '===,090r i +=︒所以201tan tan(90)n r i n =︒-==由此得09060i ︒-=︒,030i =︒2.一束光强为I 0的自然光,相继通过三个偏振片P 1、P 2、P 3后出射光强为I 0 /8。
已知P 1和P 3的偏振化方向相互垂直。
若以入射光线为轴旋转P 2,要使出射光强为零,则P 2至少应转过的角度是 [ ](A )30°; (B ) 45°; (C )60°; (D ) 90°。
答案:B解:设开始时P 2与另两者之一的夹角为?,则根据马吕斯定律,出射光强为2222000cos cos (90)cos sin 228I I I I αααα=⋅︒-=⋅=即 2sin 21α=,45α=︒说明当P 2转过45°角度后即与另两者之一平行,从而出射光强为零。
3.一束自然光自空气射向一块平板玻璃(如图),入射角i 0等于布儒斯特角,则在界面2的反射光 [ ](A )光强为零;(B )是完全偏振光,且光矢量的振动方向垂直于入射面; (C )是完全偏振光,且光矢量的振动方向平行于入射面;(D )是部分偏振光。
答案:B解:根据起偏时的特性和布儒斯特定律可证明,当光由介质A 入射于介质B 时入射角为起偏振角,则其由介质B 入射于介质A 的角度也是起偏角。
证明如下:设光由空气射入玻璃时的折射角为r ,在表面“2”处由玻璃入射到空气的入射角为i ',则由图可知0i r '=。
光的偏振答案
思 考 题 答 案6-1解:自然光的振动无论哪个方向都一致,形成一个轴对称分布,如讲义中图5-4所示。
应此从光的合成振动角度看,其平均值为零。
光强则是光的平均能流密度,根据定义它是指光投射在单位面积上的光通量,即光照度。
这就是说,我们这里的光强实际上就是指光的照度,因此光强包含有能量的定义,这样的自然光的光能不为零。
自然光与圆偏振光主要区别在于二个等幅垂直振动之间的位相关系。
对于自然光而言,无任何位相差存在,对于圆偏光,它们之间必须具备恒定的位相差。
6-2解:三个偏振片的透振方向如图所示。
设入射的自然光光强为0I ,透过1P 的光强为02I ,根据马吕斯定律,透过2P 的光强为:22002101cos cos 454222o I I I I I θ==∗=∗=, 透过3P 的光强为:22003201cos cos 45442o I I I I I θ==∗=∗=若将第二个偏振片抽走,这时透过1P 的光强仍为02I ,透过3P 的光强为 231cos 900o I I ==6-3解:一般来说,当光入射到两种透明媒质分界面上时,会同时发生反射,透射现象,或者全反射(无透射)现象。
只有当入射光束为平行于入射界面的振动分量(即P 分量)沿布儒斯特角入射时,只有透射光而无反射光存在(见思考题2的(b))。
因此科学幻想小说中的隐身法时候成问题的。
且不谈人体变得无色透明谈何容易,即使反射光不存在,透射光总是存在的;或者即使透射光不存在(全反射时),则反射光又必将存在。
除非入射到人体内的全部光能吸收掉,又不存在反射的情况,这样才能达到隐身之目的。
6-4解:先用一个偏振片分别让三束光依次通过,能消光者为平面偏振光。
不能消光,且光强无变化的,则可能为自然光或圆偏振光。
然后再用一个4λ片,分别让自然光和圆偏振光通过4λ片,再用检偏器检查,能消光的则为圆偏振光,留下的最后一个一定是自然光。
6-5答:6-6答:在正交偏振片之间放一块波晶片,以自然光入射,会产生偏振光干涉,干涉合光强为22222(cos cos sin sin 2cos cos sin sin cos '')I A θϕθϕθϕθϕδ=++式中θ、φ分别为偏振片P 1 、 P 2透振方向与波片光轴夹角,2''()o e n n d πδπλ=−+。
第十八章 光的偏振 作业及参考答案 2014
班级中序号 ___ 姓名 ________ 学号 _________ 锐角,且设α′ <α) 。 注: 自然光,相继通过两个偏振片: I =
1 I 0 cos 2 α 2
I I0 P1 P3 P2
发 生 消 光 时 P1 、 P2 偏 振 化 方 向 间 夹 角 为 :
α +θ = α′ + π / 2
1 I 0 cos 2 α _。若在 2
P1、P2 之间插入第三个偏振片 P3,则通过 P2 的光强发生了变化。实验发现,以光线为轴旋 转 P2,使其偏振化方向旋转一角度θ后,发生消光现象,从而可以推算出 P3 的偏振化方向 与 P1 的偏振化方向之间的夹角α′=_____ α
+ θ − π / 2 _____。 (假设题中所涉及的角均为
2 解得: θ
= 11.8 0 ,
12、 (自测提高 12) 、由两个偏振片(其偏振化方向分别为 P1 和 P2)叠在一起,P1 与 P2 的夹角为α。 一束线偏振光垂直入射在偏振片上。 已知入射光的光矢量振动方向与 P2 的夹角 为 A(取锐角) ,A 角保持不变,如图 18-16 所示。现转动 P1,但保持 P1 与 E 、P2 的夹角都 不超过 A(即 P1 夹在 E 和 P2 之间) 。求α等于何值时出射光强为极值;此极值是极大还是极 小?
= I1 cos 2 α cos 2 (900 − α )
6、 (自测提高 5) 、如图所示的杨氏双缝干涉装置,若用单 色自然光照射狭缝 S,在屏幕上能看到干涉条纹.若在双缝 S1 和 S2 的一侧分别加一同质同厚的偏振片 P1、P2,则当 P1 与 P2 的偏 振化方向相互___平行__________时, 在屏幕上仍能看到很清晰的 干涉条纹. 注: 相干条件为两列频率相同、振动方向相同、相位差恒定的波 7、 (自测提高 6 ) 、在以下五 个图中,前四个图表示线偏振光入 射于两种介质分界面上,最后一图 表示入射光是自然光.n1、n2 为两种 介 质 的 折 射 率 , 图 中 入 射 角 i0 = arctg (n2/n1),i≠i0.试在图上画出 实际存在的折射光线和反射光线, 并用点或短线把振动方向表示出 来.
大学物理第18章课后答案
第十八章 光的偏振#18-1 两偏振片的方向成300夹角时,透射光强为I 1,若入射光不变,而两偏振片的偏振化方向成450夹角时,则透射光强如何变化?解:设透过第一块偏振片后的振幅为A 0,透过第二块偏振片后的振幅为A 1。
依题意00130cos A A =020130cos I I =→430I = 3410I I =→ 00245cos A A =020245cos I I =→210I =21341⨯I 1231I I =18-2 使自然光通过两个偏振化方向成600夹角的偏振片,透射光强为I 1,今在这两偏振片之间再插入另一偏振片,它的偏振化方向与前两偏振片均成300角,则透射光光强为多少?解:设自然光的振幅为A 0透过第一块偏振片后的振幅为A /,透过第二块偏振片后的振幅为A 1。
依题意0160cos A A '=02160cos I I '=→4120I =108I I =→在这两偏振片之间再插入另一偏振片,它的偏振化方向与前两偏振片均成300角,设自然光的振幅为A 0透过第一块偏振片后的振幅为A /,透过第二块偏振片后的振幅为A /1,透过第三块偏振片后的振幅为A 2。
则0130cos A A '='02130cos I I '='→4320I =0/1230cos A A =02/1230cos I I =→434320⨯=I 48891⨯=I1249I I =18-3 一束平行的自然光,以580角入射到一平面玻璃的表面上,反射光是全偏振光。
问(1)折射光的折射角是多少?(2)玻璃的折射率是多少?解:(1)折射光的折射角 =900-580=320(2)玻璃的折射率为:60.132sin 58sin 0==n 18-4 一束光以起偏角i 0入射到一平面玻璃的上表面,试证明玻璃下表面的反射光也是偏振光。
证明:以起偏角i 0入射到平面玻璃的上表面,反射 光是偏振光所满足的式子为n i =0tan ,折射角 =900-i 0如图,玻璃下表面的反射光所对的下表面入射光的入i 0n射角为玻璃下表面的反射光是偏振光所满足的式子为n 1tan =γ 即ni 1)90tan(00=- 即满足:n i =0tan 式子 所以玻璃下表面的反射光也是偏振光,得证。
物理学(王铭)光的偏振习题解答
解
P1 ωt P2 P3
画示意图。逐步求解。 画示意图。逐步求解。
ω
I π I = 0 cos 2 (ωt ) cos 2 − ωt 自 光 然 2 2 I = 0 cos 2 (ωt ) sin 2 (ωt ) P P 1 2 2 I 1 + cos(2ωt ) 1 − cos(2ωt ) = 0 2 2 2 I I 1 + cos(4ωt ) I 0 = 0 1 − cos 2 (2ωt ) = 0 1 − = (1 − cos 4ωt ) 8 8 2 16
解 本题中考虑不同介质表面反射时
的布儒斯特角问题。 的布儒斯特角问题。
tan i1 = n1 n0 ⇒ i1 = 53.21o ⇒ i2 = 48.69o
i1
C
θ
A
n2 tan i2 = n1
γ i2
B
n2
n1
注意到: − θ = γ + − i2 2 2 θ = i2 − γ = i2 − (90o − i1 ) = ... = 11.81o
(
)
第7页
二、填充题 2.强度为I0的自然光垂直入射到两个叠放在一起的偏振片上,不考 虑偏振片的吸收和反射,若通过两个偏振片后的光强为I0/8 , 则此两偏振片的偏振化方向的夹角为 60° ,若在两片之间再 ° 插入一片偏振片,其偏振化方向与前后两偏振化方向的夹角相 9I 等。则通过三个偏振片后的透射光强度为律,按光的前进方向逐步计算。 用马吕斯定律,按光的前进方向逐步计算。
I0 I cos 2 α = 0 2 8 ⇒ α = 60o
P 1 P 1 P2
P3
P3
P2
I0 9 cos 2 30o cos 2 30o = I0 2 32 I0 1 2 o 2 o (2) I = cos 60 cos 60 = I0 2 32 (1) I =
南开大学物理答案——光的偏振
A0=Asin300
A0
I0=Isin2300
300
Ie=Icos2300
Ae
两光振动的强度比为:
Io I sin 2 30o 1 . 2 o Ie I cos 30 3
光轴方 向
(2)波片厚度为0.2毫米,两光光程差为:
(ne no )d (1.553 1.544 ) 0.2 103 1.8 106 (m).
3-12 分别计算用石英制造的适用于钠黄光(589.9纳米)和水 银光(546.1纳米)的1/4波片的最小厚度.石英的主折射率 n0=1.544, ne=1.553. 解 对石英晶体,在垂直于光轴方向上ne > no,制成 适用于钠黄光的1/4波片最小厚度为
589.3 109 5 d 1.64 10 (m). 4(ne no ) 4 (1.553 1.544 )
解 (1)在垂直于光轴的方向上,方解石对o光和e光的折射率分 别 为 no=1.658 ne=1.486 进 入 晶 体 后 , o 光 比 e 光 折 弯 的 厉 害.到了晶体的下面,分别自p点和q点沿与入射光平行的方向 出射.o光和e光在垂直光轴的方向都符合折射定律.设o光和e 8 光在晶体上表面折射角分别为 i ’和 i ” ,由折射定律:
I0 I0 4 o I cos 45 2 8
M
B
N
I0
(2)若B与M透振方向夹角为,则出射光强为 I 0 cos 4 2 当 =0,时,出射光强最大,为 I=I0/2 I0 / 2 当 =/2, 3/2 时,出射光强为零.
光强随 变化的曲线如图.
O
I
2
3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.选择题
[ ]1. (基础训练2)一束光是自然光和线偏振光的混合光,让它垂直通过一偏振片.若以此入射光束为轴旋转偏振片,测得透射光强度最大值是最小值的5倍,那么入射光束中自然光与线偏振光的光强比值为
(A) 1 / 2.(B) 1 / 3.(C) 1 / 4.(D) 1 / 5.
[ ]2、(基础训练6)、自然光以60°的入射角照射到某两介质交界面时,反射光为完全线偏振光,则知折射光为
(A)完全线偏振光且折射角是30°
(B)部分偏振光且只是在该光由真空入射到折射率为3的介质时,折射角是30°(C)部分偏振光,但须知两种介质的折射率才能确定折射角
(D)部分偏振光且折射角是30°
[ ] 3、(自测提高1). 某种透明媒质对于空气的临界角(指全反射)等于45°,光从空气射向此媒质时的布儒斯特角是
(A) 35.3°.(B) 40.9°.
(C) 45°.(D) 54.7°.(E) 57.3°.
[ ] 4、(自测提高3)、一束光强为I0的自然光,相继通过三个偏振片P1、P2、P3后,出射光的光强为I=I0 / 8。
已知P1和P2的偏振化方向相互垂直,若以入射光线为轴,旋转P2,要使出射光的光强为零,P2最少要转过的角度是
(A)30°(B)45°(C)60°(D)90°
二.填空题
5、(基础训练8)、要使一束线偏振光通过偏振片之后振动方向转过90°,至少需要让
这束光通过________块理想偏振片.在此情况下,透射光强最大是原来光强的_____倍 .
6、(自测提高 5)、如图所示的杨氏双缝干涉装置,若用单
色自然光照射狭缝S ,在屏幕上能看到干涉条纹.若在双缝S 1和S 2的一侧分别加一同质同厚的偏振片P 1、P 2,则当P 1与P 2的偏
振化方向相互_____________时,在屏幕上仍能看到很清晰的干涉条纹.
7、(自测提高 6)、在以下五个图中,前四个图表示线偏振光入
射于两种介质分界面上,最后一图表示入射光是自然光.n 1、n 2为两种
介质的折射率,图中入射角i 0=
arctg (n 2/n 1),i ≠i 0.试在图上画出实际存在的折射光线和反射光线,
并用点或短线把振动方向表示出来.
8、(自测提高 8)、如图18-14所示,P 1、P 2为偏振化方向间夹角为α 的两个偏振片。
光强为I 0的平行自然光垂直入射到P 1表面上,则通过P 2的光强I = 。
若在P 1、P 2之间插入第三个偏振片P 3,则通过P 2的光强发生了变化。
实验发现,以光线为轴旋转P 2,使其偏振化方向旋转一角度θ后,发生消光现象,从而可以推算出P 3的偏振化方向与P 1的偏振化方向之间的夹角α'=___________________。
(假设题中所涉及的角均为锐角,且设α' <α)。
三. 计算题
P 2P 1S 1S 2S
9、(基础训练14)、将两个偏振片叠放在一起,此两偏振片的偏振化方向之间的夹角为o
60,一束光强为I0的线偏振光垂直入射到偏振片上,该光束的光矢量振动方向与二偏振片的偏振化方向皆成30°角。
(1)求透过每个偏振片后的光束强度;(2)若将原来入射光束换为强度相同的自然光,求透过每个偏振片后的光束强度。
10、(基础训练18)、如图18-13所示的三种透光媒质Ⅰ、Ⅱ、Ⅲ,其折射率分别为n1=1.33,n2=1.50,n3=1.两个交界面相互平行.一束自然光自媒质Ⅰ中入射到Ⅰ与Ⅱ的交界面上,若反射光为线偏振光,
(1) 求入射角i.
(2) 媒质Ⅱ、Ⅲ界面上的反射光是不是线偏振光?为什么?
11、(自测提高10)、有一平面玻璃板放在水中,板面与水面夹角为θ (见图).设水和玻璃的折射率分别为1.333和1.517.已知图中水面的反射光是完全偏振光,欲使玻璃板面的反射光也是完全偏振光,θ 角应是多大?
12、(自测提高 12)、由两个偏振片(其偏振化方向分别为P 1和P 2)叠在一起,P 1与P 2的夹角为α。
一束线偏振光垂直入射在偏振片上。
已知入射光的光矢量振动方向与P 2的夹角
为A (取锐角),A 角保持不变,如图18-16所示。
现转动P 1,但保持P 1与E 、P 2的夹角都
不超过A (即P 1夹在E
和P 2之间)。
求α等于何值时出射光强为极值;此极值是极大还是极小?
13、(自测提高 13)、有三个偏振片堆叠在一起,第一块与第三块的偏振化方向相互垂直,第二块和第一块的偏振化方向相互平行,然后第二块偏振片以恒定角速度ω绕光传播的方向旋转,如图18-17所示。
设入射自然光的光强为I 0。
试证明:此自然光通过这一系统后,出射光的光强为I =I 0(1-cos4ω t )/16。
12。