离散时间信号与系统的频域研究分析
第3章离散时间信号与系统的频域分析
结论: 结论:序列共轭对称分量 的傅里叶变换是序列傅里 叶变换的实数部分; 叶变换的实数部分; 序列共轭反对称分量的傅 里叶变换是序列傅里叶变 换的虚数部分。 换的虚数部分。
第3章 离散时间信号与系统的频域分析
5.时域卷积定理 时域卷积定理 如果 FT [ x( n)] = X (e jω ), FT [h( n)] = H (e jω ) 且有
第3章 离散时间信号与系统的频域分析
(1)有限长序列: 有限长序列:
序列x(n)只在有限区间 1≤n≤n2之内才具有非零的有限值,在此 只在有限区间n 之内才具有非零的有限值, 序列 只在有限区间 区间外,序列值皆为零。 区间外,序列值皆为零。 其Z变换为 变换为
X (z) =
n = n1
x ( n) z − n ∑
第3章 离散时间信号与系统的频域分析
常用的Z变换是一个有理函数,用两个多项式之比表示: 常用的 变换是一个有理函数,用两个多项式之比表示: 变换是一个有理函数
P(z) X (z) = Q( z )
分子多项式P 的根是X 的零点,分母多项式Q 分子多项式P(z)的根是X(z)的零点,分母多项式Q(z) 的根是X 的极点。在极点处Z变换不存在, 的根是X(z)的极点。在极点处Z变换不存在,因此收 敛域中没有极点, 收敛域总是用极点限定其边界。 敛域中没有极点, 收敛域总是用极点限定其边界。
X (z) =
n = −∞
RN ( n ) z − n = ∑ z − n ∑
n=0
∞
N −1
= 1 + z −1 + z − 2 + L + z − ( N −1 )
这是一个有限项几何级数之和。 这是一个有限项几何级数之和。因此
时域离散信号和系统的频域分析
序列的傅里叶变换的定义和性质
周期序列的离散傅里叶级数及傅里叶变换表示式 时域离散信号的傅里叶变换与模拟信号的傅里叶变换之间 的关系 序列的Z变换 利用Z变换分析信号和系统的频域特性
2.1 引言
信号和系统的两种分析方法: 时域分析方法和频率分析方法 (1)模拟信号和系统 信号用连续变量时间t的函数表示; 系统则用微分方程描述;
2.2 序列的傅里叶变换的定义和性质 2.2.2 序列傅里叶变换的性质
1. FT的周期性 在FT定义式中, n取整数, 因此下式成立
X (e j )
结论:
n
x( n)e j ( 2 M ) n , M为整数
(1) 序列的傅里叶变换是频率ω的连续周期函数,周期是2π。 (2) X(ejω)可展成傅里叶级数, x(n)是其系数。 X(ejω)表示了信 号在频域中的分布规律。 (3) 在ω=0,〒2π,〒4π…表示信号的直流分量,在ω=(2M+1)π
j j
2.2 序列的傅里叶变换的定义和性质
(5) 研究FT的对称性 (a) 将序列x(n)表示成实部xr(n)与虚部xi(n)的形式
x(n)=xr(n)+jxi(n)
将上式进行FT, 得到: X(e jω)=Xe(e jω)+Xo(e jω)
j j j jjj n j n n j n n n
1 1 [ X (e jj ) X (e jj )] X e (e ) [ X (e ) X (e )] X e (e ) 2 2 1 j j ) 1 [ X ( e j ) X ( e j )] X o (e ) [ X (e j ) X (e j )] X o (e 2 2
第二章(1)时域离散信号和系统的频域分析
2.1 引言
一. FT是重要的变换
1.分析有限长序列的有用工具。 2.在信号处理的理论上有重要意义。 3.在运算方法上起核心作用,谱分析、 卷积、相关都可以通DFT在计算机上 实现。
二、本章主要讨论内容
♦ 付里叶变换的推导 ♦ 付里叶变换的有关性质 ♦ 离散序列付里叶变换逼近连续时间信号的问题 ♦ 序列的Z变换 ♦ Z变换与系统的关系
实部为偶 对称序列 虚部为奇 对称序列
0
n
0
n
(2)定义:若xo(n)满足 xo(n)= -xo*(-n); (2.2.13), 则称xo(n)为共轭反对称序列。 将其分成实部和虚部: 用-n取代 n并取共轭:
xo (n) = xor (n) + jxoi (n)
xo*(-n)= xor(-n)-jxoi(-n)
∞
(2.2.8) (2.2.9)
证: FT [ x(n ± n0 )] =
k = n ± n0 → =
n =−∞
∑
x(n ± n0 )e − jω n
k =−∞
∑
∞
x(k )e − jω ( k ∓ n0 ) = e ± jω n0
k =−∞
∑
∞
∞
x(k )e − jω k = e ± jω n0 X (e jω ) x ( n ) e − j (ω ∓ ω 0 ) n = X ( e j (ω ∓ ω 0 ) )
∞
n =−∞
∑
∞
x(n)e− jω n
= ∑ RN (n)e n
n =−∞
− jω n
N-1 ∞ = ∑ e − jω n
n =0
设N=4其幅度和相 位随ω变化如下图所 示
DSP实验报告--离散时间信号与系统的时、频域表示-离散傅立叶变换和z变换-数字滤波器的频域分析和实现-数字
南京邮电大学实验报告实验名称:离散时间信号与系统的时、频域表示离散傅立叶变换和z变换数字滤波器的频域分析和实现数字滤波器的设计课程名称数字信号处理A(双语) 班级学号B13011025姓名陈志豪开课时间2015/2016学年,第1学期实验名称:离散时间信号与系统的时、频域表示实验目的和任务:熟悉Matlab基本命令,理解和掌握离散时间信号与系统的时、频域表示及简单应用。
在Matlab环境中,按照要求产生序列,对序列进行基本运算;对简单离散时间系统进行仿真,计算线性时不变(LTI)系统的冲激响应和卷积输出;计算和观察序列的离散时间傅立叶变换(DTFT)幅度谱和相位谱。
实验内容:基本序列产生和运算:Q1.1~1.3,Q1.23,Q1.30~1.33离散时间系统仿真:Q2.1~2.3LTI系统:Q2.19,Q2.21,Q2.28DTFT:Q3.1,Q3.2,Q3.4实验过程与结果分析:Q1.1运行程序P1.1,以产生单位样本序列u[n]并显示它。
clf;n = -10:20;u = [zeros(1,10) 1 zeros(1,20)];stem(n,u);xlabel('Time index n');ylabel('Amplitude');title('Unit Sample Sequence');axis([-10 20 0 1.2]);Q1.2 命令clf,axis,title,xlabel和ylabel命令的作用是什么?答:clf命令的作用:清除图形窗口上的图形;axis命令的作用:设置坐标轴的范围和显示方式;title命令的作用:给当前图片命名;xlabel命令的作用:添加x坐标标注;ylabel c命令的作用:添加y坐标标注;Q1.3修改程序P1.1,以产生带有延时11个样本的延迟单位样本序列ud[n]。
运行修改的程序并显示产生的序列。
clf;n = -10:20;u = [zeros(1,21) 1 zeros(1,9)];stem(n,u);xlabel('Time index n');ylabel('Amplitude');title('Unit Sample Sequence');axis([-10 20 0 1.2]);Q1.23修改上述程序,以产生长度为50、频率为0.08、振幅为2.5、相移为90度的一个正弦序列并显示它。
离散时间系统频域分析
离散时间系统频域分析离散时间系统的频域分析是研究离散时间信号在频域上的性质和行为的方法。
在离散时间系统频域分析中,使用离散时间傅里叶变换(Discrete Fourier Transform,DFT),来将离散时间信号从时域转换到频域。
通过分析信号在频域上的频谱分布和频谱特性,可以得到离散时间系统的频率响应和频域特性,对信号的频域分布和频率区间进行评估和分析。
离散时间傅里叶变换是时域信号分析的重要工具,它可以将离散时间信号从时域转换到频域。
离散时间傅里叶变换的定义可以表示为:X(k) = Σ[x(n) * exp(-j*2πkn/N)]其中,X(k)是离散时间信号在频域的频谱,x(n)是离散时间信号,N是信号的长度,k是频谱的索引。
离散时间傅里叶变换将时域信号分解成多个频率成分,通过频谱的幅度和相位信息,可以得到信号在频域上的分布情况。
通过离散时间傅里叶变换可以得到离散时间信号的频谱,进而分析信号在频域上的频率响应和频域特性。
频谱可以反映信号在不同频率上的能量分布情况,通过观察频谱的幅度和相位,可以得到信号的频率成分、频带宽度和频率特性等信息。
在离散时间系统频域分析中,常用的分析工具有频谱图、功率谱密度、频率响应等。
频谱图可以将信号的频谱以图形形式展示出来,通过观察频谱图的形状和分布,可以得到信号在频域上的特点。
功率谱密度是指信号在不同频率上的功率分布情况,可以评估信号在不同频率上的能量分布情况。
频率响应是指系统对不同频率信号的响应情况,可以评估系统对不同频率信号的滤波和增益特性。
离散时间系统频域分析的应用包括信号处理、通信系统、控制系统等领域。
在信号处理中,通过频域分析可以对信号进行滤波、去噪、频域变换等操作,提高信号的质量和分析能力。
在通信系统中,通过频域分析可以评估信号传输和接收的性能,并对系统进行优化和改进。
在控制系统中,通过频域分析可以评估系统的稳定性和控制特性,提高系统的响应速度和稳定性。
时域离散信号和系统的频域分析
时域离散信号和系统的频域分析信号与系统的分析方法有两种:时域分析方法和频域分析方法。
在连续时间信号与系统中,信号一般用连续变量时间t 的函数表示,系统用微分方程描述,其频域分析方法是拉普拉斯变换和傅立叶变换。
在时域离散信号与系统中,信号用序列表示,其自变量仅取整数,非整数时无定义,系统则用差分方程描述,频域分析方法是Z 变换和序列傅立叶变换法。
Z变换在离散时间系统中的作用就如同拉普拉斯变换在连续时间系统中的作用一样,它把描述离散系统的差分方程转化为简单的代数方程,使其求解大大简化。
因此,对求解离散时间系统而言,Z变换是一个极重要的数学工具。
2.2 序列的傅立叶变换(离散时间傅立叶变换)一、序列傅立叶变换:正变换:DTFT[x(n)]=(2.2.1)反变换:DTFT-1式(2.2.1)级数收敛条件为||= (2.2.2)上式称为x(n)绝对可和。
这也是DTFT存在的充分必要条件。
当遇到一些绝对不可和的序列,例如周期序列,其DTFT可用冲激函数的形式表示出来。
二、序列傅立叶变换的基本性质:1、 DTFT的周期性,是频率的周期函数,周期为2。
∵ = 。
问题1:设x(n)=R N(n),求x(n)的DTFT。
====设N为4,画出幅度与相位曲线。
2、线性设=DTFT[x1(n)],=DTFT[x2(n)],则:DTFT[a x1(n)+b x2(n)]= = a+b3、序列的移位和频移设 = DTFT[x(n)],则:DTFT[x(n-n0)] ==DTFT[x(n)] == =4、 DTFT的对称性共轭对称序列的定义:设序列满足下式则称为共轭对称序列。
共轭对称序列的性质:共轭对称序列的实部是偶函数,虚部是奇函数证明:=+j(实部加虚部)∵∴+j=-j∴=(偶函数)∴=-(奇函数)一般情况下,共轭对称序列用表示:共轭反对称序列的定义:设序列满足下式则称为共轭反对称序列。
共轭反对称序列的性质:共轭反对称序列的实部是奇函数,虚部是偶函数证明:=+j(实部加虚部)∵∴+j=+j∴=(奇函数)∴=(偶函数)一般情况下,用来表示一个序列可用共轭对称序列与共轭反对称序列之和表示。
0136-胡国庆-实验3-离散时间信号的离散频域分析
数字信号处理A实验报告实验项目名称:离散信号与系统的离散频域分析(DFT)学院:______计算机与通信工程____专业:______ _通信工程 _________学号:______201454080136_______班级:______ 通信1401 ________报告人:________胡国庆 __________指导老师:___ 胡双红 _ _______实验时间:_______2016-11-28________实验三离散信号与系统的离散频域分析(DFT)一、实验目的:1、掌握离散时间系统的DFT的MATLAB实现;2、熟悉DTFT和DFT之间的关系。
3、了解信号不同变形的DFT与原信号DFT之间的关系二、实验内容:选择实验二相同的8点信号x=[1 2 3 4 4 3 2 1]1、对该信号分别做8点、16点、32点DFT,分别与DTFT合并作图并比较DFT 与DTFT之间的关系。
2、在信号每两个相邻样本之间插入一个零值,扩充为16点序列,作DFT,画出幅度谱和相位谱,并与原序列的DFT进行比较。
3、将信号以8为周期扩展,得到长为16的两个周期,作DFT,画出幅度谱和相位谱,并与原序列的DFT进行比较。
三、实验平台: MATLAB集成系统四、设计流程:五、程序清单function [Xk]=dft(xn,N)n=0:1:N-1;k=0:1:N-1;WN=exp(-j*2*pi/N);nk=n'*k;WNnk=WN.^nk;Xk=xn*WNnk;x=[3,2,1,2,4,3,4,1];X=dft(x,8);w=0:pi/100:2*pi;n=0:7;Xw=x*exp(-j*n'*w);figure(1);k=0:7;subplot(211);stem(k,abs(X)) hold onplot(w/pi*4,abs(Xw))subplot(212);stem(k,angle(X))hold onplot(w/pi*4,angle(Xw))X16=dft([x,zeros(1,8)],16);figure(2);k=0:15;subplot(211);stem(k,abs(X16)) Xw1=[x,zeros(1,8)]*exp(-j*k'*w);hold onplot(w/pi*8,abs(Xw1))subplot(212);stem(k,angle(X16))hold onplot(w/pi*8,angle(Xw1))X32=dft([x,zeros(1,24)],32);figure(3);k=0:31;subplot(211);stem(k,abs(X32)) Xw2=[x,zeros(1,24)]*exp(-j*k'*w);hold onplot(w/pi*16,abs(Xw2))subplot(212);stem(k,angle(X32))hold onplot(w/pi*16,angle(Xw2))x1=zeros(1,16);x1(1:2:end)=x;X4=dft(x1,16); figure(4);subplot(221);stem(0:15,abs(X4));subplot(222);stem(0:15,angle(X4));subplot(223);stem(0:7,abs(X));subplot(224);stem(0:7,angle(X));X5=dft([x x],16);figure(5);subplot(221);stem(0:15,abs(X5)); subplot(222);stem(0:15,angle(X5)); subplot(223);stem(0:7,abs(X)); subplot(224);stem(0:7,angle(X));六、调试和测试结果:8点DFT与 DTFT的代码和图:实验心得在这次实验中,自己做的时候问题比较多,请教了很多同学才做到现在的样子,对函数并不理解。
第五章 离散时间信号与系统的频域分析
❖ CTFT ( the Continuous -Time Fourier Transforms ): 连续时间傅立叶变换
❖ DTFT ( the Discrete -Time Fourier Transforms ): 离散时间傅立叶变换
第五章:离散时间信号与系统的频域分析
主讲教师:阎鸿森 教授 王 霞 副教授
RX (e j ) tg1 a sin 1 a cos
第五章:离散时间信号与系统的频域分析
主讲教师:阎鸿森 教授 王 霞 副教授
A eg
j 2 (k r )n N
k
n N
nN k N
Agk
j 2 (k r )n
eN
k N n N
j2 (kr)n N
Q eN
nN
0
k r
kr
第五章:离散时间信号与系统的频域分析
主讲教师:阎鸿森 教授 王 霞 副教授
g
Ar
1 N
j 2 rn
x(n)e N
nN
x(n)
离散时间周期信号的频谱具有周期性。
第五章:离散时间信号与系统的频域分析
主讲教师:阎鸿森 教授 王 霞 副教授
三 . DFS的收敛:
DFS是一个有限项的级数,确定
g
Ak
的关系式也
是有限项的和式,因而不存在收敛问题,也不会产生
Gibbs现象。
DFS表明:周期序列可以而且只能分解成 N 个独立 的复指数谐波分量。
Gibbs现象。
第五章:离散时间信号与系统的频域分析
主讲教师:阎鸿森 教授 王 霞 副教授
5.3 非周期信号与离散时间傅立叶变换:
(Aperiodic Signals & Discrete-Time Fourier Transform)
实验四 离散时间系统的频域分析
实验四 离散时间系统的频域分析1.实验目的(1)理解和加深傅里叶变换的概念及其性质。
(2)离散时间傅里叶变换(DTFT)的计算和基本性质。
(3)离散傅里叶变换(DFT)的计算和基本性质。
2.实验原理对离散时间信号进行频域分析,首先要对其进行傅里叶变换,通过得到的频谱函数进行分析。
离散时间傅里叶变换(DTFT ,Discrete-time Fourier Transform)是傅立叶变换的一种。
它将以离散时间nT (其中,T 为采样间隔)作为变量的函数(离散时间信号)f (nT )变换到连续的频域,即产生这个离散时间信号的连续频谱()iw F e ,其频谱是连续周期的。
设连续时间信号f (t )的采样信号为:()()()sp n f t t nT f nT d ¥=-=-å,并且其傅里叶变换为:()()(){}sp n iwt f t f nT t nT dt e d ¥¥-=---=åòF 。
这就是采样序列f(nT)的DTFT::()()iwTinwT DTFT n F ef nT e ¥-=-=å,为了方便,通常将采样间隔T 归一化,则有:()()iwinw DTFT n F ef n e ¥-=-=å,该式即为信号f(n)的离散时间傅里叶变换。
其逆变换为:()1()2iw DTFT inw F e dw f n e ppp-=ò。
长度为N 的有限长信号x(n),其N 点离散傅里叶变换为:1()[()]()knNN n X k DFT x n x n W -===å。
X(k)的离散傅里叶逆变换为:101()[()]()knN N k x n IDFT X k X k W N --===å。
DTFT 是对任意序列的傅里叶分析,它的频谱是一个连续函数;而DFT 是把有限长序列作为周期序列的一个周期,对有限长序列的傅里叶分析,DFT 的特点是无论在时域还是频域都是有限长序列。
离散信号与系统的时域和频域分析
h(k n) an1h(k n 1) an2h(k n 2) ... a0h(k ) 0 K>0时, n 齐次差分方程解: k
h(k ) [ ci ( ) ] (k )
离散信号与系统分析
开始
下一页
结束
本章说明
与连续信号与系统相比较,离散系统的数学描述是激励响应的差分方 程,其系统分析求响应实质是求解描述离散系统的差分方程。离散系 统的零状态响应可以用卷积和来求取。 时域分析: 1.掌握离散信号与系统的基本概念。 2.熟悉并掌握常用基本信号的描述、特性、运算与变换。 3.深刻理解采样定理的意义、内容及应用。 4.掌握离散系统的数学描述方法—差分方程及模拟图 5.掌握离散系统的时域分析—经典法求零输入响应、零状态响应。 6.熟悉卷积和法及其主要性质并会应用卷积和法求零状态响应。
4、图解法卷积
①变量代换 f1(n) 变成f1(k) f2(n) 变成f2( ②反折其中之一信号 ③将反折信号移位 m f2(-k) f2(m-k) 以k代n
④e将平移后的f2(m-k)与对应的f1(k)相乘 ⑤将各乘积值相加可画出全部y(m) ⑥重复步骤③到⑤可画出全部y(n) 5、系统零状态响应为
5、序列的运算
④差分:离散信号的差分运算 f (k ) f (k 1) f (k ) 前向差分: f (k ) f (k ) f (k 1) 后向差分: ⑤反折:将离散信号以纵轴为对称轴反折(转) ⑥压扩:将离散信号中f(k)的自变量k置换为ak得到的过程称为信号的尺 度变换 注意:不存在非整数ak的值! ⑦求和:离散信号的求和运算是对某一离散信号进行历史推演的求和过程。
实验四 离散时间信号与系统分析
实验四离散时间信号与系统分析实验四离散时间信号与系统分析一、实验目的1、理解离散信号及系统的时频域分析方法2、掌握Matlab进行信号的卷积、z变换及逆z变换的方法。
3、掌握Matlab进行离散系统时频域的分析方法二、实验时数:2学时三、实验相关知识(一)离散信号的卷积利用函数(,)可以计算离散信号的卷积和,c conv a b即c(n)=a(n)*b(n),向量c长度是a,b长度之和减1。
若a(n)对应的n的取值范围为:[n1, n2];b(n)对应的n的取值范围为:[n3, n4],则c(n)=a(n)*b(n)对应的n的取值范围为:[n1+n3, n2+n4]。
例4-1:已知两序列:x(k)={1,2,3,4,5;k=-1,0,1,2,3},y(k)={1,1,1;k=-1,0,1},计算x(k)*y(k),并画出卷积结果。
解:利用conv()函数进行离散信号的卷积,注意卷积信号的k 值范围k_x = -1:3;x=[1,2,3,4,5];k_y = -1:1;y=[1,1,1];z=conv(x,y);k_z= k_x(1)+k_y(1):k_x(end)+k_y(end); stem(k_z,z);(二)离散信号的逆z 变换离散序列的z 变换通常是z 的有理函数,可表示为有理分式的形式,因此可以现将X(z)展开成一些简单而常用的部分分式之和,然后分别求出各部分分式的逆变换,把各逆变换相加即可得到X(z)的逆变换x(n)。
设离散信号的z 变换式如下,120121212()()1()m m n n b b z b z b z num z X z a z a z a z den z ------++++==++++在Matlab 中进行部分分式展开的函数为residuez (),其调用形式如下:[r,p,k] = residuez(num,den)其中num=[b0, b1, …, bm]表示X(z)有理分式的分子多项式为12012m m b b z b z b z ---++++;den=[a0, a1, …, am]表示X(z)有理分式的分母多项式为12012m m b b z b z b z ---++++,注意分子分母多项式均为按z -1的降幂排列的多项式,缺项应补零。
离散时间信号和系统的频域分析
离散时间信号和系统的频域分析离散时间信号与系统是研究数字信号与系统的频域分析,其中离散时间信号是对连续时间信号进行采样得到的,而离散时间系统是对连续时间系统进行离散化得到的。
频域分析是对信号与系统在频率域上的特性进行研究和分析。
对于离散时间信号,其离散化的过程是将连续时间信号在时间轴上进行均匀采样,得到指定的采样间隔,得到离散时间序列。
在频域上,其频谱是周期性的,并且频谱是以单位圆为单位周期的。
频域分析的目的是研究离散时间信号在频率域上的特性,包括频谱范围、频率分辨率、功率谱密度等。
离散时间信号的频域分析可以通过离散时间傅里叶变换(DTFT)来实现。
DTFT是信号在频域上的完全变换,将一个离散时间信号映射到一个连续的频率域函数。
DTFT是一个复数函数,表示信号在不同频率上的振幅和相位。
频谱的振幅可以表示信号在该频率上的能量大小,相位可以表示信号在该频率上的相对位置。
除了DTFT之外,还可以使用离散傅里叶变换(DFT)进行频域分析。
DFT是DTFT的一种计算方法,可以将离散时间信号转换为有限的频域信号。
DFT的计算是通过对离散时间信号进行有限长的时间窗口进行采样,并进行频域变换得到的。
DFT的结果是一个离散的频域信号,也称为频谱。
DFT通常使用快速傅里叶变换(FFT)算法来快速计算。
离散时间系统的频域分析主要是通过系统的频率响应函数来实现。
频率响应函数是系统在不同频率上对信号的响应情况的描述。
对于线性时不变系统,其频率响应函数是系统的传递函数的傅里叶变换。
频率响应函数拥有类似信号的频谱特性,可以描述系统对不同频率的信号的增益和相位。
频域分析在离散时间信号与系统中有着广泛的应用。
首先,频域分析可以帮助我们理解信号的频率构成和能量分布情况,有助于对信号进行合理的处理和分析。
其次,频域分析可以快速计算离散时间系统的响应,能够有效地评估系统的性能和稳定性。
此外,频域分析还可以进行滤波器设计、信号压缩、信号重构等应用。
数字信号处理实验三:离散时间信号的频域分析
实验三:离散时间信号的频域分析一.实验目的1.在学习了离散时间信号的时域分析的基础上,对这些信号在频域上进行分析,从而进一步研究它们的性质。
2.熟悉离散时间序列的3种表示方法:离散时间傅立叶变换(DTFT),离散傅立叶变换(DFT)和Z变换。
二.实验相关知识准备1.用到的MATLAB命令运算符和特殊字符:< > .* ^ .^语言构造与调试:error function pause基本函数:angle conj rem数据分析和傅立叶变换函数:fft ifft max min工具箱:freqz impz residuez zplane三.实验内容1.离散傅立叶变换在MATLAB中,使用fft可以很容易地计算有限长序列x[n]的离散傅立叶变换。
此函数有两种形式:y=fft(x)y=fft(x,n) 求出时域信号x的离散傅立叶变换n为规定的点数,n的默认值为所给x的长度。
当n取2的整数幂时变换的速度最快。
通常取大于又最靠近x的幂次。
(即一般在使用fft函数前用n=2^nextpow2(length(x))得到最合适的n)。
当x的长度小于n时,fft函数在x的尾部补0,以构成长为n点数据。
当x的长度大于n时,fft函数将序列x截断,取前n点。
一般情况下,fft求出的函数多为复数,可用abs及angle分别求其幅度和相位。
注意:栅栏效应,截断效应(频谱泄露和谱间干扰),混叠失真例3-1:fft函数最通常的应用是计算信号的频谱。
考虑一个由100hz和200hz正弦信号构成的信号,受零均值随机信号的干扰,数据采样频率为1000hz。
通过fft函数来分析其信号频率成分。
t=0:0.001:1;%采样周期为0.001s,即采样频率为1000hzx=sin(2*pi*100*t)+sin(2*pi*200*t)+1.5*rand(1,length(t));%产生受噪声污染的正弦波信号subplot(2,1,1);plot(x(1:50));%画出时域内的信号y=fft(x,512);%对x进行512点的fftf=1000*(0:256)/512;%设置频率轴(横轴)坐标,1000为采样频率subplot(2,1,2);plot(f,y(1:257));%画出频域内的信号实验内容3-2:频谱泄漏和谱间干扰假设现有含有三种频率成分的信号x(t)=cos(200πt)+sin(100πt)+cos(50πt)用DFT分析x(t)的频谱结构。
实验四线性时不变离散时间系统的频域分析
实验四线性时不变离散时间系统的频域分析一、引言离散时间系统是指输入和输出都以离散的时间点进行采样的系统。
频域分析是通过将时域信号转换到频域来研究系统的特性和性能的一种方法。
实验四旨在通过频域分析方法研究线性时不变离散时间系统的特性。
二、理论分析线性时不变离散时间系统的输入输出关系可以表示为:y[n]=H(e^(jω))*x[n]其中,H(e^(jω))表示系统的频率响应,是输入和输出的傅里叶变换之比。
线性时不变离散时间系统的频率响应可以通过离散傅里叶变换(DFT)来求得。
DFT是时域序列经过离散采样后进行离散傅里叶变换得到频域表示的方法。
DFT的定义如下:X(k) = Σ[x(n)e^(-j2πkn/N)]其中,x(n)为时域序列,X(k)为频域序列,N为采样点数。
通过DFT可以将时域序列转换为频域序列,从而得到系统的频谱特性,包括幅度和相位。
三、实验步骤1.准备实验设备和软件:计算机、MATLAB软件。
2.设置实验输入信号:生成离散时间序列x[n]。
3.进行离散傅里叶变换:使用MATLAB软件进行离散傅里叶变换,得到频域序列X(k)。
4.计算幅度谱和相位谱:根据频域序列X(k)计算幅度谱和相位谱。
5.绘制频谱图:根据幅度谱和相位谱绘制频谱图。
6.分析系统特性:根据频谱图分析系统的频率响应特性。
四、实验注意事项1.在进行离散傅里叶变换时,注意采样点数N的选择,一般应满足N>2L,其中L为时域信号的长度。
2.在绘制频谱图时,注意选择适当的频率范围,以便观察频域特性。
五、实验结果分析实验通过离散傅里叶变换将时域信号转换为频域信号,得到了系统的频谱特性。
根据频谱图可以分析系统的频率响应,包括系统的幅度响应和相位响应。
六、实验总结通过实验四的实验,我们学习了线性时不变离散时间系统的频域分析方法。
通过离散傅里叶变换,我们可以将时域序列转换为频域序列,从而得到系统的频谱特性。
通过分析频谱图,我们可以了解系统的幅度响应和相位响应,进一步了解系统的特性和性能。
第2章 时域离散信号和系统的频域分析
1第2章时域离散信号和系统的频域分析z 2.1 引言z 2.2 序列的傅里叶变换的定义及性质z 2.4 时域离散信号的傅里叶变换与模拟信号傅里叶变换之间的关系z 2.5 序列的Z 变换z 2.6 利用Z变换分析信号和系统的频域特性22.1 引言信号和系统的分析方法:时域分析方法和变换域分析方法。
频域变换(傅里叶变换->复频域拉氏变换)连续时间信号(系统微分方程)频域变换(傅里叶变换->复频域Z 变换)时域离散信号(系统差分方程)本章学习内容是本书也是数字信号处理这一领域的基础。
3第2章时域离散信号和系统的频域分析z 2.1 引言z 2.2 序列的傅里叶变换的定义及性质z 2.4 时域离散信号的傅里叶变换与模拟信号傅里叶变换之间的关系z 2.5 序列的Z 变换z 2.6 利用Z变换分析信号和系统的频域特性2.2 序列的傅里叶变换的定义及性质5例2.2.1 设x(n)=R 4(n),求x(n)的DTFT 图2.2.1 R (n)的幅度与相位曲线sin /2ω常用序列的傅立叶变换7(2)()j M nn x n eωπ∞−+=−∞=∑二、序列离散时间傅里叶变换(DTFT)的性质1. DTFT 的周期性()()j j nn X e x n eωω∞−=−∞=∑(2)()j M X eωπ+=时域离散,频域周期函数。
周期是2π。
由于DTFT 的周期,一般只分析0-2π之间的DTFT 。
2. 线性1122:()[()],()[()]j j X e DTFT x n X e DTFT x n ωω==若1212:[()()]()()j j DTFT ax n bx n aX e bX e ωω+=+则3. 时移与频移00(0:[()](),[()]()j n j nj j DTFT x n n eX e DTFT ex n X eωωωωω−−−==则:()[()]j X e DTFT x n ω=若4. 反转7. 帕斯维尔(Parseval)定理8. 频域微分序列的Fourier变换的对称性质*()x n−)n也可分解成:e−*(e对称性质•序列Fourier 变换()()j x n X e ωRe[()]()j e x n X e ωIm[()]()j o j x n X e ω()Re[()]j e x n X e ω()Im[()]j o x n j X e ω实数序列的对称性质•序列Fourier 变换Re[()]()()j j e x n X e X e ωω=Im[()]0()0j o j x n X e ω==()Re[()]j e x n X e ω()Im[()]j o x n j X e ω)j eω−变换满足共轭对称性()]j X eω−Im[()]j X e ω−)arg[结论:z序列分成实部与虚部两部分,实部对应的DTFT具有共轭对称性,虚部和j一起对应的DTFT具有共轭反对称性。
《信号与系统(第2版)》配套课件 离散时间信号与系统的复频域分析1
z 1,求x[k]
解: 将X(z)化为z的负幂,可得
X
(
z
)
1
2 0.5z
0.5z 1 1 0.5
z
2
A 1 z 1
B 1 0.5z1
A
(1
z 1)
X
(z)
z 1
2 0.5z1 1 0.5z1
z1 1
B
(1 0.5z1) X
(z)
z 0.5
2 0.5z1 1 z 1
z0.5 1
将X(z)进行z反变换,可得
]}
1
1 a
z
1
,
za
e j0k u[k ]
Z
1 1 e j0 z1 ,
z 1
利用Euler公式和线性特性,可得
Z cos(0k)u[k]=Z e j0ku[k] / 2 Z e j0ku[k] / 2
单边z变换的性质
[例] 求正弦类序列cos(Ω0k) u[k]和sin(Ω0k) u[k]的z变换
1. 离散时间LTI系统的频域描述
➢ 系统函数H(z)的另一种定义 零状态响应的频域表示
yzs[k] x[k]* h[k]
利用z变换 的卷积特性
Yzs (z) X (z)H (z)
H (z) Yzs (z) X (z)
1. 离散时间LTI系统的频域描述
➢ H(z) 的物理意义
x[k]
h[k]
1
1 z1 cos(0 ) 2z1 cos(0 )
z
2
单边z变换的性质
[例] 求正弦类序列cos(Ω0k) u[k]和sin(Ω0k) u[k]的z变换
解c:os( 0k )u[k ]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散时间信号与系统的频域分析
————————————————————————————————作者:————————————————————————————————日期:
计算机与信息工程学院
实验报告
专业:通信工程年级/班级:2012级通信工程2013—2014学年第二学期
课程名称指导教师
本组成员
学号姓名
实验地点实验时间
项目名称离散时间信号与系统的频
域分析
实验类型
一、实验目的
1、掌握离散时间信号与系统的频域分析方法,从频域的角度对信号与系统的特性进行分析。
2、掌握离散时间信号傅里叶变换与傅里叶逆变换的实现方法。
3、掌握离散时间傅里叶变换的特点及应用
4、掌握离散时间傅里叶变换的数值计算方法及绘制信号频谱的方法
二、实验仪器或设备
一台装有MATLAB的计算机
三、实验原理
1. 离散时间系统的频率特性
在离散LTI 系统时域分析中得到系统的单位冲激响应可以完全表征系统,进而通过h[n]特性来分析系统的特性。
系统单位冲激响应h[n]的傅里叶变换H () 成为LTI 系统的频率响应。
与连续时间LTI 系统类似,通过系统频率响应可以分析出系统频率特性。
与系统单位冲激响应h[n]一样,系统的频率响应H () 反映了系统内在的固有特性,它取决于系统自身的结构及组成系统元件的参数,与外部激励无关,是描述系统特性的一个重要参数,H () 是频率的复函数可以表示为
其中,|1随频率变化的规律称为幅频特性;ϕ(ω)随频率变化的规律称为相频特性。
2. 离散时间信号傅里叶变换的数值计算方法
算法原理,
由傅里叶变换原理可知:
序列f [n]的离散时间傅里叶变换F是ω的连续函数。
由于数据在 matlab 中以向量的形式存在,F ()只能在一个给定的离散频率的集合中计算。
然而,
只有类似
形式的e− jω的有理函数,才能计算其离散时间傅里叶变换。
四、实验内容
1 离散时间傅里叶变换
(1)下面参考程序是如下序列在范围−4π≤ω≤4π的离散时间傅里叶
变换
实验代码
%计算离散时间傅里叶变换的频率样本
clear all;
w=-4*pi:8*pi/511:4*pi;
num=[2 1]; den=[1 -0.6];
h=freqz(num,den,w);
subplot(2,1,1)
plot(w/pi,real(h)); grid;
title(‘实部’)
xlabel(‘omega/\pi’);
ylabel(‘振幅’);
subplot(2,1,2)
plot(w/pi, imag(h)); grid;
title(‘虚部’)
xlabel(‘omega/\pi’);
ylabel(‘振幅’);
figure;
subplot(2,1,1)
plot(w/pi, abs(h)); grid;
title(‘幅度谱’)
xlabel(‘omega/\pi’);
ylabel(‘振幅’);
subplot(2,1,2)
plot(w/pi, angle (h)); grid;
title(‘相位谱’)
xlabel(‘omega/\pi’);
ylabel(‘以弧度为单位的相位’);
修改程序,在范围 0≤ω≤π内计算如下有限长序列的离散时间傅里叶变换h[n]=[1 2 3 4 5 6 7 8 9]
clear all;
w=0*pi:8*pi/511:pi;
h=freqz(h[n]);
subplot(2,1,1)
plot(w/pi,real(h)); grid;
title(‘实部’)
xlabel(‘omega/\pi’);
ylabel(‘振幅’);
subplot(2,1,2)
plot(w/pi, imag(h)); grid;
title(‘虚部’)
xlabel(‘omega/\pi’);
ylabel(‘振幅’);
figure;
subplot(2,1,1)
plot(w/pi, abs(h)); grid;
title(‘幅度谱’)
xlabel(‘omega/\pi’);
ylabel(‘振幅’);
subplot(2,1,2)
plot(w/pi, angle (h)); grid;
title(‘相位谱’)
xlabel(‘omega/\pi’);
ylabel(‘以弧度为单位的相位’);
教师签名:
年月日。