边坡稳定有限元分析

合集下载

有限元法在边坡稳定分析中的应用

有限元法在边坡稳定分析中的应用
总第 1 2 4期 2 0 0 6 年第 8 期
西部探矿工程 �E � �-CH I NAE � P L O RA � I O NE N G I N E E R I NG
� � � � � �N � . 1 2 4 A � . 2 0 0 6 �
����������������������������������������������������� 文 章编 号 � 1 0 0 4-5 7 1 6( 2 0 0 6) 0 8-0 2 8 4-0 2 中 图分 类号 � � D 8 2 4 . 7 1 文献 标识 码 � B
K=
总第 1 2 4期 2 0 0 6 年第 8 期
� �=
D � � � � � � -P � � � � �屈服准则是一种经 过修正的 M � � � �屈 服准 则, 它 考虑了静水压力( 侧限压力 ) 分量的影响 , 静水压力越高 , 则 屈服强度越大 � � � � � 边坡稳定 性安全系数的定义 边坡的稳定性安全系 定 义为沿 滑移面的 抗剪强 度与滑 移 面的实际剪力的比值 , 公式表示为 � ( �+� � � � � A �) � � � A �
有 限 元 法 在 边 坡 稳 定 分 析 中的 应 用
贾 亚� 干腾君
� 重庆大学土木工程学院 � 重庆 4 � 0 0 0 4 5 摘 要� 将强度折减理论用于有限元法中 � 单元法 不需要 做任何 假
定� 计算模型不仅能满足了力的平衡方法 � 而且满足土 体的应 力应变关 系 � 并且可 以对边 坡进行 非线性弹 塑性分 析 � 计 算结果更精确 � 更可靠 � 关键词 � 边坡 � 稳定性分析 � 有限元 � 共同 作用 � 概论 边坡稳定性分 析的 主要 任务 是进 行边 坡稳 定性 计算 , 评价 当前边坡的稳定 状态和 可能 的变 化发 展趋 势 , 以便 作为 边坡 整 治工程设计的依据 � 目前应 用于边坡 稳定性 分析的 方法主 要有 基于极限平衡的传统法和 有限元 法 � 传统的 边坡稳 定性分 析方 法中 , 为了便于分析计算的进行 , 做了 许多近似假设 , 如假设一个 滑动面 , 不考虑土体内部的应力 - 应变 关系 , 不考虑 支挡结 构的 作用等等 � 因此 , 传统分析方法 不能得 到滑体内 的应力 , 变 形分 布状况 , 也不能求得 岩体本 身的 变形 和支 挡结 构对 边坡 变形 及 稳定性的影响 � 传统分析方 法的这些 先天缺 点使它 在应用 中受 到一定的限制 , 尤其在大型边坡 和重要 工程的 边坡整治 分析中 , 大多仅用它作为初步计算 和估计 � 而 有限元 法克服 了传统 分析 法的不足 , 不仅满足力的平衡条件 , 而 且还考虑了土体应力 , 变形 关系和支挡结构的作用 , 能够得 到边坡 在荷载作 用下的 应力 , 变 形分布 , 模拟出边坡 的实 际滑 移 面 � 正因 为有 限元 法的 这些 优 点, 近年来它已广泛应用于边坡稳定性分析 � � 毕肖普条分法简介 毕肖普法属于 条分 法中 得到 工程 界广 泛应 用的 一种 方法 , 假定滑动面及滑 动土体 为不 变形 的刚 体 , 考虑 了土 条两 侧面 上 的作用 , 将滑裂面以上的土体分 成若干 垂直土条 , 安 全系数 的公 式为 � 1 � � � ��+ ( � � � � �M � � �+ � �-� � +1 ) �� � � � F �= � �� � � � � � 式中 �� 为使问题得 解 , 毕 肖普又 假定各 土条 � 及 � � +1 是未知的 , 之间的切向条间力均略去不计 , 这样上式可简化为 � 1� � � � � � � �+� � �� � M� � F �= � � � �� � � � 式中 � - 土体凝聚力 � �� - 土体内摩擦角 � � - 第�个土条重量 � ��- 第 �土条宽度 � � �- 第�土条底面滑弧与圆心的连线的倾角 � � �强度折减技术 � �� � 基本概念 强度折减技术的要点是利 用以下 两个公式 来调整 土体的 强 度指标 � , 其中 F 然 后对土 坡进 行有 限元 分析 , � 为折 减系数 , �, 通过不断地增加折减系数 F 反复 分析土坡 , 直至其 达到临界 破 �, 坏, 此 时得到的折减系数即为安全系数 F �� 上述公式为 � � �= � F � ( � � � � � � � � � F �=� �) � � 强度折减法的优 点 是安 全系 数可 以直 接得 出 , 不需 要事 先 假设滑裂面的形式和位置 , 另外可 以考虑 土坡的 渐进破 坏过程 � 用强度折减有限元 法分 析边 坡的 稳定 性 , 采用 解的 不收 敛作 为 破坏标准 � 在指定的收敛准则下算法不能收敛 , 即表示应力分布 不能满足土体的破坏准则和总体平衡要求 , 意味着出现破坏 � � � � 屈服准则 采用 理 想 弹 塑 性 模 型 和 D � � � � � �- P � � � � � 屈 服 准 则� D � � � � � � -P � � � � �屈服准 则既考 虑了 中间 主应力 � 2 对屈 服强 度 的影响 , 又考虑了静水压力对屈服 强度的 影响 , 对土体 材料有 较 好的适用性 , 已广泛应用于土体分析 � D � � � � � � -P � � � � �屈服准则表达式如 下 � 1 �� � 1 2 � � F =3 � �+� � �� M� �� -� � =0 � 2 式中 � - 平均应力或静水压力 � � � � � - 偏应力差 � � - 材料常数 , � �= 2 � � � � � ( � 33 -� � � �) � -M M� � � � �准则中的相关参 数矩阵 � 6 � � � � � , 为内摩擦角 , � 为粘聚力 � ( )� � 33 -� � � �

边坡动力稳定有限元分析方法的研究和探索

边坡动力稳定有限元分析方法的研究和探索

边坡动力稳定有限元分析方法的研究和探索摘要:本文介绍了边坡在地震作用下的稳定分析方法,通过对边坡进行有限元动力反应分析,然后根据每个时段的加速度分布,做强度折减运算来求得各个时段的安全系数,从而得出在地震过程中的安全系数随时间的变化曲线,以此判断边坡的稳定情况。

关键词:边坡稳定动力反应安全系数地震作用一、引言目前,在地震作用下,考虑土体实际应力应变关系的有限元应力分析已经十分普遍,但是,评价边坡稳定性主要是应用以极限平衡为基础的圆弧法,就是在已知的应力场中,假设初始滑裂面,通过数学规划法搜索最危险滑裂面。

这种方法不能充分考虑滑坡体的抗滑潜能,也不能充分反映滑体的滑动方向,安全系数偏大。

因此,本文通过地震作用下加速度的反应来分析,应用强度折减法[1]来评价边坡的稳定性。

二、动力稳定分析方法简述进行动力稳定分析的基础是进行有限元静动力分析。

(1)首先对边坡进行有限元静力分析。

(2)把地震过程分为若干时段,求得各时段的最大加速度反应分布情况。

(3)把各时段的动力作用看作惯性力进行强度折减分析,以求出该时段内的安全系。

(4)依次求出各个时段的安全系数,就可以看出地震作用下,安全系数的变化情况,以此来判断边坡的稳定性。

三、算例分析一均质土坝,坡比为1:1.4,容重γ=20kN/m3,粘聚力c=30kPa,内摩擦角Φ=40o,杨氏模量E=20MPa, 泊松比υ=0.3。

1.有限元静力分析:土石料的本构模型选用邓肯-张的E-B模型,该模型为非线性弹性模型[2],是土石坝计算中的常用的本构模型:切线弹模:(1)初始切线模量:(2)回弹模量:(3)应力水平:(4)破坏比:(5)加荷函数:(6)当大于历史上最大值时为加荷,否则为卸荷或再加荷。

计算模拟了大坝施工过程中各阶段应力和变形的情况,较好地体现材料的非线性影响,采用分级加载的方式。

2.有限元动力分析:动力计算采用等价非线性粘弹性[3]模型:根据选定的初始剪切模量G0及初始阻尼比0,运用Newmark逐步积分法计算土体的动力反应,以此确定各土体单元的有效应变eff (通常取为最大剪应变max的0.65倍);然后根据试验得到的土料G/Gmax-与-经验曲线,估计与当前特征应变水平eff相应的动力参数Gt与t,进而再次进行计算分析,如此类推不断迭代直至所选用的动力参数与所取得的有效应变相协调,最终计算结果作为土体非线性响应,得出在各个时段内的动力反应量。

边坡稳定分析的极限平衡有限元法

边坡稳定分析的极限平衡有限元法

道丨路|工|程殄边坡稳定分析的极限平衡有限元法周龙华(广西骏通道桥工程建设监理有限责任公司,广西南宁530023)摘要:极限平衡软件SLOPE/W和有限元程序PU\XIS是目前岩土工程中常用的两种软件程序。

采用极限平衡法进行边坡分析时,需要将地面划分为若干垂直层面,并使用静态平衡方程计算各层面的安全系数(FOS)和应力,而有限元法则需要输入土的性质和单元的弹塑性参数。

文章比较了有限元法和极限平衡法在边坡稳定性分析中的应用,讨论了各种方法的适用性和局限性,并评估了边坡稳定性分析模型输出的实用性,可为边坡稳定性评估提供可靠依据。

关键词:有限元法;极限平衡;边坡稳定性中图分类号:U416. 1+4 文献标识码:A DOI: 10.1較82/ki.wCCSt.2021.01.022文章编号:1673- 4874(2021)01 -0078-03〇引言随着对基础设施和自然资源需求的不断扩大,对工程开挖和道路建设的要求也越来 越高。

在工程建设过程中,山体滑坡和地震等自然灾害是岩土工程师和地质学家面临的重要问题。

边坡的稳定性是施工前、施工中、施工后各利益相关者共同关心的重要问题,如果要改变边坡稳定技术,安全系数(FOS)的微小差异可能导致施工成本的巨大差异。

这一点很重要,因为目前还没有明确的证据表明,哪种方法能产生最可接受的结果[^]。

与基础设施有关的土质边坡失稳是一个持续存在的问题,因为边坡破坏危及公共安 全并导致昂贵的修复工作。

近几十年来,人们开发了一系列功能强大的边坡稳定分析设计软件包。

这些程序包括边坡稳定分析的极限平衡法和有限元法。

极限平衡法有许多局限性和不一致性,但被认为是最常用的方法。

随着技术进步,有限元程序简化了边坡稳定性分析。

SLOPE/W和PLAXIS是目前岩土工程师使用的两种常用软件程序。

SLOPE/W和PLAXIS分别用于极限平衡法和有限元法,每一个程序都被用来确定边坡的安全系数及其随后的设计要求。

基于极限平衡法及有限元法的边坡稳定性综合分析

基于极限平衡法及有限元法的边坡稳定性综合分析

基于极限平衡法及有限元法的边坡稳定性综合分析随着城市化进程的加快和土地资源的日益紧缺,地质灾害频繁发生成为了人们关注的焦点。

边坡稳定性分析作为地质灾害防治的重要内容之一,对于保障人民生命财产安全和城市发展具有重要意义。

本文将通过基于极限平衡法及有限元法的边坡稳定性综合分析,从两种不同的角度对边坡稳定性进行深入研究,以期为地质灾害防治提供理论支持和技术指导。

一、极限平衡法分析极限平衡法是指对于一定的边坡体系,在边坡体系受到外力作用时,通过平衡条件来确定边坡体系在达到稳定状态时,承受最大自重等荷载的状态。

具体步骤为:确定边坡的几何形状,计算边坡受力分布,确定边坡的抗滑稳定性和倾覆稳定性,得出边坡的稳定状态。

极限平衡法主要用于评估边坡在稳定状态下的安全系数,对于边坡的设计和监测具有重要意义。

二、有限元法分析有限元法是一种数值分析方法,将连续介质划分为有限个小单元,在每个小单元中建立方程,通过求解小单元之间的位移和应力关系来得出整个结构的位移和应力分布。

有限元法在地质灾害领域得到了广泛应用,能够较为准确地描述地质介质的力学行为,对复杂边坡体系的稳定性分析具有独特的优势。

基于有限元法的边坡稳定性分析首先要建立边坡的数值模型,将边坡体系划分为有限个小单元,然后确定边坡体系的边界条件和加载条件,进行有限元分析,计算得出边坡体系的位移和应力分布。

最后通过分析位移和应力的分布情况来评估边坡的稳定性。

三、综合分析将极限平衡法和有限元法两种分析方法相结合,可以更为全面地评估边坡的稳定性。

通过极限平衡法可以得到边坡在静态荷载下的稳定状态,而有限元法可以计算得出边坡在动态荷载下的位移和应力分布情况。

综合两种分析方法,可以较为全面地评估边坡的稳定性,为地质灾害防治提供更为可靠的技术支持。

基于极限平衡法及有限元法的边坡稳定性综合分析

基于极限平衡法及有限元法的边坡稳定性综合分析

基于极限平衡法及有限元法的边坡稳定性综合分析边坡稳定性的综合分析对于工程建设具有重要意义。

极限平衡法和有限元法是常用于边坡稳定性分析的两种方法。

本文将基于这两种方法,进行边坡稳定性的综合分析。

我们来介绍极限平衡法。

极限平衡法是边坡稳定性分析中常用的一种方法,其基本思想是在满足平衡条件的前提下,通过变换应力状态,找出使边坡发生稳定破坏的应力状态。

极限平衡法分析边坡稳定性的关键是确定初始滑动面,即通过分析土体的物理力学性质,选择一个合适的滑动面作为研究对象。

确定滑动面后,可以通过平衡条件,计算出边坡的抗滑力和抗倾覆力,进而判断边坡的稳定性。

在进行极限平衡法分析时,需要收集边坡所涉及的土体参数,如土体的黏聚力、内摩擦角等,这些参数可以通过室内实验或野外取样来获取。

还需要调查边坡所受的外荷载情况,如水压力、地震力等。

根据收集到的数据,可以通过相关的计算公式来计算边坡的稳定性指标,如安全系数等。

然后,我们来介绍有限元法。

有限元法是一种基于数值计算的方法,通过将边坡划分为离散的有限元单元,建立节点之间的联系,并在每个节点附近建立适当的求解方程,从而得到边坡的应力、应变和位移分布。

有限元法分析边坡稳定性的关键是选择合适的有限元单元,以及建立节点之间的边界条件和相应的求解方程。

通过求解这些方程,可以得到边坡的应力、应变和位移等信息,进而判断边坡的稳定性。

极限平衡法和有限元法是两种常用的边坡稳定性分析方法。

极限平衡法通过物理力学性质和平衡条件,计算边坡的抗滑力和抗倾覆力,进而判断边坡的稳定性。

而有限元法通过离散化边坡、建立节点之间的联系和求解方程,计算边坡的应力、应变和位移分布,进而判断边坡的稳定性。

这两种方法在边坡稳定性分析中有着各自的优势和适用范围,可以相互补充使用,提高边坡分析的准确性和可靠性。

土木工程中边坡稳定性分析方法

土木工程中边坡稳定性分析方法

土木工程中边坡稳定性分析方法在土木工程领域,边坡稳定性是一个至关重要的问题。

边坡的失稳可能会导致严重的人员伤亡和财产损失,因此,准确分析边坡的稳定性对于工程的安全和成功实施具有重要意义。

本文将探讨几种常见的土木工程中边坡稳定性分析方法。

一、定性分析方法1、工程地质类比法这是一种基于经验和对比的方法。

通过对已有的类似地质条件和边坡工程的研究和经验总结,来对新的边坡稳定性进行初步判断。

这种方法虽然简单快捷,但依赖于丰富的工程经验和大量的案例数据。

2、历史分析法通过研究边坡地区的历史地质活动、自然灾害记录以及以往的边坡变形破坏情况,来推断当前边坡的稳定性。

然而,这种方法受到历史资料完整性和准确性的限制。

二、定量分析方法1、极限平衡法这是目前应用较为广泛的一种方法。

它基于静力平衡原理,将边坡划分为若干个垂直条块,通过分析条块之间的力和力矩平衡,计算出边坡的安全系数。

常见的极限平衡法有瑞典条分法、毕肖普法等。

瑞典条分法假设滑动面为圆弧,不考虑条块间的作用力,计算较为简单,但结果相对保守。

毕肖普法考虑了条块间的水平作用力,计算结果更为精确,但计算过程相对复杂。

2、数值分析方法(1)有限元法将边坡离散为有限个单元,通过求解每个单元的应力和位移,来分析边坡的稳定性。

它可以考虑复杂的边界条件和材料非线性特性,能够更真实地模拟边坡的力学行为。

(2)有限差分法与有限元法类似,但采用差分格式来近似求解偏微分方程。

在处理大变形和复杂边界问题时具有一定的优势。

(3)离散元法特别适用于分析节理岩体等非连续介质的边坡稳定性。

它能够模拟块体之间的分离、滑动和碰撞等行为。

三、监测分析方法1、地表位移监测通过设置测量点,使用全站仪、GPS 等仪器定期测量边坡表面的位移变化。

当位移量超过一定的阈值时,提示边坡可能存在失稳风险。

2、深部变形监测采用钻孔倾斜仪、多点位移计等设备,监测边坡内部的深部变形情况。

这种方法能够更早地发现潜在的滑动面。

基于极限平衡法及有限元法的边坡稳定性综合分析

基于极限平衡法及有限元法的边坡稳定性综合分析

基于极限平衡法及有限元法的边坡稳定性综合分析边坡稳定性是土木工程中的一个重要问题,其稳定性评价也是设计和施工过程中必不可少的一项任务。

在评估边坡稳定性时,可以采用多种方法进行分析和计算,其中极限平衡法和有限元法是两种较为常见的方法。

极限平衡法是一种力学分析方法,其基本思想是在假设边坡破坏的临界状态下,对平衡方程进行分析,并根据达到平衡状态时的受力情况计算出边坡的稳定性。

该方法通常适用于边坡几何形状简单的情况,并且可以根据边坡、岩土土层及地下水的性质,计算出边坡破坏的临界状态。

该方法的优点是计算速度快、适用范围广,但缺点是假设较多,可能会对结果产生一定的误差。

有限元法是一种数值分析方法,基本思想是将研究对象划分成有限个元素,采用数值方法对每个元素内部的物理量进行计算,并将各个元素的结果进行组合,得到整个系统的解。

该方法适用于任意复杂的边坡形状和土层情况,并且可以考虑各种力之间的相互作用。

该方法的优点是精度高、适用范围广,但缺点是计算量大,需要高性能计算机的支持。

综合采用极限平衡法和有限元法的方法,可以更加准确地评估边坡稳定性。

具体分析步骤如下:1. 安排实地调查,收集有关地质、水文等方面的资料,并对边坡进行详细测量和观察。

2. 基于极限平衡法,根据边坡和土层的性质,假设不同的破坏模式,并计算出每种模式的稳定系数。

最后确定最可能的破坏模式,并计算出稳定系数。

3. 使用有限元法,将边坡划分成有限的元素,并进行模拟计算。

计算包括初始状态、荷载施加前后的应力、变形和位移等情况,并分析边坡的破坏机理和稳定性。

4. 根据极限平衡法和有限元法的计算结果,结合实地观察和调查的数据,评估边坡的稳定性,并制定相应的防护措施和工程设计方案。

综上所述,基于极限平衡法和有限元法的边坡稳定性综合分析方法是一种较为全面和准确的方法,有助于提高边坡设计和施工的安全性和可靠性。

基于极限平衡法及有限元法的边坡稳定性综合分析

基于极限平衡法及有限元法的边坡稳定性综合分析

基于极限平衡法及有限元法的边坡稳定性综合分析1. 引言1.1 研究背景边坡稳定性问题一直是土木工程领域中的热点难题,其解决既关系到人们的生命财产安全,也直接影响工程的质量和成本。

随着我国城市化进程的加快,大量的基础工程、水利工程、交通工程等都需要进行边坡设计与分析,而边坡稳定性是这些工程的关键问题之一。

当前,边坡稳定性分析方法主要有两种,即基于极限平衡法和基于有限元法。

极限平衡法是一种较为经典的边坡稳定性分析方法,它通过假设边坡体处于平衡状态,根据静力平衡和强度准则来评估边坡的稳定性。

而有限元法是一种基于数值模拟的方法,可以更为准确地考虑边坡体内部的应力和变形情况,但也需要较为复杂的计算和较高的计算资源。

本文将结合极限平衡法和有限元法,对边坡的稳定性进行综合分析。

通过比较两种方法的优缺点,确定在实际工程中的适用范围和条件,为工程设计提供科学依据。

本文还将通过案例分析和结果讨论,验证该方法的有效性,并对未来的研究方向做出展望。

1.2 研究意义边坡稳定性分析是岩土工程领域的重要研究课题,具有重要的理论和实践意义。

边坡稳定性分析可以帮助工程师评估和预测边坡的稳定性,有效地指导工程建设和维护工作。

在城市建设和交通基础设施建设中,边坡稳定性是保障工程安全的关键因素之一。

研究边坡稳定性不仅可以有效预防边坡滑坡和坍塌等灾害事故的发生,还可以提高工程的可靠性和持续性。

基于极限平衡法及有限元法的边坡稳定性综合分析,可以综合利用两种方法的优势,更加准确地评估和预测边坡的稳定性。

极限平衡法能够较为简便地确定边坡的稳定系数,而有限元法则可以更加精细地分析边坡的应力和变形特性。

结合两种方法,可以在较短的时间内得到较为可靠的边坡稳定性分析结果,为工程设计和施工提供重要参考。

对于边坡稳定性综合分析的研究具有重要的实际意义,将为岩土工程领域的发展和工程实践提供有力支持。

【研究意义】.1.3 国内外研究现状在边坡稳定性分析领域,国内外学者们进行了大量的研究工作,取得了一系列成果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

边坡稳定有限元分析
本例将演示如何使用有限元方法分析边坡稳定性并计算其安全系数。

任务
首先,分析无超载作用下的边坡稳定性,然后分析在大小为q=35.0kN/m2的条形超载作用下的边坡稳定性,最后为边坡施加预应力锚杆,并分析其稳定性。

边坡的几何尺寸(包括各点的坐标)如下图所示。

图25.1 边坡几何尺寸(多段线上各点的坐标)
土层剖面包含两种类型的土,其参数如下:
表25.1 岩土材料参数列表
计算
我们使用“GEO5岩土工程有限元分析计算模块”(以下简称“有限元模块”)(v18版)来分析该问题。

下面为建模和分析步骤:
-建模阶段:分析设置和几何建模
-工况阶段[1]:分析边坡无超载作用时的稳定性
-工况阶段[2]:分析加入超载后边坡的稳定性
-工况阶段[3]:分析加入锚杆后边坡的稳定性
-结论
建模阶段:分析设置和几何建模
在分析设置界面中设置“分析类型”为“边坡稳定分析”,保持其他选项不变。

图25.2 【分析设置】界面
注:选择“边坡稳定分析”时和选择“应力应变分析”时的设置以及建模过程几乎完全一样。

在【分析】界面点击“开始分析”按钮即可以分析并计算边坡的安全系数。

在“有限元-边坡稳定分析”模块中,各个工况阶段之间是相互独立的,即当前工况阶段的分析结果不受上一工况阶段分析结果的影响。

下一步,设置全局坐标范围。

设置的坐标范围要足够大,这样才能使得所要分析的区域不受边界条件的影响。

对于该算例,设置全局坐标范围<0m, 40m>,设置底边界距离多段线最低点距离为10m。

设置各个多段线和土层剖面,其参数如下表所示。

图25.3 全局坐标对话框
表25.2各多段线及其节点的坐标列表
设置各个岩土材料的参数并将其指定到相应的分区。

在本算例中,我们选择Drucker-Prager(DP)模型(见注)。

设置两种岩土材料的剪胀角ψ均为0°,即当材料受到剪力作用时,其体积不发生改变。

注:分析边坡稳定性时,必须选择非线性弹塑性模型作为岩土材料的本构模型,因为在边坡稳定分析过程中岩土材料会产生塑性应变,且塑性应变的产生是和岩土材料的强度参数c和φ相关的。

在本算例中,我们选择Drucker-Prager作为本构模型,该模型和经典的莫尔-库伦模型相比,允许产生更多的塑性应变。

在本章的最后,将给出不同本构模型下计算得到的安全系数的对比。

图25.4 添加岩土材料对话框
下图为指定岩土材料到相应分区之后的剖面。

图25.5 【指定材料】界面
建模阶段的最后一步是生成网格。

网格密度对边坡的稳定性分析影响很大,所以必须设置一个足够大的网格密度。

对本算例,设置网格边长为1.5m,点击“启动网格生成”按钮生成网格。

在本章最后,将给出采用网格边长为1.0、1.5、2.0m时计算得到的结果。

图25.6 【生成网格】界面–网格边长为1.5m
工况阶段[1]:分析边坡无超载作用时的稳定性
切换到工况阶段[1],点击“开始分析”按钮进行分析,并保持分析设置类型为“标准”,即默认设置。

图25.7 “分析设置”对话框
注:边坡安全系数是通过对岩土材料强度参数c和φ进行折减得到的(强度折减法)。

分析时,不断折减c和φ直到边坡达到临界状态(破坏),此时c和φ的折减系数即为安全系数(详细信息见帮助文档-F1)。

因此,程序通过下式得到边坡的安全系数:
FS=tanφs/tanφp
其中:φs–真实内摩擦角
φp –边坡失稳时的内摩擦角
在边坡稳定性分析中,非常重要的两个计算结果为位移矢量图和等效塑性应变εeq.,pl图。

等效塑性应变区域即为边坡的潜在破坏区域(见下图)。

图25.8 【分析】界面–工况阶段[1](等效塑性应变εeq.,pl)
注:“有限元-边坡稳定分析”模块的分析结果中包括位移等值图(Z向和X向)和应变等值图(总应变、等效塑性应变)。

软件得到的计算结果是折减参数之后的情况,因此该结果和实际的情况是不同,该结果表示的是边坡失稳时的情况。

工况阶段[2]:分析加入超载后边坡的稳定性
添加工况阶段[2],在【超载】界面中定义如下图所示类型的超载。

图25.9 “添加超载”对话框–工况阶段[2]
点击“开始分析”按钮得到分析结果,观察等效塑性应变等值图。

图25.10 【分析】界面–工况阶段[2](等效塑性应变εeq.,pl)
工况阶段[3]:分析加入锚杆后边坡的稳定性
添加工况阶段[3],在【锚杆】界面中点击“添加”按钮,弹出添加锚杆对话框,输入如下所示的锚杆参数,锚杆预应力为F=50kN。

-锚杆长度:l=16m
-倾角:α=17°
-锚杆水平间距:b=1m
-锚杆直径:d=20mm
图25.11 添加锚杆对话框–工况阶段[3]
注:在进行边坡稳定性分析时,预应力锚杆中的预应力采用作用在锚头处的等效集中压力代替。

集中压力作用点处的岩土材料可能会发生塑性变形。

由于等效塑性应变的位置即为潜在滑动面的位置,因此,用户应当对得到的塑性应变分布进行认真分析。

如果得到的锚头附近塑性应变对边坡稳定性起着决定性作用,那么这时用户必须对初始输入参数进行一些修改。

其他参数保持不变,点击“开始分析”按钮分析得到结果,并观察得到的等效塑性应变等值图(和前一工况阶段类似)。

图25.12 【分析】界面–工况阶段[3](等效塑性应变εeq.,pl)
现在,将分析得到的安全系数记录到一个表格中,然后采用其他的本构模型(莫尔-库伦模型(MC),修正莫尔-库伦模型(MCM))再次分析该问题。

注:检验计算得到的滑面形状(等效塑性应变带)是非常重要的,因为,在某些情况下,局部的失稳可能发生在我们认为不会发生失稳的区域(详细信息见帮助文档-F1)。

当采用DP模型并设置网格边长为1m时,将会得到下图中的结果。

从图中可以看出,锚头附近的土体出现了局部破坏,但是边坡本身却没有发生破坏,这时得到的安全系数并不是边坡的安全系数。

如果这种情况发生,可以对于模型的参数进行一定的修改,例如:
-增大网格边长;
-将锚头附近岩土材料的强度参数提高(具有更高的c和φ),或采用弹性模型;
-在锚杆锚头下设置一个梁单元(这样可以让预应力能均匀的传递到岩土材料中)。

图25.13 【分析】界面–工况阶段[3](锚头附近产生局部塑性应变,DP模型,网格边长1m)
图25.14 【分析】界面–工况阶段[3](使用极限平衡法中的Bishop法分析得到的圆弧滑面)
结论
下表列出的是各个工况阶段采用不同的非线性本构模型和网格密度得到的边坡安全系数。

为了对比,我们还列出了“GEO5-土质边坡稳定分析”模块中采用Bishop法和Spencer法得到的安全系数。

表25.3使用不同本构模型和方法得到的边坡安全系数
注:采用极限平衡法时,在“土质边坡稳定分析”模块中选择“标准-安全系数法”作为分析设置,并分别使用Bishop法和Spencer法搜索得到最危险圆弧滑面(不限制搜索区域)。

从上面的分析结果可以得出如下结论:
-对某些重点区域的网格进行局部加密会得到更为精确的结果,但是另一方面,会使得各个工况阶段的分析时间增加。

-边坡稳定分析中必须使用允许发生塑性变形的非线性弹塑性模型。

-最大等效塑性应变εeq.,pl发生的区域为潜在破坏区域。

-DP本构模型得到的安全系数比MC模型得到的稍大,即DP模型允许更大的塑性应变。

相关文档
最新文档