高三数学-二项式定理(知识点和例题)培训资料

合集下载

第03讲 二项式定理 (精讲)(学生版)

第03讲 二项式定理 (精讲)(学生版)

0,1,2,
n ),(a n n a C b a 100+n n a C b 211+-
0,1,2,
n ),项的系数是指该项中除变量外的常数部分0,1,2,
n )叫做二项展开式的通项通项体现了二项展开式的项数、系数、次数的变化规律如含指定幂的项常数项、中间项、有理项、系数最大的项等①对称性:二项展开式中与首尾两端距离相等的两个二项式系数相等:2C n n n +
+=C n
n +
+=(的展开式中各项的二项式系数之和为.
展开式中,含__________.n
的展开式中第项的二项式系数相等,
(n n a x n +
+1
2n
n na -++
的值200200a x +
+200a ++的值.2022·重庆市永川北山中学校高二期中)已知
20222022a x +
+2022a ++;5
2021a +;
22022a a ++;展开式中二项式系数和以及偶数项的二项式系数和;332022a a ++88a x +
+
8a +
+;
2C n n n +
+=C n
n +
+=
D .16
29292830C 2C +除以10所得
D .8
1010
1010(1)8080k k k
C C +
+-+
+除
(n n a x ++255n a +
+=D .。

二项式定理知识点及题型归纳总结

二项式定理知识点及题型归纳总结

二项式定理知识点及题型归纳总结知识点精讲一、二项式定理()nn n r r n r n n n n n nb a C b a C b a C b a C b a 01100+⋯++⋯++=+--()*Nn ∈.展开式具有以下特点: (1)项数:共1+n 项.(2)二项式系数:依次为组合数nn n n n C C C C ,⋯,,,21.(3)每一项的次数是一样的,都为n 次,展开式依a 的降幂、b 的升幂排列展开.特别地,()nn n n n n x C x C x C x +⋯+++=+22111.二、二项式展开式的通项(第1+r 项)二项式展开的通项为r r n r n r b a C T -+=1().,,3,2,1,0n r ⋯=.其中rn C 的二项式系数.令变量(常用x )取1,可得1+r T 的系数.注 通项公式主要用于求二项式展开式的指数、满足条件的项数或系数、展开式的某一项或系数.在应用通项公式时要注意以下几点: ①分清r rn rn b aC -是第1+r 项,而不是第r 项;②在通项公式r r n r n r b a C T -+=1中,含n r b a C T rn r ,,,,,1+这6个参数,只有n r b a ,,,是独立的,在未知n r ,的情况下利用通项公式解题,一般都需要先将通项公式转化为方程组求n 和r . 三、二项式展开式中的系数 (1)二项式系数与项的系数二项式系数仅指nn n n n C C C C ,⋯,,,21而言,不包括字母b a ,所表示的式子中的系数.例如:()nx +2的展开式中,含有r x 的项应该是n r n r n r x C T -+=21,其中r n C 叫做该项的二项式系数,而rx 的系数应该是r n r n C -2(即含r x 项的系数).(2)二项式系数的性质①在二项式展开式中,与首末两端“等距离”的两项的二项式系数相等,即22110,,--===n n n n n n n n n C C C C C C ,…,r n n r n C C -=.②二项展开式中间项的二项式系数最大.如果二项式的幂指数n 是偶数,中间项是第12+n 项,其二项式系数n n C 2最大;如果二项式的幂指数n是奇数,中间项有两项,即为第21+n 项和第121++n 项,它们的二项式系数21-n n C 和21+n n C 相等并且最大. (3)二项式系数和与系数和 ①二项式系数和011+12n nnn n n C C C ++⋯+==() .奇数项二项式系数和等于偶数项二项式系数和,02413512n n n n n n n C C C C C C -+++⋯=+++⋯=即 .②系数和求所有项系数和,令1x =;求变号系数和,令1x =-;求常数项,令0x =。

《二项式定理》知识点总结+典型例题+练习(含答案)

《二项式定理》知识点总结+典型例题+练习(含答案)

二项式定理考纲要求1.了解二项式定理的概念.2.二项展开式的特征及其通项公式.3.会区别二项式系数和系数.4.了解二项式定理及简单应用,并运用二项式定理进行有关的计算和证明. 知识点一:二项式定理设a , b 是任意实数,n 是任意给定的正整数,则0011222333110()n n n n n m n m m n n n nn n n n n n n a b C a b C a b C a b C a b C a b C ab C a b------+=++++⋅⋅⋅++⋅⋅⋅++这个公式所表示的定理叫做二项式定理,其中右边的多项式叫的二项式展开式,每项的0n C ,1n C , 2n C ⋅⋅⋅ n n C 叫做该项的二项式系数.注意:二项式具有以下特征:1.展开式中共有1n +项,n 为正整数.2.各项中a 与b 的指数和为n ,并且第一个字母a 依次降幂排列,第二个字母b 依次升幂排列.3.各项的二项式系数依次为0n C , 1n C , 2n C ⋅⋅⋅ nn C . 知识点二:二项展开式通项公式二项展开式中的m n m mn C a b -叫做二项式的通项, 记作 1m T +. 即二项展开式的通项为 1m n m mm n T C a b -+=.注意:该项为二项展开式的第1m +项,而不是第m 项. 知识点三:二项式系数的性质二项式展开式的二项式系数是0n C , 1n C , 2n C ⋅⋅⋅ nn C .1.在二项展开式中,与首末两端距离相等的两项的二项式系数相等,即m n mn n C C -=.2.如果二项式()na b +的幂指数n 是偶数,那么它的展开式中间一项的二项式系数最大即12n+项的二项式系数最大. 3.如果二项式()na b +的幂指数n 是奇数,那么它的展开式中间两项的二项式系数最大,并且相等,即第12n +项和第32n +项的二项式系数最大且相等.4.二项式()na b +的展开式中,所有二项式系数的和为01232m nn n n n n n n C C C C C C ++++⋅⋅⋅++⋅⋅⋅+=.5.二项式()na b +的展开式中奇数项和偶数项的二项式系数和相等即02413512n n n n n n n C C C C C C -+++⋅⋅⋅=+++⋅⋅⋅=.知识点四:二项式系数与系数的区别 1.二项展开式中各项的二项式系数: mn C .2.二项展开式中各项的系数:除了字母外所有的数字因数的积. 题型一 二项式定理 例1 求51(2)x x-的展开式. 分析:熟记二项式定理.解答:51(2)x x-=05014123232355551111(2)()(2)()(2)()(2)()C x C x C x C x x x x x -+-+-+-4145055511(2)()(2)()C x C x x x+-+-533540101328080x x x x x x=-+-+-题型二 二项展开式通项公式 例2 求91(3)9x x+的展开式中第3项. 分析:灵活运用通项公式. 解答:272532191(3)()9729T T C x x x+===, 所以第3项为5972x . 题型三 二项式系数的性质例3 求7(2)x +的展开式中二项式系数最大的项.分析:根据二项式()na b +的幂指数n 是奇数,那么它的展开式中间两项的二项式系数最大,并且相等,即第12n +项和第32n +项的二项式系数最大且相等.先求出二项式最大项的项数,再利用通项公式计算.解答:由于7为奇数,所以第4项和第5项的二项式系数最大.即3733343172560T T C x x -+=== 4744454172280T T C x x -+===题型四 二项式系数与系数的区别例4 二项式9(12)x -的二项式系数之和为 . 分析:二项式()na b +的展开式中,所有二项式系数的和为01232m n n n n n n n n C C C C C C ++++⋅⋅⋅++⋅⋅⋅+=。

高中数学 二项式定理 知识点与常见题型解法

高中数学 二项式定理 知识点与常见题型解法

《二项式定理》知识点与常见题型解法一.知识梳理1.二项式定理:(a +b )n =C 0n a n +C 1n a n -1b +…+C r n a n -r b r +…+C n n b n (n ∈N *)这个公式所表示的定理叫二项式定理,右边的多项式叫(a +b )n 的二项展开式.其中的系数C r n (r =0,1,…,n )叫二项式系数. 式中的r rn r n b a C -叫二项展开式的通项,用1r +T 表示,即通项1r +T =r rn rn b aC -.2.二项展开式形式上的特点(1)项数为n +1.(2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n .(3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n .(4)二项式的系数0n C ,C 1n ,...,C n -1n ,nn C .3.二项式系数的性质(1)对称性:与首末两端“等距离”的两个二项式系数相等.即(2)增减性与最大值:二项式系数C k n ,当k <n +12时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的;当n 是偶数时,中间一项2nnC 取得最大值;当n 是奇数时,中间两项2121+-=n nn nCC取得最大值.(3)各二项式系数和:C 0n +C 1n +C 2n +…+C r n +…+C n n=2n ; C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=12-n (奇数项与偶数项的二项式系数和相等).一个防范运用二项式定理一定要牢记通项1r +T =r rn rn b aC -,注意(a +b )n 与(b +a )n 虽然相同,但具体到它们展开式的某一项时是不同的,一定要注意顺序问题,另外二项展开式的二项式系数与该项的(字母)系数是两个不同的概念,前者只指C r n ,而后者是字母外的部分.前者只与n 和r 有关,恒为正,后者还与a ,b 有关,可正可负.一个定理二项式定理可利用数学归纳法证明,也可根据次数,项数和系数利用排列组合的知识推导二项式定理.因此二项式定理是排列组合知识的发展和延续.两种应用(1)通项的应用:利用二项展开式的通项可求指定的项或指定项的系数等.(2)展开式的应用:利用展开式①可证明与二项式系数有关的等式;②可证明不等式;③可证明整除问题;④可做近似计算等.三条性质(1)对称性;(2)增减性;(3)各项二项式系数的和;二.常见题型【题型一】求展开特定项例1:(1+3x)n(其中n∈N*且n≥6)的展开式中x5与x6的系数相等,则n=()A.6B.7C.8D.9例2:(2014·大纲)8⎪⎪⎭⎫⎝⎛-xyyx的展开式中x2y2的系数为________.(用数字作答)【题型二】求展开特定项例3:在(1-x)5+(1-x)6+(1-x)7+(1-x)8的展开式中,含x3的项的系数是()A.74 B.121 C.-74 D.-121【题型三】求展开特定项例4:已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=()A.-4B.-3C.-2D.-1例5:在(1+x)6(1+y)4的展开式中,记x m y n项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=()A.45 B.60 C.120 D.210例6:已知数列是等差数列,且,则在的展开式中,的系数为_______.【题型四】求展开特定项例7:求5212⎪⎭⎫⎝⎛++xx(x>0)的展开式经整理后的常数项.例8:若将展开为多项式,经过合并同类项后它的项数为().A.11B.33C.55D.66 例9:(x2+x+y)5的展开式中,x5y2的系数为()A.10 B.20 C.30 D.60【题型五】二项式展开逆向问题例10:若C1n+3C2n+32C3n+…+3n-2C n-1n+3n-1=85,则n的值为()A.3B.4C.5D.6【题型六】赋值法求系数(和)问题例11:已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7.求:(1)a 1+a 2+…+a 7; (2)a 1+a 3+a 5+a 7;(3)a 0+a 2+a 4+a 6; (4)||a 0+||a 1+||a 2+…+||a 7.例12:设nx 222⎪⎪⎭⎫⎝⎛+=a 0+a 1x +a 2x 2+…+a 2n x 2n ,则(a 0+a 2+a 4+…+a 2n )2-(a 1+a 3+a 5+…+a 2n -1)2=_______________________.例13:已知(x +1)2(x +2)2014=a 0+a 1(x +2)+a 2(x +2)2+…+a 2016(x +2)2016,则a 12+a 222+a 323+…+a 201622016的值为______.【题型七】平移后系数问题例14:若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5, 其中a 0,a 1,a 2,…,a 5为实数,则a 3=____________.【题型八】二项式系数、系数最大值问题例15:nx x ⎪⎭⎫ ⎝⎛+21的展开式中第五项和第六项的二项式系数最大,则第四项为________.例16:把(1-x )9的展开式按x 的升幂排列,系数最大的项是第________项A .4B .5C .6D .7例17:(1+2x )n 的展开式中第6项与第7项的系数相等,求展开式中二项式系数最大的项和系数最大的项.【题型九】两边求导法求特定数列和例18:若(2x -3)5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则a 1+2a 2+3a 3+4a 4+5a 5=________.【题型十】整除问题例19:设a ∈Z ,且0≤a <13,若512 012+a 能被13整除,则a =( )A .0B .1C .11D .12例20:已知m 是一个给定的正整数,如果两个整数a ,b 除以m 所得的余数相同,则称a 与b 对模m 同余,记作a ≡b (mod m ),例如:5≡13(mod 4).若22015≡r (mod 7),则r 可能等于( )A.2013B.2014C.2015D.2016答案解析例1:解析 由条件得C 5n 35=C 6n 36,∴n !5!(n -5)!=n !6!(n -6)!×3, ∴3(n -5)=6,n =7.故选B.例2:解析 8⎪⎪⎭⎫ ⎝⎛-x y y x 展开式的通项公式为T r +1=C r 8rrx y y x ⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-8=()42323881---r r r r y xC , 令8-32r =2,解得r =4,此时32r -4=2,所以展开式中x 2y 2的系数为(-1)4C 48=70.故填70. 例3:解析 展开式中含x 3项的系数为C 35(-1)3+C 36(-1)3+C 37(-1)3+C 38(-1)3=-121. 例4:解析 (1+ax )(1+x )5的展开式中x 2项为C 25x 2+ax ·C 15x =10x 2+5ax 2=(10+5a )x 2.∵x 2的系数为5, ∴10+5a =5,a =-1.故选D.例5:解析 在(1+x )6的展开式中,x m 的系数为C m 6,在(1+y )4的展开式中,y n 的系数为C n 4,故f (m ,n )=C m 6·C n 4.从而f (3,0)=C 36=20,f (2,1)=C 26·C 14=60,f (1,2)=C 16·C 24=36,f (0,3)=C 34=4,所以f (3,0)+f (2,1)+f (1,2)+f (0,3)=120,故选C. 例6:解析的系数为。

高考数学复习考点知识专题讲解与训练52---二项式定理

高考数学复习考点知识专题讲解与训练52---二项式定理

高考数学复习考点知识专题讲解与训练专题52 二项式定理【考纲要求】1.了解“杨辉三角”的特征,掌握二项式系数的性质及其简单应用.2.掌握二项式定理,会用二项式定理解决有关的简单问题.【知识清单】知识点1. 二项式定理1. 二项式定理()()011*nn n r n r rn nn n n n a b C a C a b C a b C b n N --+=+++++∈,这个公式所表示的定理叫做二项式定理,右边的多项式叫做()n a b +的二项展开式,其中的系数r n C (0,1,2,3,,r n =)叫做二项式系数.式中的r n r r n C a b -叫做二项展开式的通项,用1r T +表示,即展开式的第1r +项;1r n r rr n T C a b -+=.2.二项展开式形式上的特点(1)项数为1n +.(2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n .(3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n .(4)二项式的系数从0n C ,1n C ,一直到1n n C -,n n C .知识点2. 二项式系数的性质1. 二项式系数的性质(1)对称性:与首末两端“等距离”的两个二项式系数相等,即0n n n C C =,11n n n C C -=,,m n m n n C C -=.(2)增减性与最大值:二项式系数r n C ,当12n r +≤时,二项式系数是递增的;由对称性知:当12n r +>时,二项式系数是递减的. 当n 是偶数时,中间的一项2n nC 取得最大值.当n 是奇数时,中间两项12n nC+ 和12n nC-相等,且同时取得最大值.(3)各二项式系数的和()na b +的展开式的各个二项式系数的和等于2n ,即012rnn n n n n C C C C +++++=,二项展开式中,偶数项的二项式系数的和等于奇数项的二项式系数的和,即02413512n n n n n n n C C C C C C -+++=+++=,2.注意:(1).分清r n r r n C a b -是第1r +项,而不是第r 项.(2).在通项公式1r n r r r n T C a b -+=中,含有1r T +、r n C 、a 、b 、n 、r 这六个参数,只有a 、b 、n 、r 是独立的,在未知n 、r 的情况下,用通项公式解题,一般都需要首先将通式转化为方程(组)求出n 、r ,然后代入通项公式求解.(3).求二项展开式中的一些特殊项,如系数最大项,常数项等,通常都是先利用通项公式由题意列方程,求出r ,再求所需的某项;有时则需先求n ,计算时要注意n 和r 的取值范围以及 它们之间的大小关系.(4) 在1r n r r r n T C a b -+=中,r n C 就是该项的二项式系数,它与a ,b 的值无关;而1r T +项的系数是指化简后字母外的数.知识点3. 二项式定理的应用二项式的应用(1)求某些多项式系数的和;(2)证明一些简单的组合恒等式;(3)证明整除性,①求数的末位;②数的整除性及求系数;③简单多项式的整除问题;(4)近似计算.当x 充分小时,我们常用下列公式估计近似值:①()11n x nx +≈+;②()()21112nn n x nx x -+≈++; (5)证明不等式.【考点梳理】考点一 : 二项式定理【典例1】(2020·北京高考真题)在52)-的展开式中,2x 的系数为( ).A .5-B .5C .10-D .10【答案】C【解析】)52展开式的通项公式为:()()55215522r rrrr r r T CC x--+=-=-,令522r -=可得:1r =,则2x 的系数为:()()11522510C -=-⨯=-. 故选:C.【典例2】(2020·全国高考真题(理))25()()x x y xy ++的展开式中x 3y3的系数为( )A .5B .10C .15D .20【答案】C【解析】5()x y +展开式的通项公式为515r r rr T C x y -+=(r N ∈且5r ≤)所以2y x x ⎛⎫+ ⎪⎝⎭的各项与5()x y +展开式的通项的乘积可表示为:56155rrrr rrr xT xC xy C xy --+==和22542155r r rr r r r T C x y xC y y y x x --++==在615r r r r xT C x y -+=中,令3r =,可得:33345xT C x y =,该项中33x y 的系数为10,在42152r r r r T C x xy y -++=中,令1r =,可得:521332T C y x x y =,该项中33x y 的系数为5所以33x y 的系数为10515+= 故选:C【典例3】(2020·天津高考真题)在522x x ⎛⎫+ ⎪⎝⎭的展开式中,2x 的系数是_________.【答案】10【解析】因为522x x ⎛⎫+ ⎪⎝⎭的展开式的通项公式为()5531552220,1,2,3,4,5rrrr r rr T C xC x r x --+⎛⎫==⋅⋅= ⎪⎝⎭,令532r -=,解得1r =. 所以2x 的系数为15210C ⨯=. 故答案为:10.【典例4】(2020·江苏省太湖高级中学高二期中)25(32)x x ++的展开式中3x 的项的系数是________.【答案】1560【解析】由题意,()()2555(32)12x x x x =++++,因为()51x +的展开式的通项公式为15rrr T C x +=,()52x +的展开式的通项公式为5152k k k k T C x -+=,所以25(32)x x ++的展开式中3x 的项的系数是305214123032555555552222C C C C C C C C +++320800*********=+++=.故答案为:1560.【规律方法】1.二项展开式问题的常见类型及解法(1)求展开式中的特定项或其系数.可依据条件写出第k +1项,再由特定项的特点求出k 值即可.(2)已知展开式的某项或其系数求参数.可由某项得出参数项,再由通项公式写出第k +1项,由特定项得出k 值,最后求出其参数.2.求解形如(a +b )n (c +d )m 的展开式问题的思路(1)若n,m中一个比较小,可考虑把它展开得到多个,如(a+b)2(c+d)m=(a2+2ab+b2)(c+d)m,然后展开分别求解.(2)观察(a+b)(c+d)是否可以合并,如(1+x)5(1-x)7=[(1+x)(1-x)]5(1-x)2=(1-x2)5(1-x)2;(3)分别得到(a+b)n,(c+d)m的通项公式,综合考虑.3.求形如(a+b+c)n展开式中特定项的方法逐层展开法的求解步骤:【变式探究】1.(2018·全国高考真题(理))522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为( ) A.10 B.20 C.40 D.80【答案】C【解析】由题可得()5210315522rrr r r rr T C xC xx --+⎛⎫== ⎪⎝⎭令103r 4-=,则r 2=所以22552240r r C C =⨯=故选C.2.(2017·全国高考真题(理))(x +y )(2x -y )5的展开式中x 3y 3的系数为( )A.-80B.-40C.40D.80【答案】C【解析】()()()()555222x y x y x x y y x y +-=-+-,由()52x y -展开式的通项公式()()515C 2r rrr T x y -+=-可得: 当3r =时,()52x x y -展开式中33x y 的系数为()3325C 2140⨯⨯-=-;当2r时,()52y x y -展开式中33x y 的系数为()2235C 2180⨯⨯-=, 则33x y 的系数为804040-=.3.(2019·天津高考真题(理))83128x x ⎛⎫- ⎪⎝⎭是展开式中的常数项为________.【答案】28【解析】8848418831(2)()(1)28r r rr r r r r T C x C x x---+=-=-, 由840r -=,得2r ,所以的常数项为228(1)28C -=.4.(2017·山东高考真题(理))已知(13)n x + 的展开式中含有2x 项的系数是54,则n=_____________.【答案】4【解析】(1+3x )n的展开式中通项公式:T r +1rn =(3x )r =3rrn x r .∵含有x 2的系数是54,∴r =2.∴223n =54,可得2n =6,∴()12n n -=6,n ∈N *.解得n =4.故答案为:4.【特别提醒】在应用通项公式时,要注意以下几点:①它表示二项展开式的任意项,只要n 与r 确定,该项就随之确定;②1r T +是展开式中的第1r +项,而不是第r 项;③公式中,a ,b 的指数和为n 且a ,b 不能随便颠倒位置;④对二项式()n a b -展开式的通项公式要特别注意符号问题.⑤在二项式定理的应用中,“赋值思想”是一种重要方法,是处理组合数问题、系数问题的经典方法.考点二 : 二项式系数的性质及各项系数和【典例5】(2020·浙江高三月考)二项式6的展开式中,所有有理项...(系数为有理数,x 的次数为整数的项)的系数之和为________;把展开式中的项重新排列,则有理项...互不相邻的排法共有____种.(用数字作答)【答案】32. 144.【解析】因为二项式6的展开式的通项为6126321666---+==r rr r r r T C C x x x ,因为2122-=-∈r rZ ,所以0,2,4,6r =, 故所有有理项的系数为0246666611515132+++=+++=C C C C ;把展开式中的项重新排列,则有理项...互不相邻的排法共有3434144A A =种. 【典例6】(2019·全国高三月考)5(12)x -的展开式的各个二项式系数的和为________,含x x 的项的系数是________.【答案】32 80-【解析】根据题意,(512x -的展开式的各个二项式系数的和为52=32,当=3r 时,3533451(2)T C x -=⋅⋅- ,所以含x x 80-.【典例7】(2020·浙江省高考真题)设()2345125345612 x a a x a x a x a x a x +=+++++,则a 5=________;a 1+a 2 + a 3=________.【答案】80;122 .【解析】5(12)x +的通项为155(2)2r r r r r r T C x C x +==,令4r =,则444455280T C x x ==,故580a =;113355135555222122a a a C C C ++=++=.故答案为:80;122【总结提升】1.赋值法在求各项系数和中的应用(1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可.(2)对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可.(3)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1).①奇数项系数之和为a 0+a 2+a 4+…=(1)(1)2f f +-.②偶数项系数之和为a 1+a 3+a 5+…=(1)(1)2f f --.2.二项式系数最大项的确定方法(1)如果n 是偶数,则中间一项⎝ ⎛⎭⎪⎫第n 2+1项的二项式系数最大;(2)如果n 是奇数,则中间两项⎝ ⎛⎭⎪⎫第n +12项与第n +12+1项的二项式系数相等并最大.3.展开式系数最大值的两种求解思路(1)由于展开式系数是离散型变量,因此在系数均为正值的前提下,求最大值只需解不等式组⎩⎪⎨⎪⎧a k ≥a k -1,a k ≥a k +1即可求得答案.(2)由于二项展开式中的系数是关于正整数n 的式子,可以看作关于n 的数列,通过判断数列单调性的方法从而判断系数的增减性,并根据系数的单调性求出系数的最值.【变式探究】1.(2019·内蒙古高二期中(理))已知2012(1)n nn x a a x a x a x +=+++⋅⋅⋅+,01216n a a a a +++⋅⋅⋅+=,则自然数n 等于( )A .6B .5C .4D .3【答案】C由题意,令1x =,则01212(1)nn n a a a a +=++⋅⋅+=+⋅,因为01216n a a a a +++⋅⋅⋅+=,所以216n =,解得4n =. 故选:C.2. (2019·石家庄模拟)在(1-2x )n的展开式中,偶数项的二项式系数之和为128,则展开式二项式系数最大的项为 .【答案】1120x 4【解析】由二项式系数的性质知,2n -1=128,解得n =8,(1-2x )8的展开式共有9项,中间项,即第5项的二项式系数最大,T 4+1=C 4814(-2x )4=1120x 4. 3.(2020·湖南师大附中高三月考)若1721701217(2)(1)(1)(1)x a a x a x a x +=+++++⋯++,则012316a a a a a ++++⋯+=______.【答案】1721-由题意,由1717(2)[1(1)]x x +=++,17171(1)T x +=+,17令0x =,则17012172a a a a ++++=⋯,所以1701231621a a a a a ++++⋯+=-.故答案为:1721-. 【特别提醒】1.对于二项式系数问题,应注意以下几点:①求二项式所有项的系数和,可采用“特殊值取代法”,通常令字母变量的值为1;②关于组合恒等式的证明,常采用“构造法”——构造函数或构造同一问题的两种算法;[来源:学_科_网]③证明不等式时,应注意运用放缩法.2.对于二项式系数问题,首先要熟记二项式系数的性质,其次要掌握赋值法,赋值法是解决二项式系数问题的一个重要手段.3.多项式乘法的进位规则:在求系数过程中,尽量先化简,降底数的运算级别,尽量化成加减运算,在运算过程可以适当注意令值法的运用,例如求常数项,可令0x =.在二项式的展开式中,要注意项的系数和二项式系数的区别.考点三:二项式定理的应用【典例8】(2012·湖北高考真题(理))设,且,若能被13整除,则()A.0 B.1C.11 D.12【答案】D【解析】本题考察二项展开式的系数.由于51=52-1,,又由于13|52,所以只需13|1+a,0≤a<13,所以a=12选D.【典例9】(2019·湖北高二期末(理))71.95的计算结果精确到个位的近似值为()A.106B.107C.108D.109【答案】B【解析】∵()77716252771.9520.05220.0520.05C C =-=-⨯⨯+⨯⨯-⋅⋅⋅107.28≈, ∴71.95107≈. 故选:B【典例10】(多选题)我国南宋数学家杨辉1261年所著的《详解九章算法》就给出了著名的杨辉三角,由此可见我国古代数学的成就是非常值得中华民族自豪的.以下关于杨辉三角的猜想中正确的有( )A .由“与首末两端‘等距离’的两个二项式系数相等”猜想:m n mn n C C -= B .由“在相邻的两行中,除1以外的每一个数都等于它‘肩上’两个数的和”猜想:11r r rn n n C C C -+=+C .由“第n 行所有数之和为2n ”猜想:0122n n n n n n C C C C ++++=D .由“11111=,211121=,3111331=”猜想51115101051= 【答案】ABC【解析】由杨辉三角的性质以及二项式定理可知A 、B 、C 正确;550514*******555555111011010101010161051C C C C C C ,故D 错误.故选:ABC.【典例11】(2019·浙江杭十四中高三月考)7(ax的展开式中,3x 项的系数为14,则a =_____,展开式各项系数之和为______.【答案】2 1【解析】由题,7a x⎛ ⎝的展开式通项为()72577331771rrr r r r rr a T C x a C x x ---+⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭令57363r r -=∴=,此时67142C a a =∴=所以原式为72x ⎛- ⎝,令1x =,得各项系数之和为()7211-=故答案为2、1【总结提升】二项式定理应用的常见题型及求解策略1.逆用二项式定理的关键是根据所给式的特点结合二项展开式的要求,使之具备二项式定理右边的结构,然后逆用二项式定理求解.2.利用二项式定理解决整除问题的思路:①观察除式与被除式间的关系;②将被除式拆成二项式;③结合二项式定理得出结论.3. 近似计算要首先观察精确度,然后选取展开式中若干项.【特别提醒】用二项式定理证明整除问题,一般将被除式变为有关除式的二项式的形式再展开,常采用“配凑法”“消去法”配合整除的有关知识来解决.【变式探究】1.(多选题)(2020·江苏省太湖高级中学高二期中)设6260126(21)(1)(1)(1)x a a x a x a x +=+++++++,下列结论正确的是( )A .6012563a a a a a -+-+= B .23100a a += C .1236,,,,a a a a 中最大的是2a D .当999x =时,6(21)x +除以2000的余数是1【答案】ABD【解析】将原二项展开式转化为()[]666260126(21)(211)12(1)(1)(1)(1)x x x a a x a x a x +=+-=-+=+++++++,再逐一判断.详解:由()[]666260126(21)(211)12(1)(1)(1)(1)x x x a a x a x a x +=+-=-+=+++++++,得40123562356666666601234564,2,2,2,2,2,2a a a a a a a C C C C C C C =======, 所以6012563a a a a a -+-+=,故A 正确;223323662+2=100a a C C +=,故B 正确;1236,,,,a a a a 中最大的是4a ,故C 错误;当999x =时,11000x +=,1256,,,a a a a 能被2000整除,所以6(21)x +除以2000的余数是1,故D 正确;故选:ABD2.(2019·浙江高考模拟)已知7280128(2)(12)x x a a x a x a x +-=+++,则128...a a a +++=_____,3a =_____.【答案】5- 476-【解析】因为7280128(2)(12)x x a a x a x a x +-=+++,令1x =得0128...(21)(121)3a a a a ++++=+-⨯=-,令0x =得02a =,所以128...5a a a +++=-,由7(12)x -展开式的通项为17(2)r r r r T C x +=-,则33223772(2)(2)476a C C =⨯-+-=-,故答案为:5- ,476-.3.若n 是正整数,则7n +7n -1C 1n +7n -2C 2n +…+7C n-1n 除以9的余数是 .【答案】0或7【解析】根据二项式定理可知,7n +7n -1C 1n +7n -2C 2n +…+7C n -1n =(7+1)n -1=8n -1,又因为8n -1=(9-1)n -1=9n +C 1n 9n -1·(-1)+C 2n 9n -2·(-1)2+…+C n -1n 9·(-1)n -1+(-1)n -1,所以当n 为偶数时,除以9的余数为0,当n 为奇数时,除以9的余数为7. 4.以下排列的数是二项式系数在三角形中的几何排列,在我国南宋数学家杨辉1261年所著的《详解九章算法》一书里就出现了.在欧洲,这个表叫做帕斯卡三角形,它出现要比杨辉迟393年.那么,第9行第8个数是______.【答案】36【解析】由题意,第0行的数为1,第1行的数为0111,C C ,第2行的数为012222,,C C C ,第3行的数为01233333,,,C C C C ,第4行的数为0123444444,,,,C C C C C ,因此,第n 行第m 个数为:1m n C -, 所以第9行第8个数是817299998362C C C -⨯====. 故答案为:36.。

二项式定理知识点总结

二项式定理知识点总结

二项式定理一、二项式定理:ab n CaCabCabCb0n1n1knkknnnnnn (nN)等号右边的多项式叫做nab的二项展开式,其中各项的系数kC(k0,1,2,3n)叫做二项式系数。

n对二项式定理的理解:(1)二项展开式有n1项(2)字母a按降幂排列,从第一项开始,次数由n逐项减1到0;字母b按升幂排列,从第一项开始,次数由0逐项加1到n(3)二项式定理表示一个恒等式,对于任意的实数a,b,等式都成立,通过对a,b取不同的特殊值,可为某些问题的解决带来方便。

在定理中假设a1,bx,则nCxCxCxCx1x(nN)nnnn0n1knknn(4)要注意二项式定理的双向功能:一方面可将二项式nab展开,得到一个多项式;n 另一方面,也可将展开式合并成二项式ab二、二项展开式的通项:knkk T k1Cabn二项展开式的通项knkkT k1Cab(k0,1,2,3n)是二项展开式的第k1项,它体现了n二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用对通项knkkT k1Cab(k0,1,2,3n)的理解:n(1)字母b的次数和组合数的上标相同(2)a与b的次数之和为n(3)在通项公式中共含有a,b,n,k,Tk这5个元素,知道4个元素便可求第5个元素1例1.132933等于()n1nC n CCCnnnA.n4B。

n4n34C。

13D.n431例2.(1)求7(12x)的展开式的第四项的系数;(2)求19(x)x的展开式中3x的系数及二项式系数三、二项展开式系数的性质:①对称性:在二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即 0n1n12n2knk C n C,CC,C C,CCnnnnnnn,②增减性与最大值:在二项式展开式中,二项式系数先增后减,且在中间取得最大值。

二项式定理知识点总结及例题分析-高中数学2018版

二项式定理知识点总结及例题分析-高中数学2018版

高中数学-二项式定理知识点总结及例题分析一、 基本知识点1.二项式定理(1)0≤k ≤n 时,C k n 与C n -k n 的关系是C k n =C n -kn .(2)二项式系数先增后减中间项最大当n 为偶数时,第n 2+1项的二项式系数最大,最大值为C n2n ;当n 为奇数时,第n +12项和n +32项的二项式系数最大,最大值为C n -12n 或C n +12n. (3)各二项式系数和:C 0n +C 1n +C 2n +…+C nn =2n ; C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -1. 方法分析1.二项式系数最大项的确定方法(1)如果n 是偶数,则中间一项⎝⎛⎭⎫第⎝⎛⎭⎫n 2+1项的二项式系数最大; (2)如果n 是奇数,则中间两项(第n +12项与第⎝⎛⎭⎫n +12+1项)的二项式系数相等并最大. 2.二项展开式系数最大项的求法:如求(a +bx )n (a ,b ∈R )的展开式系数最大的项,一般是采用待定系数法,设展开式各项系数分别为A 1,A 2,…,A n +1,且第k 项系数最大,应用⎩⎪⎨⎪⎧A k ≥A k -1,A k ≥A k +1,从而解出k 来,即得.例题讲解考点一求二项展开式中的项或项的系数 1 (1)⎝⎛⎭⎫12x -2y 5的展开式中x 2y 3的系数是( ) A .-20 B .-5 C .5 D .20(2)二项式⎝⎛⎭⎪⎫x -13x n的展开式中第4项为常数项,则常数项为( )A .10B .-10C .20D .-20解析: (1)由二项展开式的通项可得,第四项T 4=C 35⎝ ⎛⎭⎪⎫12x 2(-2y )3=-20x 2y 3,故x 2y3的系数为-20.(2)由题意可知常数项为T 4=C 3n (x )n -3⎝⎛⎭⎪⎪⎫-13x 3=(-1)3C 3n x 3n -156,令3n -15=0,可得n =5.故所求常数项为T 4=(-1)3C 35=-10,选B.答案: (1)A (2)B 变式练习1.若二项式⎝⎛⎫2x +a x 7的展开式中1x 3的系数是84,则实数a =( ) A .2 B .54 C .1 D .242.⎝⎛⎭⎫x -13x 10的展开式中含x 的正整数次幂的项数是( ) A .0 B .2 C .4 D .6 3.⎝⎛⎭⎫x 3-2x 4+⎝⎛⎭⎫x +1x 8的展开式中的常数项为( ) A .32 B .34 C .36 D .384.(2014·山东卷)若⎝⎛⎭⎫ax 2+bx 6的展开式中x 3项的系数为20,则a 2+b 2的最小值为________.5.(2014·皖南八校联考)(x 2-4x +4)5的展开式中x 的系数是________. 答案1C 2.B 3.D 42 5-5120 考点二 二项式系数及项的系数问题(1)(2014·辽宁五校联考)若⎝⎛⎭⎫x +2x 2n 展开式中只有第6项的二项式系数最大,则展开式的常数项是A .360B .180C .90D .45(2)(2014·河北衡水中学五调)已知(x -m )7=a 0+a 1x +a 2x 2+…+a 7x 7的展开式中x 4的系数是-35,则a 1+a 2+a 3+…+a 7=________.解析: (1)展开式中只有第6项的二项式系数最大,则展开式总共11项,所以n =10,通项公式为T r +1=C r 10(x )10-r·⎝ ⎛⎭⎪⎫2x 2r =C r 102rx 5-52r ,所以r =2时,常数项为180.(2)∵T r +1=C r 7x7-r(-m )r,0≤r ≤7,r ∈Z ,∴C 37(-m )3=-35,∴m =1,令x =1,a 0+a 1+…+a 7=(1-1)7=0,令x =0,a 0=(-1)7=-1,∴a 1+a 2+a 3+…+a 7=1.答案: (1)B (2)1变式练习1.设二项式⎝⎛⎭⎪⎫3x +3x n 的展开式各项系数的和为a ,所有二项式系数的和为b ,若a +2b=80,则n 的值为( )A .8B .4C .3D .22.若(x +2+m )9=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为( )A .1或-3B .-1或3C .1D .-3考点三 二项式定理的应用、设a ∈Z ,且0≤a <13,若512 012+a 能被13整除,则a =( ) A .0 B .1 C .1 1D .12 解析: 512 012+a =(52-1)2 012+a =522 012+C 12 012×522 011×(-1)+…+C 2 0112 012×52×(-1)2 011+(-1)2 012+a 能被13整除,只需(-1)2 012+a =1+a 能被13整除即可.∵0≤a <13,∴a =12,故选D.答案: D。

高考数学一轮复习---二项式定理知识点与题型复习

高考数学一轮复习---二项式定理知识点与题型复习

二项式定理知识点与题型复习一、基础知识1.二项式定理(1)二项式定理:(a+b)n=C0n a n+C1n a n-1b+…+C k n a n-k b k+…+C n n b n(n∈N*)(2)通项公式:T k+1=C k n a n-k b k,它表示第k+1项;(3)二项式系数:二项展开式中各项的系数为C0n,C1n,…,C n n.2.二项式系数的性质注:(1)项数为n+1.(2)各项的次数都等于二项式的幂指数n,即a与b的指数的和为n.(3)字母a按降幂排列,从第一项开始,次数由n逐项减1直到零;字母b按升幂排列,从第一项起,次数由零逐项增1直到n.二项式系数与项的系数的区别二项式系数是指C0n,C1n,…,C n n,它只与各项的项数有关,而与a,b的值无关;而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a,b的值有关.如(a+bx)n的二项展开式中,第k+1项的二项式系数是C k n,而该项的系数是C k n a n-k b k.当然,在某些二项展开式中,各项的系数与二项式系数是相等的.二、考点解析考点一二项展开式中特定项或系数问题考法(一)求解形如(a+b)n(n∈N*)的展开式中与特定项相关的量例1、(1)522⎪⎭⎫⎝⎛+xx的展开式中x4的系数为()A.10B.20C.40D.80(2)若(2x-a)5的二项展开式中x3的系数为720,则a=________.(3)已知5⎪⎭⎫⎝⎛+xax的展开式中x5的系数为A,x2的系数为B,若A+B=11,则a=________.[解题技法]求形如(a+b)n(n∈N*)的展开式中与特定项相关的量(常数项、参数值、特定项等)的步骤第一步,利用二项式定理写出二项展开式的通项公式T r+1=C r n a n-r b r,常把字母和系数分离开来(注意符号不要出错);第二步,根据题目中的相关条件(如常数项要求指数为零,有理项要求指数为整数)先列出相应方程(组)或不等式(组),解出r;第三步,把r代入通项公式中,即可求出T r+1,有时还需要先求n,再求r,才能求出T r+1或者其他量.考法(二)求解形如(a+b)m(c+d)n(m,n∈N*)的展开式中与特定项相关的量例2、(1)(1-x)6(1+x)4的展开式中x的系数是()A.-4B.-3C.3D.4(2)已知(x-1)(ax+1)6的展开式中含x2项的系数为0,则正实数a=________.[解题技法]求形如(a+b)m(c+d)n(m,n∈N*)的展开式中与特定项相关的量的步骤第一步,根据二项式定理把(a+b)m与(c+d)n分别展开,并写出其通项公式;第二步,根据特定项的次数,分析特定项可由(a+b)m与(c+d)n的展开式中的哪些项相乘得到;第三步,把相乘后的项合并即可得到所求特定项或相关量.考法(三)求形如(a+b+c)n(n∈N*)的展开式中与特定项相关的量例3、(1)(x2+x+y)5的展开式中x5y2的系数为()A.10B.20C.30D.60(2)将344⎪⎭⎫⎝⎛-+xx展开后,常数项是________.[解题技法]求形如(a+b+c)n(n∈N*)的展开式中与特定项相关的量的步骤第一步,把三项的和a+b+c看成是(a+b)与c两项的和;第二步,根据二项式定理写出[(a +b )+c ]n 的展开式的通项;第三步,对特定项的次数进行分析,弄清特定项是由(a +b )n -r 的展开式中的哪些项和c r 相乘得到的; 第四步,把相乘后的项合并即可得到所求特定项或相关量. 跟踪训练1.在(1-x 3)(2+x )6的展开式中,x 5的系数是________.(用数字作答)3.5212⎪⎭⎫⎝⎛++x x (x >0)的展开式中的常数项为________.考点二 二项式系数的性质及各项系数和[典例精析](1)若531⎪⎪⎭⎫ ⎝⎛+x x 的展开式中各项系数之和大于8,但小于32,则展开式中系数最大的项是( ) A.63x B.4x C.4x 6x D.4x或4x 6x(2)若nx x ⎪⎭⎫ ⎝⎛-12的展开式中含x 的项为第6项,设(1-3x )n =a 0+a 1x +a 2x 2+…+a n x n ,则a 1+a 2+…+a n的值为________.(3)若(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =________.[解题技法] 1.赋值法的应用二项式定理给出的是一个恒等式,对于x ,y 的一切值都成立.因此,可将x ,y 设定为一些特殊的值.在使用赋值法时,令x ,y 等于多少,应视具体情况而定,一般取“1,-1或0”,有时也取其他值.如: (1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子,求其展开式的各项系数之和,只需令x =1即可. (2)形如(ax +by )n (a ,b ∈R )的式子,求其展开式各项系数之和,只需令x =y =1即可. 2.二项展开式各项系数和、奇数项系数和与偶数项系数和的求法 若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )的展开式中 (1)各项系数之和为f (1).(2)奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2.(3)偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.跟踪训练1.已知(2x-1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则|a0|+|a1|+…+|a5|=()A.1B.243C.121D.1222.若(x+2+m)9=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9,且(a0+a2+…+a8)2-(a1+a3+…+a9)2=39,则实数m的值为________.3.已知(1+3x)n的展开式中,后三项的二项式系数的和等于121,则展开式中二项式系数最大的项为____.考点三二项展开式的应用例、设a∈Z,且0≤a<13,若512 018+a能被13整除,则a=()A.0B.1C.11D.12[解题技法]利用二项式定理解决整除问题的思路(1)要证明一个式子能被另一个式子整除,只要证明这个式子按二项式定理展开后的各项均能被另一个式子整除即可.因此,一般要将被除式化为含相关除式的二项式,然后再展开.(2)用二项式定理处理整除问题,通常把底数写成除数(或与除数密切关联的数)与某数的和或差的形式,再用二项式定理展开.但要注意两点:①余数的范围,a=cr+b,其中余数b∈[0,r),r是除数,若利用二项式定理展开变形后,切记余数不能为负;②二项式定理的逆用.跟踪训练]1.使得多项式81x4+108x3+54x2+12x+1能被5整除的最小自然数x为()A.1B.2C.3D.4课后作业1.3422⎪⎪⎭⎫ ⎝⎛+x x 的展开式中的常数项为( ) A.-32 B.32 C.6 D.-6 2.设(2-x )5=a 0+a 1x +a 2x 2+…+a 5x 5,则a 2+a 4a 1+a 3的值为( )A.-6160B.-122121C.-34D.-901213.若二项式72⎪⎭⎫ ⎝⎛+x a x 的展开式的各项系数之和为-1,则含x 2项的系数为( )A.560B.-560C.280D.-2804.已知(1+x )n 的展开式中第5项与第7项的二项式系数相等,则奇数项的二项式系数和为( ) A.29 B.210 C.211 D.2125.二项式9221⎪⎭⎫⎝⎛-x x 的展开式中,除常数项外,各项系数的和为( )A.-671B.671C.672D.673 6.在(1-x )5(2x +1)的展开式中,含x 4项的系数为( )A.-5B.-15C.-25D.257.若(x 2-a )101⎪⎭⎫ ⎝⎛+x x 的展开式中x 6的系数为30,则a 等于( )A.13B.12C.1D.2 8.若(1+mx )6=a 0+a 1x +a 2x 2+…+a 6x 6,且a 1+a 2+…+a 6=63,则实数m 的值为( ) A.1或3 B.-3 C.1 D.1或-3 9.(2x -1)6的展开式中,二项式系数最大的项的系数是________.(用数字作答)10.9⎪⎭⎫ ⎝⎛+x a x 的展开式中x 3的系数为-84,则展开式的各项系数之和为________.11.511⎪⎭⎫ ⎝⎛++x x 展开式中的常数项为________.12.已知nx x ⎪⎪⎭⎫ ⎝⎛+41的展开式中,前三项的系数成等差数列. (1)求n ;(2)求展开式中的有理项;(3)求展开式中系数最大的项.。

高考数学总复习考点知识专题讲解9 二项式定理

高考数学总复习考点知识专题讲解9 二项式定理

高考数学总复习考点知识专题讲解专题9 二项式定理知识点一 二项式定理(a +b )n =C 0n a n +C 1n a n -1b +C 2n a n -2b 2+…+C k n a n -k b k +…+C n n b n (n ∈N *).(1)这个公式叫做二项式定理.(2)展开式:等号右边的多项式叫做(a +b )n 的二项展开式,展开式中一共有n +1项. (3)二项式系数:各项的系数C kn (k ∈{0,1,2,…,n })叫做二项式系数. 知识点二 二项展开式的通项(a +b )n 展开式的第k +1项叫做二项展开式的通项,记作T k +1=C k n an -k b k . 【例1】(2023•上海)设423401234(12)x a a x a x a x a x -=++++,则04a a +=.【例2】(2022•上海)二项式(3)n x +的展开式中,2x 项的系数是常数项的5倍,则n =.【例3】(2021•浙江)已知多项式344321234(1)(1)x x x a x a x a x a -++=++++,则1a =;234a a a ++=.知识点三二项展开式的通项 求二项展开式的特定项的常用方法(1)对于常数项,隐含条件是字母的指数为0(即0次项).(2)对于有理项,一般是先写出通项公式,求其所有的字母的指数恰好都是整数的项.解这类问题必须合并通项公式中同一字母的指数,根据具体要求,令其属于整数集,再根据数的整除性来求解.(3)对于二项展开式中的整式项,其通项公式中同一字母的指数应是非负整数,求解方式与求有理项一致.【例4】(2022•新高考Ⅰ)8(1)()y x y x-+的展开式中26x y 的系数为(用数字作答).【例5】(2022•天津)523)x 的展开式中的常数项为.【例6】(2023•驻马店期末)若7102910012910(2)(1)(1)(1)(1)x x a a x a x a x a x +-=+-+-+⋯⋯+-+-,则5a =.【例7】(2023•海淀区模拟)已知5()x a +的展开式为5432543210p x p x p x p x p x p +++++,若3415p p -=,则a =.知识点四余数和整除的问题利用二项式定理可以解决求余数和整除的问题,通常需将底数化成两数的和与差的形式,且这种转化形式与除数有密切的关系.【例8】(2022秋•杨浦区校级期末)504除以17的余数为.【例9】(2023•沈阳模拟)若20232023012023(1)x a a x a x +=++⋯+,则0242022a a a a +++⋯+被5除的余数是.【例10】(2022•多选•庆阳期末)下列命题为真命题的是() A .61()x x -展开式的常数项为20B .1008被7除余1 C .61()x x-展开式的第二项为46x -D .1008被63除余1知识点五 二项式系数的性质1.对称性:在(a +b )n 的展开式中,与首末两端“等距离”的两个二项式系数相等,即C m n =C n -mn2.增减性与最大值 增减性:当k <n +12时,二项式系数是逐渐增大的;当k >n +12时,二项式系数是逐渐减小的. 最大值:(1)当n 为偶数时,中间一项的二项式系数2C n n最大;当n 为奇数时,中间两项的二项式系数12C n n-,12C n n+相等,且同时取得最大值(2)求二项式系数最大的项,根据二项式系数的性质对(a +b )n 中的n 进行讨论. ①当n 为奇数时,中间两项的二项式系数最大; ②当n 为偶数时,中间一项的二项式系数最大. (3)展开式中系数的最大项的求法求展开式中系数的最大项与求二项式系数最大项是不同的,需要根据各项系数的正、负变化情况进行分析.如求(a +bx )n (a ,b ∈R )的展开式中系数的最大项,一般采用待定系数法.设展开式中各项系数分别为A 0,A 1,A 2,…,A n ,且第k +1项最大,应用⎩⎨⎧A k ≥A k -1,A k ≥A k +1,解出k ,即得出系数的最大项. 3.各二项式系数的和(1)C 0n +C 1n +C 2n +…+C n n =2n ;(2)C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -14.二项展开式中系数和的求法(1)对形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R ,m ,n ∈N *)的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可,对(ax +by )n (a ,b ∈R ,n ∈N *)的式子求其展开式的各项系数之和,只需令x =y =1即可.(2)一般地,若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1), 奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.【例11】(2022•北京)若443243210(21)x a x a x a x a x a -=++++,则024(a a a ++=) A .40B .41C .40-D .41-【例12】(2023•新乡开学)若二项式*(2()n x n N∈的展开式中只有第5项的二项式系数最大,则展开式中2x 项的系数为() A .1120-B .1792-C .1792D .1120【例13】(2023•慈溪市期末)若二项式*(12)()n x n N +∈的展开式中第6项与第7项的系数相等,则此展开式中二项式系数最大的项是() A .3448x B .41120x C .51792x D .61792x【例14】(2022秋•葫芦岛期末)设n ∈N +,化简=+++-12321666n n n n n n C C C C ( )A .7nB .C .7n ﹣1D .6n ﹣1【例15】已知(2x -1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5.求下列各式的值:(1)a 0+a 1+a 2+…+a 5;(2)|a 0|+|a 1|+|a 2|+…+|a 5|;(3)a 1+a 3+a 5.(4)a 0+a 2+a 4;(5)a 1+a 2+a 3+a 4+a 5; (6)5a 0+4a 1+3a 2+2a 3+a 4.【例16】(2023•泰州期末)若6652360136()x y a y a xy a x y a x +=++⋯++⋯+,则220246135()()a a a a a a a +++-++的值为()A .0B .32C .64D .128【例17】(2023•静安区期末)在23(3)nx x -+的二项展开式中,533r n r n rnC x--称为二项展开式的第1r +项,其中0r =,1,2,3,⋯,n .下列关于23(3)nx x -+的命题中,不正确的一项是()A .若8n =,则二项展开式中系数最大的项是1426383C xB .已知0x >,若9n =,则二项展开式中第2项不大于第3项的实数x 的取值范围是3540()3x <…C .若10n =,则二项展开式中的常数项是44103C D .若27n =,则二项展开式中x 的幂指数是负数的项一共有12项 【例18】(2023秋•泰兴市月考)设*n N ∈,0101(1)(1)(2)(2)n n n n n x a a x a x b b x b x =+-++-=+-++-,则()A .001132n n n n b a b a b a -+-++-=-B .0101012()nn nb b b a a a a a a +++=+++ C .0101111()211n n a a a a a a n n +++=+++++D .21201(1)4()4n n n n b b n b a a a ++++=+++【例19】(2023•江宁区期末)二项式定理是产生组合恒等式的一个重要源泉,由二项式定理可得:0122*1111(1)(,),1n nn m mn n n n n n C C x C x C x x n N x R C C m n -+++++=+∈∈=+等,则012111231nn n n n C C C C n ++++=+.【例20】(2022•玄武区期末)在231(1)(1)(1)n x x x +++++⋯++的展开式中,含2x 的系数是n a ,8a =;若对任意的*n N ∈,*n N ∈,20n n a λ⋅-…恒成立,则实数λ的最小值是.【例21】(2019•江苏)设2012(1)n n n x a a x a x a x +=+++⋯+,4n …,*n N ∈.已知23242a a a =.(1)求n 的值;(2)设(1n a =+a ,*b N ∈,求223a b -的值.同步训练1.(2021•上海)已知二项式5()x a +展开式中,2x 的系数为80,则a =.2.(2021•上海)已知(1)n x +的展开式中,唯有3x 的系数最大,则(1)n x +的系数和为.3.(2020•浙江)二项展开式52345012345(12)x a a x a x a x a x a x +=+++++,则4a =,135a a a ++=.4.(2020•新课标Ⅲ)262()x x+的展开式中常数项是(用数字作答).5.(2020•天津)在522()x x+的展开式中,2x 的系数是.6.(2023•郫都区模拟)已知921001210(1)(1)x x a a x a x a x --=+++⋯+,则8a =45-.7.(2020•新课标Ⅰ)25()()y x x y x++的展开式中33x y 的系数为()A .5B .10C .15D .208.(2023•湖北模拟)51(1)(12)x x+-的展开式中,常数项是() A .9-B .10-C .9D .109.(2023•曲靖模拟)已知4520222023(1)(12)(12023)(12022)x x x x -++++-展开式中x 的系数为q ,空间有q 个点,其中任何四点不共面,这q 个点可以确定的直线条数为m ,以这q 个点中的某些点为顶点可以确定的三角形个数为n ,以这q 个点中的某些点为顶点可以确定的四面体个数为p ,则(m n p ++=) A .2022B .2023C .40D .5010.(2023•徐汇区期末)1002被9除所得的余数为() A .1B .3C .5D .711.已知f (x )=(3x 2+3x 2)n 的展开式中各项的系数和比各项的二项式系数和大992. (1)求展开式中二项式系数最大的项; (2)求展开式中系数最大的项.12(2023•河源期末)5(21)x y --的展开式中含22x y 的项的系数为() A .120-B .60C .60-D .3013.(2023•怀化期末)已知10111012n n C C =,设2012(23)(1)(1)(1)n n n x a a x a x a x -=+-+-+⋯+-,下列说法:①2023n =,②20233n a =-,③0121n a a a a +++⋯+=,④展开式中所有项的二项式系数和为1.其中正确的个数有() A .0B .1C .2D .314(2023•青原区期末)若28(1)(1)ax x x -+-的展开式中含2x 的项的系数为21,则(a =) A .3-B .2-C .1-D .115.(2023•常熟市月考)今天是星期五,经过7天后还是星期五,那么经过1008天后是()A .星期三B .星期四C .星期五D .星期六16.(2023•南海区月考)已知012233222281n n n nn n n C C C C C +++++=,则123nn n n n C C C C ++++等于()A .15B .16C .7D .817.(2022•浙江)已知多项式42345012345(2)(1)x x a a x a x a x a x a x +-=+++++,则2a =,12345a a a a a ++++=.。

二项式定理讲义 高三数学一轮复习

二项式定理讲义 高三数学一轮复习

高三讲义:二项式定理【知识园地】1、二项式定理:设n 是正整数,等式()nb a +=___________________________________ 称为二项式定理.相关概念:(1)上述等式右端称为二项展开式, 一共有__________项;(2)各项的系数C (0,1,,)rn r n =称为_____________;(3)通常用1+r T 表示展开式中的第________项,即1+r T =____________),1,2,1,0(n n r -=1+r T 称为()nb a +展开式的通项,________是第r+1项的二项式系数.2、二项式系数的性质(1) 对称性: 011C C ,C C ,n n n n n n -==, 即C C rn r n n -=.(2) 在二项式定理中, 令a b ==____, 则二项式系数和为:=+++n n n n n C C C C 210_____; 偶数项二项式系数和等于奇数项二项式系数和:=+++ 420n n n C C C =+++ 531n n n C C C ____(3)若二项式的幂指数n 是偶数, 则___________的二项式系数最大; 若是奇数, 则___________的二项式系数相等, 并且最大;3、各项系数和:【例】()n x 12+的各项系数和为_____________【例题讲解】例1、(1)求51⎪⎭⎫ ⎝⎛+x x 的二项展开式,并求第4项(2)求(x 2﹣)4的二项展开式考点一、求展开式某一项的系数例2、(1)求()623x -的二项展开式中3x 的系数(2)求92⎪⎭⎫ ⎝⎛-x x 的二项展开式中3x 的系数(3)已知二项式(52x x,则展开式中3x 的系数为________(用数字作答).(4)在(1﹣x )5(1+x 3)的展开式中,x 3的系数为 .(结果用数值表示)考点二、求展开式的常数项 例3、(1)求61⎪⎭⎫ ⎝⎛-x x 二项展开式中的第3项、常数项(2)在262()x x +的二项展开式中,常数项等于 .(3)求展开式中常数项为______________考点三、二项式系数和、系数和例3、(1)在912x x ⎛⎫ ⎪⎝⎭的展开式中,各项系数之和为________. (2)若nx x ⎪⎭⎫ ⎝⎛+321展开式的各项系数之和为256,则n=_________考点四、系数最大值例3、求()1531x +的二项式展开中,系数最大的项 变式:()1531x -例4、已知对任何给定的实数x ,都有 求值:(1)100210a a a a ++++(2)99531a a a a ++++(3)求1a 的值()()()()100100221010011121-++-+-+=+x a x a x a a x【回家作业】1. 在(1+x )6的二项展开式中,x 2项的系数为 (结果用数值表示).2.在8(21)x +的二项式展开式中,2x 项的系数是 .3.(1﹣2x )5的展开式中x 3的项的系数是 (用数字表示)4.(x 2+)5的展开式中x 4的系数为5. 二项式(3x ﹣1)11的二项展开式中第3项的二项式系数为 .6.若62a x x ⎛⎫+ ⎪⎝⎭的二项展开式中的常数项为160-,则实数a =___________. 7.二项式()6的展开式的常数项为 . 8.若23(2)n a b +的二项展开式中有一项为412ma b ,则m = .9. 若272314012314(1)x a a x a x a x a x -=+++++,则58a a += _ .10.设(x ﹣1)(x +1)5=a 0+a 1x +a 2x 2+a 3x 3+…+a 6x 6,则a 3= (结果用数值表示)11. 若在n x x ⎪⎭⎫ ⎝⎛+1的二项展开式中,二项式系数之和为64 (1)求n 的值;(2)求展开式中的常数项.12.(5分)“n =4”是“(x +)n 的二项展开式中存在常数项”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件13、设(62)n x -的展开式中, 各项系数之和为256, 则展开式中二项式系数最大项是第( )项.A. 2B. 3C. 4D. 514、(1)求()721x +的二项展开式中系数最大的项 (2)求()721x -二项展开式中系数最大的项(提示:先求系数绝对值最大)15、(1)在52⎪⎭⎫ ⎝⎛-x a x 的二项式展开式中,若x 的系数是-10,求实数a 的值; (2)求92⎪⎭⎫ ⎝⎛-x x 的二项展开式中3x 的二项式系数与系数; (3)在()2021x -的二项展开式中,如果第r 4项和第2+r 项的二项式系数相等,求此展开式的第4r 项.。

二项式定理知识点及典型题型总结(经典)强烈推荐

二项式定理知识点及典型题型总结(经典)强烈推荐

二项式定理知识点及典型题型总结(经典)强烈推荐二项式定理是高中数学中的重要概念之一。

它表示了一个二元多项式的n次幂可以用二项式系数展开成一系列项的和。

其中,二项式系数是组合数,表示从n个元素中选取r个元素的方案数。

展开式共有n+1项,每一项的系数即为二项式系数。

展开式的指数有一些特点:a的指数从n开始递减,b的指数从0开始递增,a和b的指数之和为n。

需要注意的是,展开式是一个恒等式,a,b可以取任意的复数,n为任意的自然数,一般n≥2.二项式系数具有一些性质。

首先是对称性,即在二项展开式中,与首末两端“对距离”的两个二项式系数相等。

其次是增减性与最值,二项式系数先增后减,在中间取得最大值。

当n 是偶数时,中间一项取得最大值;当n是奇数时,中间两项相等且同时取得最大值。

此外,二项式系数的和也有一些特殊的形式。

奇数项的二项式系数和等于偶数项的二项式系数和,这可以通过二项式定理的特殊情况得到。

另外,奇数项的系数和与偶数项的系数和也可以用展开式表示出来。

总之,二项式定理是高中数学中的基础概念之一,具有很多特殊的性质。

熟练掌握这些概念和性质,对于高中数学的研究和应用都有很大的帮助。

题型一:利用通项公式求xn的系数例1、在二项式(4x+3)2n的展开式中倒数第3项的系数为45,求含有x3的项的系数?解析:由条件知系数等于二项式系数,Cn=45,解出n=10,代入展开式中可得:T7=C10,7(4x)7(3)3=210(4)7(3)3=所以含有x3的项的系数为.例2、求展开式(1+x)5中x4的系数。

解析:根据二项式定理可得:1+x)5=C5,0(1)5x0+C5,1(1)4x1+C5,2(1)3x2+C5,3(1)2x3+C5, 4(1)x4+C5,5x5所以x4的系数为C5,4=5.题型二:利用通项公式求常数项例3、求展开式(2x+3)6中的常数项。

解析:根据二项式定理可得:2x+3)6=C6,0(2x)6(3)0+C6,1(2x)5(3)1+C6,2(2x)4(3)2+C6,3( 2x)3(3)3+C6,4(2x)2(3)4+C6,5(2x)(3)5+C6,6(3)6所以常数项为C6,0(2x)6(3)0=2^6=64.题型五:奇数项的二项式系数和等于偶数项的二项式系数和。

高中数学二项式定理知识梳理与题型归纳

高中数学二项式定理知识梳理与题型归纳

高中数学二项式定理知识梳理与题型归纳知识点梳理一、定理内容二、基本概念①二项式展开式:等式右边的多项式叫作(a+b)n的二项展开式②二项式系数:展开式中各项的系数中的③项数:展开式第r+1项,是关于a,b的齐次多项式.④通项:展开式的第r+1项,记作三、几个提醒①项数:展开式共有n+1项.②顺序:注意正确选择a与b,其顺序不能更改,即:(a+b)n和(b+a)n是不同的.③指数:a的指数从n到0, 降幂排列;b的指数从0到n,升幂排列。

各项中a,b的指数之和始终为n.④系数:正确区分二项式系数与项的系数:二项式系数指各项前面的组合数;项的系数指各项中除去变量的部分(含二项式系数)。

⑤通项:通项是指展开式的第r+1项.四、常用结论由此可得贝努力不等式。

当x>-1时,有:n≥1时,(1+x)n≥1+nx;0≤n≤1时,(1+x)n≤1+nx.(贝努力不等式常用于函数不等式证明中的放缩)五、几个性质①二项式系数对称性:展开式中,与首末两项等距的任意两项二项式系数相等。

②二项式系数最大值:展开式的二项式系数中,最中间那一项(或最中间两项)的二项式系数最大。

即:③二项式系数和:二项展开式中,所有二项式系数和等于,即:奇数项二项式系数和等于偶数项二项式系数和,即:(注:凡系数和问题均用赋值法处理)④杨辉三角中的二项式系数:题型归纳一、求二项展开式二、求展开式的指定项在二项展开式中,有时存在一些特殊的项,如常数项、有理项、整式项、系数最大的项等等,这些特殊项的求解主要是利用二项展开式的通项公式,然后依据条件先确定r的值,进而求出指定的项。

说明:凡二项展开式中指定项的问题,均直接使用通项公式处理.说明:对于位置指定的展开项问题,要注意用原式,底数中项的顺序不得随意调整。

说明:积的展开式问题,一般分别计算两个因式的通项。

练习:1. 求常数项1、已知的展开式中第三项与第五项的系数之比为,其中,则展开式中常数项是()A. -45i B. 45i C. -45 D. 45解析:第三项、第五项的系数分别为,由题意有整理得解得n=10设常数项为则有得r=8故常数项为,选D。

2024年高考数学复习培优讲义专题40---二项式定理(含解析)

2024年高考数学复习培优讲义专题40---二项式定理(含解析)

专题8-2 二项式定理16类常考问题汇总题型1 求展开式中的指定项 题型2 求指定项的系数 题型3 二项式系数最大的项 题型4 展开式所有项系数和 题型5 展开式二项式系数和 题型6 三项展开式问题题型7 两个二项式乘积展开式的系数问题 题型8 由项的系数或系数和确定参数 题型9 奇次项与偶次项的系数和 题型10 等式两边求导后求和 题型11 展开式系数最大的项题型12 等式两边不一致时需要换元或配凑 题型13 赋值求系数和 题型14 整除和余数问题 题型15 二项式定理与杨辉三角 题型16 二项式定理与数列1、定义一般地,对于任意正整数n ,都有:()011*()n n n r n r r n nn n n n a b C a C a b C a b C b n N −−+=+++++∈这个公式所表示的定理叫做二项式定理,等号右边的多项式叫做()n a b +的二项展开式.式中的r n r r n C a b −做二项展开式的通项,用1r T +表示,即通项为展开式的第1r +项:1r n r rr nT C a b −+=,其中的系数(0,1,2,,)rnC r n =⋯叫做二项式系数 2、二项式()n a b +的展开式的特点:(1)项数:共有1n +项,比二项式的次数大1;(2)二项式系数:第1r +项的二项式系数为r n C ,最大二项式系数项居中; (3)次数:a ,b 次数和均为n(4)对称性:二项展开式中,与首末两端“等距离"的两项的二项式系数相等,即r n rn nC C −= (5)增减性与最大值:二项式系数在前半部分逐渐增大,在后半部分逐渐减小,在中间取得最大值.其中,当n 为偶数时,二项展开式中间一项的二项式系数2nn C 最大;当n 为奇数时,二项展开式中间两项的二项式系数1122,n n nnCC−+相等,且最大3、二项展开式的通项:1(0,1,2,,)r n r rr n T C a b r n −+==公式特点:(1)它表示二项展开式的第1r +项,该项的二项式系数是r n C ; (2)字母b 的次数和组合数的上标相同;4、二顶式系数和与所有项系数和,以及奇数项项与偶数项 例:对于()n x a +(1)二项式系数之和为2n ,即012342n n nn n n n n C C C C C C ++++++=;(2)所有展开式系数和为(1)n b +,展开式为:()011*()n n n r n r rn nn n n n x b C x C x b C x b C b n N −−+=+++++∈,可以表示为:()1*01()n n n x b a a x a x n N +=+++∈,令1x =即可得出所有项系数和(3)二项展开式中各奇数项的二项式系数之和等于各偶数项的二项式系数之和,即02413512n n n n n n n C C C C C C −+++=+++=.知识点诠释:(1)二项式系数与展开式的系数的区别二项展开式中,第1r +项r n r r n C a b −的二项式系数是组合数r n C ,展开式的系数是单项式r n r r n C a b −的系数,二者不一定相等.(2)()n a b c ++展开式中p q r a b c 的系数求法(,,0p q r ≥的整数且)p q r n ++=()[()]()n n r n r r r q n r q q r n n n r a b c a b c C a b c C C a b c −−−−++=++=+=(3)求解二项展开式中系数的最值策略①求二项式系数的最大值,则依据(a +b )n 中n 的奇偶及二项式系数的性质求解.②求展开式中项的系数的最大值,由于展开式中项的系数是离散型变量,设展开式各项的系数分别为A 1,A 2,…,A n +1,且第k 项系数最大,因此在系数均为正值的前提下,求展开式中项的系数的最大值只需解不等式组⎩⎪⎨⎪⎧A k ≥A k -1,A k ≥A k +1即得结果.题型1 求展开式中的指定项1.式子12(1)x −二项式定理展开中的第6项为 .2.二项式5312x x ⎛⎫− ⎪⎝⎭的展开式中的第3项为( )A .160B .80x −C .380x D .740x −3.533x x ⎛⎫+ ⎪⎝⎭的展开式中,有理项是第 项.4.6232x x −⎛⎫− ⎪⎝⎭的展开式中有理项的个数为 .题型2 求指定项的系数5.二项式5(2)x y −的展开式中,含2y 项的系数为 .6.在7(3)x −的展开式中,3x 的系数为( ) A .21− B .21C .189D .189−7.⎝ ⎛⎭⎪⎫x -2x 6的展开式中的常数项为( )A .-150 B.150 C.-240 D.240重点题型·归类精练8.在二项式(2+x )9的展开式中,常数项是________,系数为有理数的项的个数是________.题型3 二项式系数最大的项9.已知二项式()21nx −的展开式中仅有第4项的二项式系数最大,则n = . 10.()32+nx 展开式中,只有第4项的二项式系数最大,则n 的值为( ) A .8B .7C .6D .511.1nx x ⎫⎪⎭的展开式中只有第六项的二项式系数最大,则第四项为 .12.在()1nx +的展开式中,若第7项系数最大,则n 的值可能等于 .题型4 展开式所有项系数和13.若32nx x 的展开式中的第4项为常数项,则展开式的各项系数的和为( )A .112B .124C .116D .13214.在54(1)(12)x x ++−的展开式中,所有项的系数和等于 ,含3x 的项的系数是 .15.若8231x a x ⎛⎫+ ⎪⎝⎭展开式中所有项的系数和为 256 ,其中a 为常数,则该展开式中4x −项的系数为16.已知31(2)ax x x ⎛⎫+− ⎪⎝⎭(a 为常数)的展开式中所有项的系数和为0,则展开式中2x 的系数为 (用数字作答)题型5 展开式二项式系数和17.(多选)已知3241nx x ⎛⎫+ ⎪ ⎪⎝⎭展开式中的第三项的系数为45,则( )A .9n =B .展开式中所有系数和为1024C .二项式系数最大的项为中间项D .含3x 的项是第7项18.在32nx x ⎛ ⎝的二项展开式中,各项的二项式系数之和为128,则展开式中7x 的系数为 (用数字填写答案);19.若31nx x ⎛⎫− ⎪⎝⎭的展开式的二项式系数之和为16,则231nx x ⎛⎫+ ⎪⎝⎭的展开式中41x 的系数为 .20.(多选)在()521x −的展开式中,则( ) A .二项式系数最大的项为第3项和第4项 B .所有项的系数和为0 C .常数项为1−D .所有项的二项式系数和为6421.若2na x x ⎛⎫+ ⎪⎝⎭的二项展开式的第一项为532x ,最后一项为51x −,则下列结论正确的是( )A .5n =B .展开式的第四项的二项式系数等于40−C .展开式中不含常数项D .展开式中所有项的系数之和等于3222.若()*31N nx n x ⎛⎫−∈ ⎪⎝⎭的展开式中所有项的二项式系数之和为16,则231nx x ⎛⎫+ ⎪⎝⎭的展开式中的常数项为( ) A .6B .8C .28D .5623.在322nx x ⎛⎫+ ⎪⎝⎭的二项展开式中,各二项式系数之和为n a ,各项系数之和为n b ,若1056n n a b +=,则n =( )A .4B .5C .6D .7题型6 三项展开式问题24.若0m ≠,且()622312112312x x m a a x a x a x a x −+=++++⋅⋅⋅+,则m 的值为 .25.6(21)x y −+展开式中含2x y 项的系数为 . 26.()()6211x xx ++−的展开式中2x 的系数为( ) A .9B .10C .24D .2527.3212x x ⎛⎫−+ ⎪⎝⎭中常数项是 .(写出数字)28.()52x y z −+的展开式中,3x yz 的系数为 .29.已知()22121nx x x x ⎛⎫−++ ⎪⎝⎭的展开式中各项系数和为27,则4x 项的系数为( )A .3B .6C .9D .1530.若()522100121022x x a a x a x a x −+=++++,则5a = .2x 2x − 2题型7 两个二项式乘积展开式的系数问题31.()()4212x x −+的展开式中2x 的系数为 (用数字作答).32.81()y x y x ⎛⎫−+ ⎪⎝⎭的展开式中26x y 的系数为 (用数字作答).33.712(1)x x ⎛⎫+− ⎪⎝⎭的展开式中2x 的系数为( )A .7−B .7C .77D .77−34.6211(2)2x x ⎛⎫+− ⎪⎝⎭展开式中2x 的系数为( )A .270B .240C .210D .18035.6(2)(2)x y x y −+的展开式中25x y 的系数是 .(用数字填写答案)36.()3532()x x a −+的展开式中的各项系数和为243,则该展开式中4x 的系数为( )A .130−B .46C .61D .19037.将多项式26576510a x a x a x a x a +++++分解因式得25(2)(1)x x −+,则5a =( )A .16B .14C .6−D .10−题型8 由项的系数或系数和确定参数 38.设()2340123412nn n x a a x a x a x a x a x −=++++++,若0417a a +=.则n = .39.()5223x x a −+的展开式的各项系数之和为1,则该展开式中含7x 项的系数是( ) A .600−B .840−C .1080−D .2040−40.已知()12nx +的展开式中前3项的二项式系数之和为29,则3123nx x x ⎛⎫⎛⎫+− ⎪⎪⎝⎭⎝⎭的展开式中1x 的系数为( ) A .294−B .826−C .840−D .854−41.若()421ax x −+的展开式中5x 的系数为56−,则实数=a .42.42x x ⎛⎫ ⎪⎝⎭−的展开式中的常数项与321x a x ⎛⎫−+ ⎪⎝⎭展开式中的常数项相等,则a 的值为( )A .3−B .2−C .2D .343.已知31(2)ax x x ⎛⎫+− ⎪⎝⎭(a 为常数)的展开式中所有项的系数和为0,则展开式中2x 的系数为 (用数字作答)44.5122a x x x x ⎛⎫⎛⎫+− ⎪⎪⎝⎭⎝⎭的展开式中各项系数之和为3,则该展开式中常数项为( )A .40B .160C .0D .32045.(多选)在()()5312x x a −−的展开式中,各项系数的和为1,则( )A .3a =B .展开式中的常数项为32−C .展开式中4x 的系数为160D .展开式中无理项的系数之和为242−46.已知()2nx y −的展开式中第4项与第5项的二项式系数相等,则展开式中的52x y 项的系数为( ) A .―4 B .84C .―280D .56047.(多选)已知()31nx n x *⎛⎫−∈ ⎪⎝⎭N 的展开式中含有常数项,则n 的可能取值为( )A .4B .6C .8D .10题型9 奇次项与偶次项的系数和48.若()62345601234561x a a x a x a x a x a x a x −=++++++,则246a a a ++=( ) A .64B .33C .32D .3149.若()()522701273321x x x a a x a x a x −−−=++++,则0246a a a a +++= .50.()()41a x x ++的展开式中x 的奇数次幂项的系数之和为32,则=a ( ) A .2− B .2C .3−D .3 51.若()()()()20232202301220231111x m a a x a x a x ++=+++++++,且()()2220230220221320233a a a a a a +++−+++=,则实数m 的值为 .题型10 等式两边求导后求和52.(多选)若()()()()102100121021111x a a x a x a x −=+−+−++−,x ∈R ,则( )A .01a =B .1012103a a a +++=C .2180a =D .9123102310103a a a a ++++=⨯53.(多选)已知多项式220121(12)(13),19m nn x x a a x a x a x a −−=+++⋅⋅⋅+=−,则( )A .12m n +=B .12324n a a a a +++⋅⋅⋅+=C .24a =−D .12323368n a a a na +++⋅⋅⋅+=−题型11 展开式系数最大的项54.在822x x ⎫⎪⎭的展开式中,①求二项式系数最大的项; ②系数的绝对值最大的项是第几项;55.212n x x ⎛⎫− ⎪⎝⎭的展开式中第3项与第7项的二项式系数相等,则212nx x ⎛⎫− ⎪⎝⎭的展开式中系数最大的项的系数为 .题型12 等式两边不一致时需要换元或配凑56.已知()()()()21001210101111a a a x x x a x =+−+−+⋅⋅⋅+−+,则8a =________. 57.已知多项式()()()()10210012101111x a a x a x a x −=+++++++,则7a =( )A .-960B .960C .-480D .48058.(多选)已知923901239(25)(2)(2)(2)(2)x a a x a x a x a x −=+−+−+−++− ,则下列结论成立的是A .0191a a a +++=B .876012382226256a a a a a +++++=C .9012393a a a a a −+−+−= D .123923918a a a a ++++=题型13 赋值求系数和59.若()42340123421x a a x a x a x a x −=++++,1234a a a a +++=________.60.若52345012345(12)(1)(1)(1)(1)(1)x a a x a x a x a x a x −=+−+−+−+−+−,则下列结论中正确的是( )A .01a =B .480a =C .50123453a a a a a a +++++= D .()()10024135134a a a a a a −++++=61.(多选)若202123202101232021(12)(R)x a a x a x a x a x x −=+++++∈,则( )A .01220211a a a a ++++=−B .20211352021312a a a a +++++=C .20210242020132a a a a −++++= D .123202123202112222a a a a ++++=− 62.已知5250125())(1)(1)(1)(x m a a x a x a x m R +=+−+−++−∈,若225024135()()3a a a a a a ++−++=则m =_________或_________.63.已知2323122202222312a a a a a x x x x x⎛⎫−=+++++ ⎪⎝⎭,则0121222221222a a a a ++++= A .-1B .0C .1D .2广东省二模T7改 64.已知2023220230122023(1)x a a x a x a x −=++++,(1)展开式中的二项式系数为________, (2)122023a a a =+++________,(3)2023202220210122023222a a a a =++++________,(赋值)(4)122023111a a a +++=________.(对称性)题型14 整除和余数问题 65.20233被8除的余数为( )A .1B .3C .5D .766.二项式()20235x +展开式的各项系数之和被7除所得余数为 .67.108除以49所得的余数是 . 68.20242023被4除的余数为 .69.若2022n =,则1122155C 5C 5C n n n n n n n −−−++++除以7的余数是 .70.()2023678−除以17所得的余数为 .71.(多选)若()54325101051f x x x x x x =−+−+−,则( )A .()f x 可以被()31x −整除B .()1f x y ++可以被()4x y +整除C .()30f 被27除的余数为6D .()29f 的个位数为6题型15 二项式定理与杨辉三角72.如图,在由二项式系数所构成的杨辉三角形中,第10行中最大的数与第二大的数的数值之比为(用最简分数表示).73.如图,在“杨辉三角”中从第2行右边的1开始按箭头所指的数依次构成一个数列:1,2,3,3,6,4,10,5,,则此数列的前30项的和为( )A .680B .679C .816D .81574.“杨辉三角”是中国古代数学文化的瑰宝之一,它揭示了二项式展开式中的组合数在三角形数表中的一种几何排列规律,如图所示,则下列关于“杨辉三角”的结论错误的是( )A .第6行的第7个数、第7行的第7个数及第8行的第7个数之和等于第9行的第8个数B .第2023行中第1012个数和第1013个数相等C .记“杨辉三角”第n 行的第i 个数为i a ,则()11123n i ni i a +−==∑D .第34行中第15个数与第16个数之比为2:3题型16 二项式定理与数列75.设数列{}n a 的前n 项和为n S ,且满足()*21N n n S a n =−∈.(1)求数列{}n a 的通项公式;(2)解关于n 的不等式:012312341C C C C C 2023nn n n n n n a a a a a +++++⋅⋅⋅+<.76.已知数列{}n a 的通项公式为121n n a −=+.求0121231C C C C nn n n n n a a a a +++++的值.77.已知数列{}n a 的前n 项和为n S ,且满足212n n n a a a ++=−,514a =,426S =. (1)求数列{}n a 的通项公式;(2)已知011221C 3C 3C 3C 3C n n n n n n n n n n n b −−−=⋅+⋅+⋅++⋅+,求数列{}n n a b ⋅的前n 项和n T .78.(2023·黑龙江哈尔滨·哈师大附中统考三模)已知数列{}n b 的前n 项和为n S ,满足()231n n S b =−,等差数列{}n c 中1123,5,27c c c c =++=. (1)求{}n b 和{}n c 的通项公式;(2)数列{}n b 与{}n c 的共同项由小到大排列组成新数列{}n a ,求数列}{n a 的前20的积20T . 79.已知数列{}n a 前n 项和232n n n S +=,{}n b 的前n 项之积()(1)*22N n n n T n +=∈. (1)求{}n a 与{}n b 的通项公式.(2)把数列{}n a 和{}n b 的公共项由小到大排成的数列为{}n c ,求1220c c c ++⋅⋅⋅+的值. 80.(多选)已知当0x >时,111ln 11x x x ⎛⎫<+< ⎪+⎝⎭,则( ) A .188e 7>B .1111ln8237++++> C .111ln8238+++< D .018888018C C C e 888+++<81.已知()20032001C 62nnnn a −⎛⎫=⋅⋅ ⎪⎝⎭(1n =,2,⋯,95),则数列{}n a 中整数项的个数为( ) A .13 B .14C .15D .16专题8-2 二项式定理16类常考问题汇总题型1 求展开式中的指定项 题型2 求指定项的系数 题型3 二项式系数最大的项 题型4 展开式所有项系数和 题型5 展开式二项式系数和 题型6 三项展开式问题题型7 两个二项式乘积展开式的系数问题 题型8 由项的系数或系数和确定参数 题型9 奇次项与偶次项的系数和 题型10 等式两边求导后求和 题型11 展开式系数最大的项题型12 等式两边不一致时需要换元或配凑 题型13 赋值求系数和 题型14 整除和余数问题 题型15 二项式定理与杨辉三角 题型16 二项式定理与数列1、定义一般地,对于任意正整数n ,都有:()011*()n n n r n r r n nn n n n a b C a C a b C a b C b n N −−+=+++++∈这个公式所表示的定理叫做二项式定理,等号右边的多项式叫做()n a b +的二项展开式.式中的r n r r n C a b −做二项展开式的通项,用1r T +表示,即通项为展开式的第1r +项:1r n r rr nT C a b −+=,其中的系数(0,1,2,,)rnC r n =⋯叫做二项式系数 2、二项式()n a b +的展开式的特点:(1)项数:共有1n +项,比二项式的次数大1;(2)二项式系数:第1r +项的二项式系数为r n C ,最大二项式系数项居中; (3)次数:a ,b 次数和均为n(4)对称性:二项展开式中,与首末两端“等距离"的两项的二项式系数相等,即r n rn nC C −= (5)增减性与最大值:二项式系数在前半部分逐渐增大,在后半部分逐渐减小,在中间取得最大值.其中,当n 为偶数时,二项展开式中间一项的二项式系数2nn C 最大;当n 为奇数时,二项展开式中间两项的二项式系数1122,n n nnCC−+相等,且最大3、二项展开式的通项:1(0,1,2,,)r n r rr n T C a br n −+==公式特点:(1)它表示二项展开式的第1r +项,该项的二项式系数是r n C ; (2)字母b 的次数和组合数的上标相同;4、二顶式系数和与所有项系数和,以及奇数项项与偶数项 例:对于()n x a +(1)二项式系数之和为2n ,即012342n n nn n n n n C C C C C C ++++++=;(2)所有展开式系数和为(1)n b +,展开式为:()011*()n n n r n r rn nn n n n x b C x C x b C x b C b n N −−+=+++++∈,可以表示为:()1*01()n n n x b a a x a x n N +=+++∈,令1x =即可得出所有项系数和(3)二项展开式中各奇数项的二项式系数之和等于各偶数项的二项式系数之和,即02413512n n n n n n n C C C C C C −+++=+++=.知识点诠释:(1)二项式系数与展开式的系数的区别二项展开式中,第1r +项r n r r n C a b −的二项式系数是组合数r n C ,展开式的系数是单项式r n r r n C a b −的系数,二者不一定相等.(2)()n a b c ++展开式中p q r a b c 的系数求法(,,0p q r ≥的整数且)p q r n ++=()[()]()n n r n r r r qn r q q r n n n r a b c a b c C a b c C C a b c −−−−++=++=+=(3)求解二项展开式中系数的最值策略①求二项式系数的最大值,则依据(a +b )n 中n 的奇偶及二项式系数的性质求解.②求展开式中项的系数的最大值,由于展开式中项的系数是离散型变量,设展开式各项的系数分别为A 1,A 2,…,A n +1,且第k 项系数最大,因此在系数均为正值的前提下,求展开式中项的系数的最大值只需解不等式组⎩⎪⎨⎪⎧A k ≥A k -1,A k ≥A k +1即得结果.题型1 求展开式中的指定项1.式子12(1)x −二项式定理展开中的第6项为 . 【答案】7792x −【解析】由()121x −,所以二项展开式的通项公式()121211C rr rr T x −+=⋅−⋅,012r ≤≤,r ∈Z , 令=5r ,可得展开式的第六项为()5775121792C x x ⋅−⋅=−. 2.二项式5312x x ⎛⎫− ⎪⎝⎭的展开式中的第3项为( )A .160B .80x −C .380x D .740x −【解析】【答案】C 【分析】根据二项式展开式公式即可求解. 【详解】因为()51531C 2kkkk T x x −+⎛⎫=⋅− ⎪⎝⎭,所以()2323533180C 2T x x x ⎛⎫=⋅−=⎪⎝⎭,故C 项正确. 3.533x x ⎛⎫+ ⎪⎝⎭的展开式中,有理项是第 项.【解析】【答案】3 【分析】求出二项式展开式的通项公式,根据有理项的含义,确定参数的值,即可得答案.【详解】533x x ⎛⎫+ ⎪⎝⎭的展开式的通项511051362155C 3C 3kkkk k k k T x x x−−−+⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭⋅, 其中0,1,2,3,4,5k =, 当1k T +为有理项时,1056k−为整数,结合0,1,2,3,4,5k =, 所以2k =,即有理项是展开式中的第3项4.6232x x −⎛⎫− ⎪⎝⎭的展开式中有理项的个数为 .重点题型·归类精练【答案】3【解析】展开式的通项为()2566633166C (2)(1)2C 0,1,2,,6rrr r r r rr T x x x r −−−−+⎛⎫=−=−= ⎪⎝⎭,要为有理项,则563r −为整数,故r 可取03,6,,共有3项有理项.题型2 求指定项的系数5.二项式5(2)x y −的展开式中,含2y 项的系数为 . 【答案】40【解析】二项展开式的通项为515C (2)r rr r T x y −+=−,令2r =,则2323235C (2)40T x y x y =−=.故答案为:40.6.在7(3)x −的展开式中,3x 的系数为( ) A .21− B .21 C .189 D .189−【解析】【答案】B 【分析】利用二项展开式的通项公式可得解.【详解】由二项展开式的通项公式得11772277C 3()C 3(1)r r r r r r r x x −−−=−,令132r =得6r =,所以3x 的系数为667C 3(1)21−=.7.⎝ ⎛⎭⎪⎫x -2x 6的展开式中的常数项为( )A .-150B.150C.-240D.240【答案】D【解析】 (1)⎝⎛⎭⎫x -2x 6的二项展开式的通项为T k +1=C k 6x 6-k ·⎝⎛⎭⎫-2x k =C k 6x 6-k ·(-2)k ·x -k2=(-2)k C k 6x 6-32k .令6-32k =0,解得k =4,故所求的常数项为T 5=(-2)4·C 46=240.8.在二项式(2+x )9的展开式中,常数项是________,系数为有理数的项的个数是________.【答案】162 5【解析】该二项展开式的第k +1项为T k +1=C k 9(2)9-k x k ,当k =0时,第1项为常数项,所以常数项为(2)9=162;当k =1,3,5,7,9时,展开式的项的系数为有理数,所以系数为有理数的项的个数为5. 【答案】162 5题型3 二项式系数最大的项9.已知二项式()21nx −的展开式中仅有第4项的二项式系数最大,则n = . 【答案】6【解析】因为二项式()21nx −的展开式中仅有第4项的二项式系数最大,根据二项展开式的性质,可得中间项的二项式系数最大,所以展开式一共有7项, 所以n 为偶数且32n=,可得6n =. 10.()32+nx 展开式中,只有第4项的二项式系数最大,则n 的值为( ) A .8B .7C .6D .5【解析】【答案】C【分析】根据二项式系数的性质知中间一项第4项二项式系数最大即可得解 【详解】因为只有一项二项式系数最大,所以n 为偶数,故142n+=,得6n =.故选:C11.1nx x ⎫⎪⎭的展开式中只有第六项的二项式系数最大,则第四项为 .【答案】12120x【解析】因为展开式中只有第六项的二项式系数最大,即162n+=,所以10n =,所以317324101C 120T x x x ⎛⎫== ⎪⎝⎭.12.在()1nx +的展开式中,若第7项系数最大,则n 的值可能等于 . 【答案】11、12、13【解析】在()1nx +的展开式中,每项的系数等于其二项式系数, ①当只有第7项系数最大时,即只有6C n 最大时,则n =12;②当第6项和第7项的系数相等且最大时,即56n n C C =最大时,则n =11;③当第7项和第8项的系数相等且最大时,即67C C n n =最大时则n =13,综合①②③可得n 的值可能等于11、12、13, 故答案为:11、12、13.题型4 展开式所有项系数和13.若32nx x 的展开式中的第4项为常数项,则展开式的各项系数的和为( )A .112B .124C .116D .132【答案】D【解析】32nx x 的第4项为:())3353133223111C C 22n n n nT x x x −−−+⎛⎫⎛⎫=−=− ⎪ ⎪⎝⎭⎝⎭. 因其为常数项,则5n =.令1x =,可得展开式的各项系数的和为5111232⎛⎫−=⎪⎝⎭. 14.在54(1)(12)x x ++−的展开式中,所有项的系数和等于 ,含3x 的项的系数是 . 【分析】用赋值法,令1x =求所有项的系数和;分析含3x 的项的构成,直接求得.【详解】解:423450123455(1)(12)a a x a x a x a x a x x x =+++++++−所以令1x =代入得:401235554(11)(12)2133a a a a a a =++++−+++=+=; 而333333354(2)22a C x C x x x =+−=−故答案为:33;22−.15.若8231x a x ⎛⎫+ ⎪⎝⎭展开式中所有项的系数和为 256 ,其中a 为常数,则该展开式中4x −项的系数为【分析】由1x =结合所有项的系数和得出1a =,再由二项展开式的通项求解即可.【详解】因为 8231x a x ⎫⎪⎭展开式中所有项的系数和为 256 ,所以)81256a =,解得1a =,由题意得 82311x x ⎛⎫+ ⎪⎝⎭展开式中4x −项的系数与8311x ⎛⎫+ ⎪⎝⎭展开式中的6x −项的系数相同.8311x ⎛⎫+ ⎪⎝⎭展开式的通项()318C 0,1,2,,8r r r T x r −+==,令36r −=−,得2r =,所以展开式中 4x −项的系数为28C 28=. 16.已知31(2)ax x x ⎛⎫+− ⎪⎝⎭(a 为常数)的展开式中所有项的系数和为0,则展开式中2x 的系数为 (用数字作答) 【分析】令1x =,则()()3112a +−即为展开式中所有项的系数和,可计算出a 的值,结合二项展开式的通项公式计算即可得.【详解】令1x =,则()()31120a +−=,即1a =−,则对31x x ⎛⎫−+ ⎪⎝⎭,有()()33321331C C 1kk k k kk k T x x x −−−+⎛⎫=−=− ⎪⎝⎭, 令321k −=,即1k =,有()21123C 13T x x =−=,即有223T x x ⨯=, 令322k −=,则12k =,舍去; 故展开式中2x 的系数为3.题型5 展开式二项式系数和17.(多选)已知3241nx x ⎛⎫+ ⎪ ⎪⎝⎭展开式中的第三项的系数为45,则( ) A .9n =B .展开式中所有系数和为1024C .二项式系数最大的项为中间项D .含3x 的项是第7项【解析】【答案】BCD 【分析】由二项式定理相关知识逐项判断即可.【详解】3241n x x 展开式的第三项为:2422232232223412431C C C n n n n nnT x xx xx −−−==⋅=,所以第三项的系数为:2C 45n =,所以10n =,故A 错误;所以103241x x ,所以令1x =得展开式中所有系数和为1021024=,故B 正确; 展开式总共有11项,则二项式系数最大的项为中间项,故C 正确;通项公式为(102101130323412411010101C CC rr r r rr rr r T x xxxx −−−+==⋅=,令1130312r −=,解得6r =,所以含3x 的项是第7项.故D 正确; 故选:BCD.18.在32nx x ⎛ ⎝的二项展开式中,各项的二项式系数之和为128,则展开式中7x 的系数为 (用数字填写答案); 【答案】280【解析】依题意可得2128n =,则7n =,所以732x x ⎛ ⎝展开式的通项为()()()7217732177C 2C 21rr r r r r r r T x xx −−−+⎛==− ⎝(07r ≤≤且N r ∈), 令72172r −=,解得4r =,所以()4437757C 21280T x x =⨯⨯−=,所以展开式中7x 的系数为280.19.若31nx x ⎛⎫− ⎪⎝⎭的展开式的二项式系数之和为16,则231nx x ⎛⎫+ ⎪⎝⎭的展开式中41x 的系数为 .【答案】56 【分析】通过二项式系数和求出4n =,然后求出831x x ⎫⎪⎭展开式的通项公式,最后求出指定项的系数即可.【详解】由31nx x ⎫⎪⎭的展开式的二项式系数之和为16,得216n =,所以4n =,则831x x ⎫⎪⎭的展开式的通项公式为848331881C C rr rrrr T x x x −−+⎛⎫== ⎪⎝⎭,令8443r −=−,解得=5r ,故231nx x ⎫⎪⎭的展开式中41x 的系数为58C 56=. 故答案为:5620.(多选)在()521x −的展开式中,则( ) A .二项式系数最大的项为第3项和第4项 B .所有项的系数和为0 C .常数项为1−D .所有项的二项式系数和为64 【分析】根据二项式系数015555C ,C ,,C 的性质即可判断AD ;根据项的系数之和为(1)f 即可判断B ;根据二项式展开式的通项公式即可判断C.【详解】A :所有项的二项式系数为015555C ,C ,,C ,最大的为25C 和35C ,对应的是第3项和第4项,故A 正确;B :设5()(21)f x x =−,所有项的系数为015,,,a a a , 所以5015(1)(211)1a a a f +++==⨯−=,故B 错误;C :二项式展开式的通项公式为55C (2)(1)(0,1,2,3,4,5)rr r x r −−=, 令50r −=,解得=5r ,所以常数项为5055C 2(1)1⋅⋅−=−,故C 正确; D :所有项的系数之和为0155555C +C C 232++==,所以D 错误.故选:AC21.若2na x x ⎛⎫+ ⎪⎝⎭的二项展开式的第一项为532x ,最后一项为51x −,则下列结论正确的是( )A .5n =B .展开式的第四项的二项式系数等于40−C .展开式中不含常数项D .展开式中所有项的系数之和等于32【解析】【答案】AC 【分析】通过()551C 232,C nnnnna x x x x ⎛⎫==− ⎪⎝⎭计算可判断A ;直接求第四项的二项式系数可判断B ;求出展开式的通项,观察后可判断C ;令1x =,计算可判断D. 【详解】选项A :依题意有()0551C 232,C nnnnna x x x x ⎛⎫==− ⎪⎝⎭,解得5,1n a ==−,所以A 正确;选项B :展开式的第四项的二项式系数应为35C 10=,故B 错误;选项C :512x x ⎛⎫− ⎪⎝⎭的展开式的通项()()55521551C 21C 2rr r r r r rr T x x x −−−+⎛⎫=⋅−=− ⎪⎝⎭, 由于r ∈N ,所以520r −≠,因此展开式中不含常数项,故C 正确;选项D :令1x =,可得展开式中所有项的系数之和等于512111⎛⎫⨯−= ⎪⎝⎭,故D 错误.故选:AC.22.若()*31N nx n x ⎛⎫−∈ ⎪⎝⎭的展开式中所有项的二项式系数之和为16,则231nx x ⎛⎫+ ⎪⎝⎭的展开式中的常数项为( ) A .6B .8C .28D .56【解析】【答案】C 【分析】根据31nx x ⎫⎪⎭的展开式中所有项的二项式系数之和求出n 的值,从而写出231nx x ⎫⎪⎭的展开式的通项公式,再令x 的指数为0,即可求解常数项.【详解】由()*31N nx n x ⎫∈⎪⎭的展开式中所有项的二项式系数之和为16,得216n =,所以4n =,则二项式831x x ⎫⎪⎭的展开式的通项公式为(848331881C C rr rrrr T x x x −−+⎛⎫== ⎪⎝⎭(08r ≤≤且N r ∈),令8403r−=,解得2r =, 所以238C 28T ==,故831x x ⎫⎪⎭的展开式中的常数项为2823.在322nx x ⎛⎫+ ⎪⎝⎭的二项展开式中,各二项式系数之和为n a ,各项系数之和为n b ,若1056n n a b +=,则n =( ) A .4B .5C .6D .7【解析】【答案】B 【分析】依题意可得2n n a =,令1x =得到4n n b ,从而求出n .【详解】由32nx x ⎛⎫+ ⎪⎝⎭,令1x =可得各项系数之和为4n n b ,又各二项式系数之和为2n n a =,因为1056n n a b +=,则421056n n +=,解得232n =或233n =−(舍去), 所以5n =.题型6 三项展开式问题24.若0m ≠,且()622312112312x x m a a x a x a x a x −+=++++⋅⋅⋅+,则m 的值为 .【答案】6−【解析】由题意得()62x x m −+的展开式中的常数项与一次项系数相等,则()6156C 1m m =−,解得6m =−或0(舍去).25.6(21)x y −+展开式中含2x y 项的系数为 . 【解析】6(21)x y −+展开式中,含2x y 的项是:()221264C C 2120x y x y −=−.故答案为:120−26.()()6211x x x ++−的展开式中2x 的系数为( )A .9B .10C .24D .25【答案】B 解析:()()()()()66662211111x xx x x x x x ++−=−+−+−,所以2x 的系数为()()22106661110C C C −+−+=;故选B27.3212x x ⎛⎫−+ ⎪⎝⎭中常数项是 .(写出数字)【答案】11【解析】3212x x ⎛⎫−+ ⎪⎝⎭的展开式中当2x ,1x −,2对应的次数分别为0,0,3和1,2,0时即为常数,所以常数项为212331C 23811x x ⎛⎫−+=+= ⎪⎝⎭.28.()52x y z −+的展开式中,3x yz 的系数为 . 【答案】40−【解析】()52x y z −+的展开式通项为()515C 2rr rr A x y z −+=−+, ()2ry z −+的展开式通项为()()1C 2C 2r kr kkk k r k k k rr B y z y z −−−+=⋅−=⋅−,其中05k r ≤≤≤,k 、N r ∈,所以,()52x y z −+的展开式通项为()51,15C C 2r kr kr r k k r k r T x y z −−−++=−,由题意可得5311r r k k −=⎧⎪−=⎨⎪=⎩,解得21r k =⎧⎨=⎩,因此,()52x y z −+的展开式中3x yz 的系数为()2152C C 240⨯−=−.29.已知()22121nx x x x ⎛⎫−++ ⎪⎝⎭的展开式中各项系数和为27,则4x 项的系数为( )A .3B .6C .9D .15【分析】先由展开式中各项系数和为27,求出3n =,直接求出展开式,得到4x 项的系数.【详解】由题意可得:令x =1可得()12111271n ⎛⎫−++= ⎪⎝⎭,解得:3n =.所以原式为()()()333222221121211x x x x x x x x x x ⎛⎫−++=⨯++−++ ⎪⎝⎭.要求4x 项,只需求出()321x x ++展开式中2x 和5x 项.()()()()()()()()()312332120212223233331C 1C 1C 1C 1x x x x x x x x x x ++=+++++++()()()3224613131x x x x x x =++++++ 65432367631x x x x x x =++++++所以()322121x x x x ⎛⎫−++ ⎪⎝⎭的展开式中,4x 项为45411239x x x x −⨯=.30.若()522100121022x x a a x a x a x −+=++++,则5a = .【解析】【答案】592− 【分析】由组合数以及分类加法和分步乘法计数原理即可得解.【详解】()5222x x −+表示5个因数()222x x −+的乘积.而5a 为展开式中5x 的系数,设这5个因数()222x x −+中分别取2x 、2x −、2这三项分别取,,i j k 个,所以5i j k ++=,若要得到含5x 的项,则由计数原理知,,i j k的取值情况如下表:2x 2x − 2i 个j 个k 个 0 5 0 1 3 1 212由上表可知)()()()()531132143315554532222232320240592C C C C C a −−=−+⋅−⋅+⋅−⋅=−+−+−=−.故答案为:592−.题型7 两个二项式乘积展开式的系数问题31.()()4212x x −+的展开式中2x 的系数为 (用数字作答).【答案】8−【解析】由题意得:()42x +展开式的通项为:414C 2rrr r T x−+=,当42r −=时,即:2r =,得:222234C 224T x x ==, 当40r −=时;即:4r =,得:40454C 216T x ==,所以得:()()4212x x −+展开式中含2x 项为:22216248x x x −=−,所以2x 的系数为:8−.32.81()y x y x ⎛⎫−+ ⎪⎝⎭的展开式中26x y 的系数为 (用数字作答).【答案】-28【分析】()81y x y x ⎛⎫−+ ⎪⎝⎭可化为()()88y x y x y x +−+,结合二项式展开式的通项公式求解.【详解】因为()()()8881=y y x y x y x y x x ⎛⎫−++−+ ⎪⎝⎭,所以()81y x y x ⎛⎫−+ ⎪⎝⎭的展开式中含26x y 的项为6265352688C 28y x y C x y x y x −=−,()81y x y x ⎛⎫−+ ⎪⎝⎭的展开式中26x y 的系数为-28故答案为:-2833.712(1)x x ⎛⎫+− ⎪⎝⎭的展开式中2x 的系数为( )A .7−B .7C .77D .77−【答案】B【解析】()71x −的展开式通项为()()177C 1C rrr rr r T x x +=⋅−=−⋅,故()7121x x ⎛⎫+− ⎪⎝⎭的展开式中2x 的系数为()()23237721C 1C 7⨯−+−= 34.6211(2)2x x ⎛⎫+− ⎪⎝⎭展开式中2x 的系数为( )A .270B .240C .210D .180【解析】【答案】A 【分析】由题意可得所求的展开式中2x 的系数为6(2)x −展开式二次项系数与四次项系数的一半的和.【详解】6(2)x −展开式的通项公式为()61612C rr r rr T x −+=−, 则原展开式中2x 的系数为()()24422466112C 12C 2702−⨯+⨯−⨯=.35.6(2)(2)x y x y −+的展开式中25x y 的系数是 .(用数字填写答案) 【答案】108−【解析】666(2)(2)(2)22()x y x y x x y y y x −++=−+,所以展开式中含25x y 的项有556C 2x xy 和()24462C 2y x y −, 所以25x y 的系数为542662C 2C 212120108−⨯=−=−,故答案为:108−36.()3532()x x a −+的展开式中的各项系数和为243,则该展开式中4x 的系数为( )A .130−B .46C .61D .190【答案】A【解析】令1x =,则5(1)243a +=,解得2a =.所以()3532(2)x x −+展开式中4x 的系数是:414553C 2(2)C 2130⨯⨯+−⨯⨯=−. 37.将多项式26576510a x a x a x a x a +++++分解因式得25(2)(1)x x −+,则5a =( )A .16B .14C .6−D .10−【解析】【答案】C 【分析】将()51x +展开,观察345,x x x , 的系数,对应()22x −的展开相乘,相加得到答案.【详解】解析:由题意,()()()()255221441x x x x x −+=−++,52232551a x x C x =⋅⋅14541x C x −⋅⋅055546C x x +⨯=−,所以56a =−,故选:C.题型8 由项的系数或系数和确定参数 38.设()2340123412nn n x a a x a x a x a x a x −=++++++,若0417a a +=.则n = .【答案】4【解析】()12nx −展开式的通项公式为:()C 2rr n x −,分别令0,4r r ==,01a ∴=,4416C n a =, 则0417a a +=,即4116C 17n +=,解得:4n =.故答案为:4.39.()5223x x a −+的展开式的各项系数之和为1,则该展开式中含7x 项的系数是( ) A .600− B .840− C .1080− D .2040−【答案】D【分析】利用赋值法令1x =由各项系数之和为1可求得2a =,由通项可得展开式中含7x 项的系数是2040−. 【详解】因为()5223x x a −+的展开式的各项系数之和为1, 令1x =,得5(1)1a −+=,解得2a =,所以()52232x x −+的展开式中含7x 项为()()()()32332122375253C 2C 32C 2C 32040x x x x x −⨯+−=−,所以该展开式中含7x 项的系数是2040−.40.已知()12nx +的展开式中前3项的二项式系数之和为29,则3123nx x x ⎛⎫⎛⎫+− ⎪⎪⎝⎭⎝⎭的展开式中1x 的系数为( ) A .294− B .826− C .840− D .854−【答案】D【分析】第一步:根据已知求得n ,第二步:分类求展开式中1x的系数,第三步:求和即可得解. 【详解】由题知,121C C 29n n ++=,解得7n =或8n =−(舍去).则72x x ⎫⎪⎭的展开式的通项()73721772C 2C rr r r rr r T x x x −−+⎛⎫=−=− ⎪⎝⎭,当313x +中取3时,72x x ⎫⎪⎭的展开式中取含1x 的项,令7312−=−r ,解得3r =,()37332C 840⨯−=−; 当313x +中取31x 时,72x x ⎫⎪⎭的展开式中取含2x 的项,令7322r −=,解得1r =,()172C 14−=−. 所以3123nx x x ⎛⎫+ ⎪⎝⎭的展开式中1x 的系数为84014854−−=−. 故选:D .41.若()421ax x −+的展开式中5x 的系数为56−,则实数=a .【答案】2【解析】()()442211ax x x ax ⎡⎤−+=+−⎣⎦,所以()421x ax ⎡⎤+−⎣⎦的展开式的通项为:()()()()2221444C C C C C rr tttrr t r t r tr r r T x ax x ax a x−−+=−=−=−, 其中0,1,2,3,4;0,1,r t r ==,令25r t −=,所以1,3t r =⎧⎨=⎩或34t r =⎧⎨=⎩, 当13t r =⎧⎨=⎩时,5x 的系数为()3143C C 12a a ⋅⋅−=−, 当34t r =⎧⎨=⎩时,5x 的系数为()343344C C 4a a ⋅⋅−=−, 因为5x 的系数为56−,所以312456a a −−=−,即33140a a +−=,即()()22270a a a −++=,所以2a =.42.42x x ⎛⎫⎪⎝⎭−的展开式中的常数项与321x a x ⎛⎫−+ ⎪⎝⎭展开式中的常数项相等,则a 的值为( )A .3−B .2−C .2D .3【解析】【答案】D【分析】计算出两个二项式的常数项,从而得到关于a 的方程,解出即可. 【详解】42x x ⎛⎫ ⎪⎝⎭−的展开式中的常数项为22424C ()24x x −=,321x a x ⎛⎫−+ ⎪⎝⎭展开式中的常数项032233321C C 3a x a x ⎛⎫+−=− ⎪⎝⎭, 所以3324a −=,即3a =43.已知31(2)ax x x ⎛⎫+− ⎪⎝⎭(a 为常数)的展开式中所有项的系数和为0,则展开式中2x 的系数为 (用数字作答) 【答案】3− 【分析】令1x =,则()()3112a +−即为展开式中所有项的系数和,可计算出a 的值,结合二项展开式的通项公式计算即可得.【详解】令1x =,则()()31120a +−=,即1a =−,则对31x x ⎛⎫−+ ⎪⎝⎭,有()()33321331C C 1kk k k kk k T x xx −−−+⎛⎫=−=− ⎪⎝⎭, 令321k −=,即1k =,有()21123C 13T x x =−=−,即有223T x x ⨯=−,令322k −=,则12k =,舍去; 故展开式中2x 的系数为3−.44.5122a x x x x ⎛⎫⎛⎫+− ⎪⎪⎝⎭⎝⎭的展开式中各项系数之和为3,则该展开式中常数项为( )A .40B .160C .0D .320【解析】【答案】C 【分析】取1x =代入计算得到1a =,确定512x x ⎛⎫− ⎪⎝⎭展开式的通项,分别取3r =和2r =计算得到答案.【详解】5122a x x x x ⎛⎫⎛⎫+− ⎪⎪⎝⎭⎝⎭的展开式中各项系数之和为3,令1x =,可知23a +=,1a =,故5551111221222x x x x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫+−=−+− ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,512x x ⎛⎫− ⎪⎝⎭展开式的通项为()()55521551C 2C 21rr r r r rr r T x xx −−−+⎛⎫=⋅⋅−=⋅⋅− ⎪⎝⎭, 分别取3r =和2r =得到常数项为:()()32353252552C 21C 210−−⨯⋅⋅−+⋅⋅−= 45.(多选)在()()5312x x a −−的展开式中,各项系数的和为1,则( )A .3a =B .展开式中的常数项为32−C .展开式中4x 的系数为160D .展开式中无理项的系数之和为242−【解析】【答案】BC【分析】先根据各项系数和结赋值法得2a =判断A ,然后结合二项式展开式的通项公式求解常数项、含4x 的系数及无理项系数之和判断BCD. 【详解】根据题意令1x =,得())5312x x a −的展开式中各项系数和为()511a −−=,则2a =,A 错误;则())()()553312122x x ax x −=−⋅,又)52x 的展开式的通项为()52152C k k k k T x −+=−,0,1,,5k =,所以展开式中的常数项为()55512C 32⨯−=−,B 正确;含4x 的项为()3334522C 160x x x −=⋅−,其系数为160,C 正确;展开式中无理项的系数之和为()()()()()024*********C 2C 2C 14080121⎡⎤−−+−+−=−++=−⎣⎦,D 错误. 故选:BC.46.已知()2nx y −的展开式中第4项与第5项的二项式系数相等,则展开式中的52x y 项的系数为( )。

二项式定理-高中数学知识点讲解

二项式定理-高中数学知识点讲解

二项式定理1.二项式定理【二项式定理】又称牛顿二项式定理.公式(a+b)n =푛푖=0∁n i a n﹣i•b i.通过这个定理可以把一个多项式的多次方拆开.例 1:用二项式定理估算 1.0110= 1.105.(精确到 0.001)解:1.0110=(1+0.01)10=110+C101•19×0.01+C102•18•0.012≈1+0.1+0.0045≈1.105.故答案为:1.105.这个例题考查了二项式定理的应用,也是比较常见的题型.例 2:把( 3푖―푥)10把二项式定理展开,展开式的第 8 项的系数是.解:由题意T8=C107 × ( 3푖)3 × ( ―1)7 = 120×3 3i=360 3i.故答案为:360 3i.通过这两个例题,大家可以看到二项式定理的重点是在定理,这类型的题都是围着这个定理运作,解题的时候一定要牢记展开式的形式,能正确求解就可以了.【性质】1、二项式定理一般地,对于任意正整数n,都有这个公式就叫做二项式定理,右边的多项式叫做(a+b)n 的二项展开式.其中各项的系数叫做二项式系数.注意:(1)二项展开式有n+1 项;(2)二项式系数与二项展开式系数是两个不同的概念;(3)每一项的次数是一样的,即为n 次,展开式依a 的降幂排列,b 的升幂排列展开;(4)二项式定理通常有如下变形:1/ 2① ;②; (5)要注意逆用二项式定理来分析问题、解决问题.2、二项展开式的通项公式二项展开式的第 n +1 项 叫做二项展开式的通项公式.它体现了二项展开式的 项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定的项及其系数方面有着广泛的应 用.注意:(1)通项公式表示二项展开式的第 r +1 项,该项的二项式系数是∁n r ;(2)字母 b 的次数和组合数的上标相同;(3)a 与 b 的次数之和为 n .3、二项式系数的性质.(1)对称性:与首末两端“等距离”的两个二项式系数相等,即;푛 + 1(2)增减性与最大值:当 k < 时,二项式系数是逐渐增大的.由对称性知,它的后半部分是逐渐减小的,且2푛푛―1 푛+1 在中间取最大值.当 n 为偶数时,则中间一项퐶푛的二项式系数最大;当 n 为奇数时,则中间的两项퐶푛 ,퐶푛相 2 2 2 等,且同时取得最大值.2 / 2。

排列组合二项式定理知识点以及典型例题总结排列组合二项式定理知识点

排列组合二项式定理知识点以及典型例题总结排列组合二项式定理知识点

排列组合二项式定理知识点以及典型例题总结考纲要求:1.知道分类计数原理与分步计数原理的区别,会用两个原理分析和解决一些简单的问题2.知道排列和组合的区别和联系,记住排列数和组合数公式,能用它们解决一些简单的应3.知道一些组合数性质的应用.4.了解二项式定理及其展开式5.记住二项式展开式的通项公式,并能够运用它求展开式中指定的项6.了解二项式系数的性质,能够利用二项式展开式的通项公式求出展开式中二项式系数最大的项.7.了解二项式的展开式中二项式系数与项的系数的区别知识点一:计数原理1.分类加法计数原理如果完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,…,在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1+m2+…+m n种不同的方法.两个基本计数原理的区别:分类计数原理——每一类办法都能把事单独完成;分步计数原理——缺少任何一个步骤都无法把事完成.2.分步乘法计数原理如果完成一件事,需分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有N=m1·m2·…·m n种不同的方法.知识点二:排列1.排列的定义:一般地,从n个不同的元素中,任取m(m≤n)个元素,按照一定顺序排成一列,叫作从n个不同元素中取出m 个元素的一个排列.如果m <n ,这样的排列叫作选排列.如果m =n ,这样的排列叫作全排列.2. 排列数的定义:从n 个不同元素中取出m (m ≤n )个元素的所有排列的个数,叫作从n 个不同元素中取出m 个元素的排列数,用符号P mn 表示.3. 排列数的公式: (1) P m n =n ·(n -1)·(n -2)·…·(n -m +1);(2) P m n =()!!n n m -; 规定:0!=1.知识点三:组合1.组合的定义:一般地,从n 个不同元素中,任取m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.2.组合数的定义:从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号C mn 表示.3. 组合数公式: (1)()()()121P C P !m mn n m n n n n n m m ---+==(2)()!C !!m n n m n m =-(n ,m ∈N +,且m ≤n ) 4. 组合数性质:(1) C =C m n m n n -;(2) 111C +C C mm m n n n +++=知识点四:二项式定理1. 二项式定理(a +b )n =011222C C C C C n n n m n m nn n n n n n a a b a b a b b ---++++++, n ∈N +其中C m n (m =0,1,2,…,n )叫做二项式系数;T m +1=C m n m m n a b -叫做二项式展开式的通项公式.2. 二项式系数的性质:(1)每一行的两端都是1,其余每一个数都是它“肩上”两个数的和;(2)在二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即C C r n r n n -=(3)如果二项式的幂指数n 是偶数,那么中间一项即第12n +项的系数最大;如果二项式的幂指数n 是奇数,那么中间两项即第12n +项和第32n +项的二项式系数相等且最大; (4)(a +b )n 的二项式系数之和为2n ,即012C C C ++C ++C m n n n n n n ++=2n ; (5)(a +b )n 的二项展开式中,奇数项的二项式系数之和等于偶数项的二项式系数之和,都等12n -,024C C C +n n n ++135C +C C n n n =++12n -=.题型一 分类加法计数原理例1 一个盒子里有4个不同的红球,3个不同的黄球和5个不同的蓝球.从盒子中任取一个球,有多少种不同的取法?分析:盒子中取出一个球就可以完成任务,所以考察分类加法计数原理.解答:从盒子中任取一个球,共有三类方案:第一类方案,从4个不同的红球中任取一球,有4种方法;第二类方案,从3个不同的黄球中任取一球,有3种方法;第三类方案,从5个不同的蓝球中任取一球,有5种方法.所以,选一个班担任升旗任务的方法共有:12+10+10=32(种)题型二分步乘法计数原理例2 一个盒子里有4个不同的红球,7个不同的黄球和5个不同的蓝球.从盒子中取红球、黄球和蓝球各一个,有多少种不同的取法?分析:盒子中各取出一个球需要分三步,所以考察分步乘法计数原理.解答:完成这件事需要分三步.第一步,从4个不同的红球中任取一球,有4种方法;第二步,从3个不同的黄球中任取一球,有3种方法;第三步,从5个不同的蓝球中任取一球,有5种方法.由分步乘法计数原理,从盒子中取红球、黄球和蓝球各一个共有⨯⨯435=60种不同的取法.例3 邮政大厅有4个邮筒,现将三封信逐一投入邮筒,共有多少种投法?分析:三封信逐一投入邮筒分成三个步骤,每个步骤投一封信,分别均有4种方法.解答:应用分步计数原理,投法共有44464⨯⨯=种.题型三分类分步混合运算例4 一个盒子里有4个不同的红球,7个不同的黄球和5个不同的蓝球.从盒子中任取2个颜色不同的球,有多少种不同的取法?分析分类计数原理与分步计数原理混合使用的问题,一般要“先分类,后分步”.解答:可按所选两球的颜色分为如下3类.第1类:红球、黄球各一个,有4×7=28种选法;第2类:红球、蓝球各一个,有4×5=20种选法;第3类:黄球、蓝球各一个,有7×5=35种选法.根据分类计数原理,不同的选法种数为N =28+20+35=83(种).知识点二 排列题型一 排列数公式的运用例5 已知221P P n n +-=10,则n 的值为( ). A .4 B .5 C .6 D .7解答:由221P P n n +-=10,得(n +1)n -n (n -1)=10,解得n =5.故选B .题型二 排列的运用例6 小华准备从7本世界名著中任选3本,分别送给甲、乙、丙3位同学,每人1本,共有多少种选法?分析 选出3本不同的书,分别送给甲乙丙3位同学,书的不同排序,结果是不同的.因此选法的种数是从7个不同元素中取出3个元素的排列数.解答:不同的送法的种数是 37P 765210=⨯⨯=.即共有210种不同送法.题型三 某元素一定在某位置例7 4名男生和3名女生排成一排照相,分别按下列要求,求各有多少种不同的排法.(1)男生甲一定在中间位置;(2)男生甲不在中间位置.分析 本题是有限制条件的排列问题,若有特殊元素优先考虑特殊元素,若有特殊位置,优先考虑特殊位置.(1)分两步完成:第一步,男生站在中间位置,有一种排法;第二步,排其他的元素,共有66P 种排法.所以,男生甲一定在中间位置共有661P 720⨯=种排法.(2)分两步完成:第一步,男生不在中间位置,有5种排法;第二步,排其他的元素,共有66P 种排法.所以,男生甲一定在中间位置共有665P 3600⨯=种排法. 题型四 某几个元素相邻例8 4名男生和3名女生排成一排照相,同学甲、乙相邻有多少种排法?分析:解决“相邻”问题采用的是“捆绑法”解答:第一步,把甲、乙看成一个元素,与其他5人共6个元素进行全排列;第二步,甲、乙二人进行全排列.即6262P P =720×2=1440(种).题型五 某几个元素不相邻例9 4名男生和3名女生排成一排照相,同学甲、乙不相邻有多少种排法?分析:解决“不相邻”问题采用的是“插空法”.解答:第一步,把甲、乙之外的5名同学进行全排列;第二步,在5名同学之间或两端共6个空中插入甲、乙两名同学.即5256P P =120×30=3600(种). 例10 4名男生和3名女生排成一排照相,男女同学相间排列,有多少种排法? 分析:“相间”是特殊的“不相邻”问题解答:第一步,男生全排列,有44P 种排法;第二步,女生全排列,有33P 种排法;第三步,相间插入有2中插入方法.即男女同学相间排列,有4343P P 2576⨯=种种排法.题型六 数字的排列问题例11 用数字0,1,2,3,4组成没有重复数字的三位数,求:(1)组成的三位数的个数;(2)组成的三位数中偶数的个数;分析:对数字进行排列时,如果数字中含有0,应区别对待.因为0作为特殊元素,不能在首位出现.解答:(1)应采用特殊位置优先法.因为0不能为首位(百位),所以首位的排法有14P 种,其他两位是从剩余的4个数字中选2个的一个排列,有24P 种,所以共有1244P P =48(种).(2)由于0的存在,应分两类:第一类个位是0,有24P 个;第二类,个位不是0,先确定个位,从2,4中选一个,有12P 种,再确定首位,有13P 种,剩余的一位是从3个数中选1个,有13P 种.所以共有21114233P P P P +=30(种). 知识点三 组合题型一 组合的应用例12 学校组织一项活动,要从5名男同学,3名女同学中选4名.共有多少种选法? 分析: 从5名男同学,3名女同学中选4名, 选出的4名同学任务是一样的,因此选法的种数是从8个不同元素中取出4个元素的组合数. 解答:不同的选法种数是488765C 704321⨯⨯⨯==⨯⨯⨯种. 题型二 一定包含或一定不包含某元素例13 学校组织一项活动,要从5名男同学,3名女同学中选4名.(1)若甲同学必须去,有多少种选法?(2)若甲同学一定不去,有多少种选法?分析:若甲同学必须去,再从其他7人中选3人即可.解答:(1)共有37765C 321⨯⨯=⨯⨯=35种选法. 分析:若甲同学一定不去,从其他7人中选4人即可.解答:(2)共有47C 35=种选法.题型三 至多、至少问题例14 学校组织一项活动,要从5名男同学,3名女同学中选4名.若男生甲、女生乙至少有一个被选中,有多少种选法?分析:至多、至少问题从正面解,一般情况先分类,再求解.当从正面求解困难时,可从对立面求解.解答:方法一 男生甲、女生乙至少有一个被选中,分成两类:第一类 男生甲、女生乙只有一个人被选中,有1326C C 260120=⨯=种选法; 第二类 男生甲、女生乙都被选中,有2226C C 21530=⨯=种选法.所以,男生甲、女生乙至少有一个被选中,共有120+30=150种不同的选法.题型四 组合数性质的的相关计算例15 若44511C C C n n n --=+,求n .分析:考察组合数的性质111C +C C m m m n nn +++=;C =C m n m n n-. 解答:45511C +C =C ,n n n --∴45C =C ,n n∴n =4+5=9.题型四 排列、组合混合应用例16 从6名男生和5名女生中选出3名男生和2名女生排成一行,有多少种不同排法? 分析:可以首先将男生选出,再将女生选出,然后对选出的5名学生排序.解 不同排法的总数为32565565454C C P 543212400032121⨯⨯⨯⋅⋅=⨯⨯⨯⨯⨯⨯=⨯⨯⨯(种). 知识点四 二项式定理题型一 求二项式展开式的指定项例17 求二项式103x x ⎛⎫- ⎪⎝⎭的展开式中第4项. 分析:.二项式103x x ⎛⎫- ⎪⎝⎭的展开式第4项,则n 的值为10,m 的值为3,可直接用二项式的通项T m +1=C m n m m n a b -求解.解答:T 4=T 3+1=337103C x x ⎛⎫- ⎪⎝⎭=-3240x 4, ∴第4项是-3240x 4.. 例18 求二项式103x x ⎛⎫- ⎪⎝⎭的展开式中含x 6的项. 分析:二项式103x x ⎛⎫- ⎪⎝⎭的展开式中含x 6的项,则n 的值为10,m 的值未知.此类问题应先写出二项式的通项,结合条件“含x 6的项”确定出m 的值.从而求出含x 6的项.解答: ∵T m +1=()1010210103C 3C m m m mm m x x x --⎛⎫-=- ⎪⎝⎭, 令10-2m =6,得m =2.∴含x 6的项为T 3=T 2+1=(-3)2210C x 6=405x 6. 例19 在二项式103x x ⎛⎫- ⎪⎝⎭的展开式,求: (1)常数项;(2)二项式系数最大的项.分析:(1)求常数项,因为不知道m 的值,要根据“常数项”之一条件确定m 的值.所以,与例18过程相似;(2)可计算出第10162+=项为二项式系数最大的项,其实就是求第6项,所以与例17过程相似.解答:(1)∵T m +1=()1010210103C 3C m m m mm m x x x --⎛⎫-=- ⎪⎝⎭, 10-2m =0,即m =5.∴展开式的第6项是常数项,即T 6=T 5+1=5555510103C =(3)C x x ⎛⎫-- ⎪⎝⎭=-61236. (2)∵n =10,∴展开式有11项,中间一项的二项式系数最大,中间一项为第6项. ∴T 6=T 5+1=5555510103C =(3)C x x ⎛⎫-- ⎪⎝⎭=-61236. 题型二 求二项式展开式的某一项系数与某一项的二项式系数.例20 求92)x -(的二项展开式中6x 的系数和该项的二项式系数. 分析:二项展开式中某项的的系数与这一项二项式系数是两个不同的概念. 某项的系数是除字母外的所有数乘积的结果,某项的二项式系数是该项的组合数,和其他无关. 解答: 92)x -(的展开式的通项公式为99199C (2)C (1)2m m m m m m m m T x x --+=-=-⋅⋅ 由9-m =6,得m =3.即二项展开式中含6x 的项为第4项.故这一项的系数是3339987C (1)2(8)672321⨯⨯⨯-⨯=⨯-=-⨯⨯.该项的二项式系数为39987C 84321⨯⨯==⨯⨯. 题型三 二项式各项系数和与二项式系数和例21 在(1-x )5的二项展开式中,各项系数和为____________;所有项的二项式系数之和为____________.分析:在二项式中令式子中的字母为1,可得各项系数和;所有项的二项式系数之和为2n ,即012C C C ++C ++C m n n n n n n ++=2n ,故所有项的二项式系数之和只和n 有关.解答:在(1-x )5中,令x =1,可得各项系数和为0.(1-x )5的二项式系数之和为25=32.。

2025年高考数学总复习课件80第十章第二节二项式定理

2025年高考数学总复习课件80第十章第二节二项式定理

考向1 求二项展开式中的特定项
【例1】(1)(2024·烟台模拟7的展开式中x13的系数是84,则实数a=
()
A.2
√B.5 4
C.1
D.
2 4
B
解析:二项式
x+
a
x
7展开式的通项为Tk+1=C7kx7-k
a
x
k=C7kakx7-2k.又展开式中
x13的系数是84,令7-2k=-3,得k=5,所以C75a5=84,解得a=5 4.故选B.
2 x
13 的 展 开 式 的 通 项 为 Tk + 1 = C1k3
-2
13-3k kx 2 ,令
13-2 3k=2,得k=3,所以-8C133·x2=-2 288x2,即含x2的项的系数是-2 288.
3.已知(x-1)(ax+1)6的展开式中含x2项的系数为0,则正实数a=________.
2 5
第二节 二项式定理
必备知识 落实“四基”
核心考点 提升“四能”
课时质量评价
自查自测 知识点二 二项式系数的性质
1.在
1 x

x
10的展开式中,二项式系数最大的项是(
)
A.第5项
√B.第6项
C.第7项
D.第5或第7项
B
解析:在
1 x

x
10的二项展开式中,第6项的二项式系数最大.故选B.
第二节 二项式定理
第二节 二项式定理
必备知识 落实“四基”
核心考点 提升“四能”
课时质量评价
考向3 形如(a+b+c)n(n∈N*)的展开式
【例3】(2024·烟台模拟)在(x2-2x+y)6的展开式中,含x5y2项的系数为( )

高中数学二项式定理知识点+练习

高中数学二项式定理知识点+练习

要求层次重难点二项式定理用二项式定理解决与二项展开式有关的简单问题B二项式定理①能用计数原理证明二项式定理.②会用二项式定理解决与二项展开式有关的简单问题.(一)知识内容1.二项式定理:011()C C C C*n n n r n r r n nn n n na b a a b a b b n--+=+++++∈N,.2.通项公式:展开式的第1r+项1C0r n r rr nT a b r n-+=,≤≤.3.杨辉三角.4.二项式系数的性质:⑴在二项展开式中,与首末两端“等距离”的两项的二项式系数相等;⑵当12nk+<时,二项式系数C kn是逐渐递增的,它的后半部分是逐渐递减的.n是偶数时,中间项最大;n是奇数时,中间两项相等且最大.⑶二项式系数之和:01C C C2n nn n n+++=.(二)典例分析【例1】1003(23)+的展开式中共有_______项是有理项.【例2】64(1)(1)x x-+的展开式中x的系数是_______(用数字作答).【例3】610341(1)(1)xx++展开式中的常数项为_______(用数字作答).【例4】在25(42)x x++的展开式中,x的系数为_______(用数字作答).【例5】在25(42)x x++的展开式中,2x的系数为_______(用数字作答).例题精讲高考要求二项式定理板块一:二项式展开的通项与系数【例6】 在25(42)x x ++的展开式中,3x 的系数为_______(用数字作答).【例7】 求294(31)(21)x x x +-+展开式中含2x 项系数.【例8】 51(2)2x x++的展开式中整理后的常数项为 (用数字作答).【例9】 281(12)()x x x+-的展开式中常数项为 (用数字作答)【例10】 若1()n x x+展开式的二项式系数之和为64,则展开式的常数项为_______(用数字作答).【例11】 在26(1)(1)(1)x x x ++++++的展开式中,2x 项的系数是 .(用数字作答)【例12】 2345(1)(1)(1)(1)(1)x x x x x ---+---+-的展开式中2x 的系数等于________.(用数字作答)【例13】 若423401234(23)x a a x a x a x a x +=++++,则2202413()()a a a a a ++-+的值为_____(用数字作答).【例14】 若31(2)n x x+的展开式中含有常数项,则最小的正整数n 等于 .【例15】 在2()n x x+的二项展开式中,若常数项为60,则n 等于 (用数字作答)【例16】 21()n x x-的展开式中,常数项为15,则n = .【例17】 已知231(1)()n x x x x+++的展开式中没有常数项,n ∈*N ,且28n ≤≤,则n =______.【例18】 291()2x x -展开式中9x 的系数是_______(用数字作答).【例19】 1231()x x-展开式中的常数项为_______(用数字作答).【例20】 在8(1)(1)x x -+的展开式中5x 的系数是( ).A .−14B .14C .−28D .28【例21】 已知2()n i x x-的展开式中第三项与第五项的系数之比为314-,其中21i =-,则展开式中常数项是 (用数字作答)【例22】 在(1)(2)(3)(4)(5)x x x x x -----的展开式中,含4x 的项的系数是( )【例23】 在56789(1)(1)(1)(1)(1)x x x x x -+-+-+-+-的展开式中,含3x 项的系数是 (用数字作答)【例24】 已知5(cos 1)x θ+的展开式中2x 的系数与45()4x +的展开式中3x 的系数相等cos θ= .【例25】 若261()x ax +的二项展开式中3x 的系数为5,2则a =__________.(用数字作答)【例26】 设常数0a >,241()ax x+展开式中3x 的系数为32,则a =_____.【例27】 已知26(1)kx +(k 是正整数)的展开式中,8x 的系数小于120,则k = .【例28】 已知10()n n ∈N ≤,若nxx )1(23-的展开式中含有常数项,则这样的n 有( ) A .3个 B .2 C .1 D .0【例29】 求26(1)x x +-展开式中5x 的系数.【例30】1003(23)+的展开式中共有_______项是有理项.【例31】 64(1)(1)x x -+的展开式中x 的系数是_______(用数字作答).【例32】 610341(1)(1)x x++展开式中的常数项为_______(用数字作答).【例33】 在25(42)x x ++的展开式中,x 的系数为_______(用数字作答). 【变式】 在25(42)x x ++的展开式中,2x 的系数为_______(用数字作答).【变式】 在25(42)x x ++的展开式中,3x 的系数为_______(用数字作答).【例34】 求294(31)(21)x x x +-+展开式中含2x 项系数.【例35】 51(2)2x x++的展开式中整理后的常数项为 (用数字作答).【例36】 281(12)()x x x+-的展开式中常数项为 (用数字作答)【例38】 在26(1)(1)(1)x x x ++++++的展开式中,2x 项的系数是 .(用数字作答)【例39】 2345(1)(1)(1)(1)(1)x x x x x ---+---+-的展开式中2x 的系数等于________.(用数字作答)【例40】 12()m n ax bx +中,a b ,为正实数,且200m n mn +=≠,,它的展开式中系数最大的项是常数项,求ab的取值范围.【例41】 若31(2)n x x+的展开式中含有常数项,则最小的正整数n 等于 .【例42】 在2()n x x+的二项展开式中,若常数项为60,则n 等于 (用数字作答)【例43】 21()n x x-的展开式中,常数项为15,则n = .【例44】 已知231(1)()n x x x x+++的展开式中没有常数项,n ∈*N ,且28n ≤≤,则n =______.【例45】 291()2x x -展开式中9x 的系数是_______(用数字作答).【例46】 1231()x x-展开式中的常数项为_______(用数字作答).【例47】 在8(1)(1)x x -+的展开式中5x 的系数是( ).A .−14B .14C .−28D .28【例48】 已知2()n i x x-的展开式中第三项与第五项的系数之比为314-,其中21i =-,则展开式中常数项是 (用数字作答)【例49】 在(1)(2)(3)(4)(5)x x x x x -----的展开式中,含4x 的项的系数是( )(A )15- (B )85 (C )120- (D )274【例50】 在56789(1)(1)(1)(1)(1)x x x x x -+-+-+-+-的展开式中,含3x 项的系数是 (用数字作答)【例51】 若261()x ax +的二项展开式中3x 的系数为5,2则a =__________.(用数字作答)【例52】 设常数0a >,241()ax x+展开式中3x 的系数为32,则a =_____.【例54】 已知10()n n ∈N ≤,若nx x )1(23-的展开式中含有常数项,则这样的n 有( ) A .3个 B .2 C .1 D .0【例55】 (2009浙江4)在二项式521x x ⎛⎫- ⎪⎝⎭的展开式中,含4x 的项的系数是( )A .10-B .10C .5-D .5【例56】 5231x x ⎛⎫+ ⎪⎝⎭的展开式中常数项为______;各项系数之和为______.(用数字作答)【例57】34(12)(1)x x +-的展开式中x 的系数是______,2x 的系数为______. 【例58】 关于二项式2005(1)x -有下列命题:①该二项展开式中非常数项的系数和是1:②该二项展开式中第六项为619992005C x; ③该二项展开式中系数最大的项是第1003项与第1004项; ④当2006x =时,2005(1)x -除以2006的余数是2005.其中正确命题的序号是__________.(注:把你认为正确的命题序号都填上)【例59】 若231nx x ⎛⎫+ ⎪⎝⎭展开式的各项系数之和为32,则n =_____,其展开式中的常数项为______.(用数字作答)其中正确命题的序号是__________.(注:把你认为正确的命题序号都填上)【例60】 411(1)x x ⎛⎫++ ⎪⎝⎭的展开中含2x 的项的系数为( ) A .4B .6C .10D .12【例61】 求二项式1532x x ⎛⎫- ⎪⎝⎭的展开式中:⑴常数项;⑵有几个有理项(只需求出个数即可); ⑶有几个整式项(只需求出个数即可).【例62】 1231x x ⎛⎫- ⎪⎝⎭展开式中的常数项为( )【例63】 若231nx x ⎛⎫+ ⎪⎝⎭展开式的各项系数之和为32,则n =_________,其展开式中的常数项为___________.(用数字作答)【例64】 已知()π0sin cos a x x dx =+⎰,则二项式61a x x ⎛⎫- ⎪⎝⎭ 展开式中含2x 项的系数是 .【例65】 设()5nx x-的展开式的各项系数之和为M , 二项式系数之和为N ,若240M N -=, 则展开式中3x 的系数为( )A .150-B .150C .500-D .500【例66】 ()()6411xx -+的展开式中x 的系数是( )A .4-B .3-C .3D . 4【例67】 若621x ax ⎛⎫+ ⎪⎝⎭的二项展开式中2x 的系数为52,则a = (用数字作答).【例68】6260126(1)x a a x a x a x -=++++,则0a +126a a a +++=______.【例69】 若在二项式10(1)x +的展开式中任取一项,则该项的系数为奇数的概率是_____.【例70】 在261(2)x x-的展开式中常数项是______,中间项是________.【例71】 在7(1)ax +的展开式中,3x 的系数是2x 的系数与4x 的系数的等差中项,若实数1a >,那么_______a =.【例72】 令n a 为1()(1)n n f x x +=+的展开式中含1n x -项的系数,则数列1{}na 的前2009项和为______.【例73】 已知lg lg 2(21)x n x ++展开式中最后三项的系数的和是方程2lg(7272)0y y --=的正数解,它的中间项是42lg 210+,求x 的值.【例74】 二项式1532()x x-的展开式中:⑴求常数项;⑵有几个有理项; ⑶有几个整式项.【例75】 在()11332x x⋅-⋅的展开式中任取一项,设所取项为有理项的概率为p ,则1p x dx =⎰A .1B .67 C .76 D .1113【例76】 若1nx x ⎛⎫+ ⎪⎝⎭展开式的二项式系数之和为64,则展开式的常数项为 .【例77】 已知26(1)kx +(k 是正整数)的展开式中,8x 的系数小于120,则k =______.【例78】 若12nx x ⎛⎫+ ⎪⎝⎭的展开式中前三项的系数成等差数列,则展开式中4x 项的系数为_______.【例79】 在二项式412nx x ⎛⎫+ ⎪⎝⎭的展开式中,前三项的系数成等差数列,求展开式中所有有理项.【例80】 求()()31011x x -+展开式中5x 的系数;【例81】 求612x x ⎛⎫++ ⎪⎝⎭展开式中的常数项.【例82】 在312nx x ⎛⎫⎪⎝⎭+的展开式,只有第5项的二项式系数最大,则展开式中常数项为 .(用数字作答)【例83】 在二项式521x x ⎛⎫- ⎪⎝⎭的展开式中,含4x 的项的系数是( )A .10-B .10C .5-D .5【例84】 6122x x ⎛⎫- ⎪⎝⎭的展开式的常数项是 (用数字作答)【例85】6(2)x +的展开式中3x 的系数是( ) A .20B .40C .80D .160【例86】4()x y y x -的展开式中33x y 的系数为 .【例87】 已知12nx x ⎛⎫+ ⎪⎝⎭展开式的第二项与第三项的系数比是1:2,则n =________.【例88】 若n x )2(+展开式的二项式系数之和等于64,则第三项是 .【例89】 522x x ⎛⎫+ ⎪⎝⎭的展开式中2x 的系数是________;其展开式中各项系数之和为_______.(用数字作答)【例90】 在2nx x ⎛⎫+ ⎪⎝⎭的二项展开式中,若常数项为60,则n 等于( )A.3 B.6 C.9 D.12【例91】 已知a 为实数,10()x a +展开式中7x 的系数是15-,则a =_______.【例92】 求91x x ⎛⎫- ⎪⎝⎭的二项展开式中含3x 的项的二项式系数与系数.【例93】 1nx x ⎛⎫- ⎪⎝⎭的展开式中的第5项为常数项,那么正整数n 的值是 .【例94】 二项式41nx x x ⎛⎫+ ⎪⎝⎭的展开式中第三项系数比第二项系数大44,求第4项的系数.【例95】10()x y -的展开式中,73x y 的系数与37x y 的系数之和等于__________.(一)知识内容1.二项式定理:011()C C C C *n n n r n r rn nn n n n a b a ab a b b n --+=+++++∈N ,. 2.通项公式:展开式的第1r +项1C 0r n r rr n T ab r n -+=,≤≤. 3.杨辉三角.4.二项式系数的性质:⑴在二项展开式中,与首末两端“等距离”的两项的二项式系数相等;⑵当12n k +<时,二项式系数C k n 是逐渐递增的,它的后半部分是逐渐递减的.n 是偶数时,中间项最大;n 是奇数时,中间两项相等且最大.板块二:二项式系数与最值(二)典例分析展开式【例1】 求51x x ⎛⎫+ ⎪⎝⎭的二项展开式.【例2】 若()5122a b +=+(a ,b 为有理数),则a b +=( ) A .45B .55C .70D .80二项式系数的和【例3】 若()10023100012310023xa a x a x a x a x -=+++++,求()()22024********a a a a a a a a ++++-++++的值.【例4】 若201(1)(1)(1)(1)(1)n n n x x x a a x a x ++++++=+-+-,则01n a a a ++= .【例5】 若423401234(23)x a a x a x a x a x +=++++,则2202413()()a a a a a ++-+的值为_____(用数字作答).【例6】 若52345012345(2)x a a x a x a x a x a x -=+++++,则12345a a a a a ++++=_____.【例7】 已知7270127(12)x a a x a x a x -=++++,求017||||||a a a +++.【例8】 若()72345670123456712x a a a x a x a x a x a x a x +=+++++++,求0246a a a a +++的值.【例9】 若423401234(23)x a a x a x a x a x +=++++,则2202413()()a a a a a ++-+的值为( ).【例10】 设5432()5101051f x x x x x x =-+-++,则1()f x -等于( )A .51x +B .512x --C .512x +-D .51x -【例11】 若1002100012100(12)(1)(1)(1)x a a x a x a x +=+-+-++-,则13599a a a a ++++=( )A .1001(31)2-B .1001(31)2+C .1001(51)2-D .1001(51)2+【例12】 已知()77012712x a a x a x a x -=++++,求:⑴ 1237a a a a ++++;⑵ 1357a a a a +++; ⑶ 0246a a a a +++.【例13】 若()10023100012310023xa a x a x a x a x -=+++++,求()()22024********a a a a a a a a ++++-++++的值.【例14】 若55432543210(2)x a x a x a x a x a x a -=+++++,则12345a a a a a ++++=________.(用数字作答)【例15】 若201(1)(1)(1)(1)(1)n n n x x x a a x a x ++++++=+-+-,则01n a a a ++= .【例16】 若()2009200901200912x a a x a x -=+++,则20091222009222a a a +++的值为( ) A .0B .2C .1-D .2-最值问题【例17】 如果232(3)nx x -的展开式中含有非零常数项,则正整数n 的最小值为_______(用数字作答).【例18】20(23)x +展开式中系数最大的项是第几项?【例19】 12()m n ax bx +中,a b ,为正实数,且200m n mn +=≠,,它的展开式中系数最大的项是常数项,求a的取值范围.【例20】 如果232(3)nx x -的展开式中含有非零常数项,则正整数n 的最小值为_______(用数字作答).【例21】20(23)x +展开式中系数最大的项是第几项?【例22】 二项式(1sin )n x +的展开式中,末尾两项的系数之和为7,且二项式系数最大的一项的值为52,则x 在(0,2π)内的值为___________.【例23】 已知1()2n x x+的展开式中前三项的系数成等差数列.⑴求n 的值;⑵求展开式中系数最大的项.【例24】 已知(13)n x +的展开式中,末三项的二项式系数的和等于121,求展开式中系数最大的项.【例25】 在132nx x -⎛⎫- ⎪⎝⎭的展开式中,只有第5项的二项式系数最大,则展开式中常数项是____.A .7-B .7C .28-D .28【例26】 (12)n x +的展开式中第6项与第7项的系数相等,求展开式中二项式系数最大的项和系数最大的项.【例27】 已知lg 8(2)x x x +的展开式中,二项式系数最大的项的值等于1120,求x .【例28】 求10312x x ⎛⎫- ⎪⎝⎭的展开式中,系数绝对值最大的项以及系数最大的项.【例29】 已知3241nx x ⎛⎫+ ⎪ ⎪⎝⎭展开式中的倒数第三项的系数为45,求: ⑴含3x 的项; ⑵系数最大的项.【例30】 设m n +∈N ,,1m n ,≥,()(1)(1)m n f x x x =+++的展开式中,x 的系数为19.⑴求()f x 展开式中2x 的系数的最大、最小值;⑵对于使()f x 中2x 的系数取最小值时的m 、n 的值,求7x 的系数.(一)知识内容1.二项式定理:011()C C C C *n n n r n r rn nn n n n a b a ab a b b n --+=+++++∈N ,. 2.通项公式:展开式的第1r +项1C 0r n r rr n T ab r n -+=,≤≤. 3.杨辉三角.4.二项式系数的性质:⑴在二项展开式中,与首末两端“等距离”的两项的二项式系数相等;⑵当12n k +<时,二项式系数C k n 是逐渐递增的,它的后半部分是逐渐递减的.n 是偶数时,中间项最大;n 是奇数时,中间两项相等且最大.⑶二项式系数之和:01C C C 2nn n n n +++=.(二)典例分析【例1】 计算()50.997的近似值(精确到0.001).()()550.99710.003=-2150.003100.003=-⨯+⨯-【例2】 利用二项式定理证明:22389n n +--是64的倍数.【例3】 若*n ∈N ,证明:2332437n n +-+能被64整除.【例4】 证明:22(13)(13)(*)n n n ++-∈N 能被12n +整除.【例5】 证明:2121(13)(13)(*)n n n ++++-∈N 能被12n +整除.板块三:二项式定理的应用【例6】 求证:021222()()()C C C C n nn n n n +++=【例7】 证明:mm k 0C C 2C n m k mn k n n --==∑【例8】 求证:121C 2C C 2n n n n n n n -+++=⋅【例9】 证明:n nkn k n k k n n +=--=++++∑20123C (1)(2)(1)(2).【例10】 证明:220C (1)2nk n n k k nn -==+∑.【例11】 n ∈N 且3n ≥,求证:()323238.n n n n ->++【例12】 求证:()()()21sin 1sin *nnn n θθ++-∈N ≥【例13】 求证:()()()()21221*nnnn n n n ++-∈N ≥【例14】 已知:1x y x y +=∈R ,,,求证:112n n n x y -+≥,(*)n ∈N【例15】 0*a b a b n ∈+∈R N 、,,≥,求证:()22n n na b a b ++≥11n n n n na ab ab b a b --++⋯+++【例17】 设数列{}n a 是等比数列,311232C mm m a +-=Α,公比q 是421()4x x +的展开式的第二项. ⑴用n x ,表示通项n a 与前n 项和n S ;⑵若1212C C C nn n n n n A S S S =+++用n x ,表示n A【例18】 已知数列0123a a a a ,,,,(00≠a )满足:112(123)i i i a a a i -++==,,, 求证:对于任意正整数n ,【例19】 ⑴3023-除以7的余数________;⑵555515+除以8的余数是__________; ⑶20001991除以310的余数是 .【例20】 求证:()2223n n n n +∈N ,≥≥【例21】 对于*n ∈N ,111(1)(1)1n n n n ++<++.【例22】 求证:12(1)3*n n n+<∈N ,≤【例23】 若()5122a b +=+(a ,b 为有理数),则a b +=( )A .45B .55C .70D .80【例24】 若0()C ni i n i f m m ==∑,则22log (3)log (1)f f 等于( )1【例25】 请先阅读:在等式2cos 22cos 1()x x x =-∈R 的两边求导得2(cos 2)(2cos 1)x x ''=-,由求导法则得(sin 2)24cos (sin )x x x -⋅=⋅-,化简得sin22sin cos x x x =.⑴利用上述想法(或其他方法),结合等式012211(1)C C C C C n n n n nn n n n n x x x xx --+=+++⋅⋅⋅++(x ∈R ,整数2n ≥),证明:112[(1)1]C nn k k n k n x k x--=+-=∑; ⑵对于整数3n ≥,求证:1(1)C 0nk k n k k =-=∑.⑶对于整数3n ≥,求证①21(1)C 0nkknk k =-=∑;②10121C 11n nkn k k n +=-=++∑.【例26】 已知23*0123(1)(1)(1)(1)(1)(2,)n n n x a a x a x a x a x n n +=+-+-+-++-∈N ≥.⑴当5n =时,求012345a a a a a a +++++的值; ⑵设22343,2n n n n a b T b b b b -==++++.试用数学归纳法证明:当2n ≥时,(1)(1)3n n n n T +-=.【例27】 已知函数()f x 满足()()ax f x b f x ⋅=+(0ab ≠),(1)2f =,并且使()2f x x =成立的实数x 有且只有一个.⑴求()f x 的解析式;⑵若数列{}n a 的前n 项和为n S ,n a 满足132a =,当2n ≥时,2()n nS n f a -=,求数列{}n a 的通项公式.⑶在⑵的条件下,令112log (1)n n d a +=-(d ∈N ),求证:当3n ≥时,有1210121C C C C 3C 41n n nn n n n n n d d d d n --+++++>-+.【例28】 已知,,i m n 是正整数,且1i m n <<≤,⑴证明A A i i i i n m m n >;⑵证明(1)(1)n m m n +>+.【例29】 在二项式()1nx +的展开式中,存在着系数之比为57∶的相邻两项,则指数()*n n ∈N 的最小值为 .【例30】 100111-的末尾连续零的个数是 ( )A .7B .5C .3D .2【例31】 设2a i =+,求11212121212121A C a C a C a =-+-+【例32】 设()()21*174n n ++∈N 的整数部分和小数部分分别为nM与n m ,则()n n n m M m +的值为 .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三数学-二项式定理
知识点和例题)
二项式定理 1.知识精讲: (1)二项式定理:nnnrrnrnnnnnnbCbaCbaCaCba110(Nn) 其通项是1rTrrnrnbaC (r=0,1,2,……,n),知4求1,如:555156baCTTnn 亦可写成:1rTrnrnabaC)( nnnnrrnrnrnnnnnbCbaCbaCaCba11110(Nn) 特别地:nnnrnrnnnnnxCxCxCxCx101(Nn) 其中,rnC——二项式系数。而系数是字母前的常数。 例1.nnnnnnCCCC1321393等于 ( ) A.n4 B。n43 C。134n D.314n 解:设nnnnnnnCCCCS1321393,于是: nnnnnnnCCCCS3333333221=13333332210nnnnnnnCCCCC 故选D 例2.(1)求7(12)x的展开式的第四项的系数; (2)求91()xx的展开式中3x的系数及二项式系数 解:(1)7(12)x的展开式的第四项是333317(2)280TCxx, ∴7(12)x的展开式的第四项的系数是280. (2)∵91()xx的展开式的通项是9921991()(1)rrrrrrrTCxCxx, ∴923r,3r, ∴3x的系数339(1)84C,3x的二项式系数3984C.
(2)二项展开式系数的性质:①对称性,在二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即,,,,22110knnknnnnnnnnnnCCCCCCCC ②增减性与最大值:在二项式展开式中,二项式系数先增后减,且在中间取得最大值。如果二项式的幂指数是偶数,中间一项的二项式系数最大,即n偶数:122maxnnnrnTCC;如果二项式的幂指数是奇数,中间两项的二项式系数相等并且最大,即1211212121maxnnnnnnrnTTCCC。 ③所有二项式系数的和用赋值法可以证明等于n2即nnnnnCCC210; 奇数项的二项式系数和与偶数项的二项式系数和相等,即131202nnnnnCCCC 例3.已知7270127(12)xaaxaxaxL,求: (1)127aaaL; (2)1357aaaa; (3)017||||||aaaL. 解:(1)当1x时,77(12)(12)1x,展开式右边为 0127aaaaL ∴0127aaaaL1, 当0x时,01a,∴127112aaaL, (2)令1x, 0127aaaaL1 ① 令1x,7012345673aaaaaaaa ② ①② 得:713572()13aaaa,∴ 1357aaaa7132. (3)由展开式知:1357,,,aaaa均为负,0248,,,aaaa均为正, ∴由(2)中①+② 得:702462()13aaaa,
∴ 70246132aaaa, ∴017||||||aaaL01234567aaaaaaaa 702461357()()3aaaaaaaa 例4.(1)如果在nxx421 的展开式中,前三项的系数成等差数列,求展开式中的有理项。 (2)求321xx的展开式的常数项。 解:(1)展开式中前三项的系数分别为1,2n ,8)1(nn, 由题意得:2×2n=1+8)1(nn得n=8。 设第r+1项为有理项,43168121rrrrxcT,则r是4的倍数,所以r=0,4,8。 有理项为295412561,835,xTxTxT。 【思维点拨】 求展开式中某一特定的项的问题时,常用通项公式,用待定系数法确定r。 (2)321xx61xx,其展开式的通项为2266111rrrrrxxCT22661rrrrxC,令02r26—r得3r 所以,常数项为204T 【思维点拨】 密切注意通项公式的使用。 (3)二项式定理的应用:近似计算和估计、证不等式,如证明:Nnnnn,322取n712211nnnnnnnCCC被9除得的余数是 ( ) A.0 B。2 C。7 D.8 解:777712211nnnnnnnCCC11918nn =1191991111nnnnnnnCC 因为n为奇数,所以原式=2]9199[1111nnnnnnCC 所以,其余数 为9 – 2 = 7,选C 例6:当Nn且n>1,求证3)11(2nn 证明: 2111111)11(1221nCnCnCnCnnnnnnnn nnnnnnnnnnnnnn12321!1!321!212112 2112112122121212!1!31!212112nnn .32131n 从而3)11(2nn 【思维点拨】这类是二项式定理的应用问题,它的取舍根据题目而定。 2.重点难点: 二项式定理,和二项展开式的性质。 3.思维方式:一般与特殊的转化,赋值法的应用。 4.特别注意:①二项式的展开式共有n+1项,rrnrnbaC是第r+1项。 ②通项是1rTrrnrnbaC (r=0,1,2,……,n)中含有rnbaTr,,,,1五个元素,只要知道其中四个即可求第五个元素。 ③注意二项式系数与某一项系数的异同。 ④当n不是很大,|x|比较小时可以用展开式的前几项求nx)1(的近似值。
相关文档
最新文档