七年级数学用数轴上的点表示有理数

合集下载

北师大版七年级数学上册第二章有理数2.2数轴

北师大版七年级数学上册第二章有理数2.2数轴

广州 16.6°C
济南 -C
解:16.6°C>2.3°C>-3.2°C>-5.6°C>-16.8°C
6.观察数轴,找出符合下列要求的数。 (1)最大的负整数; (2)最小的正整数;
解: (1)最大的负整数是-1 (2)最小的正整数1
7.下列说法正确的是 (3) (5) (6)(填序号) (1)数轴上的点只能表示整数; (2)数轴上的点只能表示分数; (3)数轴是一条直线; (4)数轴上找不到即不表示正数,也不表示负数的数; (5)所以有理数都可以用数轴上的点来表示; (6)数轴上的一个点只能表示一个数。
课本:29页,第2,3,5题
1、认识数轴,会画完整的数轴,会用数轴 上的点表示有理数。 2、会利用数轴比较有理数的大小。
1. 具有相反意义 2. 大,小; 3. 正数,负数 4. 分数
1. 我们通常用正数和负数表示 具有相反意义的量; 2. 正数都比零 大 ,负数都比零 小 ; 3. 零既不是 正数 ,也不是 负数 ; 4. 整数和 分数 统称为有理数.
1.用“<”“>”或“=”填空. 0 > -2 ; -3 < 1; -0.1 < 0.1; 0.03 > -100; -9 < -5.
2.在数轴 上与原点距离2个单位长度的点表示的数有 个,为 2,-2.
3.在数轴上,原点及原点右边的点表示的数是( D ) A.正数; B.负数; C.正整数; D.非负数.
4.如果点A表示-3,将A向右移动7个单位长度,那
么终点表示的数是 4

如果点A表示3,将A向左移动7个单位长度,再向右
移动5个单位长度,那么终点表示的数是 1

5.下表是某年1月份我国几个城市的平均气温,请将 各城市按平均气温从高到底顺序排列.

初一数学上册必考知识点

初一数学上册必考知识点

初一数学必考的 21 个知识点,掌握好,轻松 110+!最重要的是还有答题技巧哦,一定要认真看!1.数轴(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向。

(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。

2.相反数(1)相反数的概念:只有符号不同的两个数叫做互为相反数.(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0 外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。

(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。

(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如 a 的相反数是﹣a,m+n 的相反数是﹣(m+n),这时 m+n 是一个整体,在整体前面添负号时,要用小括号。

3.绝对值1.概念:数轴上某个数与原点的距离叫做这个数的绝对值。

①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于 0 的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.2.如果用字母 a 表示有理数,则数 a 绝对值要由字母 a 本身的取值来确定:①当 a 是正有理数时,a 的绝对值是它本身 a;②当 a 是负有理数时,a 的绝对值是它的相反数﹣a;③当 a 是零时,a 的绝对值是零.即|a|={a(a>0)0(a=0)﹣a(a<0)4.有理数大小比较1.有理数的大小比较比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及 0 的大小,利用绝对值比较两个负数的大小。

2.有理数大小比较的法则:①正数都大于 0;②负数都小于 0;③正数大于一切负数;④两个负数,绝对值大的其值反而小。

《数轴》七年级数学教案(精选6篇)

《数轴》七年级数学教案(精选6篇)

《数轴》七年级数学教案(精选6篇)《数轴》七年级数学教案1教学目标1.了解数轴的概念和数轴的画法,掌握数轴的三要素;2.会用数轴上的点表示有理数,会利用数轴比较有理数的大小;3.使学生初步了解数形结合的思想方法,培养学生相互联系的观点。

教学建议一、重点、难点分析本节的重点是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小。

难点是正确理解有理数与数轴上点的对应关系。

数轴的概念包含两个内容,一是数轴的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。

另外应该明确的是,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。

通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础二、知识结构有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的。

重要思想方法,本课知识要点如下表:定义三要素应用数形结合规定了原点、正方向、单位长度的直线叫数轴原点正方向单位长度帮助理解有理数的概念,每个有理数都可用数轴上的点表示,但数轴上的点并非都是有理数比较有理数大小,数轴上右边的数总比左边的数要大在理解并掌握数轴概念的基础之上,要会画出数轴,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数,要知道所有的有理数都可以用数轴上的点表示,会利用数轴比较有理数的大小。

《数轴》七年级数学教案2教学目标:1、正确理解数轴的意义,理解数轴的三要素。

2、掌握有理数在数轴上的表示法,以及利用数轴比较有理数的大小。

3、理解相反数的意义及求法。

4、对学生渗透数形结合的思想方法,培养学生的观察、归纳与概括的能力。

重点难点:1、正确掌握数轴的画法;用数轴上的点表示有理数;求已知数的相反数。

2、有理数和数轴上的的点的对应关系。

教学方法:合作探究交流学法指导:观察归纳概括教学过程:一、情景引入:(1)你会读温度计吗?完成课本43页最上面的读温度计的问题。

1.2用数轴上的点表示有理数

1.2用数轴上的点表示有理数

-4
-3
-2
-1 0
1
2
3
4
拓展应用,深化认识
4.如果瓢虫先向左移动2个单位长度,再向右移动几个 单位长度才能回到自己的家?
-4
-3
-2
-1
0
1
2
3
4
拓展应用,深化认识
5.如果瓢虫第1次先向左移动1个单位长度,第2次再向右移动 2个单位长度,第3次再向左移动1个单位长度,第4次再向右 移动2个单位长度,如此第8次,瓢虫回到自己的家了吗?如 此下去,第100次瓢虫终点表示的数为__________.
请同学们观看一段视频,回答下列问题。 1、怎样的一条直线就是数轴? 2、数轴有哪些要素? 3、画数轴应注意的问题有哪些?
-5 -4 -3 -2 -1 0 1 2 3 4 5
归纳:像这样,规规定定了_原__点__、_正__方__向__、__单_位__长__度__的直线叫做数轴。
(二)应用新知,巩固提高
一般地,如果a是一个正数,则数轴上表示数a的点在原点_右__
边,距离原点_a_个单位长度;表示数-a的点在原点_左_边,距 离原点_a_个单位长度
任何一个有理数都可以用数轴上的一个点来表示。
例2:写出数轴上A,B,C,D ,E 表示的数:
EB
AC
D
-5 -4 -3 -2 -1 0 1 2 3 4 5
数轴的画法
一画(直线) 二定(原点) 三选(正方向) 四统一(单位长度)
判断下面所画数轴是否正确,并说明理由. 原点、正方向和单位长度缺一不可.
(三)应用迁移,动手实践
例1:画出数轴,试说出下列各数分别在数轴上的什么位置? 并在数轴上找到表示下列各数的点 。

七上数学(华东师大)课件-数轴

七上数学(华东师大)课件-数轴
13.用数轴上的点 A、B、C、D 分别表示-2.5、-4、2.5、23,并回答下列 问题: (1)将点 A、B、C、D 表示的数按从小到大的顺序,用“<”号连起来; (2)如果将原点改为点 D,其余各点相对于点 D 的位置不变,则其余各点表 示的数分别是什么?将这些数按从小到大的顺序,用“<”号连起来; (3)改变原点的位置后,点 A、B、C、D 表示的数的大小顺序改变了吗?这 说明了数轴具有什么性质?
【方法归纳】 比较几个有理数的大小,借助于数轴可以非常清晰、直观地 表示出来,这种“数形相合”的思想是数学中一种非常重要的思想.
知识点一:认识数轴 规定了 原点 , 正方向 , 单位长度 的直线叫做数轴. 1.在数轴上,点 a 表示的数是-3.若点 b 也是数轴上的点,且 ab 的长是 4 个单位长度,则点 b 表示的数是 -7或1 . 知识点二:数轴上的点与有理数的关系 数轴上的点与有理数的关系:任何一个有理数都可以用数轴上的点表示,
解:(1)因为点 B 所表示的数是-2,则距点 B 三个单位的点所表示的数有- 5 和 1;
(2)点 C 向左移动 6 个单位到达点 D,则点 D 表示的数为-3,所以-4<-3 <-2; (3)把 A 点向右移动 2 个单位,C 点向左移动 5 个单位或者把 A 点向右移动 7 个单位,B 点向右移动 5 个单位或者把 B 点向左移动 2 个单位,C 点向左 移动 7 个单位.
14.请写出所有满足下列条件的数,并把它们在数轴上表示出来: (1)小于 5 的正整数; (2)大于-3 且不大于 3.7 的整数. 解:(1)1、2、3、4;如图:
(2)-2、-1、0、1、2、3;如图:
15.书店、学校、银行、医院依次坐落在一条东西走向的大街上,书店在 学校西边 20m 处,银行在学校东边 100m 处,医院在银行西边 60m 处. (1)以学校 O 的位置为原点,画数轴,并将书店、银行、医院的位置用 A、B、 C 分别表示在这个数轴上; (2)若小明从学校沿街向东行 50m,又向东行-70m 时,求此时小明的位置. 解:(1)规定向东方向为正方向;

七年级数学必考的21个知识点

七年级数学必考的21个知识点

七年级数学必考的21个知识点1.数轴(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向。

(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。

2.相反数(1)相反数的概念:只有符号不同的两个数叫做互为相反数.(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。

(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。

(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。

3.绝对值1.概念:数轴上某个数与原点的距离叫做这个数的绝对值。

①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.2.如果用字母a表示有理数,则数 a 绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.即|a|={a(a>0)0(a=0)﹣a(a<0)4.有理数大小比较1.有理数的大小比较比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小。

2.有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小。

规律方法·有理数大小比较的三种方法:(1)法则比较:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.(2)数轴比较:在数轴上右边的点表示的数大于左边的点表示的数.(3)作差比较:若a﹣b>0,则a>b;若a﹣b<0,则a<b;若a﹣b=0,则a=b.5.有理数的减法有理数减法法则减去一个数,等于加上这个数的相反数。

北京课改版-数学-七年级上册-教案:2用数轴表示有理数

北京课改版-数学-七年级上册-教案:2用数轴表示有理数

授课日期9月3日课型新授课授课教师单大禹教学课题总课时:第 1 课时教学目标知识与技能:通过实例了解数轴的概念和数轴的画法;知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应,知道互为相反数的一对数在数轴上的位置关系。

过程与方法:通过探究活动,使学生从直观认识到理性认识。

从而建立数轴概念;通过数轴概念的学习,初步体会对应的思想,数形结合的思想方法。

情感态度价值观:通过本课的学习使学生体会到数学知识与现实世界的联系,体现数学充满着探索性,培养学生良好的数学兴趣,能够在师评,生评,自评的影响下,树立学习数学的自信心。

教学重点会说出数轴上已知点所表示的数,能将已知数在数轴上表示出来。

教学难点数轴的引入教学方法讲授法教学准备电脑课件、三角板、温度计教学过程教师活动设计学生活动设计设计意图时间安排一、情境创设导语:大家在日常生活中见过温度计吗?你知道它的用途是什么吗?教师评价学生的回答后,出示问题(出示幻灯片一)三个温度计,其中一个温度计的液面在0上20个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面上0刻度。

三个温度计所表示的温度是多少?教师对学生的回答给予鼓励性评价。

一、结合温度计,探索数轴:(出示幻灯片二)温度的大小可以用温度计来表示,温度计上的读数是有限的,我们前面学习的有理数是无限的,如果要表示有理数的大小的话,把有理数要放在什么上好呢?教师针对学生回答情况给予评价,若存在困难,可适当启发,:小学中已学过用一条直线表示自然数,这里也可以用一条直线来表示有理数,从而引出课题。

(板书:2.2数轴(出示幻灯片三)观察与思考:这条直线上须添加上什么条件和要素才能用来表示有理数?教师参与学生讨论,适时加以引导、启发,对学生的大胆想象加以鼓励,表扬,最后归纳总结出数轴的概念。

(板书:在黑板上画一条数轴)学生小组讨论相互交流可自由发言。

学生仔细观察温度计,类似比较,同桌之间相互讨激情导入,激发学生的兴趣考查学生的生活经验,培养学生的观察能力,同时为引入新课作下铺垫培养学生用类比的方法去思考问题,同时为引出数轴的概念作好准备通过学生的观察讨论,培养学生的观察能力、类比想象能力和合作探究意识。

七年级数学用数轴上的点表示有理数水平测试题

七年级数学用数轴上的点表示有理数水平测试题

淅川县一初中七年级数学月考测试题一、选择题:1.一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动7个单位长度,这时点所对应的数是—————— ( )A.-3B.-1C.-2D.-4 2.下列几组数中是互为相反数的是 —————— ( ) A ―17 和 0.7 B 13 和 ―0.333 C ―(―6) 和 6 D ―14和 0.25 6. 下列说法中正确的是……………( )A .a -一定是负数B .只有两个数相等时它们的绝对值才相等C .若b a =则a 与b 互为相反数D .若一个数小于它的绝对值,则这个数是负数 7. 给出下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等.正确的有…( ) A .0个B .1个C .2个D .3个8.下列说法正确的是 ——————( ) A .整数就是自然数B .0不是自然数C .正数和负数统称为有理数D .0是整数而不是正数 9.下列说法正确的是 —————— ( )A.同号两数相加,其和比加数大B.异号两数相加,其和比两个加数都小C.两数相加,等于它们的绝对值相加D.两个正数相加和为正数,两个负数相加和为负数 10.若a a 22-=,则 a 一定是( )A 、正数B 、负数C 、正数或零D 、负数或零7.请在下列数据中选择你的步长( )。

A 50毫米 B 50厘米 C 50分米 D 50米 9.学校气象小组测得一周的温度并登记在下表: 星期 日 一 二 三 四 五 六 周平均气温气温22℃22℃24℃25℃23℃?℃26℃24℃记录表中,星期五的气温是( )。

A 23B 24C 25D 263.下列各式中正确的是( ) A .-3.14<-π B .-1 >-1 C .3.5>-3.4 D .- <-24.下列说法错误的是( )A .零是最小的整数B .有最大的负整数,没有最大的正整数C .数轴上两点表示的数分别是-2 与-2,那么-2在右边D .所有的有理数都可以用数轴上的点表示出来1.在211-,—2.1,2-,+65,0 中,负数的个数有( ). A.2个 B.3个 C .4个 D.5个2. 对于乒乓球来说,如果将其厚度的标准尺寸规定为0mm ,那么+0.02mm 与-0.01mm•所表示的意义可以看作( )A .分别表示比标准尺寸长0.02mm ,短0.01mm;B .分别表示比标准尺寸短0.02mm ,短0.01mm;C .分别表示比标准尺寸长0.02mm ,长0.01mm;D .以上说法均不对3.下列说法不正确的是( ).A.有理数可分为正整数、正分数、0、负整数、负分数 B.一个有理数不是分数就是整数 C.一个有理数不是正数就是负数D.若一个数是整数,则这个数一定是有理数 5.在下图中,表示数轴正确的是( ).6.冬季某一天我国三个城市的最高气温分别为-9℃,2℃,-5℃,把它们从低到高排列正确的是( ).A .-9℃,2℃,-5℃B .2℃,-5℃.-9℃C .-9℃,-5℃,2℃D .2℃,-9℃,-5℃7.有一只小蚂蚁以每秒2个单位长度的速度从数轴上-4的点A 出发向右爬行3秒到达B 点,则B 点表示的数是( )A 、2B 、-4C 、6D 、-6 8.某种速冻水饺的储藏温度是-18±2℃,四个冷藏室的温度如下,则不适合储藏此种水饺的是( )A.-17℃B.-19℃C.-18℃D.-22℃1、甲‚乙‚丙三地的海拔高度为20米,-15米,-10米,那么最高的地方比最低的地方高( )A .5米B .10米C .25米D .35米 3、 下列说法不正确的是( ) (1)有理数的绝对值一定是正数(2)数轴上的两个有理数,绝对值大的离原点远 (3)一个有理数的绝对值一定不是负数 (4)两个互为相反数的绝对值相等5、绝对值最小的数是 ( )A .1B .-1C .0D .没有7、设a 是最小的自然数, b 是最大的负整数。

2.2用数轴上的点表示有理数

2.2用数轴上的点表示有理数

第 - 1 - 页 共 2 页2.2 用数轴上的点表示有理数一、知识要点1、数轴:规定了正方向、原点和单位长度的直线叫做数轴。

2、数轴三要素:原点、正方向、单位长度。

二、典型例题例1、当10个人站成一排,如何用数学知识快速地指出所要指的人。

一条街道,每户的门牌号码有什么意义?从上述方法中,你是否启发出,如何将我们所学过的数进行排列呢? 在小学里我们曾经用以下方法表示正数与零。

我们可以模仿上述表示方法,依次加入负数,步骤如下:1、画一条水平的直线,并在这条直线上任取一点表示0,称为原点(origin)。

2、把从原点向右的方向规定为正方向(用箭头表示),向左的方向规定为负方向。

3、取适当的长度(如0.5cm )为单位长度,在直线上从原点向右每隔一个单位长度取一点,依次表示1,2,3,…。

从原点向左每隔一个单位长度取一点,依次表示-1,-2,-3,… 像这样规定了原点、正方向、单位长度的直线叫做数轴(number axis)。

你了解数轴了吗?你认为在数轴上可以表示多少个数?所有的有数是否都可以在数轴上表示出来?在数轴上表示数是建立了一个什么与什么的对应关系?解答:(1)(2)(3)(4)(5)都不正确(注意数轴的三要素缺一不可)。

例3、指出下面数轴上A 、B 、C 、D 、E 各点表示什么数?例4、把和下列各有理数对应的点画在数轴上:2,1-,23,0,54-,5.3,并比较大小。

有了数轴以后,全体有理数都能用从左到右排列在数轴上的点表示出来,排列在右边的点表示的数比排列在左面的点表示的数大;负数和正数、零、负数的大小关系可以归纳为:(1) 任何负数小于任何正数; (2) 任何负数都小于零;(3) 在数轴上的点表示负数时,右面的点表示的负数总比左面的点表示的负数大。

● ● ● ●● ●● ● ● ● 3 21 7 6 5 4 0 98 0 2 4.5 ●- 2 -例5、在数轴上,原点与原点右边的点表示的数是( )A 、正数B 、负数C 、整数D 、非负数 例6、通过数轴判断,下面的说法错误的是( )A 、数轴上的点表示一个数B 、数轴上表示+3的点只有一个C 、数轴上到原点的距离等于2个单位长度的点表示的数是2D 、-5是可以用数轴上原点左边第5个单位长度的点表示。

初中数学用数轴上的点表示有理数教案

初中数学用数轴上的点表示有理数教案

初中数学用数轴上的点表示有理数教案用数轴上的点表示有理数教学目的1.使先生正确了解数轴的意义,掌握数轴的三要素;2.使先生学会由数轴上的点说出它所表示的数,能将有理数用数轴上的点表示出来;3.使先生初步了解数形结合的思想方法.教学重点和难点重点:初步了解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.难点:正确了解有理数与数轴上点的对应关系.课堂教学进程设计一、从先生原有认知结构提出效果1.小学里曾用〝射线〞上的点来表示数,你能在射线上表示出1和2吗?2.用〝射线〞能不能表示有理数?为什么?3.你以为把〝射线〞做怎样的改动,才干用来表示有理数呢?待先生回答后,教员指出,这就是我们本节课所要学习的内容数轴.二、讲授新课让先生观察挂图缩小的温度计,同时教员给予言语指点:应用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,依据温度计的液面的不同位置就可以读出不同的数,从而失掉所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.与温度计相似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、正数和零.详细方法如下(边说边画):1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,假设所需的都是正数,也可倾向左边)用这点表示0(相当于温度计上的0℃);2.规则直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…提问:我们能不能用这条直线表示任何有理数?(可罗列几个数)在此基础上,给出数轴的定义,即规则了原点、正方向和单位长度的直线叫做数轴.进而提问先生:在数轴上,一点P表示数-5,假设数轴上的原点不选在原来位置,而改组在另一位置,那么P对应的数能否还是-5?假设单位长度改动呢?假设直线的正方向改动呢?经过上述提问,向先生指出:数轴的三要素原点、正方向和单位长度,缺一不可.三、运用举例变式练习例1 画一个数轴,并在数轴上画出表示以下各数的点:例2 指出数轴上A,B,C,D,E各点区分表示什么数.课堂练习示出来.2.说出下面数轴上A,B,C,D,O,M各点表示什么数?最后引导先生得出结论:正有理数可用原点左边的点表示,负有理数可用原点左边的点表示,零用原点表示.四、小结指点先生阅读教材后指出:数轴是十分重要的数学工具,它使数和直线上的点树立了对应关系,它提醒了数和形之间的内在联络,为我们研讨效果提供了新的方法.本节课要求同窗们能掌握数轴的三要素,正确地画出数轴,在此还要提示同窗们,一切的有理数都可用数轴上的点来表示,但是反过去不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个效果以后再研讨.五、作业课堂教学设计说明从先生已有知识、阅历动身研讨新效果,是我们组织教学的一个重要原那么.小学里曾学过应用射线上的点来表示数,为此我们可引导先生思索:把射线怎样做些改良就可以用来表示有理数?伴以温度计为模型,引出数轴的概念.教学中,数轴的三要素中的每一要素都要仔细剖析它的作用,使先生从直观看法上升到理性看法.直线、数轴都是十分笼统的数学概念,当然对初学者不宜讲的过多,但适当引导先生停止笼统的思想活动还是可行的.例如,向先生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等.。

1.2用数轴上的点表示有理数-北京版七年级数学上册教案

1.2用数轴上的点表示有理数-北京版七年级数学上册教案

**欠款人家属承诺还款保证书**一、债权人信息债权人姓名:[XXXXX]身份证号码:[身份证号码]联系电话:[联系电话]通讯地址:[通讯地址]二、债务人信息债务人姓名:[XXXXX]身份证号码:[身份证号码]联系电话:[联系电话]通讯地址:[通讯地址]三、欠款金额和明细根据双方协议,债务人截至XXXX年XX月XX日共欠债权人人民币XX 元,明细如下:1. 借款本金:XX元2. 利息:XX元3. 其他费用:XX元总计:XX元四、还款承诺和计划债务人及家属承诺按以下计划进行还款:1. XX年XX月XX日前,偿还欠款本金XX元。

2. XX年XX月XX日前,偿还利息及费用XX元。

3. XX年XX月XX日前,偿还剩余欠款本金及利息。

五、保证措施和责任为确保上述还款计划的履行,债务人及家属提供以下保证措施:1. 保证将所有收入及时存入指定账户,并授权债权人随时查账和划款。

2. 提供担保或抵押物,确保还款计划的履行。

3. 保证及时通知债权人任何可能导致还款计划执行受阻的事项。

4. 如有违反本保证书的行为,同意接受相应的法律责任。

六、违约责任和罚则如债务人及家属未能按期履行还款计划,债权人有权采取以下措施:1. 要求债务人立即偿还所有欠款及利息。

2. 追讨因违约产生的相关费用,包括但不限于律师费、诉讼费等。

3. 对抵押物进行处置,以收回欠款。

4. 其他合法手段进行追偿。

七、争议解决方式如因本保证书产生的任何争议,双方应首先友好协商解决;协商不成的,任何一方均有权向债权人所在地人民法院提起诉讼。

八、签署和日期债务人及家属在此签署本保证书,以示对上述承诺和计划的确认。

本保证书一式两份,债权人和债务人各执一份。

本保证书自签署之日起生效。

1.3 数轴(课件)七年级数学上册(青岛版2024)

1.3 数轴(课件)七年级数学上册(青岛版2024)
第1章 有理数
1.3 数轴
学习目标
1. 掌握数轴的概念,能正确的画出数轴;
2. 理解数轴上的点和有理数的对应关系,会利
用数轴上的点表示有理数.
问题情境
在小学阶段,我们可以用直线
上依次排列的点来表示自然数.
引入负数后,能否用类似的方
式表示有理数呢?
观察与发现
某数学活动小组参加绘制北京地铁1号线的线路图的活动. 他们发现
2
3 4 5
例题讲解
例2
如图,数轴上点A,B,C,D分别表示什么数?
A
B
C
0
D
1
解:A表示-4,B表示-2, C表示0,D表示2.5 .
新知巩固
1. 写出下图中数轴上的点A,B,C,D,E表示的有理数:
A
B
C
-5 -4 -3 -2 -1 0 1
D
2
E
3 4 5
解:A表示-5,B表示-2, C表示0,D表示3,E表示5 .
错误,没有单位长度.
错误,单位长度不一致.
错误,没有原点.
错误,刻度要按从左到右、从小到大的顺序标.
错误,没有箭头.
正确.
课堂检测
基础过关
2. 如图,写出数轴上的点A,B,C,D,E表示的有理数:
A
B
C
-4 -3.5 -3
-2
-1
0
D
E
1 1.5 2
3
4
5
解:A表示-3.5,B表示-2, C表示-1,D表示1.5,E表示3.
按照规定的单位长度,直线上从原点向正方向,每隔一个单位长度取一个点,依次表
示1,2,3,…;从原点向负方向,用类似的方法依次表示-1,-2,-3,….

七年级数学上册专题01_有理数的分类及数轴(知识点串讲)(解析版)

七年级数学上册专题01_有理数的分类及数轴(知识点串讲)(解析版)

专题01 有理数的分类及数轴知识点一有理数分类有理数(概念理解)按照整数和分数的分类【注意】0既不是正数也不是负数。

按正数、负数、和零的关系分类有理数分类注意事项:1.无限不循环的小数不是有理数,比如:圆周率。

2.无限循环的小数是有理数,比如:0.6666666…3.如200%,6/3能约分成整数的数不能算做分数知识点二数轴规定了原点、正方向、单位长度的直线叫做数轴。

数轴的三要素:原点、正方向、单位长度(重点)画数轴步骤:画直线-取原点-规定正方向-单位长度任何有理数都可以用数轴上的点表示,有理数与数轴上的点是一一对应的。

✓数轴上的点表示的数从左到右依次增大;原点左边的数是负数,原点右边的数是正数. ✓实心点表示包括本数,空心点表示不包括本数。

考查题型考查题型一 正负数在实际生活中的应用典例1.如果向东走2m 记为2m +,则向西走3m 可记为( )A .3m +B .2m +C .3m -D .2m -【答案】C【解析】详解:若向东走2m 记作+2m ,则向西走3m 记作-3m ,故选:C .变式1-1.如果+20%表示增加20%,那么﹣6%表示( )A .增加14%B .增加6%C .减少6%D .减少26% 【答案】C【解析】试题分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对,所以如果+20%表示增加20%,那么﹣6%表示减少6%.故选C .变式1-2四个足球与足球规定质量偏差如下:﹣3,+5,+10,﹣20(超过为正,不足为负).质量相对最合规定的是( )A .+10B .﹣20C .﹣3D .+5【答案】C【分析】质量偏差越少越好,最符合规定的是﹣3.【详解】最符合规定的是﹣3.故选C.【点睛】本题主要考查负数的意义.变式1-3.花店、书店、学校依次坐落在一条东西走向的大街上,花店位于书店西边100米处,学校位于书店东边50米处,小明从书店沿街向东走了20米,接着又向西走了–30米,此时小明的位置( )A .在书店B .在花店C .在学校D .不在上述地方 【答案】C【分析】由题意知,可看作书店为原点,花店位于书店西边100米处,即-100米,学校位于书店东边50米处,即+50米,解答出即可.【详解】根据题意:小明从书店沿街向东走了20米,接着又向西走了–30米,即向东走了50米,而学校位于书店东边50米处,故此时小明的位置在学校.故选C .【点睛】本题考查类比点的坐标及学生解决实际问题的能力和阅读理解能力,解题的关键在于对正负坐标的理解.考查题型二有理数的分类典例2.把下列各数填入它所在的数集的括号里.﹣12,+5,﹣6.3,0,﹣1213,245,6.9,﹣7,210,0.031,﹣43,﹣10%正数集合:{…}整数集合:{…}非负数集合:{…}负分数集合:{…}.【解析】正数集合:{+5,245,6.9,210,0.031 …};整数集合:{+5,0,﹣7,210,﹣43 …};非负数集合:{+5,0,245,6.9,210,0.031 …};负分数集合:{﹣12,﹣6.3,﹣1213,﹣10% …}.【答案】故答案为{+5,245,6.9,210,0.031…};{+5,0,﹣7,210,﹣43…};{+5,0,245,6.9,210,0.031 …};{﹣12,﹣6.3,﹣1213,﹣10%…}.变式2-1.所有的正数组成正数集合,所有的负数组成负数集合,所有的整数组成整数集合,所有的分数组成分数集合,请把下列各数填入相应的集合中:-2.5,3.14,-2,+72,-0.6,0.618,0,-0.101正数集合:{ …};负数集合:{ …};分数集合:{ …};非负数集合:{ …}.【答案】3.14,+72,0.618;-2.5,-2,-0.6,-0.101,-2.5,3.14,-0.6,0.618,-0.101,3.14,+72,0.618,0.【详解】正数集合:{3.14,+72,0.618,…};负数集合:{-2.5,-2,-0.6,-0.101,…};分数集合:{-2.5,3.14,-0.6,0.618,-0.101,…};非负数集合:{3.14,+72,0.618,0,…}.变式2-2.(1)如图,下面两个圈分别表示负数集和分数集,请你把下列各数填入它所在的数集的圈里;2016,﹣15%,﹣0.618,712,﹣9,﹣23,0,3.14,﹣72(2)上图中,这两个圈的重叠部分表示什么数的集合?(3)列式并计算:在(1)的数据中,求最大的数与最小的数的和.【答案】(1)见解析;(2)负分数集合;(3)1944【详解】解:(1)根据题意如图:(2)这两个圈的重叠部分表示负分数集合;-,(3)最大数是2016,最小数是72+-=.∴最大的数与最小的数之和2016(72)1944考查题型三数轴的三要素及画法典例3.下列数轴画正确的是()A.B.C.D.【答案】C【详解】试题分析:A、没有单位长度,故错误;B、没有正方向,故错误;C、原点、正方向、单位长度都符合数轴的条件,故正确;D、数轴的左边单位长度的表示有错误.故选C.变式3-1.下列图中数轴画法不正确...的有().(1)(2)(3)(4)(5)A.2个B.3个C.4个D.5个【答案】C【详解】解:(1)没有正方向,数轴画法不正确;(2)单位不统一,数轴画法不正确;(3)缺少单位长度,数轴画法不正确;(4)单位不统一,数轴画法不正确;(5)符合数轴的定义,数轴画法正确.故选:C.变式3-2.下列各图表示数轴正确的是()A.B.C.D.【答案】C【详解】各图表示数轴正确的是:.故选C.考查题型四用数轴上的点表示有理数典例4.(2020·德州市期末)如图,在数轴上,小手遮挡住的点表示的数可能是()A.﹣1.5 B.﹣2.5 C.﹣0.5 D.0.5【答案】C【详解】解:由数轴可知小手遮挡住的点在-1和0之间,而选项中的数只有-0.5在-1和0之间,所以小手遮挡住的点表示的数可能是-0.5.故选C.变式4-1.如图,数轴上蝴蝶所在点表示的数可能为()A.3B.2C.1D.-1【答案】D【详解】解:数轴上蝴蝶所在点表示的数可能为-1,故选D.【点睛】本题考查了有理数与数轴上点的关系,任何一个有理数都可以用数轴上的点表示,在数轴上,原点左边的点表示的是负数,原点右边的点表示的是正数,右边的点表示的数比左边的点表示的数大.变式4-2.如图,25的倒数在数轴上表示的点位于下列两个点之间( )A.点E和点F B.点F和点G C.点F和点G D.点G和点H 【答案】D【解析】详解:25的倒数是52,∴52在G和H之间,故选D.变式4-3.若|a|=﹣a,则实数a在数轴上的对应点一定在()A.原点左侧B.原点或原点左侧C.原点右侧D.原点或原点右侧【答案】B【详解】∵|a|=-a,∴a一定是非正数,∴实数a在数轴上的对应点一定在原点或原点左侧.故选B.考查题型五利用数轴表示有理数的大小典例5.实数a,b在数轴上的对应点的位置如图所示,把﹣a,﹣b,0按照从小到大的顺序排列,正确的是()A.﹣a<0<﹣b B.0<﹣a<﹣b C.﹣b<0<﹣a D.0<﹣b<﹣a【答案】C【解析】试题分析:根据数轴得出a<0<b,求出﹣a>﹣b,﹣b<0,﹣a>0,即可得出答案.∵从数轴可知:a<0<b,∴﹣a>﹣b,﹣b<0,﹣a>0,∴﹣b<0<﹣a,变式5-1.,在数轴上位置如图所示,则,,,的大小顺序是( )A.B.C.D.【答案】D【分析】从数轴上a b的位置得出b<0<a,|b|>|a|,推出-a<0,-a>b,-b>0,-b>a,根据以上结论即可得出答案.【详解】从数轴上可以看出b<0<a,|b|>|a |,∴-a<0,-a>b,-b>0,-b>a,即b<-a<a<-b,故选D.变式5-2.(2017·厦门市期中)实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣2 B.a<﹣3 C.a>﹣b D.a<﹣b【答案】D【解析】试题分析:A.如图所示:﹣3<a<﹣2,故此选项错误;B.如图所示:﹣3<a<﹣2,故此选项错误;C.如图所示:1<b<2,则﹣2<﹣b<﹣1,又﹣3<a<﹣2,故a<﹣b,故此选项错误;D.由选项C可得,此选项正确.故选D.变式5-3.有理数m,n在数轴上的对应点的位置如图所示,则正确的结论是( )A.m<-1B.n>3C.m<-n D.m>-n【答案】D【详解】由数轴可得,-1<m<0<2<n<3,故选项A错误,选项B错误,∴m>-n,故选项C错误,选项D正确,故选D.考查题型六数轴上的动点问题典例6.如图1,圆的周长为4个单位,在该圆的4等分点处分别标上字母m、n、p、q,如图2,先让圆周上表示m的点与数轴原点重合,再将数轴按逆时针方向环绕在该圆上,则数轴上表示-2019的点与圆周上重合的点对应的字母是()A.m B.n C.p D.q【答案】B【详解】由于圆的周长为4个单位长度,所以只需先求出此圆在数轴上环绕的距离,再用这个距离除以4,如果余数分别是0,-1,-2,-3,则分别与圆周上表示字母为m ,q ,p ,n 的点重合.2019÷4=504...3,故-2016与n 点重合. 故选B.变式6-1.在数轴上,把表示﹣4的点移动1个单位长度后,所得到的对应点表示的数为( )A .﹣2B .﹣6C .﹣3 或﹣5D .无法确定【答案】C【分析】分两种情况讨论:把表示﹣4的点向左移动1个单位长度或向右移动1个单位长度,然后根据数轴表示数的方法可分别得到所得到的对应点表示的数.【详解】把表示﹣4的点向左移动1个单位长度为-5,向右移动1个单位长度为-3.故选C .【点睛】本题考查了数轴:数轴的三要素(正方向、原点和单位长度);数轴上原点左边的点表示负数,右边的点表示正数;左边的点表示的数比右边的点表示的数要小.也考查了分类讨论的思想.变式6-2.如图,半径为1的圆从表示1的点开始沿着数轴向左滚动一周,圆上的点A 与表示1的点重合,滚动一周后到达点B ,点B 表示的数是( )A .﹣2πB .1﹣2πC .﹣πD .1﹣π【答案】B 【详解】解:∵直径为1个单位长度的圆从原点沿数轴向左滚动一周,∴AB 之间的距离为圆的周长=2π,A 点在数轴上表示1的点的左边.∴A 点对应的数是1﹣2π.故选B .变式6-3.已知数轴上的三点A 、B 、C ,分别表示有理数a 、1、﹣1,那么|a+1|表示为( )A .A 、B 两点间的距离B .A 、C 两点间的距离C .A 、B 两点到原点的距离之和D .A 、C 两点到原点的距离之和【答案】B 【详解】试题分析:因为1(1)a a +=--,所以1a +表示A 点与C 点之间的距离,故选B。

2.2用数轴上的点表示有理数(1)s

2.2用数轴上的点表示有理数(1)s
2.P从数轴上原点开始,向右移动2个单位,再向左移5个单位长度,此时P点所表示的数是-3.
3.把数轴上表示2的点移动5个单位后,所得的对应点表示的数是(C)
A.7 B.-3 C.7或-3 D.不能确定
4.在数轴上,原点及原点左边的点所表示的数是(D)
A.正数B.负数C.不是负数D.不是正数
5.数轴上表示5和-5的点离开原点的距离是5,但它们分别在原点的两边.
例3如果a是一个正数,则数轴上表示数a的点在原点的什么位置上?表示-a的点在原点的什么位置上呢?
【提示】由数轴上数的特点不准得到,正数都在原点的右边,负数都在原点左边.
【答案】所有的有理数都可以在数轴上找个点与它对应,原点右边的点表示正数,原点左边的点表示负数.
【点评】数与数轴上的点结合,这是一种重要的数学思想,数形结合.
三.动手动脑学用新知
例1下列所画数轴对不对?如果不对,指出错在哪里.
【答案】①错.没有原点②错.没有正方向③正确④错.没有单位长度⑤错.单位长度不统一⑥正确⑦错.正方向标错
例2试一试:用你画的数轴上的点表示4,1.5,-3,- ,0
Байду номын сангаас【答案】
图中A点表示4,B点表示1.5,C点表示-3,D点表示- ,E点表示0.
师:对照大家画的图,为了使表达更清楚,我们把0左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来.也就是本节内容──数轴.
二.合作交流探究新知
点拨(1)引导学生学会画数轴.
第一步:画直线定原点
第二步:规定从原点向右的方向为正(左边为负方向)
第三步:选择适当的长度为单位长度(据情况而定)
第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.

【最新】人教版七年级数学上册第一章《有理数(第2课时)》教案

【最新】人教版七年级数学上册第一章《有理数(第2课时)》教案

新人教版七年级数学上册第一章《有理数(第2课时)》教案一、内容和内容解析1.内容数轴的概念,用数轴上的点表示有理数.2.内容解析数轴是初中数学的核心概念,它是数形结合思想的产物.数轴是把数和形统一起来的第一次尝试.数轴建立了直线上的点与实数的对应,是一维的坐标系.数轴使数的概念和运算可以与位置、方向、距离等统一起来,使数的语言得到了几何解释,有了直观意义.这不仅有助于对数的概念的理解,而且还可以从中得到启发而提出新的问题或结论(例如,相反数、绝对值、大小比较等).用数轴上的点表示实数,就是要使任意一个实数都能用唯一确定的点表示,同时,任意一个点只能表示一个实数(这样要求的意义需要学生逐渐体会).在这样的要求下,明确规定原点、方向和单位长度“三要素”是必须而且自然的.这时,我们有:原点↔0(原点是区分方向的“基准”,0是区分正负的基准.)单位长度↔1(单位长度是度量线段长度的单位,1是实数单位,“单位”实际上给出了一个统一的标准.)方向↔符号(空间中,A,B两点“位置差别”的定量化定义,必须且只需“方向”和“长度”.数轴上,方向只有“左”“右”两种,可以理解为“相反方向”.在数轴上,正与负具有“相反方向”,正数与负数的实际意义就是描述现实中的“相反意义的量”.确定一个实数,需要“符号”和“绝对值”两个要素,它们正好对应了定量化定义A,B两点“位置差别”的“方向”和“长度”.)基于以上分析,可以确定本课的教学重点:体会数轴的三要素;体会用数轴上的点表示数的合理性,感受其中的数形结合思想.二、教材解析本节课是在学习了有理数的概念之后,为了描述数与点的对应,引进了数轴的概念.它是数形结合的产物,用数轴可以直观的表示有理数,从而也为学生提供了理解相反数、绝对值的直观工具,同时也为学习有理数的运算法则作了准备.本节课的重点和难点是对数轴三要素的理解.学生在学习过程中可能无法深刻理解“数轴三要素”的作用以及相互之间的对应关系,因此,在教学时,要利用引例通过三个步骤逐步抽象出数轴的概念:1.用直线上的点表示位置;2.用数表示直线上的点;3.用数轴上的点直观的表示有理数.三、教学目标和目标解析1.教学目标(1)了解数轴的概念,会用数轴上的点表示有理数;(2)体会数轴三要素和有理数集(或实数集)中0、1以及数的符号之间的对应关系,从而体会数形结合思想.2.目标解析达成目标(1)的标志:学生知道数轴是一条规定了原点、方向和单位长度的直线;给定一个有理数,学生能在数轴上找到表示它的点;能画出数轴,并用数轴上的点表示有理数.目标(2)是“内容所蕴含的思想方法”,学生需要体会的是在“用点表示数”时,数轴“三要素”保证了点与数的“一一对应”——给定一个数,就有唯一确定的点与之对应;反之,给定一个点,就有唯一确定的数与之对应.但本节课只要能体会有理数与数轴上点的对应性,不要刻意强调“给一个点,不一定有一个有理数与之对应”.四、教学问题诊断分析学生第一次遇到用形表示数的问题,困难在于其中蕴含的思想.可以借鉴引入负数时的经验,通过生活实例进行讲解.但在基本思想上,还是要借助于具体情境,教师先讲解,学生获得体验后进行模仿式举例.本节课中,“三要素”及其对于确定“数轴上的点”的意义(根据“三要素”,可以在数轴上找到唯一确定的点,否则“存在性”“唯一性”就做不到),有理数集(或实数集)中0,1以及数的符号与数轴上的相关要素的对应性,都需要教师引导.本课的教学难点:数轴“三要素”与有理数集(或实数集)中0,1以及数的符号的对应性.五、教学过程设计1.问题情境下的三次概括问题1在一条东西向的马路上,有一个汽车站牌,汽车站牌东3 m和7.5 m处分别有一棵柳树和一棵杨树,汽车站牌西3 m和4.8 m处分别有一棵槐树和一根电线杆,试画图表示这一情境.师生活动:学生分组讨论解决问题的方法,学生代表画图演示.学生画图后,教师提问:(1)马路可以用什么几何图形代表?(直线)(2)你认为站牌起什么作用?(基准点)(3)你是怎么确定问题中各物体的位置的?(方向,与站牌的距离)【设计意图】“三要素”为定向,用直线、点、方向、距离等几何符号表示实际问题.这是实际问题的第一次数学抽象.说明:学生也可能只用与站牌的距离来表示,可以与下面的方法做比较,看哪个更方便.问题2上面的问题中,“东”与“西”,“左”与“右”都具有相反意义.我们知道,正数和负数可以表示两种具有相反意义的量,那么如何用数表示这些树、电线杆与汽车站牌的相对位置呢?学生画图表示后,教师提问:(1)0代表什么?(基准点)(2)数的符号的实际意义是什么?(方向)(3)如图,在一条直线上,A,B的距离等于B,C的距离,B点用3表示,C点用7.5表示,可以吗?为什么?(不可以,单位长度不一致,与实际情境不符)(4)上述方法表示了这些树、电线杆与汽车站牌的相对位置关系.例如,-4.8表示位于汽车站牌西侧4.8 m处的电线杆.你能再举个例子吗?【设计意图】继续以“三要素”为定向,将点用数表示,实现第二次抽象,为定义数轴概念提供直观基础.问题3 大家都见过温度计吗?你能描述一下温度计的结构吗?比较上面的问题,你认为它用了什么数学知识?教师可以先解释0℃的含义(冰水混合物的温度规定为0℃——温度的基准点).【设计意图】借助生活中的常用物品,说明正数、负数的作用.引导学生用“三要素”表达,为定义数轴概念提供又一个直观基础.问题4 你能说说上述两个实例的共同点吗?【设计意图】进一步明确“三要素”的意义,体会“用点表示数”和“用数表示点”的思想方法,为定义数轴概念提供进一步的直观基础.2.定义、辨析数轴概念明确数轴的概念,并请学生带着下列问题阅读教科书:(1)画数轴的步骤是什么?(2)根据上述实例的经验,“原点”起什么作用?(原点是数轴的“基准”,表示0,是正数和负数的分界点.)(3)你是怎么理解“选取适当的长度为单位长度”的?(与问题的需要相关,表示较大的数,单位长度取小一些等)(4)数轴上,原点右边的点,表示的数是;原点左边的点,所表示的数是.【设计意图】明晰概念,并让学生在教师设计的问题中,加深对数轴概念中“三要素”的理解.3.练习、巩固概念(1)教科书第9页练习1,2;(2)数轴上表示3的点在原点的哪一侧?与原点的距离是多少个单位长度?表示数-2的点在原点的哪一侧?与原点的距离是多少个单位长度?设a是一个正数,对表示数a的点和表示数-a的点进行同样的讨论.【设计意图】练习(1)通过指出数轴上的点表示的有理数和画数轴表示有理数,使学生进一步巩固数轴的概念,并使学生了解所有的有理数都可以用数轴上的点表示.练习(2)通过从特殊到一般的方法归纳出数轴上不同位置(原点左右)点的特点.培养学生的抽象概括(由具体的数到字母表示的数)能力.4.小结、布置作业教师与学生一起回顾本节课所学主要内容,并请学生回答以下问题:(1)本节课学习了哪些主要内容?(2)数轴的“三要素”各指什么?它们各起什么作用?(3)你能举出引进数轴概念的一个好处吗?【设计意图】通过小结,使学生梳理本节课所学内容,掌握本节课的核心——数轴“三要素”,感受通过数轴把数与形结合起来的好处.布置作业:教科书第9页练习第3题,习题1.2第2,3,7,8题.六、目标检测设计1.在数轴上,表示+2的点在原点的侧,距原点个单位长度;表示-7的点在原点的侧,距原点个单位长度;两点之间的距离为个单位长度.【设计意图】检测学生对数轴的正方向和单位长度的理解.2. 画出数轴并表示下列各数:+3,0,-3,41,1,21,-3,-1.25 【设计意图】检测学生对数轴的概念及用数轴上的点表示有理数的掌握情况.3.在数轴上,把表示3的A 点沿着数轴向负方向移动5个单位长度,到达B 点,则点B 表示的数是 .【设计意图】体会点在运动过程中所表示的数的变化规律.4.小明的家(记为A )、他所在学校(记为B )以及书店(记为C )依次座落在一条东西向的大街上,A 位于B 西边300 m 处,C 位于B 东边1 000 m 处。

七年级数学上册第一单元《有理数》-解答题专项经典题(2)

七年级数学上册第一单元《有理数》-解答题专项经典题(2)

一、解答题1.计算:(1)23(2)14⎛⎫-⨯- ⎪⎝⎭;(2)2331(2)592-+-⨯--÷. 解析:(1)1-;(2)47-.【分析】(1)原式先计算乘方和括号内,然后再计算乘法即可得到答案;(2)原式先计算乘方和化简绝对值,再计算乘除法,最后计算加减运算即可得到答案.【详解】解:(1)23(2)14⎛⎫-⨯- ⎪⎝⎭ 3414⎛⎫=⨯- ⎪⎝⎭ 144⎛⎫=⨯- ⎪⎝⎭1=-.(2)2331(2)592-+-⨯--÷ 21(8)593=-+-⨯-⨯ 1406=---47=-.【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.2.计算 ①()115112236⎛⎫--+--- ⎪⎝⎭ ②()32112114132⎛⎫⎛⎫-÷-⨯--- ⎪ ⎪⎝⎭⎝⎭③524312(4)()12(152)2-÷-⨯-⨯-+④()()213132123242834⎛⎫⎛⎫-÷--+-⨯- ⎪ ⎪⎝⎭⎝⎭ ⑤222019111()22(1)2⎡⎤---÷--⨯-÷-⎢⎥⎣⎦解析:①-2;②458-;③-10;④-9;⑤-13. 【分析】 ①先去括号和绝对值,在进行加减运算即可.②先运算乘方,去括号,再将除法改为乘法,最后进行混合运算即可.③先运算乘方,再去括号,最后进行混合运算即可.④先运算乘方,利用乘法分配律去括号,再将除法改为乘法,最后进行混合运算即可. ⑤先运算乘方,再将除法改为乘法,再去括号,去绝对值,最后进行混合运算即可.【详解】①原式14171236=+-- 386176666=+-- 2=-. ②原式3274()(3)()48=-⨯-⨯--- 2798=-+ 458=-. ③原式3132(4)12(1516)4=-÷-⨯-⨯-+ 181214=⨯-⨯ 10=-.④原式()()()()1171542242424834=⨯--⨯--⨯-+⨯- 8335690=-++-9=-.⑤原式11(12)2(1)4=---÷-⨯÷- 1(142)2=-+-⨯-⨯1(6)2=-+-⨯112=--13=-.【点睛】本题考查有理数的混合运算,掌握有理数混合运算的顺序是解答本题的关键.3.(1)在图所示的数轴上标出以下各数:52- ,-5.5,-2,+5, 132(2)比较以上各数的大小,用“<”号连接起来;(3) 若点A 对应 5.5-,点B 对应132,请计算点A 与点B 之间的距离.解析:(1)画图见解析;(2) 5.5-<52-<2-<132<+5;(3)9. 【分析】(1)先画数轴,根据数轴上原点左边的为负数,原点右边的为正数,在数轴上描出对应各数的点即可得到答案;(2)根据数轴上的数,右边的数大于左边的数,直接用“<”连接即可得到答案;(3)数轴上点A 与点B 对应的数分别为,a b ,则AB a b =-或b a -,根据以上结论代入数据直接计算即可得到答案.【详解】解:(1)如图,在数轴上表示各数如下:(2)因为数轴上的数,右边的数总大于左边的数:所以按从小到大排列各数为:5.5-<52-<2-<132<+5 (3)因为:A 表示 5.5-,B 表示132, 所以:点A 与点B 之间的距离为: ()13 5.5 3.5 5.599.2AB =--=+== 【点睛】本题考查的是利用数轴上的点表示有理数,利用数轴比较有理数的大小,数轴上两点之间的距离,绝对值的含义,掌握以上知识是解题的关键.4.计算 (1)28()5(0.4)5+----;(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭; (3)2336()(2)()(6)575⨯---⨯-+-⨯; (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦;(5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦. 解析:(1)3;(2)3;(3)667-;(4)3-;(5)315.4【分析】 (1)先把运算统一为省略加号的和的形式,再利用加法的运算律,把互为相反数的两数先加,从而可得答案;(2)先把除法转化为乘法,再利用乘法的分配律把运算化为:()()()1573636363612-⨯-+⨯--⨯-,再计算乘法运算,最后计算加减运算即可得到答案;(3)把原式化为:()233662557-⨯+-⨯-⨯,逆用乘法的分配律,同步进行乘法运算,最后计算减法即可得到答案; (4)先计算小括号内的运算与乘方运算,再计算中括号内的运算,再计算乘法运算,最后计算加减运算即可得到答案;(5)先计算乘方运算,同步把除法转化为乘法,再计算小括号内的减法运算,同步进行乘法运算,最后计算加法运算即可得到答案.【详解】解:(1)28()5(0.4)5+---- 2850.45=--+ 3.=(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭ ()157363612⎛⎫=-+-⨯- ⎪⎝⎭()()()1573636363612=-⨯-+⨯--⨯- 123021=-+3.=(3)2336()(2)()(6)575⨯---⨯-+-⨯ ()233662557=-⨯+-⨯-⨯ 2366557⎛⎫=-⨯+- ⎪⎝⎭667=-- 667=- (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦()()1132212⎡⎤⎛⎫=---+-⨯--- ⎪⎢⎥⎝⎭⎣⎦ ()313212⎛⎫=---+⨯-+ ⎪⎝⎭ ()31212⎛⎫=---⨯-+ ⎪⎝⎭131=--+3.=-(5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦ ()()1=2.5101632100⨯-⨯-- ()1164=--- 1164=-+ 315.4= 【点睛】本题考查的是含乘方的有理数的混合运算,乘法分配律的应用,掌握运算法则与运算顺序是解题的关键.5.某校七年级(1)至(4)班计划每班购买数量相同的图书布置班级读书角,但是由于种种原因,实际购书量与计划有出入,下表是实际购书情况:(2)这4个班实际共购书多少本?(3)书店给出一种优惠方案:一次购买不少于15本,其中2本书免费.若每本书的售价为30元,请计算这4个班整体购书的最低总花费是多少元?解析:(1)42,+3,22;(2)118本;(3)3120元.【分析】(1)由于4班实际购入21本,且实际购买数量与计划购买数量的差值=-9,即可得计划购书量=30,进而可把表格补充完整;(2)把每班实际数量相加即可;(3)根据已知求出总费用即可.【详解】解:(1)由于4班实际购入21本书,实际购入数量与计划购入数量的差值=-9,可得计划购入数量=30(本),所以一班实际购入30+12=42本,二班实际购入数量与计划购入数量的差值=33-30=3本,3班实际购入数量=30-8=22本.故答案依次为42,+3,22;(2)4个班一共购入数量=42+33+22+21=118(本);(3)由118157÷=余13得,如果每次购买15本,则可以购买7次,且最后还剩13本书需单独购买,得最低总花费=30×(15-2)×7+30×13=3120(元)..【点睛】本题考查了正负数的应用.在生活实际中利用正负数的计算能力,并通过相关运算来比较大小,进而得出最佳方案;这里要注意,生活中在选择方案时,要注意所有可能的情况. 6.计算:(1)32(1)(2)(34)5⎡⎤--+---⨯⎣⎦(2)121123436⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭ 解析:(1)10;(2)3【分析】(1)先算乘方和小括号,再算中括号,后算加减即可;(2)把除法转化为乘法,再用乘法的分配率计算即可.【详解】解:(1)32(1)(2)(34)5⎡⎤--+---⨯⎣⎦ 1[4(1)5]=+--⨯1(45)10=++=;(2)1211121(36)23436234⎛⎫⎛⎫⎛⎫-+-÷-=-+-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 121(36)(36)(36)234=-⨯-+⨯--⨯- 182493=-+=.【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算;如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行;有时也可以根据运算定律改变运算的顺序.7.计算题:(1)()()121876---+-+;(2)()231513221428⎫⎛---⨯-+ ⎪⎝⎭; (3)2111(3)[]()63⨯--÷-. 解析:(1)29;(2)5-;(3)4【分析】(1)根据有理数的加减法即可解答本题;(2)根据有理数的乘方和乘法分配律即可解答本题;(3)根据有理数的乘方、有理数的乘除法和减法可以解答本题.【详解】解:(1)|-12|-(-18)+(-7)+6=12+18+(-7)+6=30+(-7)+6=23+6=29;(2)23151(32)(21)428---⨯-+ =3513132()428-+⨯-+ =35131323232428-+⨯-⨯+⨯ =-1+24-80+52=-5;(3)16×[1-(-3)2]÷(−13) =16×(1-9)×(-3) =16×(-8)×(-3) =4.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 8.计算:(1)113623⎛⎫-⨯- ⎪⎝⎭(2)2233(3)3(2)|4|-÷-+⨯-+-解析:(1)2;(2)-21.【分析】(1)根据有理数的混合运算法则即可求解;(2)根据有理数的混合运算法则即可求解.【详解】解:(1)113623⎛⎫-⨯-⎪⎝⎭ =1136623-⨯+⨯ =332-+=2;(2)2233(3)3(2)|4|-÷-+⨯-+-=993(8)4-÷+⨯-+=1244--+=-21.【点睛】此题主要考查有理数的运算,解题的关键是熟知其运算法则.9.计算:(1)()110822⎫⎛---÷-⨯-⎪⎝⎭ (2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭解析:(1)12- ;(2)0【分析】(1)先去绝对值,同时把除变乘,再计算乘法,最后加减即可(2)先计算乘方和括号内的,把除变乘,再计算乘法,最后加减法即可【详解】(1)()110822⎫⎛---÷-⨯-⎪⎝⎭ =1110822⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭ =102--=-12(2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭=()()2386154-⨯---⨯-=243660--+=0【点睛】本题考查有理数的混合运算,解答的关键是熟练掌握运算法则和运算顺序.10.如图,将一根木棒放在数轴(单位长度为1cm )上,木棒左端与数轴上的点A 重合,右端与数轴上的点B 重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B 时,它的右端在数轴上所对应的数为30;若将木棒沿数轴向左水平移动,则当它的右端移动到点A 时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为________cm ;(2)图中点A 所表示的数是_______,点B 所表示的数是_______;(3)由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:一天,妙妙去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要37年才出生;你若是我现在这么大,我就119岁啦!”请问奶奶现在多少岁了?解析:(1)8;(2)14,22;(3)奶奶现在的年龄为67岁.【分析】(1)由观察数轴可知三根这样长的木棒的长度,即可求出这根木棒的长;(2)由所求出的这根木棒的长,结合图中的已知条件即可求得A 和B 所表示的数; (3)根据题意,设数轴上小木棒的A 端表示妙妙的年龄,小木棒的B 端表示奶奶的年龄,则小木棒的长表示二人的年龄差,由此参照(1)中的方法结合已知条件分析解答即可.【详解】(1)观察数轴可知三根这样长的木棒长为30624cm -=,则这根木棒的长为2438cm ÷=;(2)由这根木棒的长为8cm ,所以A 点表示为6+8=14,B 点表示为6+8+8=22;(3)借助数轴,把妙妙和奶奶的年龄差看做木棒AB ,奶奶像妙妙这样大时,可看做点B 移动到点A ,此时点A 向左移后所对应的数为37-,可知奶奶比妙妙大()11937352⎡⎤⎣÷⎦--=,则奶奶现在的年龄为1195267-=(岁). 【点睛】此题考查认识数轴及用数轴表示有理数和有理数的加减法,难度一般,读懂题干要求是关键.11.计算:(1)()213433⎛⎫---+-+ ⎪⎝⎭;(2)()()202011232---+-+. 解析:(1)-6;(2)132- 【分析】(1)先化为省略括号的形式,将整数及分数分别相加,再计算加法;(2)先计算乘方,同时计算绝对值及去括号,再计算加减法.【详解】(1)解:原式=213433-+-+ ()213433⎛⎫=--++ ⎪⎝⎭71=-+6=-;(2)解:原式=11232--+ =142- =132-. 【点睛】 此题考查有理数的混合运算,掌握有理数加减混合运算法则及有理数乘方运算法则是解题的关键.12.以1厘米为1个单位长度用直尺画数轴时,数轴上互为相反数的点A 和点B 刚好对着直尺上的刻度2和刻度8.(1)写出点A 和点B 表示的数;(2)写出在点B 左侧,并与点B 距离为9.5厘米的直尺左端点C 表示的数;(3)若直尺长度为a 厘米,移动直尺,使得直尺的长边CD 的中点与数轴上的点A 重合,求此时左端点C 表示的数.解析:(1)点A 表示的数是-3,点B 表示的数是3;(2)点C 表示的数是-6.5;(3)3-0.5a【分析】(1)根据AB=8-2=6,点A 和点B 表示的数是互为相反数,即可得到结果;(2)利用点B 表示的数3减去9.5即可得到答案;(3)利用中点表示的数向左移动0.5a 个单位计算即可.【详解】(1)∵AB=8-2=6,点A 和点B 表示的数是互为相反数,∴点A 表示的数是-3,点B 表示的数是3;(2)点C 表示的数是:3-9.5=-6.5;(3)∵直尺长度为a 厘米,直尺中点表示的数是-3,∴直尺此时左端点C 表示的数-3-0.5a .【点睛】此题考查利用数轴表示数,数轴上两点之间的距离,数轴上点移动的规律,熟记数轴上点移动的规律进行计算是解题的关键.13.计算(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦解析:(1)-6;(2)52-【分析】(1)根据加法运算律计算即可;(2)先算括号里面,再算括号外面的即可;【详解】(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭, ()1140363177⎛⎫=-++-+ ⎪⎝⎭, 42=--,=-6;(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦, 111923=--⨯⨯, 312=--, 52=-. 【点睛】本题主要考查了有理数的混合运算,准确应用加法运算律解题的关键.14.把下列各数表示在数轴上,再按从大到小的顺序用大于号把这些数连接起来. |3|-,5-,12,0, 2.5-,22-,(1)--.解析:见解析,|-3|>-(-1)>12>0>-2.5>-22>-5. 【分析】 先在数轴上表示出各数,从右到左用“>”连接起来即可.【详解】解:|3|=3-;224=--,(1)=1--如图所示,,由图可知,|-3|>-(-1)>12>0>-2.5>-22>-5. 【点睛】 本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键. 15.如图,在数轴上有三个点,,A B C ,回答下列问题:(1)若将点B 向右移动5个单位长度后,三个点所表示的数中最小的数是多少? (2)在数轴上找一点D ,使点D 到,A C 两点的距离相等,写出点D 表示的数; (3)在数轴上找出点E ,使点E 到点A 的距离等于点E 到点B 的距离的2倍,写出点E 表示的数.解析:(1)1- (2)0.5 (3)3-或7-【分析】(1)根据移动的方向和距离结合数轴即可回答;(2)根据题意可知点D 是线段AC 的中点;(3)在点B 左侧找一点E ,点E 到点A 的距离是到点B 的距离的2倍,依此即可求解.【详解】解:(1)点B 表示的数为-4+5=1,∵-1<1<2,∴三个点所表示的数最小的数是-1;(2)点D 表示的数为(-1+2)÷2=1÷2=0.5;(3)点E 在点B 的左侧时,根据题意可知点B 是AE 的中点,AB=|-1+4|=3则点E 表示的数是-4-3=-7.点E 在点B 的右侧时,即点E 在AB 上,则点E 表示的数为-3.【点睛】本题主要考查的是有理数大小比较,数轴的认识,找出各点在数轴上的位置是解题的关键.16.计算:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭; (2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭; 解析:(1)6;(2)11.【分析】(1)先变成省略括号和形式,同时把小数化分数,把分数相加,同号相加,最后异号相加即可;(2)先算乘方,去绝对值和带分数化假分数,再计算乘法,最后计算加减法即可.【详解】解:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭, =1312744+-+, =1217+-,=13-7,=6;(2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭, =()351124444⎛⎫++⨯--⨯- ⎪⎝⎭=11235++-=11.【点睛】本题考查含有乘方的有理数混合,掌握有理数混合运算的法则,解答的关键是熟练掌握运算法则和运算顺序.17.小李坚持跑步锻炼身体,他以30分钟为基准,将连续七天的跑步时间(单位:分钟)记录如下:10,-8,12,-6,11,14,-3(超过30分钟的部分记为“+”,不足30分钟的部分记为“-”)(1)小李跑步时间最长的一天比最短的一天多跑几分钟?(2)若小李跑步的平均速度为每分钟0.1千米,请你计算这七天他共跑了多少千米? 解析:(1)22分钟;(2)24千米.【分析】(1)时间差=标准差的最大值-标准差的最小值;(2)先计算出一周的总运动时间,利用路程,速度,时间的关系计算即可.【详解】(1)()14822--=(分钟).故小李跑步时间最长的一天比最短的一天多跑22分钟.(2)()30710812611143240⨯+-+-++-=(分钟),0.124024⨯=(千米).故这七天他共跑了24千米.【点睛】本题考查了有理数的混合运算,熟练运用标准差计算时间差,标准时间计算总时间是解题的关键.18.赣州享有“世界橙乡”的美誉,中华名果赣南脐橙热销世界各地.刚大学毕业的小明把自家的脐橙产品放到了网上售卖,他原计划每天卖100kg 脐橙,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:kg ).)根据记录的数据可知前三天共卖出 kg (2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售 kg ; (3)若脐橙按4.5元/kg 出售,且小明需为买家支付运费(平均0.5元/kg ),则小明本周一共赚了多少元?解析:(1)296;(2)29;(3)2868元【分析】(1)将前三天的销售量相加即可;(2)根据表格销量最多的一天为周六,最少的一天为周五,用周六的销量减去周五的销量即可得到答案;(3)先计算出本周的总销量,再乘以每千克的利润即可.【详解】(1)4-3-5+300=296(kg ),故答案为:296;(2)(+21)-(-8)=29(kg ),故答案为:29;(3)4-3-5+14-8+21-6=17(kg ),17+100×7=717(kg ),717×(4.5-0.5)=2868(元),小明本周一共赚了2868元.【点睛】此题考查正负数的实际应用,有理数混合运算的实际应用,正确理解表格意义列式计算是解题的关键.19.阅读下面材料:在数轴上6与1-所对的两点之间的距离:6(1)7--=; 在数轴上2-与3所对的两点之间的距离:235--=;在数轴上8-与4-所对的两点之间的距离:(8)(4)4---=;在数轴上点A 、B 分别表示数a 、b ,则A 、B 两点之间的距离AB a b b a =-=-. 回答下列问题:(1)数轴上表示2-和5-的两点之间的距离是_______;数轴上表示数x 和3的两点之间的距离表示为_______;数轴上表示数_______和_______的两点之间的距离表示为2x +;(2)七年级研究性学习小组在数学老师指导下,对式子23x x ++-进行探究: ①请你在草稿纸上画出数轴,当表示数x 的点在2-与3之间移动时,32x x -++的值总是一个固定的值为:_______.②请你在草稿纸上画出数轴,要使327x x -++=,数轴上表示点的数x =_______.解析:(1)3;|x−3|;x ,-2;(2)5;−3或4.【分析】(1)根据题意找出数轴上任意点间的距离的计算公式,然后进行计算即可;(2)①先化简绝对值,然后合并同类项即可;②分为x >3和x <−2两种情况讨论.【详解】解:(1)数轴上表示−2和−5的两点之间的距离为:|−2−(−5)|=3;数轴上表示数x 和3的两点之间的距离为:|x−3|;数轴上表示数x 和−2的两点之间的距离表示为:|x +2|;故答案为:3,|x−3|,x ,-2;(2)①当x 在-2和3之间移动时,|x +2|+|x−3|=x +2+3−x=5;②当x >3时,x−3+x +2=7,解得:x=4,当x <−2时,3−x−x−2=7.解得x=−3,∴x=−3或x=4.故答案为:5;−3或4.【点睛】本题主要考查的是绝对值的定义和化简,根据题意找出数轴上任意两点之间的距离公式是解题的关键.20.定义:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222÷÷等.类比有理数的乘方,我们把222÷÷记作32,读作“2的下3次方”,一般地,把n 个(0)a a ≠相除记作n a ,读作“a 的下n 次方”.理解:(1)直接写出计算结果:32=_______.(2)关于除方,下列说法正确的有_______(把正确的序号都填上);①21a =(0)a ≠;②对于任何正整数n ,11n =;③433=4;④负数的下奇数次方结果是负数,负数的下偶数次方结果是正数.应用:(3)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢? 例如:241111222222()2222=÷÷÷=⨯⨯⨯=(幂的形式) 试一试:将下列除方运算直接写成幂的形式: 65=_______;91()2-=________; (4)计算:3341()(2)2(8)24-÷--+-⨯-.解析:(1)12;(2)①②④;(3)41()5,7(2)-;(4)26-. 【分析】(1)根据a n 表示“a 的下n 次方”的意义进行计算即可;(2)根据a n 表示“a 的下n 次方”的意义计算判断即可;(3)根据a n 表示“a 的下n 次方”的意义,表示出56,91()2-=7(2)-,进而得出答案; (4)按照有理数的运算法则进行计算即可.【详解】(1)23=2÷2÷2=2×12×12=12, 故答案为:12; (2)当a≠0时,a 2=a÷a =1,因此①正确;对于任何正整数n ,1n =1÷1÷1÷…÷1=1,因此②正确;因为34=3÷3÷3÷3=19,而43=4÷4÷4=14,因此③不正确; 根据有理数除法的法则可得,④正确;故答案为:①②④;(3)56=5÷5÷5÷5÷5÷5=5×15×15×15×15×15=(15)4, 同理可得,91()2-==(−2)7, 故答案为:(15)4,(−2)7; (4)3341()(2)2(8)24-÷--+-⨯- =16×(-18)-8+(-8)×2 =-2-8-16=−26.【点睛】 本题考查有理数的混合运算,理解“a n ,表示a 的下n 次方”的意义是正确计算的前提. 21.计算:(1)6÷(-3)×(-32) (2)-32×29-+(-1)2019-5÷(-54) 解析:(1)3;(2)1.【分析】(1)根据有理数的乘除混合运算法则计算即可;(2)根据有理数的混合运算法则计算即可.【详解】解:(1)原式=6×1-3⎛⎫ ⎪⎝⎭ ×(-32)=3; (2)原式=-9×29+(-1)-5×4-5⎛⎫ ⎪⎝⎭ =-2-1+4=1.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 22.计算(1)442293⎛⎫-÷⨯- ⎪⎝⎭2; (2)313242⎛⎫⨯⨯- ⎪⎝⎭3()32490.5234-⨯-÷+-.解析:(1)16-;(2)34【分析】 (1)按照有理数的四则运算进行运算即可求解;(2)按照有理数的四则运算法则进行运算即可,先算乘方,注意符号.【详解】解:(1)原式944163616499=-⨯⨯=-⨯=-, (2)原式113924()(8)8444=⨯--⨯-⨯+ 39324=-++ 34=, 【点睛】本题考查有理数的加减乘除乘方运算法则,先算乘方,再算乘除,最后算加减,有括号先算括号内的,计算过程中细心即可.23.计算(1)2125824(3)3-+-+÷-⨯ (2)71113()2461224-+-⨯ 解析:(1)113-;(2)-19 【分析】(1)有理数的混合运算,先算乘方,然后算乘除,最后算加减,如果有小括号先算小括号里面的;(2)使用乘法分配律使得计算简便.【详解】解:(1)2125824(3)3-+-+÷-⨯=114324()33-++⨯-⨯ =8433-+- =113- (2)71113()2461224-+-⨯=7111324242461224-⨯+⨯-⨯ =-28+22-13=-19【点睛】 本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键. 24.计算:2202013(1)(2)4(1)2-÷-⨯---+-. 解析:33【分析】有理数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】 解:2202013(1)(2)4(1)2-÷-⨯---+- =1(2)4192-÷⨯--+ =192(2)4-⨯⨯--+ =3641-+=33.【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键. 25.计算:(1)-8+14-9+20(2)-72-5×(-2) 3+10÷(1-2) 10解析:(1)17;(2)1.【分析】(1)原式利用加法结合律相加即可求出值;(2)原式先计算乘方运算,再计算乘除法运算,最后算加减运算即可求出值.【详解】解:(1)814920--++()()=891420--++=17-+34=17(2)2310752+()(1012)--⨯-÷-()1=4958+10--⨯-÷=49+40+10-=1【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.26.计算下列各题:(1)(14﹣13﹣1)×(﹣12);(2)(﹣2)3+(﹣3)×[(﹣4)2﹣6].解析:(1)13;(2)-38【分析】(1)根据乘法分配律可以解答本题;(2)根据有理数的乘方、有理数的乘法和加减法可以解答本题.【详解】解:(1)(14﹣13﹣1)×(﹣12)=14×(﹣12)﹣13×(﹣12)﹣1×(﹣12)=(﹣3)+4+12=13;(2)(﹣2)3+(﹣3)×[(﹣4)2﹣6]=(﹣8)+(﹣3)×(16﹣6)=(﹣8)+(﹣3)×10=(﹣8)+(﹣30)=﹣38.【点睛】本题考查有理数的混合计算,掌握有理数混合运算的顺序,会利用简便运算简化运算是解题关键.27.点A、B在数轴上所表示的数如图所示,回答下列问题:(1)将A在数轴上向左移动1个单位长度,再向右移动9个单位长度,得到点C,求出B、C两点间的距离是多少个单位长度?(2)若点B在数轴上移动了m个单位长度到点D,且A、D两点间的距离是3,求m的值.解析:(1)B、C两点间的距离是3个单位长度;(2)m的值为2或8.【分析】(1)利用数轴上平移左移减,右移加可求点C所表示的数为﹣3﹣1+9=5,利用绝对值求两点距离BC=|2﹣5|=3;(2)分类考虑当点D在点A的左侧与右侧,利用AD=3,求出点D所表示的数,再利用BD=m求出m的值即可.【详解】解:(1)点C 所表示的数为﹣3﹣1+9=5,∴BC =|2﹣5|=3.(2)当点D 在点A 的右侧时,点D 所表示的数为﹣3+3=0,所以点B 移动到点D 的距离为m =|2﹣0|=2,当点D 在点A 的左侧时,点D 所表示的数为﹣3﹣3=﹣6,所以点B 移动到点D 的距离为m =|2﹣(﹣6)|=8,答:m 的值为2或8.【点睛】本题考查数轴上平移,两点距离问题,利用AD 的距离分类讨论点D 的位置是解题关键. 28.计算下列各题:(1)()157362912⎛⎫-+⨯- ⎪⎝⎭; (2)()()2362295321343⎛⎫⎛⎫-÷⨯---+⨯- ⎪ ⎪⎝⎭⎝⎭. 解析:(1)19-;(2) 3.-【分析】 (1)利用乘法的分配律把原式化为:()()()1573636362912⨯--⨯-+⨯-,再计算乘法运算,最后计算加减运算即可得到答案; (2)先计算乘方运算与小括号内的运算,同步把除法转化为乘法,再计算乘法运算,最后计算减法运算即可得到答案.【详解】解:(1)()157362912⎛⎫-+⨯- ⎪⎝⎭; ()()()1573636362912=⨯--⨯-+⨯- 182021=-+-19=-(2)()()2362295321343⎛⎫⎛⎫-÷⨯---+⨯- ⎪ ⎪⎝⎭⎝⎭ ()4452741993⎛⎫=⨯⨯---+⨯ ⎪⎝⎭ 16733⎛⎫=--- ⎪⎝⎭ 16733=-+ 9 3.3=-=-【点睛】本题考查的是乘法的分配律的应用,含乘方的有理数的混合运算,掌握以上知识是解题的关键.29.阅读下列材料:(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,即当0x <时,1x x x x ==--.用这个结论可以解决下面问题:(1)已知a ,b 是有理数,当0ab ≠时,求a b a b+的值; (2)已知a ,b ,c 是有理数,0a b c ++=,0abc <,求b c a c a b a b c +++++的值. 解析:(1)2或2-或0;(2)-1.【分析】(1)分三种情况讨论,①0,0a b >>,②0,0a b <<,③0ab <,分别根据题意化简即可;(2)由0a b c ++=整理出,,a b c b c a a c b +=-+=-+=-,判断a b c ,,中有两正一负,再整体代入,结合题意计算即可.【详解】(1)0ab ≠∴①0,0a b >>,==1+1=2a b a b a b a b++; ②0,0a b <<,==11=2a b a b a b a b +-----; ③0ab <,=1+1=0a b a b+-, 综上所述,当0ab ≠时,a b a b+的值为:2或2-或0; (2)0a b c ++=,0abc <,,a b c b c a a c b ∴+=-+=-+=- 即a b c ,,中有两正一负, ∴==()1b c a c a b a b c a b c a b c a b c a b c+++---++++-++=-. 【点睛】本题考查绝对值的非负性以及有理数的运算等知识,是重要考点,难度一般,掌握相关知识是解题关键.30.已知数轴上的点A ,B ,C ,D 所表示的数分别是a ,b ,c ,d ,且()()22141268+++=----a b c d .(1)求a ,b ,c ,d 的值;(2)点A ,C 沿数轴同时出发相向匀速运动,103秒后两点相遇,点A 的速度为每秒4个单位长度,求点C 的运动速度;(3)A ,C 两点以(2)中的速度从起始位置同时出发,向数轴正方向运动,与此同时,D 点以每秒1个单位长度的速度向数轴正方向开始运动,在t 秒时有2BD AC =,求t 的值;(4)A ,C 两点以(2)中的速度从起始位置同时出发相向匀速运动,当点A 运动到点C 起始位置时,迅速以原来速度的2倍返回;到达出发点后,保持改后的速度又折返向点C 起始位置方向运动;当点C 运动到点A 起始位置时马上停止运动.当点C 停止运动时,点A 也停止运动.在此运动过程中,A ,C 两点相遇,求点A ,C 相遇时在数轴上对应的数(请直接写出答案).解析:(1)14a =-,12b =-,6c =,8d =;(2)点C 的运动速度为每秒2个单位;(3)4t =或20;(4)23-,223-,10-. 【分析】(1)根据平方数和绝对值的非负性计算即可;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==,即可得解; (3)根据题意分别表示出AC ,BD ,在进行分类讨论计算即可;(4)根据点A ,C 相遇的时间不同进行分类讨论并计算即可;【详解】(1)∵()()22141268+++=----a b c d ,∴()()221412+6+80+++--=a b c d , ∴14a =-,12b =-,6c =,8d =;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==, 解得:2x =,∴点C 的运动速度为每秒2个单位;(3)t 秒时,点A 数为144t -+,点B 数为-12,点C 数为62t +,点D 数为8t +,∴()62144202AC t t t =+--+=-,()81220BD t t =+--=+,∵2BD AC =, ∴①2020t -≥时,()2022202t t +=-,解得:4t =; ②20-2t <0时,即t >10,()202220t t +=-,解得:20t =;∴4t =或20.(4)C 点运动到A 点所需时间为()614102s --=,所以A ,C 相遇时间10t ≤,由(2)得103t =时,A ,C 相遇点为102144-33-+⨯=,A 到C 再从C 返回到A ,用时()()()6146147.548s ----+=; ①第一次从点C 出发时,若与C 相遇,根据题意得()852t t ⨯-=,203t =<10,此时相遇数为20226233-⨯=-;②第二次与C 点相遇,得()()87.52614t t ⨯-+=--,解得8t =<10,此时相遇点为68210-⨯=-; ∴A ,C 相遇时对应的数为:23-,223-,10-. 【点睛】本题主要考查了数轴的动点问题,准确分析计算是解题的关键.。

初中数学浙教版七年级上册数轴课件

初中数学浙教版七年级上册数轴课件

1. 在数轴上表示下列各数
+3,-4,-1.5,0
-4
0 -1.5
3
-4 -3 -2 -1 0 1 2 3 4
任何一个有理数都可以用数轴上的一个点来表示。
2. 指出数轴上A,B,C,D各点分别表示什么数。
AD C
B
-2 -1 0 1 2 3
解: 点A表示-2; 点C表示0;
点B表示2; 点D表示-1。
视察数轴,回答问题
1. 数轴上的两个点,右边点表示的数与左边点 表示的数有怎样的大小关系? 2. 正数、负数在数轴的什么位置?判断它们的 大小?
发现规律:
越来越大
-3 -2 -1 0 1 2 3 数轴上两个点所表示数,右边的总比左边的大。 正数大于0,负数小于0,正数大于负数。
巩固提高
1、写出三对非零的相反数,在数轴上将它们表 示出来,并比较其中三个负数的大小. 2、在数轴上距原点2个单位长度的点表示什么数?
这节课有什么收获? •基础知识 :掌握了数轴的画法,会用数轴上的点 表示有理数。
了解互为相反数的两数的特点,及在数轴上的位 置关系。
利用数轴比较有理数的大小 •思想方法点3个单位长度,且位于原 点左侧,若将A向右移动4个单位长度,在向左移动1 个单位长度,此时A点所表示的是什么数?
3m和7.5m处罚别有一棵柳树和一棵杨树,汽车站西3m和
4.8m处罚别有一棵槐树和一根电线杆,试画图表示这一
情境.
西


线

杆 槐树 站 柳树 杨树

-4.8 -3 0 3 7.5
怎样用数简明地表示这些树、电线杆与汽车站的相对 位置关系 (方向、距离) ?
由上述两问题得到什么启示?你能用一条直线上的点表 示有理数吗?

北师大版七年级数学上册 (数轴)有理数及其运算教育课件

北师大版七年级数学上册 (数轴)有理数及其运算教育课件
类比归纳
数轴的概念与画法
数轴的画法:
1.画一条水平直线,定原点(如图),原点表示0.
2.规定从原点向右为正方向,那么相反的方向(从 原点向左)则为负方向.
3.选择适当的长度为单位长度.
“一画、二定、三取、四标”
数轴的概念与画法
1.
0

2.
4.
6.
3.
7.
5.
8.
0
(2)规定直线上从原点向右(或上)为正方向(用箭头表示),从原点向左(或下)为负方向。
(3)选取适当的长度为单位长度,直线上原点向右每隔一个单位长度取一个点,依次表示为1、2、3······;从原点向左,用类似方法依次表示为-1、-2、-3······。
规定
原点、
正方向、
单位长度
的直线叫做数轴。
6个单位


2个单位
2、若点P在数轴上且到原点距离为5个单位,则点P表示的数是__________。
5和-5
3、在数轴上,表示数-2,2.6, , 0, ,-1, 的点中,在原点左边的点有 个。
4
检测
4、一儿童节那天,小天使乐乐要到学校、书店、儿童医院给孩子们送健康与快乐。她的家与学校、书店依次坐落在一条东西走向的大街上,家位于学校西边300米处,书店位于学校东边200米处,乐乐先到学校和书店,接着又向西走了700米来到儿童医院。你能帮乐乐找出家A、学校B、书店C、儿童医院D在数轴上所对应的数吗?
2.(判断)数轴上的两个点可以表示同一个有理数.

2个单位长度

6个单位长度
错,有理数与数轴上的点一一对应.
练一练
用数轴上的点表示有理数
例3 如图,数轴上点A表示的数为+3,把点A先向右平移5个单位,再向左平移10个单位到点B,则点B表示的数为 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2用数轴上的点表示有理数
教学目标
1.使学生正确理解数轴的意义,掌握数轴的三要素;
2.使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;
3.使学生初步理解数形结合的思想方法.
教学重点和难点
重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.
难点:正确理解有理数与数轴上点的对应关系.
课堂教学过程设计
一、从学生原有认知结构提出问题
1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?
2.用“射线”能不能表示有理数?为什么?
3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?
待学生回答后,教师指出,这就是我们本节课所要学习的内容——数轴.
二、讲授新课
让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):
1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);
2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);
3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…
提问:我们能不能用这条直线表示任何有理数?(可列举几个数)
在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴.进而提问学生:在数轴上,已知一点P表示数-5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?
通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可.三、运用举例变式练习
例1 画一个数轴,并在数轴上画出表示下列各数的点:
例2 指出数轴上A,B,C,D,E各点分别表示什么数.
课堂练习
示出来.
2.说出下面数轴上A,B,C,D,O,M各点表示什么数?
最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示.
四、小结
指导学生阅读教材后指出:数轴是非常重要的数学工具,它使数和直线上的点建立了
对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法.本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究.
五、作业
课堂教学设计说明
从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则.小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念.教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识.直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的.例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等.。

相关文档
最新文档