第3章室内热水供暖系统
哈工大供热工程 第三章 热水供暖系统1
二、系统型式
1.双管上供下回式 双管上供下回式
左侧ⅠⅡ立管 只适用于较低层数 的建筑,对高层建筑 易产生垂直失调 右侧ⅢⅣⅤ立管
为单管上供下回 式,详见图3-8
图3—6机械循环上供下回式热水供暖系统 1- 热水锅炉;2-循环水泵I;3-集气装置;4-膨胀水箱
3.单管上供下回式(单管顺流式) 3.单管上供下回式(单管顺流式) 单管上供下回式
垂直失调: 建筑物竖向房间出现冷热不均的现象。 双管系统:各层作用压力不同导致,楼层越多失调 就会越严重。 单管系统:各层散热器表面温度不一致导致。
重力循环系统特点: 不需要外来动力,运行时无噪声,调 节方便,管理简单。由于作用压头小,所 需管径大,只宜用于没有集中供热热源、 对供热质量有特殊要求的小型建筑物中。
3-2 机械循环热水供暖系统
垂直式系统、 垂直式系统、水平式系统 垂直系统: 垂直系统: 1.上供下回(单、双管) 上供下回( 双管) 上供下回 2.下供下回双管; 下供下回双管; 下供下回双管 3.中供式系统; 中供式系统; 中供式系统 4.下供上回系统; 下供上回系统; 下供上回系统 5.混合式系统 混合式系统
供回水管道都布置在房间 的中部。 的中部。适用于旧房改造 接层的建筑
混合式系统 混合式系统是由下供上回式(倒流式) 和上供下回式(顺流式)两组串联 组成的系统。高温水自下而上进入 第Ⅰ组系统,通过散热器放热后水 温降低,然后再引入第Ⅱ组系统, 放热后循环水温度再降低,然后返 回热源。 由于两组系统串联,系统的 压力损失大些。这种系统一般只宜 使用在连接于高温热水网路上的卫 生要求不高的民用建筑或生产厂房。
图3.1 重力循环热水供暖 系统工作原理图 一散热器; 一热水锅炉; 1一散热器;2一热水锅炉;3一供水管路 回水管路; 4~回水管路;5一膨胀水箱
3 热水供暖系统
从上面的分析可见,单管热水供暖系统的作用 压力与水温、加热中心与冷却中心的高度差以 及冷却中心的个数有关,且每一根立管只有一 个重力循环作用压力。
为了计算单管系统重力循环作用压力,需求出 各个冷却中心之间管路中水的密度,为此,首 先要确定各冷却中心管路的水温。
单管系统各点水温的计算
单管系统与双管系统相比,除了作用压 力不同外,各层散热器的进出口水温也 是不同的。因而各层散热器的K值不同, 从而影响散热器面积的多少
空调总回水管 采暖系统入口 各种换热设备之前 各种小口径调压装置之前
选择(确定管径)
除污器或过滤器横断面流速宜取0.1m/s
(四)、分集水器、分气缸
(1)当需要从总管接出两个以上的分支 环路时,考虑各个环路之间的压力平衡 和使用功能要求,宜采用分气缸、分水 器、集水器。
(2)分气缸直径的确定
二、双线式系统
(1)垂直双线式单管热水供暖系统
(2)水平双线式热水供暖系统
三、单双管混合式系统
第四节 室内热水供暖系统的管 路布 置和主要设备及附件
一、室内热水供暖系统的管路布置
1、热力入口(供暖系统的引入口) 位置:应设置在建筑物热负荷对称分布的位置 用户供暖系统与热水管网的连接形式: 直接连接 间接连接
机械循环热水供暖系统成为应用最广泛的一种供暖系 统。
一、 机械循环热水供暖系统和重力循环热 水供暖系统的比较
循环推动力 管内流速 管径 作用半径 耗电 维修 应用
重力循环
小 小 大 小 无 方便 小型
机械循环
大 大 小 大 水泵耗电 麻烦 大、中型
共性 (1)均有膨胀水箱和空气排除问题,但 排气方式不同。 (2)均有重力循环作用压力。
二、机械循环热水供暖系统的主要型 式
第三章暖通专业施工课件室内供暖系统的安装
• 3、测线计量尺寸时经常涉及的名称 • (1)建筑长度:管道系统中两零件或设备中 心之间(轴)的尺寸。如两立管之间的中心距离。 • (2)安装长度:零件或设备之间管子的有效长度。 安装长度等于建筑长度扣去管子零件或接头装配 后占去的长度。 • (3)加工长度:管子所需实际 料尺寸。对于直 管段其加工长度就等于安装长度。 • L直加=L安 弯管L弯加=L安+煨弯加工所要求 的部分 • 法兰 :L法加=L安-垫片厚
• (5)干管过门时,必须安装过门管,局部过门管 设在≥400×400mm地沟内,对无检修要求的管道 (包括管外管道)当长度等于或小于20m时,宜 采用不通行地沟,净尺寸不宜小于600×600mm。 • (6)为了便于在系统运行时调节环路的压差,检 修放水时关断管路,在各环供热干管的起点和回 水干管的终点处,都应设调节,关断用阀门。对 于温度高于100℃的高温水系统宜用截止阀,低 于100℃时也可用闸阀,蒸汽系统宜用截止阀。 • (7)方形补偿器宜水平安装,并与管道坡度相同。 如须垂直安装,应有排气措施。
• 三、施工技术交底及施工程序 • (一)技术交底:施工开始时向施工队组进行全面的技 术交底,主要阐明本工程的技术要点,难点和质量要求, 交底时要作详细记录。 • (二)施工程序和基准 • 1、程序选择 • 第一种:先安散热器,再安干管、配立、支管 • 第二种:先安装干管、配立管,再挂散热器、配支管 • 第三种:散热器和干管同时安装,再配立支管 • 2、选择基准: • 不管采用哪种程序,道德要选择基准,基准选择正确,配 管才能准确,室内管道安装时所用的基准是水平线、水平 面和垂直线。 • 水平面:除可借助于土建结构,如地面标高、窗台标高外, 还要用钢卷和水平尺,要求高时用水平仪测定。 • 垂直线:一般用细线绳(或 )及 吊线。 • •
第三章 供暖系统
第一节 供暖系统概述
• (二)蒸汽供暖系统的分类
• • 1、按起始压力大小 •
高压蒸汽供暖系统
低压蒸汽供暖系统
• • 2、按蒸汽干管布置的不同 •
上供式 中供式 下供式
第一节 供暖系统概述
• 1、散热器的布置 • (1)散热器设置在外墙窗口下最为合理。 • (2)楼梯间内散热器应尽量分配在底层,因此底层散热器所加热的
空气能自动上升,从而补偿上部的热损失。
• 2、散热器的安装 • (1)安装散热器时,有脚的散热器可直立在地上;无脚的散热器可 用专门的托架挂在墙上。 • (2)散热器的安装可分为明装、暗装。
散热器与附件
温度较高的热水通过散热器,以对流或辐射的方式将热量传递给室内
空气,使空气加热升温,以达到供热的目的。 • 1、对散热器的要求 • 总体要求:有较高的传热系数,足够的机械强度和承压能力;制 造工艺简单,材料消耗少,表面光滑,不积灰尘,易清扫,占地面积 小,安装方便,耐腐蚀,外形美观。
第三节 散热器与附件
自然循环系统——靠水的密度差进行循环 2、按系统循环动力分 机械循环系统——靠机械力进行循环
第一节 供暖系统概述
• (二)自然循环系统 • 1、自然循环系统的工作原理:
膨胀水箱
散热器 供水管路 热水锅炉 回水管路
第一节 供暖系统概述
• 工作原理: • 在系统工作前,先将系统中充满冷水。当水在锅炉内 被加热后密度减小,同时受从散热器流回来密度较大的回 水的驱动,使热水沿供水干管上升流入散热器。在散热器 内水被冷却,再沿回水干管流回锅炉。
第三章 供暖系统
图:自然循环采暖系统 (a)双管上供下回式;(b)单管顺流式 1.总立管;2.供水干管;3.供水立管;4.散热器供水支管;5.散热 器回水支管;6.回水立管;7.回水干管;8.膨胀水箱连接管;9.充 水管(接上水管);10.泄水管(接下水管);11.止回阀
•
在采暖建筑物内同一竖向的各层房间的温度不符合设计 要求的温度,而出现上下层冷热不匀的现象,通常称作系 统垂直失调。 • 双管系统的垂直失调,是由于通过各层的循环作用压力 不同而出现的;而且楼层数越多,上下层的作用压力差值 越大,垂直失调就会越严重。 • 多层建筑为避免垂直失调,多采用单管系统。单管式系 统的特点在于热水流入立管后,依次流入各层散热器,水 温逐渐降低,即流入各散热器的热水流量是相等的而水温 不同。每一根立管与锅炉、供回水干管组成一个回路,同 一根立管上的各层散热器就不会存在垂直失调。 • 自然循环热水采暖系统是最早采用的一种热水采暖方 式,已有约200年的历史,至今仍在应用。它装置简单, 运行时无噪声和不消耗电能。但由于其作用压力小、管径 大,作用范围受到限制,通常只能在单幢建筑物中应用, 其作用半径不宜超过50m。
了解供暖系统作用、组成、分类和 水蒸气的定压生产过程 特点;掌握热水供暖系统的特点
掌握垂直式和水平式系统特点;了 系统概念建立 解高层建筑热水供暖系统型式 《建筑给水排水及采暖 了解供暖管道的安装程序;熟悉安 工程施工质量验收规范》 装规范 (GB50242—2002) 了解散热器与辅助设备构造、工作 相关标准图集 原理;熟悉其安装要求 《地面辐射供暖技术规 了解地板辐射供暖原理特点;熟悉 程》(JGJ142—2004, 其施工条件和安装要求 J365—2004) 了解燃气特性;熟悉燃气管道安装 《城镇燃气设计规范》 要求 (GB50028—2006)
第三章室内热水供暖系统
第三章室内热水供暖系统第一节:室内热水供暖系统概述室内热水供暖系统是一种常见的供暖方式,通过将热水传输到室内,提供舒适的温暖环境。
它被广泛应用于住宅、办公楼以及其他各种建筑物中。
本文将对室内热水供暖系统进行详细的介绍和分析。
第二节:室内热水供暖系统的组成部分室内热水供暖系统由多个组成部分构成。
首先是热源,通常是一种燃烧设备,如锅炉或热水器。
燃烧设备利用燃气或其他燃料加热水。
然后,热水通过管道输送到建筑物内部。
在室内,水会经过暖气片或者地暖系统进行散热,最终将房间内的温度提高到所需的水平。
第三节:室内热水供暖系统的工作原理室内热水供暖系统的工作原理相对简单。
首先,燃烧设备产生热能,将水加热到一定温度。
然后,热水通过管道输送到不同的房间。
在房间内部,热水在散热设备中释放热量,使空气温暖起来。
最终,室内的温度达到设定的目标。
第四节:室内热水供暖系统的优势相比其他供暖方式,室内热水供暖系统具有一些明显的优势。
首先,它可以提供稳定的供暖效果。
由于热水通过管道传输,在不同的房间中可以均匀分布热量,使得室内温度更加一致。
其次,室内热水供暖系统可以与其他设备(如空调)相结合,提供全年舒适的室温环境。
此外,它还可以根据需要进行分区控制,节约能源和费用。
第五节:室内热水供暖系统的应用领域室内热水供暖系统广泛应用于不同的领域。
在住宅方面,许多家庭选择使用室内热水供暖系统来提供温暖的冬季环境。
此外,商业建筑、办公楼和酒店等场所也普遍采用室内热水供暖系统。
室内热水供暖系统可以满足各种建筑物的供暖需求,并且在节能和环保方面具有潜力。
第六节:室内热水供暖系统的维护和保养为了确保室内热水供暖系统的正常运行,定期的维护和保养工作是必不可少的。
首先,需要检查和清洁燃烧设备,以确保热水的生产过程正常。
其次,要检查管道和暖气片或者地暖系统的运行情况,确保没有漏水或其他问题。
此外,定期检查温控设备和系统调节器的工作状态,确保室内温度可以按照设定进行调节。
暖通空调-第3章-全水系统
第3章全水系统3.1 概述华北电力大学-荆有印3.1.1 全水系统1.定义全水系统--全部用水作为介质传递室内热负荷或(和)冷负荷的系统称为全水系统。
2.分类⑴按提供热量(或冷量)供热的全水系统、供冷的全水系统和既供冷又供热的全水系统。
供热时,水被称为“热媒”;供冷时,水被称为冷冻水或冷媒。
⑵按末端装置自然对流和强迫对流。
自然对流的系统:空气靠在密度差产生的重力压头驱动下流过末端装置与水进行热交换,并引导空气在室内循环。
如散热器热水采暖系统。
强迫对流的系统:空气靠风机的机械动力流过末端装置与水进行热交换,并导致空气在室内循环。
如风机盘管空调系统和暖风机热水采暖系统。
⑶按用途热水采暖系统和全水空调系统。
3.组成供热的全水系统:由热源、输送热媒的管道系统和供热设备(末端装置)组成。
供冷的全水系统由冷源、输送冷媒的管道系统和供冷设备(末端装置)组成。
既供冷又供热的全水系统中同时有冷源和热源,末端装置是供热或(和)供冷的设备。
3.1.2 热水采暖系统1.定义热水采暖系统即供热的全水系统。
2.分类按热媒分为热水采暖系统和蒸汽采暖系统。
3.相对蒸汽采暖系统,热水采暖系统的优缺点⑴优点①运行管理简单,维修费用低。
②热效率高,跑、冒、滴、漏现象轻,可比蒸汽供暖节能20%-40%。
③可采用多种调节方法,特别是可采用随室外温度变化改变采暖供、回水温度的质调节。
④供暖效果好。
连续供暖时,室内温度波动小。
房间温度均匀,无噪声,可创造良好的室内环境,增加舒适度。
⑤管道设备锈蚀较轻,使用寿命长。
⑵缺点①散热设备传热系数低,因此在相同供热量下,所需供暖设备②蒸汽采暖主要靠蒸汽冷凝时放出的汽化潜热;热水采暖靠水的温降。
在相同供热量下,热水为热媒时流量大,管径大,造价高。
③输送热媒消耗电能多。
4.适应范围是民用和公用建筑的主要采暖系统型式,也可用于工业建筑及其辅助建筑中。
3.1.3 全水空调系统1.定义全水空调系统中房间的冷负荷或热负荷全靠水来承担。
供热工程-第3章__热水供暖系统
2.作用压力分析
忽略管道散热,认为系统只有一个加热中心和一个 冷却中心 在底部断面两侧作用压力分别为P左和P右,依据流体 静力学的原理,则有 P左=h1ρ ɡɡ+h ρ ɡɡ+h0ρ hɡ P右=h1ρ ɡɡ+h ρ hɡ+h0ρ hɡ ∆P= P右-P左= h ρ hɡ-h ρ ɡɡ=hɡ(ρ h-ρ ɡ) Pa (3-1) 结论:供暖系统作用压头∆P与锅炉和散h=1m时,对于95/70℃的自然循环热水供暖系统, 其作用压头∆P=1x9.81x(977.81-961.92)=156Pa
图3-5 作用压力计算图
3-2 机械循环热水供暖系统
由水泵提供热水循环动力 一、系统特点 1.作用半径大,供暖范围大; 2.管径d较小,管内流速较大; 3.检修量大,耗电多. 该系统是目前应用最广泛的一种供暖系统
二、系统型式
1.双管上供下回式
左侧ⅠⅡ立管 只适用于较低层数 的建筑,对高层建筑 易产生垂直失调 右侧ⅢⅣⅤ立管
图3-13 分层式热水供暖系统
2.双水箱隔绝式供暖系统
◈上层系统与外网直接连接。当外网供水压
力低于高层建筑静水压力时,在用户供水 管上设加压水泵(如图3-14)。利用进、回
水箱两个水位高差h进行上层系统的水循
环。上层系统利用非满管流的溢流管6与 外网回水连接,溢流管6下部的满管高度 Hh取决于外网回水管的压力。
g
H3
H2
H1
写成通式:
h3
h2
h
h1 P gh1 ( g ) 1
gH ( 1 ) Pa (3-2)
第三章 室内热水供暖系统
配给多组散热器,冷却后的回水自每个散热器直接
沿回水立管或水平回水管流回热源的系统。
第一节
重力(自然)循环热水供暖系统
一、 系统工作原理及其作用压力
假设整个系统只有一个放热中心1( 散热 器)和一个加热中心2( 锅炉) ,用供水管3 和回水管4 把锅炉与散热器相连接,在 系统的最高处连接一个膨胀水箱5 ,用 它容纳水在受热后膨胀而增加的体积。
2
p gh1 h g gh2 2 g
H2
gH2 2 g gH1 h g
H1
四、自然循环热水供暖单管系统的作用压力
同理,当立管上串联几组散热器时,其循环作用压力的通 式可写成
P ghi ( i g ) gHi ( i i 1 )
四、自然循环热水供暖单管系统的作用压力
特点:热水进入立管 后,由上向下顺序流过各 层散热器,水温逐层降 低,各组散热器串联在 立管上。每根立管(包 括立管上各组散热器) 与锅炉、供回水干管形 成一个循环环路,各立
管环路是并联关系。
四、自然循环热水供暖单管系统的作用压力 右图中散热器S1和S2 串联在立管上。该立管 循环环路的作用压力 为:
或:p gHi ( i i 1 )
i N
h1 ( 1 2 ) h2 ( 2 3 ) p g h3 ( 3 4 ) 3.2(977.81972.88) 9.81 6.2(972.88 968.32) 9.2(968.32 961.92) 1009 7 P a .
第二节 机械循环热水供暖系统
一、机械循环系统的工作原理
(1)工作原理
重力循环热水供暖系统
《供热工程》第三课_热水供暖系统
如上可见,通过上层散热器环路的作用压 力比通过底层散热器的大,其差值为
gh2 hg
P68
重力循环热水供暖双管系统的垂直失调
• 在双管系统中,由于各层散热器与锅炉的 高差不同,虽然进入和流出各层散热器的 供、回水温度相同(不考虑管路沿途冷却的 影响),也将形成上层作用压力大、下层作 用压力小的现象。如选用不同管径仍不能 使各层阻力损失达到平衡,由于流量分配 不均,必然要出现上热下冷的现象。
• 3.按系统管道敷设方式的不同,可分为 垂直式和水平式系统。
• 4.按热媒温度的不同,可分为低温水供 暖系统和高温水供暖系统。
P66
热水供暖系统分类:
热水供暖系统分类:
热水供暖系统分类:
热水供暖系统分类:
低温水与高温水
• 在我国习惯认为水温低于100℃的热水为 低温水,水温超过100℃的热水称为高温 水
始供暖,给冬季施工带来很大方便。 • (3) 排除系统中的空气较困难。
P74
下供下回式系统排出空气的方式
4
5
>h
a 6
3 b
1 2
P74
下供下回式系统排出空气的方式
• 1)通过顶层散热器的冷风阀手动分散排气。 • 2)通过专设的空气管手动或自动集中排气。从散
热器和立管排出的空气,沿空气管送到集气装置, 定期排出系统外。集气装置的连接位置,应比水 平空气管低h米以上,即应大于图中a和b两点在 系统运行时的压差值,否则位于上部空气管内的 空气不能起到隔断作用,立管水会通过空气管串 流。因此,通过专设空气管集中排气的方法,通 常只用在作用半径小或压降小的系统中。
• 机械循环热水供暖系统成为应用最广泛的 一种供暖系统。
室内热水供暖系统
室内热水供暖系统室内热水供暖系统是一种常见的取暖方式,主要通过循环加热水来提供室内的供暖需求。
该系统以高效、节能的方式为用户提供舒适的室温,成为许多家庭和建筑物的首选取暖方式。
本文将从系统原理、设备组成、优势和应用前景等方面进行论述。
一、系统原理室内热水供暖系统的原理基于水的热传导性质,通过加热水使其成为热源,通过管道输送到室内各个供暖设备,如散热器或地暖,以达到室内加热的目的。
加热水的方式可以采用传统的燃气锅炉、电热锅炉、太阳能等能源形式,使水温达到设定的温度后,将热水输送到各个供暖设备进行加热。
二、设备组成室内热水供暖系统主要由以下几个基本组成部分构成:1. 热源设备:燃气锅炉、电热锅炉、太阳能集热器等,负责加热水的设备。
2. 管道系统:负责将加热后的水输送到各个供暖设备,通常采用耐高温、隔热性能好的管道。
3. 供暖设备:如散热器、地暖等,将热能传递给室内空气。
4. 水泵:用于推动热水在管道中的循环流动,确保水流畅通。
5. 控制系统:包括温控器、压力控制器等,用于监测和控制系统运行状态。
三、优势室内热水供暖系统相较于其他取暖方式有着明显的优势:1. 高效节能:热水供暖系统利用水的热传导性质,通过循环加热方式,使取暖效果更加高效,能够快速提供舒适的室温,并且可根据实际需求进行灵活调节,达到节能的效果。
2. 均匀舒适:由于水的传热方式较空气更加均匀,室内热水供暖系统可以实现整个室内空间的均匀供暖,避免了传统取暖方式中的冷热不均的问题,为用户提供更加舒适的居住环境。
3. 安全可靠:室内热水供暖系统选用的热源设备通常具备多种安全保护功能,如过热保护、断电保护等,能够确保系统的安全稳定运行。
4. 环保节能:室内热水供暖系统可以使用可再生能源作为热源,如太阳能集热器,减少对传统能源的依赖,从而降低环境污染和二氧化碳排放。
四、应用前景随着人们对舒适室温的需求不断提升,室内热水供暖系统的应用前景十分广阔。
它已广泛应用于住宅、商业建筑、工业厂房等多个领域。
03热水供暖系统第一节、第二节
水温不同除了影响系统的热工性能、流量大小以外,还会 使水的密度、运动粘度等物性参数发生变化,引起系统 阻力有所改变。
水温度不同对管道材料的化学物理特性,如管道内表面的 氧化腐蚀、结垢状况,管材的热应力大小等,也有一定 的影响。
水平顺流式系统中串联散热器组数不易太多。
可在散热器上设放气阀或多组散热器用串联空气管来 排气。
2.上分式、下分式和中分式 :
对垂直式水系统,还可根据供、回水干管在建筑物中的
位置进行系统的划分。
供水干管布置在建筑物上部空间,通过各个立管自上 而下进行介质分配的系统,称为上分式,也称上供式 或上行下给式;
自然循环系统:
水箱的膨胀管连接在供水总立管的最高处。
作用: (1)吸纳系统水温升高时热胀而多出的水量, 补充系统水温降低和泄漏时短缺的水量; (2)稳定系统的压力。
3)排气方式不同:
机械循环系统中水流速较大,一般都超过水中分离出的 空气泡的浮升速度,易将空气泡带入立管引起气塞。
供水干管:
沿水流设上升坡度(抬头走),坡度值不小于0.002,一 般为0.003,在供水干管末端最高点处设置集气罐,以便 空气能顺利地和水流同方向流动,集中到集气罐处排空 气。
设计时,F取得偏大,使温降增加,下部tpj不 合设计要求。
此外,立管的温降热量散在上部各房间。
四、重力(自然)循环系统型式:
1)排气:气体来源:充水时,系统中的空气没 有排除干净;析出的空气(水温的升高;水在 流动时压力降低);停运时渗入的空气。
2)回水: 为此设坡度: 供水干管(0.5%-1%)—低头走,(水流速
第三章热水供暖系统
2.求单管系统各层立管的水温
根据式(3-10)
N
Qi
ti tg i Q (tg th)
由此可求出流出第三层散热器管路上的水温
℃ t3 tg
Q3 Q
(tg
th)
95
800 (9570) 2100
85.5
相应水的密度ρ3=968.32kg/m3 流出第二层散热器管路上的水温t2为:
i1
i1
N
则P ghi(i g)=g[h1(h g)h2(2 g)h3(3g)] i1
9.81[3.2(97.78196.192)3.0(97.28896.192)3.0(96.83296.192)]100.79pa
N
或P gHi(i i1)=g[H1 (h g)H2(2 g)H3(3g)] i1
2.系统的回水干管向锅炉方向要有向下坡度 (0.5~1.0%),因为这样可以方便空气排除和停止运 行时系统积水向锅炉内排空。
三、重力循环热水供暖双管系统作用压力的计算
如图所示系统两台并联运行的散热器内的作用压力
可分别表示如下:∆P1=gh1(ρh- ρg ) pa(3-2)
∆P2=g(h1+h2)(ρh- ρg )
∑Q=Q1+ Q2 +…… +Q8 w (3-6)
②通过立管的水流量,按起所担负的全部热负荷 计算,可用下式确定:
AQ 3 .6 Q
Q
G LC (tg th)4 .1(8 tg 7 th)0 .8tg 6 th kg/h (3-7)
式中:∑Q~立管的总热负荷,w
C~水的热容量C=4.187kJ/kg·℃
根据式(3-2)和式(3-3)的计算方法,通过各层散热器循 环环路的作用压力,分别为:
哈工大-供热工程-第3章 热水供暖系统
2.作用压力分析 作用压力分析
忽略管道散热,认为系统只有一个加热中心和一个 忽略管道散热, 冷却中心 在底部断面两侧作用压力分别为P 在底部断面两侧作用压力分别为 左和P右,依据流体 静力学的原理, 静力学的原理,则有 P左=h1ρɡɡ+h ρɡɡ+h0ρhɡ h P右=h1ρɡɡ+h ρhɡ+h0ρhɡ h ɡ=hɡ(ρ (3∆P= P右-P左= h ρhɡ-h ρɡɡ=hɡ(ρh-ρɡ) Pa (3-1) h 结论:供暖系统作用压头∆P与锅炉和散热器的高差h、 结论:供暖系统作用压头∆ 与锅炉和散热器的高差h 与锅炉和散热器的高差 供回水温度对应的供回水密度ρ 有关。 供回水温度对应的供回水密度ρɡ、ρh有关。 h=1m时 对于95/70 的自然循环热水供暖系统, 95/70℃ 当h=1m时,对于95/70℃的自然循环热水供暖系统, 其作用压头∆ 1 9.81 9.81x(977.81-961.92) 其作用压头∆P=1x9.81 (977.81-961.92)=156Pa
图3-13 分层式热水供暖系统
2.双水箱隔绝式供暖系统 双水箱隔绝式供暖系统
◈上层系统与外网直接连接。当外网供水压
力低于高层建筑静水压力时,在用户供水 管上设加压水泵(如图3-14)。利用进、回 水箱两个水位高差h进行上层系统的水循 环。上层系统利用非满管流的溢流管6与 外网回水连接,溢流管6下部的满管高度 Hh取决于外网回水管的压力。
图3-9 单管跨越式
5.单管下供上回式(单管倒流式) 单管下供上回式(单管倒流式) 单管下供上回式
供热工程习题及答案
《供热工程》习题集第一章供暖系统的设计热负荷1.何为供暖系统的设计热负荷?2.什么是围护结构的传热耗热量?分为哪两部分?3.什么是围护结构的最小传热阻?如何确定?4.冷风渗透耗热量与冷风侵入耗热量是一回事吗?5.高层建筑的热负荷计算有何特点?6.什么是值班供暖温度?7.在什么情况下对供暖室内外计算温差要进行修正?如何确定温差修正系数?8.目前我国室外供暖计算温度确定的依据是什么?9.试确定外墙传热系数,其构造尺寸如图1所示。
δ1=0.24m(重浆砖砌体)δ2=0.02m(水泥砂浆内抹灰)若在δ1和δ2之间加一层厚4厘米的矿渣棉(λ3=0.06kcal/m·h·C),再重新确定该外墙的传热系数,并说明其相当于多厚的砖墙(内抹砂浆2厘米)。
图 110.为什么要对基本耗热量进行修正?修正部分包括哪些内容? 11.建筑物围护结构的传热为什么要按稳定传热计算?12.试确定图5所示,外墙的传热系数(利用两种方法计算),其构造尺寸及材料热工性能按表1选用。
表1图 213.围护结构中空气间层的作用是什么?如何确定厚度?14.高度修正是如何进行的?15.地面的传热系数是如何确定的?16.相邻房间供暖室内设计温度不同时,什么情况下计算通过隔墙和楼板的传热量。
17.我国建筑气候分区分为哪几个区?对各分区在热工设计上分别有何要求?18.试分析分户热计量供暖系统设计热负荷的计算特点。
19.已知西安市区内某24层商住楼的周围均为4~7层的建筑,计算该商住楼的围护结构传热耗热量时,如何处理风力附加率。
20.已知宁夏固原市某公共建筑体形系数为0.38。
屋面结构自下而上依次为:(1)钢筋混凝土屋面板150m m δ=, 1.28W K)λ=⋅;(2)挤塑聚苯板保温层100m m δ=,0.03W K)λ=⋅,λ的修正系数为1.15;(3)水泥砂浆找平(找坡)层30mm δ=(最薄位置),0.93W (m K)λ=⋅;(4)通风架空层200mm δ=,212W (m K)n α=⋅;(5)混凝土板30mm δ=,1.3W (m K)λ=⋅。
第3章室内热水供暖系统
独立调节能力,不利于节能与自主用热。但其结构简 单,节约管材,仍可做为具有独立产权的民用建筑与 公共建筑供暖系统使用。 根据循环动力不同,可分为重力(自然)循环热水供 暖系统和机械循环热水供暖系统。
第三章 室内热水供暖系统
1.确定合理的引入口位置.宜设在建筑物热负荷 对称分布的位置
2.布置干管时,先确定系统形式,系统应合理分 成若干支路,且尽量阻力易于平衡。
3.供暖系统管路布置与敷设应符合暖通设计规范 和施工安装技术规程上的要求.
单双混合式系统第三章室内热水供暖系统当高层建筑面积较大或是成片的高层小区可靠考虑将高层建筑竖向按高度分区在垂直方向上分为二个或多个采暖分区分别由不同的采暖系统与设备供给各区域供暖参数可保持一致
第三章 室内热水供暖系统
第三章 室内热水供暖系统
第三章 室内热水供暖系统
第三章 室内热水供暖系统
热媒主要有三类: 热水、蒸汽与热风:以热水作为热媒的供暖系统,称
g ——重力加速度,m/s2, 取9.81 m/s2;
h ——冷却中心至加热中心的垂直距离,m;
h ——回水密度,㎏/m3;
g ——供水密度,㎏/m3。
散热器用供水管和回水管与加热中心(锅炉) 相连;
系统最高点设一膨胀水箱用以容纳水在受热后因 膨胀所增加的体积,并排除系统中的空气;
1.为避免系统内水汽化、吸入空气,系统需要保 持足够的压力。由于系统内热水都是连通在一 起的,只要把系统内某一点的压力恒定,则其 余点的压力也自然得以恒定。可以选定一个定 压点,定压装置由膨胀水箱兼任 。系统工作 时,维持膨胀水箱内的水位高度不变,则整个 系统的压力得到恒定 。
华东理工大学-供热工程-第三章 热水供暖系统
散热器之间管路的水温ti的计算:
为了计算单管系统重力循环作用压力, 需要求出各个冷却中心之间管路中水的密 度ρi 为此,就首先要确定各散热器之间管 路的水温ti。
36
现仍以图3—5为例
37
设供、回水温度分别为tg、th。建筑物为八层(N=8),每层散热器 的散热量分别为Q1,Q2…….Q8,即立管的热负荷为:
1
1×10-5
0.101972
0.101972 17
二、重力循环热水供暖系统的主要型式
• 重力循环热水供暖系统主要分双管和单 管两种型式。
• 图3—2(a)为双管上供下回式系统,右 侧图 3—2(b)为单管上供下回顺流式系统。
18
1.总立管;2.供水干管;3.供水立管;4.散热器供水支管; 5.散热器回水支管,6.回水立管,7.回水干管,8.膨胀水 箱连接管,9.充水管(接上水管),10.泄水管(接下水道)。
3
•
4
• 3.按系统管道敷设方式的不同,可分为垂 直式和水平式系统。
• 4。按热媒温度的不同,可分为低温水供暖 系统和高温水供暖系统。
• 在各个国家,对于高温水与低温水的界 限,都有自己的规定,并不统一。某些国 家的热水分类标准,可见表3—1。
5
6
在我国,习惯认为:水温低于或等于 100℃的热水,称为低温水,水温超过100℃ 的热水,称为高温水。
20
三、重力循环热水供暖双管系统作 用压力的计算
在如图3—3的双管系统中,由于供水同时在 上、下两层散热器内冷却,形成了两个并联环 路和两个冷却中心。它们的作用压力分别为:
ΔP1:通过底层散热器aS1b环路的作用压力,Pa;
ΔP1=gh1(ρh-ρg)
Pa
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从公式可知,循环压力取决于冷热水之间的密 度差及散热器与锅炉间的高差。
自然循环供暖系统由于循环压力小,其作用半 径(总立管至最远立管的水平距离)不宜超过 50m。
机械循环热水供暖系统与重力循环系统的主要差别是在系统中设 置了循环水泵,靠水泵的机械能,使水在系统中强制循环。
一、垂直式系统
垂直式系统,按供、回水干管布置位置不同,有下列几 种型式: 1.上供下回式双管和单管热水供暖系统 2 .下供下回式双管热水供暖系统; 3.中供式热水供暖系统; 4.下供上回式(倒流式)热水供暖系统; 5.混合式热水供暖系统。
h3 h2 h1
Q3 P1gh1(hg)
Pa
Q2 P 2 g ( h 1 h 2 ) (h g ) P 1 g h 2 (h g )
Q1 △P3=g (h1+h2+h3)(h-g)
Pa
th
4.重力循环热水供暖单管系统的作用压力 的计算:
h3
系统的供回水干管都敷设在底层散热器下面,系 统内空气的排除较为困难;
通过顶层散热器的冷风阀手动分散排气或者通过 专设的空气管手动或集中自动排气。
3.机械循环中供式热水供暖系统
机械循环中供式热水供暖系统 (a)上部系统—下供下回式双管系统; (b)下部系统—上供下回式单管系统
特点
水平供水干管敷设在系统的中部;
设P1和P2分别表示A-A断面右侧和左侧的水柱
压力,则:
P 1g (h 0 h h h h 1 g )
Pa
P 2g (h 0 h h g h 1 g )
Pa
断面A-A两侧之差值,即系统的循环作用压力为:
P P 1 P 2 g h ( h g ) Pa
1.确定合理的引入口位置.宜设在建筑物热负荷 对称分布的位置
2.布置干管时,先确定系统形式,系统应合理分 成若干支路,且尽量阻力易于平衡。
3.供暖系统管路布置与敷设应符合暖通设计规范 和施工安装技术规程上的要求.
上部系统可用上供下回式,也可用下供下回式, 下部系统则用上供下回式;
中供式系统减轻了上供下回式楼层过多,易出现 垂直失调的现象,同时可避免顶层梁底高度过 低,使供水干管挡住顶层窗户,妨碍其开启。
第三章 室内热水供暖系统
4.机械循环下供上回式热水供暖系统
机械循环下供 上回式(倒流式)
1-热水锅炉; 2-循环水泵;
3.膨胀水箱的安装高度根据要求的定压压力确定。
第三章 室内热水供暖系统
2.机械循环下供下回式系统图
机械循环下供下回式系统图 1—热水锅炉;2—循环水泵;3—集气罐;
4—膨胀水箱;5—空气管;6—冷风阀
特点
一般适用于平屋顶建筑物的顶层难以布置干管 的场合,以及有地下室的建筑,当无地下室时, 供、回水干管一般敷设在底层地沟内;
4
立管
i
3
1 2
在异程式系统的基础上增加了回水管长度,使 各分立管循环环路的管长相等,环路间的压力 损失易于平衡,热量分配易于达到设计要求;
管材用量稍多一些,地沟深度需加大一点;
系统环路较多、管道较长时,常采用同程式系 统布置。
第三章 室内热水供暖系统
二、水平式系统
水平式系统按供水管与散热器的连接方式分,同样可 分为顺流式和跨越式两类。这些连接图示,在机械循环 和重力循环系统中都可应用。
第三章 室内热水供暖系统
3-1、重力循环热水供暖系统
一.重力循环热水供暖的工 作原理及其作用压力:
如假设图3-1的循环环路
最低点的断面A-A处有一
个假想阀门。若突然将
阀门关闭,则在断面A-A
两侧受到不同的水柱压
力。这两方所受到的水
柱压力差就是驱使水在
系统内进行循环流动的
作用压力。
图 3-1 重力循环热水供暖系统
为加大循环压力,锅炉房一般建在地下室。
2.重力循环热水供暖系统的主要型式:
双管系统: 定义:散热器的供水管和回水管分别设置。 特点:每组散热器都能组成一个循环环路,每组散热器
的供水温度基本是一致的,各组散热器可自行调节热 媒流量,互相不受影响。 单管系统: 定义:散热器的供回水立管共用一根管。 特点:立管上的散热器串联起来构成一个循环环路,从 上到下各楼层散热器的进水温度不同,温度依次降低, 每组散热器的热媒流量不能单独调节。
在单管系统中,各层散热器的进出口水温是不相 等的。越在下层,进水温度越低,因而各层散热 器的传热系数K值也不相等。由于这个影响,单 管系统立管的散热器总面积一般比双管系统的稍 大些。
双管系统:
各层散热器与锅炉间形成独立的循环,因而随 着从上层到下层,冷却中心与加热中心的高差 逐层减小,各层循环压力也出现由大到小的现 象,上层作用压力大,流经散热器的流量多。 下层作用压力小,流经散热器的流量小,因而 造成上热下冷的垂直失调现象;
供暖系统的引入口宜设置在建筑物热负荷对称分配的 位置,一般宜在建筑中部。这样可以缩短系统的作用 半径。在民用建筑和生产厂房辅助性建筑中,系统总 立管在房间内的布置不应影响人们的生活和工作。
第三章 室内热水供暖系统
布置方式示意图
(a)四个分支环路的异程式系统 (b)两个分支环路的同程式系统
二. 布置原则Biblioteka 1.为避免系统内水汽化、吸入空气,系统需要保 持足够的压力。由于系统内热水都是连通在一 起的,只要把系统内某一点的压力恒定,则其 余点的压力也自然得以恒定。可以选定一个定 压点,定压装置由膨胀水箱兼任 。系统工作 时,维持膨胀水箱内的水位高度不变,则整个 系统的压力得到恒定 。
2.膨胀水箱与系统的连接点选在循环水泵的进口 侧。
3-膨胀水箱
第三章 室内热水供暖系统
特点
可有单管、双管系统 排气好:水、气流动方向一致
气泡浮升速度:水平干管0.1~0.2m/s, 立管0.25m/s 散热器内的水流动方向是下进上出, 传热系数低于上进下出
第三章 室内热水供暖系统
5.混合式热水供暖系统。
机械循环混合式热水供暖系统
特点
由下供上回系统和上供下回两组串联组成。 压损大,使用少。
tg
Q3 t3
Q2 t2
Q1
系统总作用压力
△P=g(h1+h2+h3)( 3-g) + g (h1+h2)(2-3) + g h1(h-2) Pa
h2
h1
第三章 室内热水供暖系统
单管系统与双管系统相比,除了作用压力计算不 同外,各层散热器的平均进出水温度也是不相同 的。
在双管系统中,各层散热器的平均进出水温度是 相同的;
6.异程式系统和同程式系统:
异程式系统: 总立管与各分立管构成的循环环路的总长度是不
相等的; 靠近总立管的分立管,循环长度较短,远离总立
管的分立管,循环长度较长; 最远环路同最近环路之间的压力损失相差很大,,
造成靠近总立管附近的分立管供水量过剩,而 系统末端立管供水不足,供热量达不到要求。
同程式系统
单管水平串联式
单管水平跨越式
第三章 室内热水供暖系统
水平式系统与垂直式系统相比,具有如下优点:
(a)系统的总造价,一般要比垂直式系统低;
(b)管路简单,无穿过各层楼板的立管,施工 方便;
(c)有可能利用最高层的辅助空间(如楼梯间、 厕所等),架设膨胀水箱,不必在顶棚上专设 安装膨胀水箱的房间。这样不仅降低了建筑造 价,还不影响建筑物外形美观。
4. 回水干管坡向与自然循环相同。供、回水干 管的坡度为0.003,不得小于0.002。
水泵连接点
水泵应装在回水总管上;
使水泵的工作温度相对降低,改善水泵的工作条 件,延长水泵的使用寿命;
使系统内的高温部分处于正压状态,不致使热水 因压力过低而汽化,有利于系统正常工作。
膨胀水箱的连接点与安装高度
第三章 室内热水供暖系统
第三章 室内热水供暖系统
第三章 室内热水供暖系统
第三章 室内热水供暖系统
热媒主要有三类: 热水、蒸汽与热风:以热水作为热媒的供暖系统,称
为热水供暖系统: 分类 1.按热媒温度的不同,可分为低温水供暖系统和高温水
供暖系统。 见表3-1 我国习惯认为:低于或等于100℃的热水,称为“低 温水”;超过100的热水,称为“高温水”。 室内热水供暖系统大多采用低温水供暖,设计供、回 水温度采用95/75℃,高温水供暖宜在生产厂房中使 用。
1.上供下回式双管和单管热水供暖系统
立管
4
3
3
1 2
排气问题:
1.系统中的水流速度常超过从水中分离出来的空 气泡的浮升速度;
2. 为使气泡不被带入立管,不允许水和气泡逆 向流动;
3. 供水干管应按水流方向设上升坡度,使气泡 随水流方向汇集到系统最高点,通过设在最高 点的排气装置,将空气排出系统外。
楼层越多,失调现象越严重。
单管系统:
层的冷却中心串联在一个循环管路上,从上 而下逐渐冷却过程所产生的压力迭加在一起形 成一个总压力,因此不存在垂直失调问题;
由于下层散热器入口的热媒温度低,下层散 热器的面积比上层要多;
在多层和高层建筑中,宜用单管系统。
第三章 室内热水供暖系统
3-2、机械循环热水供暖系统
(b)单管顺流式系 统
1-总立管 2-供水干管 3-供水立管 4-散热器供水支管 5-散热器回水支管
系统中空气的排除
重要性: 系统中若积存空气,就会形成气塞,阻碍水的 正常循环。
要求: 系统内的空气应能随时顺利地排除。