爆炸极限计算

合集下载

常见气体的爆炸极限及爆炸极限计算公式

常见气体的爆炸极限及爆炸极限计算公式

爆炸极限计算方法:比较认可的计算方法有两种:莱·夏特尔定律对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱·夏特尔定律,可以算出与空气相混合的气体的爆炸极限。

用Pn表示一种可燃气在混合物中的体积分数,则:LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)(V%)混合可燃气爆炸上限:UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)(V%)此定律一直被证明是有效的。

2.2 理·查特里公式理·查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。

该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。

Lm=100/(V1/L1+V2/L2+……+Vn/Ln)式中Lm——混合气体爆炸极限,%;L1、L2、L3——混合气体中各组分的爆炸极限,%;V1、V2、V3——各组分在混合气体中的体积分数,%。

例如:一天然气组成如下:甲烷80%(L下=5.0%)、乙烷15%(L下=3.22%)、丙烷4%(L下=2.37%)、丁烷1%(L下=1.86%)求爆炸下限。

Lm=100/(80/5+15/3.22+4/2.37+1/1.86)=4.369德迈数据计算:废气风量:19000Nm3/h废气中可燃性成分:戊烷7kg/h;甲醛29kg/h,其它约5kg/h(当甲醛计算)戊烷体积=7000/72*22.4/1000=2.178 Nm3/h 体积分数=2.178/19000=0.012% 甲醛体积分数=25.39 Nm3/h 体积分数=25.39/19000=0.134% 混合气体中可燃气体的总体积分数=0.146%由公式:LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)(V%)得:混合气体的爆炸下限=0.146%/(0.012/1.7+0.134/7)=5.57%结论:混合气体中可燃气体的总体积分数为0.146%,混合气体的爆炸下限为5.57%,可燃气体浓度是爆炸下限浓度的1/38,放心烧吧!。

可燃气体混合物爆炸极限计算

可燃气体混合物爆炸极限计算

可燃气体混合物爆炸极限计算
可燃气体混合物爆炸极限计算分为上爆极限和下爆极限两种。

上爆极限计算:
上爆极限是指混合气体中可燃气体浓度达到一定值时,引起爆炸的最高界限,也称上限浓度。

当混合气体中可燃气体浓度高于上爆极限时,气体混合物不会发生燃烧反应。

上爆极限的计算公式为:
LFL = (Vg / Vm) * 100%
其中,LFL为可燃气体混合物的下爆极限(Lower Explosion Limit),Vg为混合气体中可燃气体的体积,Vm为混合气体的总体积。

下爆极限计算:
下爆极限是指混合气体中可燃气体浓度达到一定值时,引起爆炸的最低界限,也称下限浓度。

当混合气体中可燃气体浓度低于下爆极限时,气体混合物也不会发生燃烧反应。

下爆极限的计算公式为:
UFL = (Vk / Vm) * 100%
其中,UFL为可燃气体混合物的上爆极限(Upper Explosion Limit),Vk为混合气体中空气的体积,Vm为混合气体的总体积。

在一定的压力、温度和混合气
体成分的情况下,可燃气体混合物的爆炸极限是固定的。

常见气体的爆炸极限及爆炸极限计算公式

常见气体的爆炸极限及爆炸极限计算公式

常见气体的爆炸极限及爆炸极限计算公式气体的爆炸极限是指气体混合物中可燃气体的浓度范围,在这个浓度范围内,混合物可以发生自燃或爆炸。

爆炸极限通常分为上爆炸极限和下爆炸极限。

下面将介绍一些常见气体的爆炸极限及其计算公式。

1.甲烷(CH4)甲烷是最常见的天然气成分之一,它在空气中的爆炸极限为5%~15%。

甲烷的爆炸极限可以通过LFL(Lower Flammability Limit)和UFL (Upper Flammability Limit)来计算。

公式如下:LFL=0.0416×M/VcUFL=0.1621×M/Vc其中,M表示混合物中甲烷的质量分数,Vc表示燃烧容积。

2.乙炔(C2H2)乙炔是一种常用的工业气体,它在空气中的爆炸极限为 2.5%~93.3%。

乙炔的爆炸极限计算公式如下:LFL=4.57×(Vg)^0.63UFL=38×(Vg)^0.63其中,Vg表示乙炔的体积分数。

3.氢气(H2)氢气是一种轻便的气体,在空气中的爆炸极限为4%~75%。

氢气的爆炸极限可以通过下面的公式进行计算:LFL=4.1×(Pg)^0.82UFL=77.7×(Pg)^0.82其中,Pg表示氢气的压力。

4.二氧化碳(CO2)二氧化碳是一种非常稳定的气体,不易燃烧。

它的下爆炸极限为34%~74%。

在常规条件下,二氧化碳不会引发自燃或爆炸反应。

5.氧气(O2)氧气是一种强氧化剂,它本身不可燃。

然而,许多物质在氧气的存在下能够更容易燃烧。

氧气在空气中的爆炸极限为24%~95%。

需要注意的是,不同气体具有不同的爆炸极限计算公式,而且这些公式仅适用于特定条件下的混合气体。

你在实际情况中应该使用与你的气体和条件相匹配的正确公式。

此外,爆炸极限受到许多因素的影响,例如温度、压力、湿度和空气中其他物质的存在等。

这些因素可能会使爆炸极限的数值发生变化。

因此,在实际操作中,我们需要进行实验或模拟来确定具体气体在特定条件下的爆炸极限值。

爆炸极限计算

爆炸极限计算

爆炸极限计算爆炸反应当量浓度、爆炸下限和上限、多种可燃气体混合物的爆炸极限计算方法如下: (1)爆炸反应当量浓度。

爆炸性混合物中的可燃物质和助燃物质的浓度比例,在恰好能发生完全的化合反应时,则爆炸所析出的热量最多,所产生的压力也最大。

实际的反应当量浓度稍高于计算的反应当量浓度,这是因为爆炸性混合物通常含有杂质。

可燃气体或蒸气分子式一般用C αH βO γ表示,设燃烧1mol 气体所必需的氧摩尔数为n ,则燃烧反应式可写成:C αH βO γ+nO 2→生成气体按照标准空气中氧气浓度为20.9%,则可燃气体在空气中的化学当量浓度X(%),可用下式表示:可燃气体在氧气中的化学当量浓度为Xo(%),可用下式表示:也可根据完全燃烧所需的氧原子数2n 的数值,从表1中直接查出可燃气体或蒸气在空气(或氧气)中的化学当量浓度。

其中。

可燃气体(蒸气)在空气中和氧气中的化学当量浓度(2)爆炸下限和爆炸上限。

各种可燃气体和燃性液体蒸气的爆炸极限,可用专门仪器测定出来,或用经验公式估算。

爆炸极限的估算值与实验值一般有些出入,其原因是在计算式中只考虑到混合物的组成,而无法考虑其他一系列因素的影.响,但仍不失去参考价值。

1)根据完全燃烧反应所需的氧原子数估算有机物的爆炸下限和上限,其经验公式如下。

爆炸下限公式:(体积)爆炸上限公式:(体积)式中 L——可燃性混合物爆炸下限;下L——可燃性混合物爆炸上限;上n——1mol可燃气体完全燃烧所需的氧原子数。

某些有机物爆炸上限和下限估算值与实验值比较如表2:表2 石蜡烃的化学计量浓度及其爆炸极限计算值与实验值的比较从表中所列数值可以看出,实验所得与计算的值有一定差别,但采用安全系数后,在实际生产工作中仍可供参考。

2)根据化学当量浓度计算爆炸极限和爆炸性混合气完全燃烧时的化学当量浓度,可以估算有机物的爆炸下限和上限。

计算公式如下:此计算公式用于链烷烃类,其计算值与实验值比较,误差不超过10%。

常见气体的爆炸极限及爆炸极限计算公式

常见气体的爆炸极限及爆炸极限计算公式

爆炸极限计算方法:比较认可的计算方法有两种:
莱·夏特尔定律
对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱·夏特尔定律,可以算出与空气相混合的气体的爆炸极限。

用Pn表示一种可燃气在混合物中的体积分数,则:
LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)(V%)
混合可燃气爆炸上限:
UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)(V%)
此定律一直被证明是有效的。

2.2 理·查特里公式
理·查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已
知的爆炸极限按下式求之。

该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。

Lm=100/(V1/L1+V2/L2+……+Vn/Ln)
式中Lm——混合气体爆炸极限,%;
L1、L2、L3——混合气体中各组分的爆炸极限,%;
V1、V2、V3——各组分在混合气体中的体积分数,%。

例如:一天然气组成如下:甲烷80%(L下=5.0%)、乙烷15%(L下=3.22%)、丙烷4%(L下=2.37%)、丁烷1%(L下=1.86%)求爆炸下限。

Lm=100/(80/5+15/3.22+4/2.37+1/1.86)=4.369。

爆炸极限及危险度计算公式

爆炸极限及危险度计算公式

爆炸极限及危险度计算公式引言。

在现代社会中,爆炸事故往往会给人们的生命财产安全带来巨大的威胁。

因此,对爆炸物质的爆炸极限及危险度进行准确的计算和评估显得尤为重要。

本文将从爆炸极限和危险度两个方面展开讨论,并介绍相关的计算公式和方法。

一、爆炸极限的概念及计算公式。

爆炸极限是指在一定条件下,爆炸物质在混合气体中能够发生爆炸的最低和最高浓度范围。

在这个范围内,爆炸物质与空气的混合物能够发生燃烧或爆炸。

爆炸极限的计算公式一般采用下面的形式:LFL = (100 φ) / (φα)。

UFL = (100 φ) / (φβ)。

其中,LFL表示下限爆炸浓度,UFL表示上限爆炸浓度,φ表示爆炸物质的最小燃烧浓度,α和β分别表示燃烧产物中氧气的最小和最大浓度。

这两个公式是用来计算爆炸物质在混合气体中的最低和最高浓度的,能够帮助我们更好地了解爆炸物质的危险程度。

二、危险度的概念及计算公式。

危险度是指爆炸物质对周围环境和人体造成危害的程度。

在工程实践中,我们常常需要对爆炸物质的危险度进行评估,以便采取相应的安全措施。

危险度的计算公式一般采用下面的形式:H = P × V。

其中,H表示危险度,P表示爆炸物质的爆炸压力,V表示爆炸物质的体积。

这个公式是用来计算爆炸物质的危险度的,能够帮助我们更好地评估爆炸物质的危险程度。

三、爆炸极限及危险度的计算方法。

在实际工程中,我们可以通过实验或者计算的方法来确定爆炸物质的爆炸极限和危险度。

对于爆炸极限,我们可以通过实验来测定爆炸物质在混合气体中的最低和最高浓度,然后利用上面提到的计算公式来计算出具体的数值。

对于危险度,我们可以通过实验来测定爆炸物质的爆炸压力和体积,然后利用上面提到的计算公式来计算出具体的数值。

此外,我们还可以利用一些现成的数据表格或者计算软件来进行爆炸极限及危险度的计算。

这些方法能够帮助我们更快速地获取爆炸物质的相关参数,从而更好地评估其危险程度。

四、结论。

爆炸下限和爆炸上限计算公式

爆炸下限和爆炸上限计算公式

爆炸下限和爆炸上限计算公式
爆炸下限和爆炸上限的计算公式因所指的情境或物理参数不同而变化。

以下是几个常见的计算公式示例:
1. 爆炸下限(LEL,Lower Explosive Limit)和爆炸上限(UEL,Upper Explosive Limit)的计算公式通常用于气体或蒸汽混合物的爆炸性质分析:
- LEL = (最低爆炸浓度) / (混合物中气体总体积)
- UEL = (最高爆炸浓度) / (混合物中气体总体积)
2. 当涉及到材料的爆炸性质时,可以使用爆炸下限和爆炸上限的计算公式:
- 爆炸下限 = (材料的最小爆炸浓度) / (材料的总质量)
- 爆炸上限 = (材料的最大爆炸浓度) / (材料的总质量)
上述公式中,爆炸浓度指的是混合物或材料中导致爆炸的气体或蒸汽的最低或最高浓度。

爆炸浓度一般用体积份额或质量份额表示。

这些公式可用于评估材料或混合物在给定条件下的爆炸性质。

但请注意,具体使用哪种公式以及公式中涉及的参数取决于所研究的物质或情境。

爆炸极限计算

爆炸极限计算

爆炸极限计算爆炸反应当量浓度、爆炸下限和上限、多种可燃气体混合物的爆炸极限计算方法如下:(1)爆炸反应当量浓度。

爆炸性混合物中的可燃物质和助燃物质的浓度比例,在恰好能发生完全的化合反应时,则爆炸所析出的热量最多,所产生的压力也最大。

实际的反应当量浓度稍高于计算的反应当量浓度,这是因为爆炸性混合物通常含有杂质。

可燃气体或蒸气分子式一般用CαHβOγ表示,设燃烧1mol气体所必需的氧摩尔数为n,则燃烧反应式可写成:CαHβOγ+nO2→生成气体按照标准空气中氧气浓度为20.9%,则可燃气体在空气中的化学当量浓度X(%),可用下式表示:可燃气体在氧气中的化学当量浓度为Xo(%),可用下式表示:也可根据完全燃烧所需的氧原子数2n的数值,从表1中直接查出可燃气体或蒸气在空气(或氧气)中的化学当量浓度。

其中。

可燃气体(蒸气)在空气中和氧气中的化学当量浓度(2)爆炸下限和爆炸上限。

各种可燃气体和燃性液体蒸气的爆炸极限,可用专门仪器测定出来,或用经验公式估算。

爆炸极限的估算值与实验值一般有些出入,其原因是在计算式中只考虑到混合物的组成,而无法考虑其他一系列因素的影.响,但仍不失去参考价值。

1)根据完全燃烧反应所需的氧原子数估算有机物的爆炸下限和上限,其经验公式如下。

爆炸下限公式:(体积)爆炸上限公式:(体积)式中L下——可燃性混合物爆炸下限;L上——可燃性混合物爆炸上限;n——1mol可燃气体完全燃烧所需的氧原子数。

某些有机物爆炸上限和下限估算值与实验值比较如表2:表2石蜡烃的化学计量浓度及其爆炸极限计算值与实验值的比较从表中所列数值可以看出,实验所得与计算的值有一定差别,但采用安全系数后,在实际生产工作中仍可供参考。

2)根据化学当量浓度计算爆炸极限和爆炸性混合气完全燃烧时的化学当量浓度,可以估算有机物的爆炸下限和上限。

计算公式如下:此计算公式用于链烷烃类,其计算值与实验值比较,误差不超过10%。

例如甲烷爆炸极限的实验值为5%~15%,与计算值非常接近。

常见气体的爆炸极限及爆炸极限计算公式

常见气体的爆炸极限及爆炸极限计算公式

可以算出与空气相混合的气体的爆炸极限。

用Pn表示一种可燃气在混合物中的体积分数,则:LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)?(V%)
混合可燃气爆炸上限:
UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)?(V%)
?此定律一直被证明是有效的。

2.2?理·查特里公式
????理·查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。

该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。

Lm=100/
(V1/L1+V2/L2+……+Vn/Ln)
????式中Lm——混合气体爆炸极限,%;
????L1、L2、L3——混合气体中各组分的爆炸极限,%;
????V1、V2、V3——各组分在混合气体中的体积分数,%。

????例如:一天然气组成如下:甲烷80%(L下=5.0%)、乙烷15%(L下=3.22%)、丙烷4%(L 下=2.37%)、丁烷1%(L下=1.86%)求爆炸下限。

爆炸极限的计算

爆炸极限的计算

1、爆炸反应当量浓度的计算爆炸气体完全燃烧时,其化学理论体积分数可用来确定可燃物的爆炸下限,公式如下:C =20.9/(0.209+n0)爆炸下限(LEL)=0.55×C爆炸上限(UEL)=4.8(C) ^0.5C——爆炸性气体完全燃烧时的化学计量浓度;0.55——常数;20.9%——空气中氧体积分数;n0——可燃气体完全燃烧时所需氧分子数。

例如:求丙烷的爆炸极限。

丙烷化学反应式:一分子丙烷+五分子氧气→三分子二氧化碳+四分子水丙烷(LEL)=0.55×C=2.21%丙烷(UEL)=4.8(20.9/(0.209+5))^0.5=9.62%2、由分子中所含碳原子数估算爆炸极限爆炸下限(LEL)=1/(0.1347n+0.04343)爆炸上限(UEL)=1/(0.01337n+0.05151)n——分子中所含碳原子数3、两种以上可燃气体组成的混合体系爆炸极限的计算3.1、莱夏特尔定律对于两种以上可燃气体混合体系,已知每种可燃气体的爆炸极限和所占空间体积分数,可根据莱夏特尔定律算出混合体系的爆炸极限。

(爆炸下限)LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)(爆炸上限)UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)Pn——每种可燃气在混合物中的体积分数3.2、理查特里公式对于两种以上可燃性混合体系可用理查特里公式,该式适用于各组分间不反应、燃烧时无催化作用的可燃性混合体系。

EL=100/(V1/EL1+V2/EL2+……+Vn/ELn)EL——混合体系爆炸极限;ELn——混合体系中各组分的爆炸极限;Vn——各组分在混合气体中的体积分数。

4、含惰性气体的可燃性混合体系的爆炸极限对于有惰性气体混入的多元可燃性混合体系的爆炸极限,可用以下公式:EL=ELr/(1-D+(ELr×D)/100)EL——含惰性气体的可燃性混合体系的爆炸极限;ELr——可燃性混合体系中部分可燃物的爆炸极限;D——为惰性气体含量。

常见气体的爆炸极限及爆炸极限计算公式

常见气体的爆炸极限及爆炸极限计算公式

可以算出与空气相混合的气体的爆炸极限。

用Pn表示一种可燃气在混合物中的体积分数,则:LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)?(V%)
混合可燃气爆炸上限:
UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)?(V%)
?此定律一直被证明是有效的。

2.2?理·查特里公式
????理·查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。

该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。

Lm=100/
(V1/L1+V2/L2+……+Vn/Ln)
????式中Lm——混合气体爆炸极限,%;
????L1、L2、L3——混合气体中各组分的爆炸极限,%;
????V1、V2、V3——各组分在混合气体中的体积分数,%。

????例如:一天然气组成如下:甲烷80%(L下=5.0%)、乙烷15%(L下=3.22%)、丙烷4%(L 下=2.37%)、丁烷1%(L下=1.86%)求爆炸下限。

常见气体的爆炸极限及爆炸极限计算公式

常见气体的爆炸极限及爆炸极限计算公式

爆炸极限计算方法:比较认可的计算方法有两种:莱·夏特尔定律????对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱·夏特尔定律,可以算出与空气相混合的气体的爆炸极限。

用Pn表示一种可燃气在混合物中的体积分数,则:LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)?(V%)混合可燃气爆炸上限:UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)?(V%)?此定律一直被证明是有效的。

2.2?理·查特里公式????理·查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。

该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。

Lm=100/(V1/L1+V2/L2+……+Vn/Ln)????式中Lm——混合气体爆炸极限,%;????L1、L2、L3——混合气体中各组分的爆炸极限,%;????V1、V2、V3——各组分在混合气体中的体积分数,%。

????例如:一天然气组成如下:甲烷80%(L下=5.0%)、乙烷15%(L下=3.22%)、丙烷4%(L下=2.37%)、丁烷1%(L下=1.86%)求爆炸下限。

????Lm=100/(80/5+15/3.22+4/2.37+1/1.86)=4.369德迈数据计算:废气风量:19000Nm3/h废气中可燃性成分:戊烷7kg/h;甲醛29kg/h,其它约5kg/h(当甲醛计算)戊烷体积=7000/72*22.4/1000=2.178Nm3/h体积分数=2.178/19000=0.012%甲醛体积分数=25.39Nm3/h体积分数=25.39/19000=0.134%混合气体中可燃气体的总体积分数=0.146%由公式:LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)?(V%)得:混合气体的爆炸下限=0.146%/(0.012/1.7+0.134/7)=5.57%结论:混合气体中可燃气体的总体积分数为0.146%,混合气体的爆炸下限为5.57%,可燃气体浓度是爆炸下限浓度的1/38,放心烧吧!。

常见气体的爆炸极限及爆炸极限计算公式

常见气体的爆炸极限及爆炸极限计算公式

爆炸极限计算方法:比较认可的计算方法有两种:
莱·夏特尔定律
对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱·夏特尔定律,可以算出与空气相混合的气体的爆炸极限;用Pn表示一种可燃气在混合物中的体积分数,则:
LEL=P1+P2+P3/P1/LEL1+P2/LEL2+P3/LEL3 V%
混合可燃气爆炸上限:
UEL=P1+P2+P3/P1/UEL1+P2/UEL2+P3/UEL3 V%
此定律一直被证明是有效的;
理·查特里公式
理·查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之;该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物;Lm=100/V1/L1+V2/L2+……+Vn/Ln
式中Lm——混合气体爆炸极限,%;
L1、L2、L3——混合气体中各组分的爆炸极限,%;
V1、V2、V3——各组分在混合气体中的体积分数,%;
例如:一天然气组成如下:甲烷80%L下=%、乙烷15%L下=%、丙烷4%L 下=%、丁烷1%L下=%求爆炸下限;
Lm=100/80/5+15/+4/+1/=。

常见气体的爆炸极限及爆炸极限计算公式

常见气体的爆炸极限及爆炸极限计算公式

爆炸极限计算方法:比较认可的计算方法有两种:
莱·夏特尔定律
对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱·夏特尔定律,可以算出与空气相混合的气体的爆炸极限。

用Pn表示一种可燃气在混合物中的体积分数,则:
LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)(V%)
混合可燃气爆炸上限:
UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)(V%)
此定律一直被证明是有效的。

2.2 理·查特里公式
理·查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。

该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。

Lm=100/(V1/L1+V2/L2+……+Vn/Ln)
式中Lm——混合气体爆炸极限,%;
L1、L2、L3——混合气体中各组分的爆炸极限,%;
V1、V2、V3——各组分在混合气体中的体积分数,%。

例如:一天然气组成如下:甲烷80%(L下=5.0%)、乙烷15%(L下=3.22%)、丙烷4%(L下=2.37%)、丁烷1%(L下=1.86%)求爆炸下限。

Lm=100/(80/5+15/3.22+4/2.37+1/1.86)=4.369。

爆炸极限计算PPT课件

爆炸极限计算PPT课件
3
4.4.2爆炸极限的影响因素
(1)初始温度
爆炸性混合物的初始温度越高,则爆炸极限范围越大,即爆炸下 限降低而爆炸上限增高
图4-19 温度对甲烷爆炸极限的影响
图4-20 温度对氢气爆炸极限的影响
4
温度对丙酮爆炸极限的影响
混合物温度,℃ 0 50 100 爆炸下限,% 4.2 4.0 3.2 爆炸上限,% 8.0 9.8 10.0
当β<1时,表示反应系统在受能源激发后,放热越来越少,也就是说,引起 反应的分子数越来越少,最后反应停止,不能形成燃烧或爆炸。 当β=1时,表示反应系统在受能源激发后能均衡放热,有一定数量的分子在 持续进行反应。这就是决定爆炸极限的条件(严格说稍微超过一些才能爆炸)。
当β>1时,表示放热量越来越大,反应分子越来越多,形成爆炸
2
在爆炸极限时,β=1
1

Q 1 E
设爆炸下限为L下(体积百分比)与反应概率α成正比, 即
KL下
1 Q =K1+ L下 E
当Q与E相比较大时,上式可近似写做
1 Q =K L下 E
各可燃气体的活化能变化不大,可大体上得出 :
L下 Q=常数
爆炸下限L下与可燃性气体的燃烧热Q近于成反比,可燃性气体燃烧热 越大,爆炸下限就越低。
(5)点火能源
火花的能量、热表面的面积、火源与 混合物的接触时间等,对爆炸极限均 有影响
图4-24 火源能量对甲烷爆 炸极限的影响 (常压,26℃)
8
4.4.3 爆炸极限的测定
爆炸极限的测定一般采用传播法 测试原理:首先将爆炸管内抽成真空,然后充以一定浓度的可燃气 与空气的混合气体,用循环泵使可燃气混合均匀,再用电极点火, 观察火焰传播情况。火焰传播的最低浓度或最高浓度(可燃气的体 积百分含量),即为该可燃气的爆炸下限或爆炸上限。

常见气体的爆炸极限及爆炸极限计算公式

常见气体的爆炸极限及爆炸极限计算公式

爆炸极限计算方法:比较认可的计算方法有两种:
莱·夏特尔定律对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱·夏特尔定律,可以算出与空气相混合的气体的爆炸极限;用Pn表示一种可燃气在混合物中的体积分数,则:
LEL=P1+P2+P3/P1/LEL1+P2/LEL2+P3/LEL3 V%
混合可燃气爆炸上限:
UEL=P1+P2+P3/P1/UEL1+P2/UEL2+P3/UEL3 V%
此定律一直被证明是有效的;
理·查特里公式
理·查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知
的爆炸极限按下式求之;该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物;Lm=100/V1/L1+V2/L2+……+Vn/Ln式中Lm——混合气体爆炸极限,%;L1、L2、L3——混合气体中各组分的爆炸极限,%;V1、V2、V3——各组分在混合气体中的体积分数,%; 例如:一天然气组成如下:甲烷80%L下=%、乙烷15%L下=%、丙烷4%L下=%、丁烷1%L下=%求爆炸下限;
Lm=100/80/5+15/+4/+1/=。

爆炸极限的两个计算公式

爆炸极限的两个计算公式

爆炸极限的两个计算公式爆炸极限是指在一定条件下,物质发生爆炸所需要的最小的能量或物质浓度。

在工业生产和安全管理中,对于爆炸极限的计算和预测是非常重要的。

下面我们将介绍两个常用的爆炸极限计算公式,以及它们在实际中的应用。

1. 燃烧极限计算公式。

燃烧极限是指在一定条件下,物质在空气中燃烧所需要的最小的浓度。

燃烧极限计算公式可以用来预测在一定条件下,物质的燃烧极限。

其计算公式如下:LFL = (Vf / Vt) 100%。

其中,LFL代表下限燃烧极限,Vf代表物质在空气中的体积浓度,Vt代表空气中的总体积。

在实际中,燃烧极限的计算可以帮助工程师和安全人员在设计和管理中预测物质燃烧的风险。

通过计算燃烧极限,可以确定物质在空气中的最小浓度,从而避免在生产过程中发生不必要的事故。

2. 爆炸极限计算公式。

爆炸极限是指在一定条件下,物质发生爆炸所需要的最小的浓度。

爆炸极限计算公式可以用来预测在一定条件下,物质的爆炸极限。

其计算公式如下:UEL = (Vuel / Vt) 100%。

LEL = (Vlel / Vt) 100%。

其中,UEL代表上限爆炸极限,LEL代表下限爆炸极限,Vuel代表物质在空气中的体积浓度,Vlel代表物质在空气中的体积浓度,Vt代表空气中的总体积。

在实际中,爆炸极限的计算可以帮助工程师和安全人员在设计和管理中预测物质发生爆炸的风险。

通过计算爆炸极限,可以确定物质在空气中的最小和最大浓度,从而避免在生产过程中发生严重的爆炸事故。

爆炸极限的计算公式可以帮助工程师和安全人员在设计和管理中预测物质发生爆炸的风险。

通过计算爆炸极限,可以确定物质在空气中的最小和最大浓度,从而避免在生产过程中发生严重的爆炸事故。

总结。

爆炸极限的计算公式是工业生产和安全管理中非常重要的工具。

通过计算燃烧和爆炸极限,可以帮助工程师和安全人员在设计和管理中预测物质的燃烧和爆炸风险,从而采取相应的措施来避免事故的发生。

因此,熟练掌握爆炸极限的计算公式,对于工程师和安全人员来说是非常重要的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

爆炸极限计算爆炸反应当量浓度、爆炸下限和上限、多种可燃气体混合物的爆炸极限计算方法如下: (1)爆炸反应当量浓度。

爆炸性混合物中的可燃物质和助燃物质的浓度比例,在恰好能发生完全的化合反应时,则爆炸所析出的热量最多,所产生的压力也最大。

实际的反应当量浓度稍高于计算的反应当量浓度,这是因为爆炸性混合物通常含有杂质。

可燃气体或蒸气分子式一般用C αH βO γ表示,设燃烧1mol 气体所必需的氧摩尔数为n ,则燃烧反应式可写成:C αH βO γ+nO 2→生成气体按照标准空气中氧气浓度为20.9%,则可燃气体在空气中的化学当量浓度X(%),可用下式表示:可燃气体在氧气中的化学当量浓度为Xo(%),可用下式表示:也可根据完全燃烧所需的氧原子数2n 的数值,从表1中直接查出可燃气体或蒸气在空气(或氧气)中的化学当量浓度。

其中。

可燃气体(蒸气)在空气中和氧气中的化学当量浓度(2)爆炸下限和爆炸上限。

各种可燃气体和燃性液体蒸气的爆炸极限,可用专门仪器测定出来,或用经验公式估算。

爆炸极限的估算值与实验值一般有些出入,其原因是在计算式中只考虑到混合物的组成,而无法考虑其他一系列因素的影响,但仍不失去参考价值。

1)根据完全燃烧反应所需的氧原子数估算有机物的爆炸下限和上限,其经验公式如下。

爆炸下限公式:(体积)爆炸上限公式:(体积)式中 L——可燃性混合物爆炸下限;下L——可燃性混合物爆炸上限;上n——1mol可燃气体完全燃烧所需的氧原子数。

某些有机物爆炸上限和下限估算值与实验值比较如表2:表2 石蜡烃的化学计量浓度及其爆炸极限计算值与实验值的比较从表中所列数值可以看出,实验所得与计算的值有一定差别,但采用安全系数后,在实际生产工作中仍可供参考。

2)根据化学当量浓度计算爆炸极限和爆炸性混合气完全燃烧时的化学当量浓度,可以估算有机物的爆炸下限和上限。

计算公式如下:此计算公式用于链烷烃类,其计算值与实验值比较,误差不超过10%。

例如甲烷爆炸极限的实验值为5%~15%,与计算值非常接近。

但用以估算H2、C2H2以及含N2、Cl2等可燃气体时,出入较大,不可应用。

(3)多种可燃气体组成混合物的爆炸极限。

由多种可燃气体组成爆炸混合气的爆炸极限,可根据各组分的爆炸极限进行估算,其计算公式如下:式中 Lm——爆炸性混合气的爆炸极限(%);L 1、L2、L3、Ln——组成混合气各组分的爆炸极限(%);V 1、V2、V3、…Vn——各组分在混合气中的浓度(%)。

V 1+V2+V3+…Vn=100该公式用于煤气、水煤气、天然气等混合气爆炸极限的计算比较准确,而对于氢与乙烯、氢与硫化氢、甲烷与硫化氢等混合气及二硫化碳的混合气体,则计算的误差较大,不得应用。

——摘自《安全科学技术百科全书》(中国劳动社会保障出版社,2003年6月出版)explosive limit可燃性气体或蒸气与助燃性气体形成的均匀混合系在标准测试条件下引起爆炸的浓度极限值。

助燃性气体可以是空气、氧气或其他助燃性气体。

一般情况提及的爆炸极限是指可燃气体或蒸气在空气中的浓度极限。

能够引起爆炸的可燃气体的最低含量称为爆炸下限;最高浓度称为爆炸上限。

混合系的组分不同,爆炸极限也不同。

同一混合系,由于初始温度、系统压力、惰性介质含量、混合系存在空间及器壁材质以及点火能量的大小等的都能使爆炸极限发生变化。

一般规律是:混合系原始温度升高,则爆炸极限范围增大,即下限降低、上限升高。

因为系统温度升高,分子内能增加,使原来不燃的混合物成为可燃、可爆系统。

系统压力增大,爆炸极限范围也扩大,这是由于系统压力增高,使分子间距离更为接近,碰撞几率增高,使燃烧反应更易进行。

压力降低,则爆炸极限范围缩小;当压力降至一定值时,其上限与下限重合,此时对应的压力称为混合系的临界压力。

压力降至临界压力以下,系统便不成为爆炸系统(个别气体有反常现象)。

混合系中所含惰性气体量增加,爆炸极限范围缩小,惰性气体浓度提高到某一数值,混合系就不能爆炸。

容器、管子直径越小,则爆炸范围就越小。

当管径(火焰通道)小到一定程度时,单位体积火焰所对应的固体冷却表面散出的热量就会大于产生的热量,火焰便会中断熄灭。

火焰不能传播的最大管径称为该混合系的临界直径。

点火能的强度高、热表面的面积大、点火源与混合物的接触时间不等都会使爆炸极限扩大。

除上述因素外,混合系接触的封闭外壳的材质、机械杂质、光照、表面活性物质等都可能影响到爆炸极限范围。

可燃性蒸气的爆炸极限值是由可燃液体表面产生的蒸气浓度决定的。

对于可燃液体而言,爆炸下限浓度对应的闪点温度又可以称为爆炸下限温度;爆炸上限浓度对应的液体温度又可以称为爆炸上限温度。

混合气体、蒸汽的爆炸极限可以根据理.查特里法则计算L下= 1/N1/L1+N2/L2 (100)L上= 1/N1/L1+N2/L2 (100)理查特公式是对两种或多种可燃气体或可燃蒸气混合物爆炸极限的计算,它是根据各组分已知的爆炸极限来计算的,适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。

Lm=100/(V1/L1+V2/L2+……+Vn/Ln)式中Lm——混合气体爆炸极限,%;L1、L2、L3——混合气体中各组分的爆炸极限,%;V1、V2、V3——各组分在混合气体中的体积分数,%。

安全评价师2008/6/24 保存本文推荐给好友收藏本页爆炸极限的意义可燃物质(可燃气体、蒸气和粉尘)与空气(或氧气)必须在一定的浓度范围内均匀混合,形成预混气,遇着火源才会发生爆炸,这个浓度范围称为爆炸极限,或爆炸浓度极限。

例如一氧化碳与空气混合的爆炸极限为12.5%~80%。

可燃性混合物能够发生爆炸的最低浓度和最高浓度,分别称为爆炸下限和爆炸上限,这两者有时亦称为着火下限和着火上限。

在低于爆炸下限时不爆炸也不着火;在高于爆炸上限不会发生爆炸,但会着火。

这是由于前者的可燃物浓度不够,过量空气的冷却作用,阻止了火焰的蔓延;而后者则是空气不足,导致火焰不能蔓延的缘故。

当可燃物的浓度大致相当于反应当量浓度时,具有最大的爆炸威力(即根据完全燃烧反应方程式计算的浓度比例)。

[编辑本段]影响爆炸极限的因素混合系的组分不同,爆炸极限也不同。

同一混合系,由于初始温度、系统压力、惰性介质含量、混合系存在空间及器壁材质以及点火能量的大小等的都能使爆炸极限发生变化。

一般规律是:混合系原始温度升高,则爆炸极限范围增大,即下限降低、上限升高。

因为系统温度升高,分子内能增加,使原来不燃的混合物成为可燃、可爆系统。

系统压力增大,爆炸极限范围也扩大,这是由于系统压力增高,使分子间距离更为接近,碰撞几率增高,使燃烧反应更易进行。

压力降低,则爆炸极限范围缩小;当压力降至一定值时,其上限与下限重合,此时对应的压力称为混合系的临界压力。

压力降至临界压力以下,系统便不成为爆炸系统(个别气体有反常现象)。

混合系中所含惰性气体量增加,爆炸极限范围缩小,惰性气体浓度提高到某一数值,混合系就不能爆炸。

容器、管子直径越小,则爆炸范围就越小。

当管径(火焰通道)小到一定程度时,单位体积火焰所对应的固体冷却表面散出的热量就会大于产生的热量,火焰便会中断熄灭。

火焰不能传播的最大管径称为该混合系的临界直径。

点火能的强度高、热表面的面积大、点火源与混合物的接触时间不等都会使爆炸极限扩大。

除上述因素外,混合系接触的封闭外壳的材质、机械杂质、光照、表面活性物质等都可能影响到爆炸极限范围。

[编辑本段]爆炸极限与可燃物的危害可燃性混合物的爆炸极限范围越宽、爆炸下限越低和爆炸上限越高时,其爆炸危险性越大。

这是因为爆炸极限越宽则出现爆炸条件的机会就多;爆炸下限越低则可燃物稍有泄漏就会形成爆炸条件;爆炸上限越高则有少量空气渗入容器,就能与容器内的可燃物混合形成爆炸条件。

应当指出,可燃性混合物的浓度高于爆炸上限时,虽然不会着火和爆炸,但当它从容器或管道里逸出,重新接触空气时却能燃烧,仍有发生着火的危险。

爆炸极限的表示爆炸极限的单位气体或蒸气的爆炸极限的单位,是以在混合物中所占体积的百分比(%)来表示的,如氢与空气混合物的爆炸极限为4%~75%。

可燃粉尘的爆炸极限是以混合物中所占体积的质量比g/m^3来表示的,例如铝粉的爆炸极限为40g/m^3。

可燃性蒸气的爆炸极限值是由可燃液体表面产生的蒸气浓度决定的。

对于可燃液体而言,爆炸下限浓度对应的闪点温度又可以称为爆炸下限温度;爆炸上限浓度对应的液体温度又可以称为爆炸上限温度。

可燃气体或蒸气分子式爆炸极限(%)下限上限氢气 H2 4.0 75氨 NH3 15.5 27一氧化碳 CO 12.5 74.2甲烷 CH4 5.3 14乙烷 C2H6 3.0 12.5乙烯 C2H4 3.1 32乙炔 C2H2 2.2 81苯 C6H6 1.4 7.1甲苯 C7H8 1.4 6.70环氧乙烷 C2H4O 3.0 80.0乙醚 (C2H5)O 1.9 48.0乙醛 CH3CHO 4.1 55.0丙酮 (CH3)2CO 3.0 11.0乙醇 C2H5OH 4.3 19.0甲醇 CH3OH 5.5 36醋酸乙酯 C4H8O2 2.5 9常用可燃气体爆炸极限数据表(LEL/UEL及毒性)物质名称分子式爆炸浓度 (V%) 毒性下限 LEL 上限 UEL甲烷 CH4 5 15 ——乙烷 C2H6 3 15.5丙烷 C3H8 2.1 9.5丁烷 C4H10 1.9 8.5戊烷(液体) C5H12 1.4 7.8己烷(液体) C6H14 1.1 7.5庚烷(液体) CH3(CH2)5CH3 1.1 6.7辛烷(液体) C8H18 1 6.5乙烯 C2H4 2.7 36丙烯 C3H6 2 11.1丁烯 C4H8 1.6 10丁二烯 C4H6 2 12 低毒乙炔 C3H4 2.5 100环丙烷 C3H6 2.4 10.4煤油(液体) C10-C16 0.6 5城市煤气 4液化石油气 1 12汽油(液体) C4-C12 1.1 5.9松节油(液体) C10H16 0.8苯(液体) C6H6 1.3 7.1 中等甲苯 C6H5CH3 1.2 7.1 低毒氯乙烷 C2H5CL 3.8 15.4 中等氯乙烯 C2H3CL 3.6 33氯丙烯 C3H5CL 2.9 11.2 中等1.2 二氯乙烷 CLCH2CH2CL 6.2 16 高毒四氯化碳 CCL4 轻微麻醉三氯甲烷 CHCL3 中等环氧乙烷 C2H4O 3 100 中等甲胺 CH3NH2 4.9 20.1 中等乙胺 CH3CH2NH2 3.5 14 中等苯胺 C6H5NH2 1.3 11 高毒二甲胺 (CH3)2NH 2.8 14.4 中等乙二胺 H2NCH2CH2NH2 低毒甲醇(液体) CH3OH 6.7 36乙醇(液体) C2H5OH 3.3 19正丁醇(液体) C4H9OH 1.4 11.2甲醛 HCHO 7 73乙醛 C2H4O 4 60丙醛(液体) C2H5CHO 2.9 17乙酸甲酯 CH3COOCH3 3.1 16乙酸 CH3COOH 5.4 16 低毒乙酸乙酯 CH3COOC2H5 2.2 11丙酮 C3H6O 2.6 12.8丁酮 C4H8O 1.8 10氰化氢 ( 氢氰酸 ) HCN 5.6 40 剧毒丙烯氰 C3H3N 2.8 28 高毒氯气 CL2 刺激氯化氢 HCL氨气 NH3 16 25 低毒硫化氢 H2S 4.3 45.5 神经二氧化硫 SO2 中等二硫化碳 CS2 1.3 50臭氧 O3 刺激一氧化碳 CO 12.5 74.2 剧毒氢 H2 4 75本表数值来源基本上以《 SH3063-1999 石油化工企业可燃气体和有毒气体检测报警器设计规范》为主,并与《常用化学危险品安全手册》进行了对照,补充。

相关文档
最新文档