爆炸极限计算资料
防火防爆技术资料
第1章防火基本原理1.1燃烧的学说和理论1.1.1燃素说1.1.2氧学说1.1.3分子碰撞理论1.1.4活化能理论1.1.5过氧化物理论1.1.6链锁反应理论1.1燃烧的学说和理论1.1.1燃素说其它类似学说;四元素说——燃烧是“火、水、空气、土”这四种元素的作用。
如木材的燃烧所产生的明显火焰为“火素”,蒸发散发的潮气为“水素”,上升的烟为“空气素”,剩余的灰为“土素”。
汞硫盐说——火焰的发生是因为物体中含有硫质,气体的逸出为汞素,剩余的灰为盐质,等等。
非常盛行,普里斯特一一实验室得到了氧气,仍是燃素说的忠实信徒;显而易见不科学,唯心,没有证明燃烧素的化学成分组成;当时某些科学家巳经认识到空气对于燃烧的重要性。
燃素说是形成于17世纪末、18世纪初的一种解释燃烧现象甚至整个化学的学说。
其创始人是斯莫尔。
燃素在燃烧过程中从可燃物中飞散出来,与空气结合,从而发光发热。
例如油脂、蜡、木炭都是极富燃素的物质,而石头、木灰、黄金都不含燃素,所以不能燃烧。
直到18世纪70(1772年)年代氧气被发现后,燃烧的本质才真相大白。
燃素说才逐渐退出历史舞台。
普林斯特是英国的一位杰出的科学家、化学家,可惜犯了一个巨大的判断错误。
离奇的是,尽管他终生坚持的化学理论一一燃素论一一最终被他自己的研究所推翻,他本人却从未放弃过这一理论。
但他终究对科学有显著贡献。
普林斯特对气体特别感兴趣,他被酿啤酒时释放的气体(现在我们知道那是二氧化碳)所吸引,就收集了许多。
并通过实验表明,这种气体在高压下易溶于水。
这就是苏打水和发泡软饮料工业的开端,风行的“汽水”热的源头。
几乎所有淡而无味的流体包括白开水,在溶解了二氧化碳后都会变得非常可口。
当前的商家正把二氧化碳溶于天然矿泉水,赚进大笔银子。
1.1.2氧学说氧学说是1777年,法国拉瓦锡,在普里斯特于实验室内得到氧气的基础上提出的。
燃烧是可燃物与氧化剂作用发生的放热反应,通常伴有火焰、发光和(或)发烟的现象。
各种粉尘粉末爆炸浓度极限全收录-完全免费啦
粉尘爆炸极限表补充:概念:、爆炸的概念:爆炸是指物质的状态和存在形式发生突变,在瞬间释放出大量的能量,形成空气冲击波,可使周围物质受到强烈的冲击,同时伴随有声或光效应的现象。
爆炸极限的概念:爆炸极限是可燃气体、蒸气或粉尘与空气混合后,遇火会产生爆炸的最高或最低浓度。
——国家标准《消防术语》最低浓度——爆炸下限(LEL)最高浓度——爆炸上限(UEL)1.粉尘本身是可燃粉尘非燃性粉尘是不会发生爆炸的,燃粉尘除前述外,还有茶叶、中药材维、硫磺粉尘等。
2.粉尘必须悬浮在空中,并与空气混合达到一定浓度粉尘能否悬浮在空中要害在于粉尘微粒,只有直径小于l0um的粉尘其扩散作用才大干重力作爪,易形成爆炸“层云”。
粉尘爆炸下限一般为20~60g/m3,爆炸上限为2~6kg/m3。
3.火源必须具有一定能量粉尘爆炸需首先加热或熔融蒸发或热解出可燃气体,因此需较多的热量。
粉尘爆炸的最小引爆能达10毫焦以上,为气体爆炸的近百倍。
此外,空气中的湿度不能太大,否则也不会发生粉尘爆炸。
粉尘爆炸的特点1.粉尘爆炸的条件:(1)粉尘本身必须是可燃性的;(2)粉尘必须具有相当大的比表面积;(3)粉尘必须悬浮在空气中,与空气混合形成爆炸极限范围内的混合物;(4)有足够的点火能量。
2.影响粉尘爆炸的因素:(1)颗粒的尺寸;(2)粉尘浓度;(3)空气的含水量;(4)含氧量;(5)可燃气体含量。
颗粒越小其比表面积越大,氧吸附也越多,在空气中悬浮时间越长,爆炸危险性越大。
空气中含水量越高、粉尘越小、引爆能量越高。
随着含氧量的增加,爆炸浓度范围扩大。
有粉尘的环境中存在可燃性气体时,会大大增加粉尘爆炸的危险性。
3.粉尘爆炸的特点:(1)多次爆炸是粉尘爆炸的最大特点;(2)粉尘爆炸所需的最小点火能量较高,一般在几十毫焦耳以上。
(3)与可燃性气体爆炸相比,粉尘爆炸压力上升较缓慢,较高压力持续时间长,释放的能量大,破坏力强。
凡是颗粒极微小,粒径在1至76um范围内的固体物质称为粉尘。
爆炸极限及氧浓度相关参数素材资料
爆炸极限相关参数素材资料一.CH41.瓦斯爆炸基础介绍瓦斯通常指甲烷,是一种无色、无味的气体。
在标准状态(气温为0℃、大气压为101361.53Pa)下,1m3甲烷的质量为0.7168kg,而1m3空气的质量为1.293kg,甲烷比空气轻,其相对密度为0.554。
甲烷的扩散性很强,扩散速度是空气的1.34倍。
甲烷无毒,但空气中甲烷浓度的增高会导致氧气浓度的降低。
当空气中甲烷浓度为43%时,氧气浓度降至12%,人会感到呼吸困难;当空气中甲烷浓度为57%时,氧气浓度降至9%,人会处于昏迷状态。
甲烷在空气中达到一定浓度后,遇到高温热源能燃烧和爆炸。
在煤矿资源开采过程中,发生瓦斯爆炸造成的后果极其严重。
瓦斯爆炸时产生的高温高压,通过气浪以极大的速度向外冲击,给人民的生命财产安全造成巨大的损失,并且对巷道和设备器材造成重大的损坏。
在瓦斯爆炸的过程中,掀起的大量煤尘并参与瓦斯爆炸,进而在一定程度上增加了破坏的力度,其危害可想而知。
爆炸温度根据权威机构研究表明,当瓦斯浓度超过9.5%,遇到明火时发生爆炸,爆炸产生的瞬时温度,在自由空间内高达1850℃,在封闭的空间甚至达到2650℃。
由于井下巷道属于半封闭的空间,所以巷道内发生瓦斯爆炸,其爆炸温度超过1850℃,在这种高温的环境下,瓦斯爆炸产生的高温会对人员和设备造成重大伤害和损失,甚至引发井下火灾,扩大火情等灾害。
爆炸压力矿井内发生瓦斯爆炸产生的高温,使得巷道内的气体在短时间内急剧膨胀,并且在连续爆炸以及爆炸产生的冲击波相互叠加的作用下,巷道内的压力骤然增大,爆炸产生的冲击压力会不断增加。
根据权威机构测定,瓦斯爆炸产生的压力约是爆炸前的10倍,在高温高压的作用下,爆炸源处的气体以极高的速度向前冲击。
有毒有害气体瓦斯爆炸后,将产生大量有毒有害气体。
根据研究分析,瓦斯爆炸后巷道内气体的主要成份为:氧气(O2)6%~10%、氮气(N2)82%~88%、二氧化碳(CO2)4%~8%、一氧化碳(CO)2%~4%。
常用可燃气体爆炸极限数据表
丁烷 丁醇 丁烯 丁醛
1.9 1.4 1.6 1.4
8.5 11.3 9.3 12.5
41
丁酸丁酯 丁基甲基酮 二硫化碳
1.2
8.0
42 43
C4H9COCH3 CS2
1.2 1.0
8 60
专业资料整理
WORD 完美格式编辑
44 45 46 47
一氧化碳 氯苯 氯丁烷 氯乙烷 氯乙醇
CO
12.5 1.3 1.8 3.8
1.2
7.1
低毒
53
环丁烷
1.8
54
环己烷
1.2
8.3
55
环己醇
1.2
56
环己酮
1.3
9.4
57 58
环丙烷 萘烷
2.4 0.7
10.4 4.9
59
环己烯
1.2
60双丙酮醇1.86.961 62
二丁醚 二氯(代)苯
0.9 2.2
8.5 9.2
专业资料整理
WORD 完美格式编辑
63 64
二乙基胺 二甲胺
高毒
低毒
WORD 完美格式编辑
22
乙酰丙酮
(CH3CO)2CH
2
1.7
23 24 25
乙酰氯 乙炔 丙烯腈 烯丙基氯
CH3COCl C2H2
5.0 1.5 2.8
19 100 28 高毒
CH2CHCN CH2CHCH2C l CH3CCH NH3 CH3CO2C5H11 C6H5NH2 C6H6 C6H5CHO C6H5CH2Cl C3H7CH2Br CH3CH2Br CH2CHCHC H2 C4H10 C4H9OH C4H8 C3H3CHO CH3COOC4H
常见气体的爆炸极限及爆炸极限计算公式教程文件
常见气体的爆炸极限及爆炸极限计算公式
莱夏特尔定律
对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根
据莱夏特尔定律,可以算出与空气相混合的气体的爆炸极限。
用Pn表示一种可燃气在混合物中的体积分数,贝
LEL= ( P1+P2+P3 / (P1/LEL1+P2/LEL2+P3/LEL3 ) (V%)
混合可燃气爆炸上限:
UEL= (P1+P2+P3 / ( P1/UEL1+P2/UEL2+P3/UEL3) (V%)
此定律一直被证明是有效的。
2.2理查特里公式
理查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。
该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。
Lm=100/( V1/L1+V2/L2+……+Vn/Ln )
式中Lm ——混合气体爆炸极限,%;
L1、L2、L3――混合气体中各组分的爆炸极限,%;
VI、V2、V3――各组分在混合气体中的体积分数,%。
例如:一天然气组成如下:甲烷80% (L下=5.0%)、乙烷15% (L下
=3.22%)、丙烷4% (L 下=2.37%)、丁烷1% ( L 下=1.86%)求爆炸下限。
Lm=100/ (80/5+15/3.22+4/2.37+1/1.86) =4.369。
丙酮爆炸极限浓度
丙酮爆炸极限浓度1. 引言丙酮是常见的有机溶剂,具有广泛的工业和实验室应用。
然而,丙酮具有一定的爆炸性,因此了解丙酮的爆炸极限浓度对安全使用和储存丙酮至关重要。
本文将介绍丙酮爆炸极限浓度的概念、测定方法以及与其相关的安全措施。
2. 爆炸极限浓度的定义爆炸极限浓度指的是在特定条件下,混合气体中能发生爆炸的最低和最高浓度范围。
在这个范围内,混合气体与空气的浓度达到适宜的比例,能够形成能产生燃烧的混合物,从而引发爆炸。
爆炸极限浓度通常用下限浓度(LEL)和上限浓度(UEL)表示。
3. 爆炸极限浓度的测定方法测定丙酮的爆炸极限浓度可以使用实验室中常见的气体分析仪器,例如爆炸气体检测仪。
以下是一般的测定步骤:•步骤一:准备测试设备和仪器。
•步骤二:在密闭的容器中将丙酮与空气混合,可以通过改变丙酮和空气的比例来制备不同浓度的混合气体。
•步骤三:使用气体分析仪器,对不同浓度下的混合气体进行测量,并记录气体浓度的变化。
•步骤四:根据测量数据绘制图表,得到丙酮的爆炸极限浓度。
4. 丙酮的爆炸极限浓度根据相关研究和实验结果,丙酮的爆炸极限浓度如下:•下限浓度(LEL):2.6%(体积分数)•上限浓度(UEL):12.8%(体积分数)这意味着在丙酮浓度低于2.6%或高于12.8%时,混合气体将不具备爆炸的条件。
5. 丙酮爆炸极限浓度的安全措施为了安全使用和储存丙酮,以下是一些常见的安全措施:•保持良好的通风:在使用丙酮的环境中,应保持良好的通风系统以防止丙酮浓度超过爆炸极限范围。
•防止火源:丙酮具有易燃性,在使用和储存时要远离明火、静电和其他火源。
•使用安全设备:在实验室或工业场所中使用丙酮时,应佩戴适当的防护设备,如防护眼镜、手套和防护服。
•储存规范:丙酮应存储在标有易燃品标志的专用容器中,并遵循相关的储存安全规定。
以上安全措施可以帮助减少丙酮引发爆炸的风险,确保工作场所和实验室的安全。
6. 结论丙酮爆炸极限浓度是确定混合气体是否具备爆炸条件的重要参数。
甲萘胺
甲萘胺
危险性类别
毒害品
燃烧爆炸危险性
燃烧性
可燃
爆炸极限(V/V)
无资料
闪点
>110℃
引燃温度
无资料
燃烧热
3050.6kJ/mol
火灾危险类别
丙
危险特性
可燃。受高热分解放出有毒气体,与氧化剂可发生反应。
理化性质
外观与性状
纯品为无色结晶或块状,有恶臭,易升华。
熔点
50℃
分子式
C10H9N
沸点
300.8℃
慢性中毒
长期接触有可能引起膀胱癌。
急救措施
皮肤接触
脱去污染的衣着,用肥皂水及清水彻底冲洗。
眼睛接触
立即提起眼睑,用大量流动清水或生理盐水彻底冲洗。就医。
吸入
迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。
食入
误服者给漱口,饮水,洗胃后口服活性炭,再给以导泻。就医。
稳定性和
反应活性
稳定性
不聚合
避免接触条件
光照
禁忌物
酸类、酸酐、强氧化剂
灭火方法
消防人员须佩戴防毒面具、穿全身消防服,在上风向灭火。
灭火剂
雾状水、二氧化碳、砂土、泡沫。
侵入途径
吸入、食入。
健康危害
本品有高铁血红蛋白形成作用,吸入后可能引起紫绀。液体对眼有刺激性。对皮肤有弱刺激作用。
急性中毒
LD50779mg/kg(大鼠经口)
防护措施
工程控制
严加密闭,充分的局部排风。提供安全淋浴和洗眼设备。
呼吸系统
防护
空气中浓度超标时,应该佩带防毒口罩。紧急事态抢救或逃生时,议佩戴自给式呼吸器。
爆炸极限计算资料
爆炸极限计算爆炸反应当量浓度、爆炸下限和上限、多种可燃气体混合物的爆炸极限计算方法如下:(1)爆炸反应当量浓度。
爆炸性混合物中的可燃物质和助燃物质的浓度比例,在恰好能发生完全的化合反应时,则爆炸所析出的热量最多,所产生的压力也最大。
实际的反应当量浓度稍高于计算的反应当量浓度,这是因为爆炸性混合物通常含有杂质。
可燃气体或蒸气分子式一般用CHO表示,设燃烧1mol气体所必需的氧摩尔数为n,γαβ则燃烧反应式可写成:CHO+nO→生成气体2αγβ按照标准空气中氧气浓度为20.9%,则可燃气体在空气中的化学当量浓度X(%),可用下式表示:可燃气体在氧气中的化学当量浓度为Xo(%),可用下式表示:也可根据完全燃烧所需的氧原子数2n的数值,从表1中直接查出可燃气体或蒸气在空气(或氧气)中的化学当量浓度。
其中。
可燃气体(蒸气)在空气中和氧气中的化学当量浓度(2)爆炸下限和爆炸上限。
各种可燃气体和燃性液体蒸气的爆炸极限,可用专门仪器测定出来,或用经验公式估算。
爆炸极限的估算值与实验值一般有些出入,其原因是在计算式中只考虑到混合物的组成,而无法考虑其他一系列因素的影响,但仍不失去参考价值。
1)根据完全燃烧反应所需的氧原子数估算有机物的爆炸下限和上限,其经验公式如下。
爆炸下限公式:(体积)爆炸上限公式:(体积)式中 L——可燃性混合物爆炸下限;下 L——可燃性混合物爆炸上限;上n——1mol可燃气体完全燃烧所需的氧原子数。
某些有机物爆炸上限和下限估算值与实验值比较如表2:石蜡烃的化学计量浓度及其爆炸极限计算值与实验值的比较 2表.从表中所列数值可以看出,实验所得与计算的值有一定差别,但采用安全系数后,在实际生产工作中仍可供参考。
2)根据化学当量浓度计算爆炸极限和爆炸性混合气完全燃烧时的化学当量浓度,可以估算有机物的爆炸下限和上限。
计算公式如下:%。
例如甲烷爆炸此计算公式用于链烷烃类,其计算值与实验值比较,误差不超过10等可N、Cl、%~15%,与计算值非常接近。
爆炸极限
爆炸极限爆炸极限爆炸极限的意义可燃物质(可燃气体、蒸气和粉尘)与空气(或氧气)必须在一定的浓度范围内均匀混合,形成预混气,遇着火源才会发生爆炸,这个浓度范围称为爆炸极限,或爆炸浓度极限。
例如一氧化碳与空气混合的爆炸极限为12.5%~80%。
可燃性混合物能够发生爆炸的最低浓度和最高浓度,分别称为爆炸下限和爆炸上限,这两者有时亦称为着火下限和着火上限。
在低于爆炸下限时不爆炸也不着火;在高于爆炸上限不会发生爆炸,但会着火。
这是由于前者的可燃物浓度不够,过量空气的冷却作用,阻止了火焰的蔓延;而后者则是空气不足,导致火焰不能蔓延的缘故。
当可燃物的浓度大致相当于反应当量浓度时,具有最大的爆炸威力(即根据完全燃烧反应方程式计算的浓度比例)。
影响爆炸极限的因素混合系的组分不同,爆炸极限也不同。
同一混合系,由于初始温度、系统压力、惰性介质含量、混合系存在空间及器壁材质以及点火能量的大小等的都能使爆炸极限发生变化。
一般规律是:混合系原始温度升高,则爆炸极限范围增大,即下限降低、上限升高。
因为系统温度升高,分子内能增加,使原来不燃的混合物成为可燃、可爆系统。
系统压力增大,爆炸极限范围也扩大,这是由于系统压力增高,使分子间距离更为接近,碰撞几率增高,使燃烧反应更易进行。
压力降低,则爆炸极限范围缩小;当压力降至一定值时,其上限与下限重合,此时对应的压力称为混合系的临界压力。
压力降至临界压力以下,系统便不成为爆炸系统(个别气体有反常现象)。
混合系中所含惰性气体量增加,爆炸极限范围缩小,惰性气体浓度提高到某一数值,混合系就不能爆炸。
容器、管子直径越小,则爆炸范围就越小。
当管径(火焰通道)小到一定程度时,单位体积火焰所对应的固体冷却表面散出的热量就会大于产生的热量,火焰便会中断熄灭。
火焰不能传播的最大管径称为该混合系的临界直径。
点火能的强度高、热表面的面积大、点火源与混合物的接触时间不等都会使爆炸极限扩大。
除上述因素外,混合系接触的封闭外壳的材质、机械杂质、光照、表面活性物质等都可能影响到爆炸极限范围。
燃烧学复习重点
第三章着火和灭火理论一、谢苗诺夫自燃理论1.基本思想:某一反应体系在初始条件下,进行缓慢的氧化还原反应,反应产生的热量,同时向环境散热,当产生的热量大于散热时,体系的温度升高,化学反应速度加快,产生更多的热量,反应体系的温度进一步升高,直至着火燃烧。
2.着火的临界条件:放、散热曲线相切于 C 点。
3. ?T=T BRT02 T0E4.改变体系自燃状态的方法qq1降低αq2T增加 Pq q2T ① 改变散热条件②增加放热二、区别弗兰克-卡门涅茨基热自燃理论与谢苗诺夫热自燃理论的异同点1.谢苗诺夫热自燃理论适用范围:适用于气体混合物,可以认为体系内部温度均一;对于比渥数 Bi 较小的堆积固体物质,也可认为物体内部温度大致相等;不适用于比渥数 Bi 大的固体。
2.弗兰克-卡门涅茨基热自燃理论:适用于比渥数Bi 大的固体(物质内部温度分布的不均匀性);以体系最终是否能得到稳态温度分布作为自燃着火的判断准则;自燃临界准则参数δ cr 取决于体系的几何形状。
三、链锁自然理论1.w0 w 0t123反应速率与时间的关系2.运用链锁自燃理论解释着火半岛现象在第一、二极限之间的爆炸区内有一点P(1)保持系统温度不变而降低压力,P 点则向下垂直移动自由基器壁消毁速度加快,当压力下降到某一数值后, f < g,φ< 0---------------------- 第一极限(2)保持系统温度不变而升高压力,P 点则向上垂直移动自由基气相消毁速度加快,当压力身高到某一数值后, f < g,φ< 0---------------------- 第二极限(3)压力再增高,又会发生新的链锁反应HO2MHO2M HO 2H 2H2OOH 导致自由基增长速度增大,于是又能发生爆炸。
压----------------------第三极限力 1000非爆炸区mmHg100爆炸区10·P360400440480520560600温度℃图 3-12氢氧着火半岛现象3.基于 f(链传递过程中链分支引起的自由基增长速率)和g(链终止过程中自由基的消毁速率)分析链锁自燃着火条件a.在低温时, f 较小(受温度影响较大),相比而言, g 显得较大,故: f g 0这表明,在fg0的情况下,自由基数目不能积累,反应速率不会自动加速,反应速率随着时间的增加只能趋势某一微小的定值,因此, f<g 系统不会着火。
港区加油站埋地储油罐爆炸危险性定量分析
施工规范》要求,埋设在砂质土壤中。
本文以日照中燃公司港区加油站为例,根据岩土中的爆炸力学理论、G.M 莱克霍夫爆炸冲击波超压与距离的关系式推算出储罐爆炸释放的能量和冲击波对人、建筑物影响的范围。
2.1 爆炸释放的能量(TNT当量)根据爆炸力学理论,可以将易燃易爆物质爆炸时释放的能量,换算成TNT 当量来表示,即认为事故爆炸产生的破坏后果与多少质量TNT 爆炸造成的破坏程度相当。
TNT TNTf f Q m m Q =∂ (1)式中:m TNT 为蒸气云的TNT 当量(kg);∂为蒸气云的当量系数,通常取值0.04;m f 为蒸气云爆炸中燃烧物燃烧的质量(kg);Q f 为燃烧物的燃烧热(kJ/kg);Q TNT 为TNT 的爆炸热(kJ/kg)。
根据爆炸性混合气体爆炸极限范围,计算出储罐中爆炸性混合气体的爆炸TNT 当量。
查阅相关资料:汽油的爆炸极限1.3%~6.0%,柴油的爆炸极限0.5%~4.1%,汽油蒸气相对标准状态下干空气的密度为3.5,柴油蒸气相对标准状态下干空气的密度为4.0,标准状态下干空气的密度为1.293kg/m 3,汽油的燃烧热为4.37×104kJ/kg ,柴油的燃烧热为4.35×104kJ/kg ,TNT 的爆炸热为4.52×103kJ/kg 。
利用上述公式,以每个油罐容积为限,可以计算出达到爆炸极限时油品蒸气的爆炸能量,并根据危险概率求和原则,对港区加油站的5个埋地储罐进行了加和计算,结果如表1所示。
2.2 各种伤害效应的安全距离分析如前所述,港区加油站埋地储罐由沙土覆盖和充填,采用G.M 莱克霍夫爆炸冲击波超压与距离的关系式,估算出爆炸冲击波对人员的伤害和建筑物的影响范围。
0 引言港区加油站是港口必要的生产辅助性设施,承担着港内作业机械及进出港车辆的供油服务。
加油站通常储存大量的汽油、柴油,储存的油品易挥发,挥发油品蒸气的密度比空气重,易在低洼处积聚,形成易爆炸性混合气体,遇到点火源容易发生火灾甚至爆炸事故,一旦发生火灾爆炸事故,将可能会造成人员伤亡和重大财产损失等严重后果,因此发生火灾爆炸事故是加油站面临的最大威胁。
爆炸极限范围
爆炸极限的意义可燃物质(、蒸气和)与空气(或)必须在一定的浓度范围内均匀混合,形成预混气,遇着火源才会发生爆炸,这个浓度范围称为爆炸极限,或。
例如与空气混合的爆炸极限为%~80%。
可燃性混合物能够发生爆炸的最低浓度和最高浓度,分别称为和爆炸上限,这两者有时亦称为着火下限和着火上限。
在低于爆炸下限时不爆炸也不着火;在高于爆炸上限同样不燃不爆。
这是由于前者的可燃物浓度不够,过量空气的冷却作用,阻止了火焰的蔓延;而后者则是空气不足,导致火焰不能蔓延的缘故。
当可燃物的浓度大致相当于反应当量浓度时,具有最大的爆炸威力(即根据完全燃烧反应方程式计算的浓度比例)。
影响爆炸极限的因素混合系的组分不同,爆炸极限也不同。
同一混合系,由于初始温度、系统压力、惰性介质含量、混合系存在空间及器壁材质以及点火能量的大小等的都能使爆炸极限发生变化。
一般规律是:混合系原始温度升高,则爆炸极限范围增大,即下限降低、上限升高。
因为系统温度升高,增加,使原来不燃的混合物成为可燃、可爆系统。
系统压力增大,爆炸极限范围也扩大,这是由于系统压力增高,使分子间距离更为接近,碰撞几率增高,使燃烧反应更易进行。
压力降低,则爆炸极限范围缩小;当压力降至一定值时,其上限与下限重合,此时对应的压力称为混合系的。
压力降至临界压力以下,系统便不成为爆炸系统(个别气体有反常现象)。
混合系中所含惰性气体量增加,爆炸极限范围缩小,惰性气体浓度提高到某一数值,混合系就不能爆炸。
容器、管子直径越小,则爆炸范围就越小。
当管径(火焰通道)小到一定程度时,单位体积火焰所对应的固体冷却表面散出的就会大于产生的热量,火焰便会中断熄灭。
火焰不能传播的最大管径称为该混合系的临界直径。
点火能的强度高、热表面的面积大、点火源与混合物的接触时间不等都会使爆炸极限扩大。
除上述因素外,混合系接触的封闭外壳的材质、机械杂质、光照、表面活性物质等都可能影响到爆炸极限范围。
与可燃物的危害可燃性混合物的爆炸极限范围越宽、爆炸下限越低和爆炸上限越高时,其爆炸危险性越大。
危险化学品爆炸模型计算公式
危险化学品爆炸模型计算公式1.爆炸效应模型爆炸效应模型是根据爆炸能量、物料特性和周围环境参数,计算在爆炸发生时可能引起的伤害程度的模型。
a.爆炸能量:爆炸能量是指在爆炸发生时释放出的能量。
可以通过物料的燃烧热值、爆炸热和爆炸产物的能量来计算。
b.物料特性:物料的爆炸性质包括爆炸极限浓度、爆炸压力、爆炸温度等。
这些参数可以通过实验数据或文献资料来获取。
c.周围环境参数:爆炸发生时周围的环境参数包括温度、压力、湿度等。
这些参数可以通过实测或文献资料获取。
爆炸效应模型的计算公式主要包括:1)气体爆炸压力计算公式:P=KΔH/V其中,P为爆炸产生的压力,K为一个常数,ΔH为燃烧热值,V为燃烧后产生气体的体积。
2)气体爆炸扩散速度计算公式:v=(2ΔP/ρ)^(1/2)其中,v为扩散速度,ΔP为燃烧产生的压力差,ρ为气体的密度。
3)气体爆炸火焰速度计算公式:vf = KFΔP^(1/3)其中,vf为火焰速度,KF为一个常数,ΔP为燃烧产生的压力差。
4)气体爆炸冲击波计算公式:r=(2m/ρS^2)^(1/4)其中,r为冲击波半径,m为爆轰产生的爆炸物质质量,ρ为气体的密度,S为标准距离。
2.伊曼顿爆炸模型伊曼顿爆炸模型是一种用于计算爆炸物质在固体形式下爆炸时的爆炸效应的模型。
伊曼顿爆炸模型的计算公式主要包括:1)爆炸冲击波的能量计算公式:E=M•(v•Δσ)其中,E为冲击波的能量,M为质量,v为扩散速度,Δσ为冲击波的应力差。
2)爆炸反应的速率计算公式:r=k•(P/P0)^n•(T/To)^m其中,r为反应速率,k为常数,P为压力,n和m为指数,T为温度,P0和To为常数。
以上只是危险化学品爆炸模型计算中的一部分公式,具体的计算公式和参数取决于具体的危险化学品和爆炸情况。
在实际应用中,通常需要根据不同的情况选择适合的计算模型和公式,并结合实验或现场数据进行验证和修正。
因此,在进行危险化学品爆炸模型计算时,应当慎重选择并合理应用公式,确保计算结果的准确性和可靠性。
可燃气体混合物爆炸极限
可燃气体混合物爆炸极限下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!了解可燃气体混合物爆炸极限对于安全工程和化学工业至关重要。
重大危险源计算
05案例真题:脱硫系统包括制氢装置和氢气储罐,制氢装置为两套电离制氢设备和6个氢气储罐,两套电离制氢设备存有氢气数量分别为50kg和30kg;6个卧式氢气储罐体积为20m3、额定压力为3.2Mpa、额定温度为20℃,作为生产过程整体装置,这些装置与储罐管道连接。
(氢气密度:0℃,0.1MPA状态下密度0.09kg/m3.)锅炉点火主燃油使用柴油,厂区有2个500m3的固定柴油储罐,距离制氢系统500m.在同一院内有2个20m3的汽油储罐,距离制氢系统550m.(汽油的密度750kg/m3,汽油、柴油储罐充装系数为0.85.)氢气临界量为5吨,汽油临界量为200吨。
.答:(1)汽油储罐(2个20m3)是危险源,其储量是:2×20m3×750kg/m3×0.85=25500kg=25.5吨汽油临界量为200吨,这两个汽油储罐在一个单元内,不构成重大危险源。
柴油储罐2个500m3:2×500m3×840kg/m3×0.85=714000kg=714吨柴油临界量为5000吨,不是重大危险源。
(柴油这个可以不答,一般不是重大危险源)(2)制氢设备(包括氢气罐)是危险源,其储量计算如下:按临界量。
解法1(精确)先把高压氢气储罐换算为标准状态下的氢气体积:(纯理想气体的标准态是该气体处于标准压力p(100kPa)下的状态,即0.1Mpa,温度273.15K(0℃)作为参考温度)P1V1/T1=P2V2/T220×3.2/(273+20)=标准状态下氢气的体积×0.1/273标准状态下氢气的体积=20×3.2/(273+20)/(0.1/273)=596.3m3 氢气在0℃,0.1MPA状态下密度为0.09kg/m3,6个氢气储罐的储量是:6×596.3×0.09=322.0kg再加上两套电离制氢设备存有氢气数量分别为50kg和30kg则生产单元氢气储量是:50+30+322.0=402.0kg.=0.402吨,氢气临界量为5吨,不构成重大危险源。
nmp爆炸极限浓度
nmp爆炸极限浓度
NMP(N-甲基吡咯烷酮)是一种工业溶剂,其爆炸极限浓度指的是在空气中能够发生爆炸的最低浓度和最高浓度。
根据资料显示,NMP的爆炸下限浓度为2.3%(体积分数),意味着当NMP的浓度低于2.3%时,无法发生爆炸。
而爆炸上限浓度则较高,约为15.5%(体积分数),表示当NMP的浓度超过15.5%时,也无法形成可燃气体混合物从而无法发生爆炸。
需要注意的是,NMP的爆炸极限浓度可能因实际情况而有所变化,还受到其他因素如压力、温度、氧浓度、存在的其他可燃物质等的影响。
因此,在使用NMP时需要严格遵守安全操作规程,并在适当的条件下进行使用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
爆炸极限计算爆炸反应当量浓度、爆炸下限和上限、多种可燃气体混合物的爆炸极限计算方法如下: (1)爆炸反应当量浓度。
爆炸性混合物中的可燃物质和助燃物质的浓度比例,在恰好能发生完全的化合反应时,则爆炸所析出的热量最多,所产生的压力也最大。
实际的反应当量浓度稍高于计算的反应当量浓度,这是因为爆炸性混合物通常含有杂质。
可燃气体或蒸气分子式一般用C αH βO γ表示,设燃烧1mol 气体所必需的氧摩尔数为n ,则燃烧反应式可写成:C αH βO γ+nO 2→生成气体按照标准空气中氧气浓度为20.9%,则可燃气体在空气中的化学当量浓度X(%),可用下式表示:可燃气体在氧气中的化学当量浓度为Xo(%),可用下式表示:也可根据完全燃烧所需的氧原子数2n 的数值,从表1中直接查出可燃气体或蒸气在空气(或氧气)中的化学当量浓度。
其中。
可燃气体(蒸气)在空气中和氧气中的化学当量浓度(2)爆炸下限和爆炸上限。
各种可燃气体和燃性液体蒸气的爆炸极限,可用专门仪器测定出来,或用经验公式估算。
爆炸极限的估算值与实验值一般有些出入,其原因是在计算式中只考虑到混合物的组成,而无法考虑其他一系列因素的影响,但仍不失去参考价值。
1)根据完全燃烧反应所需的氧原子数估算有机物的爆炸下限和上限,其经验公式如下。
爆炸下限公式:(体积)爆炸上限公式:(体积)——可燃性混合物爆炸下限;式中 L下——可燃性混合物爆炸上限;L上n——1mol可燃气体完全燃烧所需的氧原子数。
某些有机物爆炸上限和下限估算值与实验值比较如表2:表2 石蜡烃的化学计量浓度及其爆炸极限计算值与实验值的比较从表中所列数值可以看出,实验所得与计算的值有一定差别,但采用安全系数后,在实际生产工作中仍可供参考。
2)根据化学当量浓度计算爆炸极限和爆炸性混合气完全燃烧时的化学当量浓度,可以估算有机物的爆炸下限和上限。
计算公式如下:此计算公式用于链烷烃类,其计算值与实验值比较,误差不超过10%。
例如甲烷爆炸极限的实验值为5%~15%,与计算值非常接近。
但用以估算H2、C2H2以及含N2、Cl2等可燃气体时,出入较大,不可应用。
(3)多种可燃气体组成混合物的爆炸极限。
由多种可燃气体组成爆炸混合气的爆炸极限,可根据各组分的爆炸极限进行估算,其计算公式如下:式中 Lm——爆炸性混合气的爆炸极限(%);L 1、L2、L3、Ln——组成混合气各组分的爆炸极限(%);V 1、V2、V3、…Vn——各组分在混合气中的浓度(%)。
V 1+V2+V3+…Vn=100该公式用于煤气、水煤气、天然气等混合气爆炸极限的计算比较准确,而对于氢与乙烯、氢与硫化氢、甲烷与硫化氢等混合气及二硫化碳的混合气体,则计算的误差较大,不得应用。
——摘自《安全科学技术百科全书》(中国劳动社会保障出版社,2003年6月出版)explosive limit 可燃性气体或蒸气与助燃性气体形成的均匀混合系在标准测试条件下引起爆炸的浓度极限值。
助燃性气体可以是空气、氧气或其他助燃性气体。
一般情况提及的爆炸极限是指可燃气体或蒸气在空气中的浓度极限。
能够引起爆炸的可燃气体的最低含量称为爆炸下限;最高浓度称为爆炸上限。
混合系的组分不同,爆炸极限也不同。
同一混合系,由于初始温度、系统压力、惰性介质含量、混合系存在空间及器壁材质以及点火能量的大小等的都能使爆炸极限发生变化。
一般规律是:混合系原始温度升高,则爆炸极限范围增大,即下限降低、上限升高。
因为系统温度升高,分子内能增加,使原来不燃的混合物成为可燃、可爆系统。
系统压力增大,爆炸极限范围也扩大,这是由于系统压力增高,使分子间距离更为接近,碰撞几率增高,使燃烧反应更易进行。
压力降低,则爆炸极限范围缩小;当压力降至一定值时,其上限与下限重合,此时对应的压力称为混合系的临界压力。
压力降至临界压力以下,系统便不成为爆炸系统(个别气体有反常现象)。
混合系中所含惰性气体量增加,爆炸极限范围缩小,惰性气体浓度提高到某一数值,混合系就不能爆炸。
容器、管子直径越小,则爆炸范围就越小。
当管径(火焰通道)小到一定程度时,单位体积火焰所对应的固体冷却表面散出的热量就会大于产生的热量,火焰便会中断熄灭。
火焰不能传播的最大管径称为该混合系的临界直径。
点火能的强度高、热表面的面积大、点火源与混合物的接触时间不等都会使爆炸极限扩大。
除上述因素外,混合系接触的封闭外壳的材质、机械杂质、光照、表面活性物质等都可能影响到爆炸极限范围。
可燃性蒸气的爆炸极限值是由可燃液体表面产生的蒸气浓度决定的。
对于可燃液体而言,爆炸下限浓度对应的闪点温度又可以称为爆炸下限温度;爆炸上限浓度对应的液体温度又可以称为爆炸上限温度。
混合气体、蒸汽的爆炸极限可以根据理.查特里法则计算L下= 1/N1/L1+N2/L2 (100)L上= 1/N1/L1+N2/L2 (100)理查特公式是对两种或多种可燃气体或可燃蒸气混合物爆炸极限的计算,它是根据各组分已知的爆炸极限来计算的,适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。
Lm=100/(V1/L1+V2/L2+……+Vn/Ln)式中Lm——混合气体爆炸极限,%;L1、L2、L3——混合气体中各组分的爆炸极限,%;V1、V2、V3——各组分在混合气体中的体积分数,%。
•爆炸与防爆:爆炸极限的计算(4)安全评价师2008/6/24 保存本文推荐给好友收藏本页1 根据化学理论体积分数近似计算爆炸气体完全燃烧时,其化学理论体积分数可用来确定链烷烃类的爆炸下限,公式如下:L下≈0.55c0式中 0.55——常数;c0——爆炸气体完全燃烧时化学理论体积分数。
若空气中氧体积分数按20.9%计,c0可用下式确定c0=20.9/(0.209+n0)式中 n0——可燃气体完全燃烧时所需氧分子数。
如甲烷燃烧时,其反应式为CH4+2O2→CO2+2H2O爆炸极限的意义可燃物质(可燃气体、蒸气和粉尘)与空气(或氧气)必须在一定的浓度范围内均匀混合,形成预混气,遇着火源才会发生爆炸,这个浓度范围称为爆炸极限,或爆炸浓度极限。
例如一氧化碳与空气混合的爆炸极限为12.5%~80%。
可燃性混合物能够发生爆炸的最低浓度和最高浓度,分别称为爆炸下限和爆炸上限,这两者有时亦称为着火下限和着火上限。
在低于爆炸下限时不爆炸也不着火;在高于爆炸上限不会发生爆炸,但会着火。
这是由于前者的可燃物浓度不够,过量空气的冷却作用,阻止了火焰的蔓延;而后者则是空气不足,导致火焰不能蔓延的缘故。
当可燃物的浓度大致相当于反应当量浓度时,具有最大的爆炸威力(即根据完全燃烧反应方程式计算的浓度比例)。
[编辑本段]影响爆炸极限的因素混合系的组分不同,爆炸极限也不同。
同一混合系,由于初始温度、系统压力、惰性介质含量、混合系存在空间及器壁材质以及点火能量的大小等的都能使爆炸极限发生变化。
一般规律是:混合系原始温度升高,则爆炸极限范围增大,即下限降低、上限升高。
因为系统温度升高,分子内能增加,使原来不燃的混合物成为可燃、可爆系统。
系统压力增大,爆炸极限范围也扩大,这是由于系统压力增高,使分子间距离更为接近,碰撞几率增高,使燃烧反应更易进行。
压力降低,则爆炸极限范围缩小;当压力降至一定值时,其上限与下限重合,此时对应的压力称为混合系的临界压力。
压力降至临界压力以下,系统便不成为爆炸系统(个别气体有反常现象)。
混合系中所含惰性气体量增加,爆炸极限范围缩小,惰性气体浓度提高到某一数值,混合系就不能爆炸。
容器、管子直径越小,则爆炸范围就越小。
当管径(火焰通道)小到一定程度时,单位体积火焰所对应的固体冷却表面散出的热量就会大于产生的热量,火焰便会中断熄灭。
火焰不能传播的最大管径称为该混合系的临界直径。
点火能的强度高、热表面的面积大、点火源与混合物的接触时间不等都会使爆炸极限扩大。
除上述因素外,混合系接触的封闭外壳的材质、机械杂质、光照、表面活性物质等都可能影响到爆炸极限范围。
[编辑本段]爆炸极限与可燃物的危害可燃性混合物的爆炸极限范围越宽、爆炸下限越低和爆炸上限越高时,其爆炸危险性越大。
这是因为爆炸极限越宽则出现爆炸条件的机会就多;爆炸下限越低则可燃物稍有泄漏就会形成爆炸条件;爆炸上限越高则有少量空气渗入容器,就能与容器内的可燃物混合形成爆炸条件。
应当指出,可燃性混合物的浓度高于爆炸上限时,虽然不会着火和爆炸,但当它从容器或管道里逸出,重新接触空气时却能燃烧,仍有发生着火的危险。
爆炸极限的表示爆炸极限的单位气体或蒸气的爆炸极限的单位,是以在混合物中所占体积的百分比(%)来表示的,如氢与空气混合物的爆炸极限为4%~75%。
可燃粉尘的爆炸极限是以混合物中所占体积的质量比g/m^3来表示的,例如铝粉的爆炸极限为40g/m^3。
可燃性蒸气的爆炸极限值是由可燃液体表面产生的蒸气浓度决定的。
对于可燃液体而言,爆炸下限浓度对应的闪点温度又可以称为爆炸下限温度;爆炸上限浓度对应的液体温度又可以称为爆炸上限温度。
可燃气体或蒸气分子式爆炸极限(%)下限上限氢气H2 4.0 75氨NH3 15.5 27一氧化碳CO 12.5 74.2甲烷CH4 5.3 14乙烷C2H6 3.0 12.5乙烯C2H4 3.1 32乙炔C2H2 2.2 81苯C6H6 1.4 7.1甲苯C7H8 1.4 6.70环氧乙烷C2H4O 3.0 80.0乙醚(C2H5)O 1.9 48.0乙醛CH3CHO 4.1 55.0丙酮(CH3)2CO 3.0 11.0乙醇C2H5OH 4.3 19.0甲醇CH3OH 5.5 36醋酸乙酯C4H8O2 2.5 9常用可燃气体爆炸极限数据表(LEL/UEL及毒性)物质名称分子式爆炸浓度(V%) 毒性下限LEL 上限UEL甲烷CH4 5 15 ——乙烷C2H6 3 15.5丙烷C3H8 2.1 9.5丁烷C4H10 1.9 8.5戊烷(液体)C5H12 1.4 7.8己烷(液体)C6H14 1.1 7.5庚烷(液体)CH3(CH2)5CH3 1.1 6.7辛烷(液体)C8H18 1 6.5乙烯C2H4 2.7 36丙烯C3H6 2 11.1丁烯C4H8 1.6 10丁二烯C4H6 2 12 低毒乙炔C3H4 2.5 100环丙烷C3H6 2.4 10.4煤油(液体)C10-C16 0.6 5城市煤气 4液化石油气 1 12汽油(液体)C4-C12 1.1 5.9松节油(液体)C10H16 0.8苯(液体)C6H6 1.3 7.1 中等甲苯C6H5CH3 1.2 7.1 低毒氯乙烷C2H5CL 3.8 15.4 中等氯乙烯C2H3CL 3.6 33氯丙烯C3H5CL 2.9 11.2 中等1.2 二氯乙烷CLCH2CH2CL 6.2 16 高毒四氯化碳CCL4 轻微麻醉三氯甲烷CHCL3 中等环氧乙烷C2H4O 3 100 中等甲胺CH3NH2 4.9 20.1 中等乙胺CH3CH2NH2 3.5 14 中等苯胺C6H5NH2 1.3 11 高毒二甲胺(CH3)2NH 2.8 14.4 中等乙二胺H2NCH2CH2NH2 低毒甲醇(液体)CH3OH 6.7 36乙醇(液体)C2H5OH 3.3 19正丁醇(液体)C4H9OH 1.4 11.2甲醛HCHO 7 73乙醛C2H4O 4 60丙醛(液体)C2H5CHO 2.9 17乙酸甲酯CH3COOCH3 3.1 16乙酸CH3COOH 5.4 16 低毒乙酸乙酯CH3COOC2H5 2.2 11丙酮C3H6O 2.6 12.8丁酮C4H8O 1.8 10氰化氢( 氢氰酸) HCN 5.6 40 剧毒丙烯氰C3H3N 2.8 28 高毒氯气CL2 刺激氯化氢HCL氨气NH3 16 25 低毒硫化氢H2S 4.3 45.5 神经二氧化硫SO2 中等二硫化碳CS2 1.3 50臭氧O3 刺激一氧化碳CO 12.5 74.2 剧毒氢H2 4 75本表数值来源基本上以《SH3063-1999 石油化工企业可燃气体和有毒气体检测报警器设计规范》为主,并与《常用化学危险品安全手册》进行了对照,补充。