对数函数的值域与最值 知识点

合集下载

对数函数知识点

对数函数知识点

对数与对数函数1.对数(1)对数的定义:如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b . (2)指数式与对数式的关系:a b =N log a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化.(3)对数运算性质: ①log a (MN )=log a M +log a N . ②log a NM =log a M -log a N .③log a M n =n log a M .(M >0,N >0,a >0,a ≠1) ④对数换底公式:log b N =bNa a log log (a >0,a ≠1,b >0,b ≠1,N >0).2.对数函数(1)对数函数的定义函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1 对数函数的底数为什么要大于0且不为1呢?在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。

但是,根据对数定义: log a a=1;如果a=1或=0那么log a a 就可以等于一切实数(比如log 1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n = nlog a M 如果a<0,那么这个等式两边就不会成立 (比如,log (-2) 4^(-2) 就不等于(-2)*log (-2) 4;一个等于1/16,另一个等于-1/16) (2)对数函数的图象a <11))底数互为倒数的两个对数函数的图象关于x 轴对称. (3)对数函数的性质: ①定义域:(0,+∞). ②值域:R .③过点(1,0),即当x =1时,y =0.④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数. 基础例题1.函数f (x )=|log 2x |的图象是C D解析:f (x )=⎩⎨⎧<<-≥.10,log ,1,log 22x x x x答案:A2.若f -1(x )为函数f (x )=lg (x +1)的反函数,则f -1(x )的值域为___________________.解析:f -1(x )的值域为f (x )=lg (x +1)的定义域.由f (x )=lg (x +1)的定义域为(-1,+∞),∴f -1(x )的值域为(-1,+∞). 答案:(-1,+∞)3.已知f (x )的定义域为[0,1],则函数y =f [log 21(3-x )]的定义域是__________.解析:由0≤log 21(3-x )≤1⇒log 211≤log 21(3-x )≤log 2121⇒21≤3-x ≤1⇒2≤x ≤25. 答案:[2,25]4.若log x 7y =z ,则x 、y 、z 之间满足A.y 7=x zB.y =x 7zC.y =7x zD.y =z x解析:由log x 7y =z ⇒x z =7y ⇒x7z=y ,即y =x 7z . 答案:B5.已知1<m <n ,令a =(log n m )2,b =log n m 2,c =log n (log n m ),则A.a <b <cB.a <c <bC.b <a <cD.c <a <b解析:∵1<m <n ,∴0<log n m <1. ∴log n (log n m )<0. 答案:D6.若函数f (x )=log a x (0<a <1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 等于 A.42 B.22C.41D.21解析:∵0<a <1,∴f (x )=log a x 是减函数.∴log a a =3·log a 2a . ∴log a 2a =31.∴1+log a 2=31.∴log a 2=-32.∴a =42. 答案:A7.函数y =log 2|ax -1|(a ≠0)的对称轴方程是x =-2,那么a 等于 A.21B.-21C.2D.-2解析:y =log 2|ax -1|=log 2|a (x -a1)|,对称轴为x =a1,由a1=-2 得a =-21. 答案:B注意:此题还可用特殊值法解决,如利用f (0)=f (-4), 可得0=log 2|-4a -1|.∴|4a +1|=1.∴4a +1=1或4a +1=-1. ∵a ≠0,∴a =-21.8.函数f (x )=log 2|x |,g (x )=-x 2+2,则f (x )·g (x )的图象只可能是AB解析:∵f (x )与g (x )都是偶函数,∴f (x )·g (x )也是偶函数,由此可排除A 、D.又由x →+∞时,f (x )·g (x )→-∞,可排除B. 答案:C9.设f -1(x )是f (x )=log 2(x +1)的反函数,若[1+ f -1(a )][1+ f -1(b )]=8,则f (a +b )的值为 A.1B.2C.3D.log 23解析:∵f -1(x )=2x -1,∴[1+ f -1(a )][1+ f -1(b )]=2a ·2b =2a +b .由已知2a +b =8,∴a +b =3. 答案:C 10.方程lg x +lg (x +3)=1的解x =___________________. 解析:由lg x +lg (x +3)=1,得x (x +3)=10,x 2+3x -10=0. ∴x =-5或x =2.∵x >0,∴x =2. 答案:2 典型例题 【例1】 已知函数f (x )=⎪⎩⎪⎨⎧<+≥,4),1(,4,)21(x x f x x则f (2+log 23)的值为 A.31B.61C.121D.241剖析:∵3<2+log 23<4,3+log 23>4, ∴f (2+log 23)=f (3+log 23)=(21)3+log 23=241. 答案:D【例2】 求函数y =log 2|x |的定义域,并画出它的图象,指出它的单调区间.解:∵|x |>0,∴函数的定义域是{x |x ∈R 且x ≠0}.显然y =log 2|x |是偶函数,它的图象关于y 轴对称.又知当x >0时,y =log 2|x |⇔y =log 2x .故可画出y =log 2|x |的图象如下图.由图象易见,其递减区间是(-∞,0),递增区间是(0,+∞).1-1O xy注意:研究函数的性质时,利用图象会更直观.【例3】 已知f (x )=log 31[3-(x -1)2],求f (x )的值域及单调区间.解:∵真数3-(x -1)2≤3,∴log 31[3-(x -1)2]≥log 313=-1,即f (x )的值域是[-1,+∞).又3-(x -1)2>0,得1-3<x <1+3,∴x ∈(1-3,1]时,3-(x -1)2单调递增,从而f (x )单调递减;x ∈[1,1+3)时,f (x )单调递增.注意:讨论复合函数的单调性要注意定义域.【例4】已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围.解:∵a >0且a ≠1,∴t =3-ax 为减函数.依题意a >1,又t =3-ax 在[0,2]上应有t >0,∴3-2a >0.∴a <23.故1<a <23.【例5】设函数f (x )=lg (1-x ),g (x )=lg (1+x ),在f (x )和 g (x )的公共定义域内比较|f (x )|与|g (x )|的大小. 解:f (x )、g (x )的公共定义域为(-1,1). |f (x )|-|g (x )|=|lg (1-x )|-|lg (1+x )|.(1)当0<x <1时,|lg (1-x )|-|lg (1+x )|=-lg (1-x 2)>0; (2)当x =0时,|lg (1-x )|-|lg (1+x )|=0;(3)当-1<x <0时,|lg (1-x )|-|lg (1+x )|=lg (1-x 2)<0. 综上所述,当0<x <1时,|f (x )|>|g (x )|;当x =0时,|f (x )|=|g (x )|;当-1<x <0时,|f (x )|<|g (x )|. 【例6】 求函数y =2lg (x -2)-lg (x -3)的最小值.解:定义域为x >3,原函数为y =lg 3)2(2--x x .又∵3)2(2--x x =3442-+-x x x =31)3(2)3(2-+-+-x x x =(x -3)+31-x +2≥4,∴当x =4时,y min =lg4.【例7】 (2003年北京宣武第二次模拟考试)在f 1(x )=x 21,f 2(x )=x 2,f 3(x )=2x ,f 4(x )=log 21x 四个函数中,x 1>x 2>1时,能使21[f(x 1)+f (x 2)]<f (221x x +)成立的函数是 A.f 1(x )=x 21B.f 2(x )=x 2C.f 3(x )=2xD.f 4(x )=log 21x解析:由图形可直观得到:只有f 1(x )=x 21为“上凸”的函数. 答案:A。

对数及对数函数要点及解题技巧讲解

对数及对数函数要点及解题技巧讲解

的最大值与最小值之差为12,则 a 等于( )

A. 2
B.2 或12

B

C.2 2
D.4 或14
分析:∵a>1 与 0<a<1 时,f(x)的单调性不同,∴最
小值、最大值也不同,故需分类讨论.
第2章 函数
高考数学总复习
解析:当 0<a<1 时,f(x)在[a,2a]上单调递减,由题意
得,logaa-loga2a=12,∴loga2=-12,∴a=14.
人 教
B
当 a>1 时,∴f(x)=logax 在[a,2a]上为增函数,

∴loga2a-logaa=12,解得 a=4,故选 D.
答案:D
第2章 函数
(2011·江苏四市联考)已知函数 f(x)=|log2x|,正实 数 m、n 满足 m<n,且 f(m)=f(n),若 f(x)在区间[m2,
高考数学总复习
二、对数函数的图象与性质
定义
y=logax(a>0,a≠1)
人 教
B

图象
第2章 函数
高考数学总复习
(1)定义域:(0,+∞) (2)值域:R
(3)过点(1,0),即当 x=1 时,y=0.

性质 (4)当 a>1 时,在(0,+∞)是增函数;

B
当 0<a<1 时,在(0,+∞)上是减函数.
B

(2)原式=llgg23+llgg29·llgg34+llgg38
=llgg23+2llgg23·2llgg32+3llgg32=32llgg23·56llgg32=54.
答案:(1)2

对数函数及其性质知识点总结与例题讲解

对数函数及其性质知识点总结与例题讲解

对数函数及其性质知识点总结与例题讲解本节知识点(1)对数函数的概念; (2)对数函数的图象及其性质; (3)与对数函数有关的函数的定义域; (4)与对数函数有关的函数的值域;(5)与对数函数有关的函数的单调性及其应用; (6)与对数函数有关的函数的奇偶性; (7)反函数.知识点一 对数函数的概念一般地,函数x y a log =(0>a 且1≠a )叫做对数函数,其中x 是自变量,函数的定义域是()+∞,0. 对数函数概念的理解 (1)形如x y a log =;(2)底数a 满足0>a 且1≠a ; (3)真数是x ,而不是含x 的表达式; (4)函数的定义域为()+∞,0. 两种特殊的对数函数特别地,以10为底的对数函数x y lg =叫做常用对数函数;以无理数e 为底的对数函数x y ln =叫做自然对数函数.例1. 给出下列函数:①232log x y =; ②()1log 3-=x y ; ③()x y x 1log +=; ④x y πlog =.其中是对数函数的有【 】(A )1个 (B )2个 (C )3个 (D )4个解:对于①②,因为对数函数的真数只能是自变量x ,不能是含自变量x 的表达式,所以它们都不是对数函数,而是对数函数型函数;对于③,因为对数函数的底数是一个大于0且不等于1的常数,包含自变量,所以它不是对数函数.对于④,符合对数函数的定义. 故对数函数只有一个,选择【 A 】.例2. 下列函数中,是对数函数的是【 】(A )()x y -=21log (B )()x y -=1log 24(C )x y ln = (D )()x y a a +=2log解:选择【 C 】.知识点二 对数函数的图象及其性质一般地,对数函数x y a log =(0>a 且1≠a )的图象和性质如下表所示:对数函数图象的三个关键点对数函数x y a log =(0>a 且1≠a )的图象经过三个关键点:()0,1,()1,a 和⎪⎭⎫⎝⎛-1,1a .利用对数函数图象的三个关键点,可以快速地作出对数函数图象的简图.特别提醒指数函数xa y =(0>a 且1≠a )的图象经过三个关键点:()1,0,()a ,1和⎪⎭⎫⎝⎛-a 1,1.根据这三个关键点,可以快速地作出指数函数图象的简图.不难得出:在同一平面直角坐标系中,对数函数x y a log =(0>a 且1≠a )图象的三个关键点与指数函数xa y =(0>a 且1≠a )图象的三个关键点关于直线x y =对称. 底数对对数函数图象的影响 (1)对数函数的对称性结论 函数x y a log =(0>a 且1≠a )的图象与函数x y a1log =(0>a 且1≠a )的图象关于x 轴对称.事实上,x x x y a a alog log log 111-===-,因为函数()x f y =与函数()x f y -=的图象关于x 轴对称,所以函数x y a log =与函数x y a1log =的图象关于x 轴对称.观察在同一平面直角坐标系在,分别画出函数x y 2log =,x y 3log =,x y 21log =和x y 31log =的图象,如图所示,体会对数函数图象的对称性.= log 13x12x3x2x(2)底数a 决定对数函数的单调性 当1>a 时,对数函数的图象从左到右是上升的,函数在()∞+0上为增函数;当10<<a 时,对数函数的图象从左到右是下降的,函数在()∞+0上为减函数.(3)底数a 的大小决定对数函数图象相对位置的高低不论是1>a ,还是10<<a ,在第一象限内,取相同的函数值时,图象所对应的对数函数的底数从左到右逐渐变大.(1)上下比较 在直线1=x 的右侧,a 越大,图象越靠近x 轴;当10<<a 时,a 越小,图象越靠近x 轴.(2)左右比较 比较图象与直线1=y 的交点,交点的横坐标越大,对应的函数的底数越大. 注意 若比较图象与直线1-=y 的交点,交点的横坐标越大,对应的函数的底数越小. 说明 在平面直角坐标系中,对数函数x y a log =的图象与直线1=y 的交点为()1,a ,即交点的横坐标等于对数函数的底数,故在第一象限内,交点的横坐标越大,对数函数的底数就越大;对数函数x y a log =与直线1-=y 的交点为⎪⎭⎫⎝⎛-1,1a ,故在第四象限内,交点的横坐标越大(即a1越大),对数函数的底数反而越小. 关于对数函数函数值正负的判断根据对数函数的图象,当1>a ,1>x ,或10<<a ,10<<x 时,函数值0>y ,简记为同区间为正;当1>a ,10<<x ,或10<<a ,1>x 时,函数值0<y ,简记为异区间为负.即同区间为正,异区间为负.特别地,当1=x 时,0=y ,即对数函数的图象恒过点()0,1. 例3. 函数x y 2log =的定义域是[)64,1,则函数的值域是【 】(A )R (B )[)+∞,0 (C )[)6,0 (D )[)64,0解:∵12>=a ,∴函数x y 2log =在[)64,1上为增函数∴1log 2≤64log log 22<x ,∴0≤6log 2<x ,即0≤6<y . ∴函数的值域是[)6,0.选择【 C 】.例4. 已知()()1log -=x x f a (0>a 且1≠a ),则函数()x f 的图象必过定点______. 解:∵对数函数的图象恒过定点()0,1∴令11=-x ,即2=x ,则()01log ==a x f∴函数()x f 的图象必过定点()0,2.例5. 函数()()11log +-=x x f a (0>a 且1≠a )的图象恒过点【 】(A )()1,1 (B )()2,1 (C )()1,2 (D )()2,2解:令11=-x ,则2=x ,111log =+=a y∴函数()x f 的图象恒过点()1,2. 选择【 C 】.例6. (1)函数()()432log --=x x f a (0>a 且1≠a )的图象恒过定点【 】(A )()0,1 (B )()4,1- (C )()0,2 (D )()4,2- (2)已知函数()21log ++=x y a (0>a 且1≠a )的图象恒过定点A ,若点A 也在函数()b x f x +=2的图象上,则=b 【 】(A )0 (B )1 (C )2 (D )3解:(1)令132=-x ,则2=x ,4-=y∴函数()x f 的图象恒过定点()4,2-. 选择【 D 】.(2)令11=+x ,则0=x ,2=y ,∴()2,0A .把()2,0A 代入()b x f x +=2得:220=+b ,解之得:1=b . 选择【 B 】.例7. 函数()22log 1+++=+x a ax y (0>a 且1≠a )的图象必经过的点是【 】(A )()3,0 (B )()2,2 (C )()2,1- (D )()3,1-解:令12=+x ,则1-=x ,321021log 0=++=++=a y a .∴该函数的图象必经过点()3,1-. 选择【 D 】.例8. 已知0>a 且1≠a ,0>b 且1≠b ,如果无论b a ,在给定的范围内取任何值时,函数()2log -+=x x y a 与函数2+=-c x b y 的图象总经过同一个定点,则实数c 的值为__________.解:令12=-x ,则3=x ,31log 3=+=a y∴定点的坐标为()3,3∴函数2+=-c x b y 的图象恒过点()3,3令03=-=-c c x ,则32,30=+==b y c ,符合题意. ∴实数c 的值是3.例9. 已知函数()()xx f -+=21log 2,则函数的值域是【 】(A )[)2,0 (B )()+∞,0 (C )()2,0 (D )[)+∞,0解:设()xx g -+=21,∵02>-x,∴()1>x g ,即()()+∞∈,1x g .∴()01log 21log 22=>+-x ,即()0>x f . ∴该函数的值域是()+∞,0. 选择【 B 】.例10. 不等式()()x x ->+3log 12log 2121的解集是__________.分析:对数函数在其定义域内为单调函数,其单调性与底数a 有关.本题中121<=a ,函数在()+∞,0内为减函数,据此可列出关于两个真数的不等式. 解:由题意可知:⎪⎩⎪⎨⎧-<+>->+xx x x 31203012,解之得:3221<<-x .∴该不等式的解集为⎪⎭⎫⎝⎛-32,21.例11. 若函数()()a x ax x f +-=2lg 的定义域为R ,则实数a 的取值范围是【 】(A )⎪⎭⎫ ⎝⎛-21,21 (B )⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛-∞-,2121,(C )⎪⎭⎫ ⎝⎛+∞,21 (D )⎪⎭⎫⎢⎣⎡+∞⎥⎦⎤ ⎝⎛-∞-,2121,分析:本题考查二次函数的函数值恒大于0的问题,注意分类讨论.函数()()a x ax x f +-=2lg 的定义域为R 的意思是不论x 为任何实数,总有()02>+-=a x ax x g 成立,属于R 上的恒成立问题.解:设()a x ax x g +-=2,由题意可知,()0>x g 在R 上恒成立.当0=a 时,()x x g -=,不符合题意,舍去;当0≠a 时,则有()⎩⎨⎧<--=∆>041022a a ,解之得:21>a . ∴实数a 的取值范围是⎪⎭⎫⎝⎛+∞,21.选择【 C 】.例12. 若函数()1log 2+-=ax x y a (0>a 且1≠a )有最小值,则实数a 的取值范围是__________.解:设()12+-=ax x x g ,当1>a 时,()min min log x g y a =,则()0min >x g∴042<-=∆a ,解之得:22<<-a . ∴21<<a ;当10<<a 时,()max min log x g y a =,由于()max x g 不存在,所以此种情况不符合题意. 综上所述,实数a 的取值范围是()2,1.例13. 设函数()⎪⎭⎫⎝⎛-=x a x f a 1log ,其中10<<a . (1)证明:()x f 是()+∞,a 上的减函数; (2)若()1>x f ,求x 的取值范围.证明:(1)任取()+∞∈,,21a x x ,且21x x <,则有()()()()a x x a x x x a x a x a x a x f x f a a a a --=--=⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛-=-2112212121log 11log 1log 1log ∵()()()()()()()a x x x x a a x x a x x a x x a x x a x x --=----=---212121*********,()+∞∈,,21a x x ,且21x x <,且10<<a∴,021<-x x ()021>-a x x∴()()02121<--a x x x x a ,即()()12112<--a x x a x x ∴()()01log log 2112=>--a aa x x a x x ,∴()()()()2121,0x f x f x f x f >>-.∴()x f 是()+∞,a 上的减函数; 证法二:设()xax g -=1,任取()+∞∈,,21a x x ,且21x x <,则有 ()()()21211221211111xx x x a x x a x a x a x g x g -=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛-=-. ∵()+∞∈,,21a x x ,且21x x <,且10<<a ∴()0,02121<->x x a x x ∴()()()()2121,0x g x g x g x g >>- ∴()x g 在()+∞,a 上是增函数 ∵10<<a∴()()x g x a x f a a log 1log =⎪⎭⎫⎝⎛-=是()+∞,a 上的减函数;解:(2)∵()1>x f ,∴a x a a a log 1log >⎪⎭⎫⎝⎛-∵10<<a ∴⎪⎪⎩⎪⎪⎨⎧<->-axa x a 101,解之得:a a x a -<<1.∴x 的取值范围是⎪⎭⎫ ⎝⎛-a a a 1,.指数函数与对数函数的关系指数函数与对数函数的性质的比较如下表所示:知识点三 与对数函数有关的函数的定义域 (1)对数函数x y a log =的定义域为()+∞,0.(2)形如()()x f y x g log =的函数,其定义域由()()()⎪⎩⎪⎨⎧≠>>100x g x g x f 确定.(3)形如()x f y a log =的函数的定义域,必须保证每一部分都有意义. 例14. 函数()()1lg 1++-=x x x f 的定义域是__________.解:由题意可知:⎩⎨⎧>+≥-0101x x ,解之得:x <-1≤1.∴该函数的定义域为(]1,1-.例15. 函数()1log 232+--=x xy 的定义域是【 】(A )()3,1- (B )(]3,1- (C )()3,∞- (D )()+∞-,1解:由题意可知:()⎪⎩⎪⎨⎧≠+->+≥-01log 201032x x x ,即⎪⎩⎪⎨⎧≠->≤313x x x ,∴31<<-x .∴该函数的定义域为()3,1-. 选择【 A 】.例15. 函数()()x x x f -+-=2lg 11的定义域是【 】(A )()3,1 (B )()1,0 (C )[)2,1 (D )()2,1解:由题意可知:⎪⎩⎪⎨⎧≠->-≥-120201x x x ,解之得:21<<x .∴该函数的定义域为()2,1. 选择【 D 】.例16. 若函数()1log 2+-=ax x y a 的定义域为R ,则a 的取值范围是【 】(A )10<<a (B )20<<a 且1≠a (C )21<<a (D )a ≥2解:由题意可知:0>a ,且1≠a .∵函数()1log 2+-=ax x y a 的定义域为R ∴012>+-ax x 在R 上恒成立 ∴042<-=∆a ,解之得:22<<-a . ∴20<<a ,且1≠a . 选择【 B 】.例17. 函数()()1log 14212++--=x x x x f 的定义域是____________.解:由题意可知:⎪⎩⎪⎨⎧>+≠-≥-0101042x x x ,即⎪⎩⎪⎨⎧->≠≤≤-1122x x x ,∴x <-1≤2,且1≠x .∴该函数的定义域是{}1,21≠≤<-x x x 且.例18. 求下列函数的定义域:(1)()()312lg -+-=x x x f ; (2)()()x x 416log 1-+.解:(1)由题意可知:⎩⎨⎧≠->-0302x x ,解之得:2>x 且3≠x .∴该函数的定义域为()()+∞,33,2 ;(2)由题意可知:⎪⎩⎪⎨⎧≠+>+>-11010416x x x ,解之得:41<<-x ,且0≠x .∴该函数的定义域为()()4,00,1 -.例19. 函数()()46lg -+-=x x x f 的定义域为【 】(A )()6,∞- (B )[)6,4 (C )[)+∞,4 (D )()6,4解:由题意可知:⎩⎨⎧≥->-0406x x ,解之得:4≤6<x .∴该函数的定义域为[)6,4. 选择【 B 】.例20. (1)已知函数()()1lg +=x f y 的定义域为(]99,0,则函数()()2log 2+=x f y 的定义域为__________.(2)已知函数()()⎥⎦⎤⎢⎣⎡+-+=a x a ax x f 411log 22的定义域为R ,求a 的取值范围.解:(1)∵(]99,0∈x ,∴(]100,11∈+x ,∴(]2,0lg ∈x .∴函数()x f 的定义域为(]2,0.∴()2log 02+<x ≤2,∴21+<x ≤4,解之得:x <-1≤2. ∴函数()()2log 2+=x f y 的定义域为(]2,1-.(2)∵函数()()⎥⎦⎤⎢⎣⎡+-+=a x a ax x f 411log 22的定义域为R .∴()04112>+-+a x a ax 在R 上恒成立. 当0=a 时,0>-x 不恒成立;当0≠a 时,则有()⎩⎨⎧<--=∆>01022a a a ,解之得:21>a . 综上所述,a 的取值范围为⎪⎭⎫⎝⎛+∞,21.例21. 已知函数()x x f 2log =的值域是[]4,0,则函数()()()22xf x f x +=ϕ的定义域为【 】(A )[]4,1 (B )[]8,1 (C )[]16,1 (D )⎥⎦⎤⎢⎣⎡8,21解:∵函数()x x f 2log =的值域是[]4,0∴0≤x 2log ≤4,∴1≤x ≤16. ∴函数()x f 的定义域为[]16,1. ∵函数()()()22x f x f x +=ϕ∴⎩⎨⎧≤≤≤≤16116212x x ,解之得:1≤x ≤4. ∴函数()x ϕ的定义域为[]4,1. 选择【 A 】.例22. 求函数()31lg 1-+=x y 的定义域.解:由题意可知:⎩⎨⎧≠+>+310101x x ,解之得:1->x 且999≠x . ∴该函数的定义域为()()+∞-,999999,1 .例23. 已知函数()x f 的定义域为[]1,0,求函数()⎪⎭⎫ ⎝⎛-x f 3log 21的定义域.解:∵函数()x f 的定义域为[]1,0∴0≤()x -3log 21≤1,∴1log 21≤()x -3log 21≤21log 21. ∴1≥x -3≥21,解之得:2≤x ≤25. ∴函数()⎪⎭⎫ ⎝⎛-x f 3log 21的定义域为⎥⎦⎤⎢⎣⎡25,2.例24. 函数()365lg 42-+-+-=x x x x x f 的定义域为【 】(A )()3,2 (B )(]4,2 (C )()(]4,33,2 (D )()(]6,33,1 -解:由题意可知:⎪⎩⎪⎨⎧>-+-≥-0365042x x x x ,即⎩⎨⎧≠>≤≤-3,244x x x 且,∴x <2≤4,且3≠x .∴该函数的定义域为()(]4,33,2 .选择【 C 】.例25. 求下列函数的定义域:(1)()1log 12-=x y ; (2)()3lg -=x y ;(3)()x y 416log 2-=; (4)()()x y x -=-3log 1.解:(1)由题意可知:⎩⎨⎧≠->-1101x x ,解之得:1>x 且2≠x .∴该函数的定义域为()()+∞,22,1 ;(2)由题意可知:⎩⎨⎧≥->-1303x x ,解之得:x ≥4.∴该函数的定义域为[)+∞,4;(3)由题意可知:0416>-x ,解之得:2<x . ∴该函数的定义域为()2,∞-;(4)由题意可知:⎪⎩⎪⎨⎧≠->->-110103x x x ,解之得:31<<x ,且2≠x .∴该函数的定义域为()()3,22,1 .例26. 设函数24x y -=的定义域为A ,函数()x y -=1ln 的定义域为B ,则=B A 【 】(A )()2,1 (B )(]2,1 (C )()1,2- (D )[)1,2-解:由题意可知:{}{}22042≤≤-=≥-=x x x x A ,{}{}101<=>-=x x x x B ∴{}[)1,212-=<≤-=x x B A . 选择【 D 】.例27. 求下列函数的定义域:(1)()()x x x x x f --+=22lg ; (2)()()x x f 21ln 1-=;(3)()()x x f lg 2ln -=; (4)()()12log 121+=x x f .解:(1)由题意可知:⎩⎨⎧>-+≠-0202x x x x ,即⎩⎨⎧<<-<210x x ,∴01<<-x . ∴该函数的定义域为()0,1-;(2)由题意可知:⎩⎨⎧≠->-121021x x ,解之得:21<x 且0≠x .∴该函数的定义域为()⎪⎭⎫⎝⎛∞-21,00, ;(3)由题意可知:⎩⎨⎧>->0lg 20x x ,解之得:1000<<x .∴该函数的定义域为()100,0;(4)由题意可知:⎩⎨⎧≠+>+112012x x ,解之得:21->x ,且0≠x .∴该函数的定义域为()+∞⎪⎭⎫⎝⎛-,00,21 .例28. 求下列函数的定义域:(1)()()x x x f -=2ln ; (2)()()1log 122-=x x f ;(3)()()x x x f 35lg lg -+=; (4)()()125ln 1-+-=x e x x f .解:(1)由题意可知:02>-x x ,()01>-x x ,解之得:0<x 或1>x .∴该函数的定义域为()()+∞∞-,10, ;(2)由题意可知:()()⎩⎨⎧>-+>01log 1log 022x x x ,解之得:210<<x 或2>x .∴该函数的定义域为()+∞⎪⎭⎫⎝⎛,221,0 ;(3)由题意可知:⎪⎩⎪⎨⎧>-≥>03510x x x ,解之得:1≤35<x .∴该函数的定义域为⎪⎭⎫⎢⎣⎡35,1;(4)由题意可知:⎩⎨⎧≥->-01125x e x ,解之得:0≤<x 2.∴该函数的定义域为[)2,0.例29. 函数()⎪⎭⎫ ⎝⎛++=41log 2ax x x f a 的定义域为R ,则()xx a x g -=22的单调递增区间是【 】(A )⎪⎭⎫ ⎝⎛∞-41, (B )()1,∞-(C )⎪⎭⎫⎝⎛+∞,41 (D )()+∞,1解:∵函数()⎪⎭⎫⎝⎛++=41log 2ax x x f a 的定义域为R ∴0412>++ax x 在R 上恒成立,且0>a ,1≠a . ∴012<-=∆a ,解之得:11<<-a . ∴10<<a .∴()x x a x g -=22的单调递增区间即函数81412222-⎪⎭⎫ ⎝⎛-=-=x x x y 的单调递减区间,为⎪⎭⎫ ⎝⎛∞-41,,或⎥⎦⎤ ⎝⎛∞-41,.选择【 A 】.例30. 已知函数()()1log -=xa a x f (0>a 且1≠a ).(1)求()x f 的定义域;(2)若10<<a ,判断()x f 的单调性,并证明你的结论.解:(1)由题意可知:1,01>>-xxa a ,∴0a a x >.当1>a 时,解之得:0>x ;当10<<a 时,解之得:0<x .∴当1>a 时,()x f 的定义域为()+∞,0,当10<<a 时,()x f 的定义域为()0,∞-; (2)()x f 在()0,∞-上为增函数,理由如下: 设()1-=x a x g ,任取()0,,21∞-∈x x ,且21x x <,则有()()()()21211121x x x x a a a a x g x g -=---=-∵10<<a ,21x x <∴021>-x x a a ,∴()()()()2121,0x g x g x g x g >>-. ∴()x g 在()0,∞-上为减函数 ∵10<<a∴()x f 在()0,∞-上为增函数.例31. 求下列函数的定义域:(1)()x y -=2lg ; (2)()x y -=2log 21; (3)()3lg 42+-=x x y .解:(1)由题意可知:()⎩⎨⎧≥-≥-02lg 02x x ,即⎩⎨⎧≥-≤122x x ,∴x ≤1.∴该函数的定义域为(]1,∞-;(2)由题意可知:⎩⎨⎧≤->-1202x x ,解之得:1≤2<x .∴该函数的定义域为[)2,1;(3)由题意可知:⎪⎩⎪⎨⎧≠+>+≥-1303042x x x ,解之得:23-<<-x 或x ≥2.∴该函数的定义域为()[)+∞--,22,3 .知识点四 对数型函数的值域(1)对数函数x y a log =(0>a 且1≠a )的值域利用函数的单调性求解;(2)求形如()x f y a log =的复合函数的值域,先求出()x f 的值域,然后结合对数函数的单调性求出函数()x f y a log =的值域;(3)求形如()x f y a log =的复合函数的值域,其中复合函数()x f y a log =一般是关于x a log 的二次函数,故可以采用换元法求解,注意新元的取值范围.例32. 求函数()1log log 2422--=x x y 的值域.分析:这里要对函数解析式进行一个小小的变形:x x x 22224log log log 2==,变形的依据是对数换底公式的性质:b b a n a n log log =.解:()()1log log 1log log 2222422--=--=x x x x y .函数的定义域为()+∞,0.设∈=x t 2log R ,则4521122-⎪⎭⎫ ⎝⎛-=--=t t t y .∴该函数的值域为⎪⎭⎫⎢⎣⎡+∞-,45.注意 在求函数的值域时,要先确定函数的定义域. 例33. 求下列函数的值域:(1)()12log 3-=x y ,[]2,1∈x ; (2)()43log 24.0++-=x x y .解:(1)设12-=x t ,则t y 3log =,∵[]2,1∈x ,∴[]3,1∈t .∵函数t y 3log =在[]3,1∈t 上为增函数 ∴13log ,01log 3max 3min ====y y . ∴该函数的值域为[]1,0;(2)由题意可知:0432>++-x x ,即0432<--x x ,解之得:41<<-x .∴该函数的定义域为()4,1-.设42523432+⎪⎭⎫ ⎝⎛--=++-=x x x t ,则t <0≤425(注意是在函数的定义域()4,1-内)∵函数t y 4.0log =在⎥⎦⎤⎝⎛∈425,0t 内为减函数∴2425log 4.0min -==y ,无最大值. 该函数的值域为[)+∞-,2.例34. 求下列函数的值域:(1)()4log 22+=x y ; (2)()22123log x x y -+=.解:(1)由题意可知,该函数的定义域为R .设42+=x t ,则t y 2log =,[)+∞∈,4t ∴t y 2log =≥24log 2= ∴该函数的值域为[)+∞,2;(2)设()412322+--=-+=x x x t ,则t y 21log =,∵0>t ,∴t <0≤4.∵函数t y 21log =在t <0≤4时为减函数∴t y 21log =≥24log 21-=∴该函数的值域为[)+∞-,2.例35. 求函数5log log 21221+-⎪⎭⎫⎝⎛=x x y 在2≤x ≤4时的值域.解:设x t 21log =,则41921522+⎪⎭⎫ ⎝⎛-=+-=t t t y . ∵2≤x ≤4,∴4log 21≤x ≤2log 21,即[]1,2--∈t∵函数419212+⎪⎭⎫ ⎝⎛-=t y 在[]1,2--∈t 上为减函数∴74192112min=+⎪⎭⎫ ⎝⎛--=y ,114192122max =+⎪⎭⎫ ⎝⎛--=y .∴该函数的值域为[]11,7.例36. 下列函数中,其定义域和值域分别与函数xy lg 10=的定义域和值域相同的是【 】(A )x y = (B )x y lg = (C )x y 2= (D )xy 1=解:函数x y x==lg 10,其定义域为()+∞,0,值域为()+∞,0.对于(A ),函数x y =的定义域为R ,值域为R ; 对于(B ),函数x y lg =的定义域为()+∞,0,值域为R ; 对于(C ),函数x y 2=的定义域为R ,值域为()+∞,0; 对于(D ),函数211-==x xy 的定义域为()+∞,0,值域为()+∞,0.选择【 D 】.例37. 函数()⎩⎨⎧≤-+>+=1,11,ln 22x x a x x a x f 的值域为R ,则实数a 的取值范围是_________. 解:由题意可知,当1>x 时,()a x a x f 2ln 2>+=;当x ≤1时,()x f ≤1+a .∵函数()x f 的定义域为R ∴a 2≤1+a ,解之得:a ≤1. ∴实数a 的取值范围是(]1,∞-.例38. 已知函数()()()x x x f a a -++=3log 1log (0>a 且1>a ).(1)求函数()x f 的定义域;(2)若函数()x f 的最小值为2-,求实数a 的值.解:(1)由题意可知:⎩⎨⎧>->+0301x x ,解之得:31<<-x .∴函数()x f 的定义域为()3,1-;(2)()()()()()()32log 31log 3log 1log 2++-=-+=-++=x x x x x x x f a a a a 设()413222+--=++-=x x x t ,则()t x f y a log ==.∵()3,1-∈x ,∴4max =t当10<<a 时,函数有最小值为4log a ,∴24log -=a ,解之得:21=a (21-=a 舍去);当1>a 时,函数有最大值为4log a ,无最小值. 综上所述,实数a 的值21. 例39. 函数()()x x x f 2loglog 22⋅=的最小值为__________.分析:这里要用到对数换底公式的性质:b mnb a na m log log =.使用换元法求该函数的最小值,但换元后要注意新元的取值范围.解:()()()()x x x x x x x f 2222222log log log 22log 212loglog +=+⋅=⋅=,函数的定义域为()+∞,0设∈=x t 2log R ,则()412122-⎪⎭⎫ ⎝⎛+=+==t t t x f y .∴该函数的最小值为()41min min -==x f y .例40. 已知函数()x x f a log =(0>a 且1>a )在[]4,2上的最大值与最小值的差为1,求a 的值.分析:当对数函数的底数范围不确定时,利用对数函数的单调性时要对底数进行分类讨论.解:当1>a 时,函数()x f 在[]4,2为增函数∴()()()()4log 4,2log 2max min a a f x f f x f ==== ∴12log 2log 4log ==-a a a ,解之得:2=a ; 当10<<a 时,函数()x f 在[]4,2为减函数 ∴()()()()2log 2,4log 4max min a a f x f f x f ====∴121log 4log 2log ==-aa a ,解之得:21=a . 综上所述,2=a 或21=a .例41. 已知函数()()1log ++=x a x f a x在[]1,0上的最大值与最小值之和为a ,则a的值为【 】 (A )41 (B )21(C )2 (D )4 分析:若指数函数与对数函数的底数相同,则它们在各自定义域上的单调性相同.根据函数单调性的运算性质,可以确定本题中函数()x f 在[]1,0上具有单调性,有鉴于此,在解决本题问题时不用对底数a 进行分类讨论,因为函数()x f 的最大值与最小值在给定闭区间的端点处取得.解:∵函数xa y =与()1log +=x y a 在[]1,0具有相同的单调性∴函数()()1log ++=x a x f a x 在[]1,0为增函数或减函数,具有单调性 ∴函数()x f 的最大值与最小值在[]1,0的端点处取得. ∴()()a a f f a =++=+2log 110,解之得:21=a . 选择【 B 】.例41. 已知函数()()⎩⎨⎧≥<+-=1,ln 1,321x x x a x a x f 的值域为R ,那么实数a 的取值范围是__________.解:函数()x f 的值域为函数()x x f ln =(x ≥1)和函数()()a x a x f 321+-=(1<x )的值域的并集∵当x ≥1时,函数()x x f ln =的值域为[)+∞,0,且函数()x f 的值域为R ,设函数()()a x a x f 321+-=(1<x )的值域为A∴(]A ⊆∞-0,∴⎩⎨⎧≥+->-0321021a a a ,解之得:1-≤21<a∴实数a 的取值范围是⎪⎭⎫⎢⎣⎡-21,1.例42. 已知函数()x x f a log =(10<<a )在区间[]a a 2,上的最大值是最小值的3倍,则a 的值为【 】 (A )41 (B )22 (C )42 (D )21解:∵10<<a∴函数()x x f a log =在[]a a 2,上是减函数∴()()()()12log 2log 2,1log min max +======a a a a a f x f a a f x f ∴()112log 3=+a ,解之得:42=a . 选择【 C 】.例43. 函数()()92log 3+=xx f 的值域为__________.解:该函数的值域为R .∵02>x ,∴992>+x∴()29log 92log 33=>+x ,即()2>x f . ∴函数()()92log 3+=x x f 的值域为()+∞,2.例44. 若函数()⎩⎨⎧>+≤+-=2,log 32,6x x x x x f a (0>a 且1>a )的值域为[)+∞,4,则实数a的取值范围为__________.分析:根据分段函数值域的确定方法,函数()x f 的值域为函数()6+-=x x f (x ≤2)的值域与函数()x x f a log 3+=(2>x )的值域的并集.因为函数()6+-=x x f (x ≤2)的值域为[)+∞,4,所以函数()x x f a log 3+=(2>x )的值域为[)+∞,4的子集.解:由题意可知:⎩⎨⎧≥+>42log 31a a ,解之得:a <1≤2.∴实数a 的取值范围为(]2,1.例45. 已知函数()()12lg 2++=x ax x f .(1)若()x f 的定义域为R ,求a 的取值范围; (2)若()x f 的值域为R ,求a 的取值范围.分析:(1)函数()x f 的定义域为R 的意思是指0122>++x ax 在R 上恒成立,必要时要对二次项系数a 是否等于0展开讨论;(2)设122++=x ax t ,则()t x f y lg ==.因为函数()x f 的值域为R ,则函数t 必须能取遍()+∞,0内的所有值,所以()+∞,0是函数t 的值域的子集.解:(1)∵()x f 的定义域为R∴0122>++x ax 在R 上恒成立.当0=a 时,012>+x 在R 上不恒成立,舍去;当0≠a 时,则有⎩⎨⎧<-=∆>0440a a ,解之得:1>a .∴a 的取值范围是()+∞,1;(2)若()x f 的值域为R ,则122++=x ax t 的值域应包含()+∞,0(即取遍全体正数).当0=a 时,∈+=12x t R ,满足题意;当0≠a 时,则有⎩⎨⎧≥-=∆>0440a a ,解之得:a <0≤1.综上所述,a 的取值范围为[]1,0.相关训练 若函数()12++=mx mx x f 的值域为[)+∞,0,则m 的取值范围是【 】(A )[]4,0 (B )(]4,0 (C )()4,0 (D )[)+∞,4解:当0=m 时,()1=x f ,函数的值域为{}1,不符合题意; 当0≠m 时,设()12++=mx mx x g ,并设其值域为A ,则[)A ⊆+∞,0.∴⎩⎨⎧≥-=∆>0402m m m ,解之得:m ≥4. ∴m 的取值范围是[)+∞,4. 选择【 D 】.例46. (1)若函数()()1log +=x x f a (0>a 且1>a )的定义域和值域都是[]1,0,则=a __________;(2)已知函数()()12lg 2++=mx mx x f ,若()x f 的值域为R ,则实数m 的取值范围是__________.解:(1)设1+=x t ,则()t x f y a log ==.∵[]1,0∈x ,∴[]2,1∈t .当1>a 时,函数t y a log =在[]2,1∈t 上为增函数,∵且其值域为[]1,0 ∴12log =a ,解之得:2=a ;当10<<a 时,函数t y a log =在[]2,1∈t 上为减函数 ∴02log =a ,无解. 综上所述,2=a ;(2)设()122++=mx mx x g ,值域为A . ∵()x f 的值域为R ,∴()A ⊆+∞,0. 当0=m 时,()1=x g ,不符合题意;当0≠m 时,则有⎩⎨⎧≥-=∆>04402m m m ,解之得:m ≥1. 综上所述,实数m 的取值范围是[)+∞,1.例47. 已知函数()()⎥⎦⎤⎢⎣⎡+-+=4112log 22x k kx x f 的值域为R ,则实数k 的取值范围是__________.解:设()()41122+-+=x k kx x g ,值域为A .∵()x f 的值域为R ,∴()A ⊆+∞,0当0=k 时,()41+-=x x g ,=A R ,符合题意;当0≠k 时,则有()⎩⎨⎧≥--=∆>01202k k k ,解之得:k <0≤41或k ≥1. 综上所述,实数k 的取值范围是[)+∞⎥⎦⎤⎢⎣⎡,141,0 .例48. 若函数()()⎩⎨⎧≥+<+-=1,ln 11,22x x x a x a x f 的值域为R ,则a 的取值范围是________.解:设函数()()()122<+-=x a x a x f 的值域为A .当x ≥1时,函数()x x f ln 1+=的值域为[)+∞,1.∵函数()()⎩⎨⎧≥+<+-=1,ln 11,22x x x a x a x f 的值域为R∴(]A ⊆∞-1,∴⎩⎨⎧≥+->-12202a a a ,解之得:1-≤2<a . ∴a 的取值范围是[)2,1-.例49. 若函数()⎩⎨⎧≤-+->=2,222,log 2x x x x x x f a (0>a 且1>a )的值域是(]1,-∞-,则实数a 的取值范围是__________.解:设函数()()2log >=x x x f a 的值域为A .函数()()()2112222≤---=-+-=x x x x x f 的值域为(]1,-∞-.∵函数()⎩⎨⎧≤-+->=2,222,log 2x x x x x x f a 的值域是(]1,-∞-∴(]1,-∞-⊆A∴⎩⎨⎧-≤<<12log 10a a ,解之得:21≤1<a .∴实数a 的取值范围是⎪⎭⎫⎢⎣⎡1,21.例50. 求函数()()()⎪⎩⎪⎨⎧<≥=121log 21x x x x f x 的值域. 分析:这是分段函数的值域问题,应该清楚,分段函数的值域为各段函数值域的并集.解:当x ≥1时,()x x f 21log =,其值域为(]0,∞-;当1<x 时,()x x f 2=,其值域为()2,0.∴函数()()()⎪⎩⎪⎨⎧<≥=121log 21x x x x f x 的值域为(]()()2,2,00,∞-=∞- .例51. 已知函数()()()14log log 422++=x x x f ,则函数()x f 的最小值是【 】(A )2 (B )1631 (C )815(D )1 解:()()()()163141log 2log 21log 14log log 22222422+⎪⎭⎫ ⎝⎛+=++=++=x x x x x x f .∴当41log 2-=x ,即=x 412-时,()x f 取得最小值为1631.选择【 B 】.例52. 设函数()()()1log 2log 22+⋅+=x x x f 的定义域为⎥⎦⎤⎢⎣⎡4,41.(1)若x t 2log =,求t 的取值范围;(2)求()x f y =的最大值与最小值,求求出最值时对应的x 的值.解:(1)∵x t 2log =在⎥⎦⎤⎢⎣⎡∈4,41x 上单调递增∴41log 2≤t ≤4log 2,即2-≤t ≤2. ∴t 的取值范围为[]2,2-;(2)设x t 2log =,由(1)可知,[]2,2-∈t .∴()()()4123231222-⎪⎭⎫ ⎝⎛+=++=++==t t t t t x f y .∵[]2,2-∈t∴当23-=t ,即42,23log 2=-=x x 时,41min -=y ;当2=t ,即4,2log 2==x x 时,12412322max=-⎪⎭⎫ ⎝⎛+=y .例53. 设函数()m x x x f +-=2,且()()1,2,log 2≠==a a f m a f .(1)求m a ,的值;(2)求()x f 2log 的最小值及对应x 的值.解:(1)∵()m x x x f +-=2,()m a f =2log∴()m m a a =+-222log log ,∴()a a 222log log =.∵1≠a ,∴0log 2≠a ∴1log 2=a ,∴2=a . ∵()()22==f a f∴224=+-m ,解之得:2=m ; (2)由(1)可知:()22+-=x x x f .∴()()4721log 2log log log 222222+⎪⎭⎫ ⎝⎛-=+-=x x x x f∴当21log 2=x ,即2=x 时,()x f 2log 取得最小值,最小值为47. 例54. 已知函数()()⎪⎩⎪⎨⎧<+≥-+=1,1lg 1,322x x x xx x f ,则()=-)3(f f _________,()x f 的最小值是_________.解:∵()()119lg 3=+=-f∴()()01)3(==-f f f .当x ≥1时,()32-+=xx x f 在[]2,1上为减函数,在[)+∞,2上为增函数∴()()3222min -==fx f ;当1<x 时,[)+∞∈+,112x ∴()01lg min ==x f .综上所述,()x f 的最小值是322-.例55. 下列判断正确的是__________(填序号).①若()ax x x f 22-=在[)+∞,1上为增函数,则1=a ; ②函数()1ln 2+=x y 的值域是R ; ③函数x y 2=的最小值为1;④在同一平面直角坐标系中,函数xy 2=与xy ⎪⎭⎫⎝⎛=21的图象关于y 轴对称.解:对于①,函数()ax x x f 22-=的开口向上,对称轴为直线a x =.∵()x f 在[)+∞,1上为增函数 ∴a ≤1.故①错误;对于②,∵12+x ≥1,∴()1ln 2+=x y ≥01ln = ∴函数()1ln 2+=x y 的值域是[)+∞,0.故②错误; 对于③,∵x ≥0,∴x y 2=≥120=. ∴函数x y 2=的最小值为1.故③正确;对于④,∵在同一平面直角坐标系中,函数()x f 与()x f -的图象关于y 轴对称x xy -=⎪⎭⎫⎝⎛=221∴函数x y 2=与xy ⎪⎭⎫⎝⎛=21的图象关于y 轴对称.故④正确.∴判断正确的是③④.例56. 若函数()()12log 23-+=x ax x g 有最大值1,则实数a 的值等于【 】(A )21-(B )41 (C )41- (D )4解:∵函数()()12log 23-+=x ax x g 有最大值1,13log 3=∴()122-+=x ax x f 有最大值3.∴⎪⎩⎪⎨⎧=--<34440aa a ,解之得:41-=a .选择【 C 】.例57. 若函数()1log 2+-=ax x y a (0>a 且1≠a )有最小值,则实数a 的取值范围是__________.解:设12+-=ax x t ,则t y a log =,()+∞∈,0t .当1>a 时,t y a log =在()+∞∈,0t 上为增函数 ∵函数()1log 2+-=ax x y a 有最小值 ∴0442min>-=a t ,解之得:22<<-a .∴21<<a 1;当10<<a 时,t y a log =在()+∞∈,0t 上为减函数,要使函数()1log 2+-=ax x y a 有最小值,则需12+-=ax x t 存在最大值,因为该最大值不存在,所以此种情况不符合题意.综上所述,实数a 的取值范围是()2,1.例58. 已知函数()x f y =,且()()()2lg 3lg ln lg -+=x x y .(1)求函数()x f 的表达式; (2)求函数()x f 的值域.解:(1)由题意可知:⎩⎨⎧>->0203x x ,解之得:2>x∵0ln >y ,∴1>y . ∵()()()2lg 3lg ln lg -+=x x y ∴()x x x x y 6323lg 2-=-= ∴()2632>=-x e y xx即函数()x f 的表达式为()()2632>=-x e x f xx;(2)设()3136322--=-=x x x t ∵2>x ,∴()+∞∈,0t∵函数()t e x f y ==在()+∞∈,0t 上为增函数 ∴函数()()2632>=-x e x f xx的值域为()+∞,1.例59. 已知函数()()xxb a x f -=lg (01>>>b a ).(1)求函数()x f 的定义域;(2)当()+∞∈,1x 时,函数()x f 的值域为()+∞,0,且()2lg 2=f ,求实数b a ,的值.解:(1)由题意可知:0>-xxb a ,∴xxb a >∵0>xb ,∴1>⎪⎭⎫⎝⎛xb a∵01>>>b a ,∴1>ba,∴0>x . ∴函数()x f 的定义域为()+∞,0; (2)设()x x b a x g -=,∵01>>>b a ∴()x x b a x g -=在()+∞∈,1x 上为增函数 ∵当()+∞∈,1x 时,函数()x f 的值域为()+∞,0 ∴()()+∞∈,1x g ,∴()11=-=b a g . ∵()2lg 2=f ,∴222=-b a解方程组⎩⎨⎧=-=-2122b a b a 得:⎪⎪⎩⎪⎪⎨⎧==2123b a . 例60. 已知函数()()()x p x x x x f -+-+-+=222log 1log 11log (1>p ).问:()x f 是否存在最值?若存在,请求出它的最值.分析:这是对数型函数的最值问题,应先求出对数型函数的定义域,再确定对数型函数的单调性,根据单调性研究函数的最值.解:由题意可知:⎪⎪⎩⎪⎪⎨⎧>->->-+001011x p x x x ,即⎪⎩⎪⎨⎧<>-<>p x x x x 111或∵1>p ,∴p x <<1. ∴函数()x f 的定义域为()p ,1 ∵()()()()()[]x p x x p x x x x f -+=-+-+-+=1log log 1log 11log 2222∴()()[]p x p x x f +-+-=1log 22设()()p x p x x g +-+-=12,∈x ()p ,1,其图象的开口方向向下,对称轴为直线21-=p x . 当21-<p p 时,1-<p ,不符合题意;当1≤21-p ≤p ,即p ≥3时,()()2max 14121+=⎪⎭⎫ ⎝⎛-=p p g x g ,无最小值. ∴()()()()21log 2141log log 222max 2max -+=⎥⎦⎤⎢⎣⎡+==p p x g x f ,()x f 无最小值;当121<-p (1>p ),即31<<p 时,函数()x g 在()p ,1上为减函数 ∴()x g 在()p ,1上既无最大值,也无最小值 ∴函数()x f 当31<<p 时,无最值.综上所述,当p ≥3时,函数()x f 存在最大值为()21log 22-+p ,无最小值;当31<<p 时,函数()x f 既不存在最大值,也不存在最小值.点评 单调函数在给定的开区间上无最大值和最小值,在给定的闭区间上既有最大值,又有最小值,且最大值(最小值)在闭区间的端点处取得. 知识点五 与对数函数有关的函数的单调性及其应用 1.对数值大小的比较(1)同底数的利用函数的单调性; (2)同真数的利用函数的图象;(3)底数与真数都不同的,利用中间数0和1(介值法). 2.解简单的对数不等式(1)底数确定时,利用对数函数的单调性求解; (2)当底数不确定时,注意对底数进行分类讨论.注意 求解时注意“定义域优先”的原则,要保证每个真数都大于0.点评 简单的对数不等式经过适当的变形一般都可化为()()x g x f a a log log <的形式,当1>a 时,不等式可转化为()()()()⎪⎩⎪⎨⎧<>>x g x f x g x f 00;当10<<a 时,不等式可转化为()()()()⎪⎩⎪⎨⎧>>>x g x f x g x f 00. 例61. 解下列不等式:(1)()x x ->4log log 7171;(2)121log >x; (3)()()1log 52log ->-x x a a .解:(1)由题意可知:⎪⎩⎪⎨⎧-<>->x x x x 4040,解之得:20<<x .∴该不等式的解集为()2,0;(2)x x xlog 21log > 当1>x 时,x x a log 21log <,不符合题意;当10<<x 时,则有21>x ,∴121<<x . 综上,该不等式的解集为⎪⎭⎫⎝⎛1,21;(3)当1>a 时,则有⎪⎩⎪⎨⎧->->->-15201052x x x x ,解之得:4>x ;当10<<a 时,则有⎪⎩⎪⎨⎧-<->->-15201052x x x x ,解之得:425<<x .综上所述,当1>a 时,该不等式的解集为()+∞,4,当10<<a 时,该不等式的解集为⎪⎭⎫ ⎝⎛4,25. 3.对数型复合函数的单调性对数型复合函数一般分为两类:()x f y a log =型和()x f y a log =型.(1)研究()x f y a log =型复合函数的单调性,令x t a log =,则只需研究x t a log =及()t f y =的单调性即可;(2)研究()x f y a log =型复合函数的单调性,首先由()0>x f 确定函数的定义域,然后判断()x f t =在定义域上的单调性,再结合对数函数的单调性,判断函数()x f y a log =的单调性,其核心是:同增异减.例62. (1)已知121log >a,则a 的取值范围为__________. (2)已知()()1log 2log 7.07.0-<x x ,则x 的取值范围为__________. (3)已知x <0≤21,x a xlog 4<,则a 的取值范围为__________. (4)若实数a 满足a a43log 132log >>,则a 的取值范围为__________. 解:(1)a a alog 21log > 当1>a 时,a a a log 21log <,不符合题意;当10<<a 时,21>a ,∴121<<a .∴a 的取值范围为⎪⎭⎫⎝⎛1,21;(2)由题意可知:⎪⎩⎪⎨⎧->>->120102x x x x ,解之得:1>x .∴x 的取值范围为()+∞,1; (3)若1>a ,当x <0≤21时,x a x log 04>>,不符合题意; 若10<<a ,当21=x ,且21log 421a =时,解之得:22=a ,∴122<<a . ∴a 的取值范围为⎪⎪⎭⎫⎝⎛1,22;(4)由132log >a 得:132<<a ;由1log 43<a 得:43>a ∴143<<a ∴a 的取值范围为⎪⎭⎫⎝⎛1,43.例63. (1)若πa a log 3log <,则a 的取值范围为__________;(2)若a 55log log <π,则a 的取值范围为__________.解:(1)∵π<3,πa a log 3log <∴1>a ,即a 的取值范围为()+∞,1; (2)∵a 55log log <π∴π>a ,即a 的取值范围为()+∞,π.例64. 若221log <a ,求a 的取值范围. 解:2log 21log a a a<. 当1>a 时,212>a ,符合题意;当10<<a 时,则有212<a ,解之得:2222<<-a ,∴220<<a .综上所述,a 的取值范围为()+∞⎪⎪⎭⎫⎝⎛,122,0 .例65. 若()()x x a a 57log 13log -<+(10<<a ),求实数x 的取值范围.解:由题意可知:⎪⎩⎪⎨⎧->+>->+xx x x 5713057013,解之得:5743<<x .∴实数x 的取值范围为⎪⎭⎫⎝⎛57,43.例66. 若132log <a,则a 的取值范围是【 】 (A )⎪⎭⎫ ⎝⎛32,0 (B )⎪⎭⎫ ⎝⎛+∞,32(C )⎪⎭⎫ ⎝⎛1,32 (D )()+∞⎪⎭⎫⎝⎛,132,0解:a a alog 32log < 当1>a 时,a a a log 32log <,符合题意;当10<<a 时,32<a ,∴320<<a .综上所述,a 的取值范围是()+∞⎪⎭⎫⎝⎛,132,0 .选择【 D 】.例67. 已知021log >a ,若422-+x x a ≤a1,则实数x 的取值范围为__________. 解:∵021log >a,∴10<<a . ∵422-+x x a ≤a1,∴422-+x x a ≤1-a .∴422-+x x ≥1-,解之得:x ≤3-或x ≥1. ∴实数x 的取值范围为(][)+∞-∞-,13, .例68. 已知函数()()()310lg 2lg 2+-=x a x x f ,⎥⎦⎤⎢⎣⎡∈10,1001x . (1)当1=a 时,求函数()x f 的值域;(2)若函数()x f y =的最小值记为()a m ,求()a m 的最大值.解:(1)当1=a 时()()()221lg 1lg 2lg -=+-=x x x x f∵⎥⎦⎤⎢⎣⎡∈10,1001x ,∴[]1,2lg -∈x ∴()()()912,02max min =--==x f x f .∴当1=a 时,求函数()x f 的值域为[]9,0;(2)()()()()a x a x x a x x f 23lg 2lg 310lg 2lg 22-+-=+-=.设x t lg =,则()a at t x f y 2322-+-==.∵⎥⎦⎤⎢⎣⎡∈10,1001x ,∴[]1,2-∈t . 当1>a 时,函数a at t y 2322-+-=在[]1,2-∈t 上为减函数 ∴()a a a y 4423212min -=-+--=,即()a a m 44-=;当2-≤a ≤1时,32232222min +--=-+-=a a a a a y。

数学必修一第四章知识点总结

数学必修一第四章知识点总结

高中数学人教必修第一册第四章知识点讲解对数函数及其性质1.对数函数的概念(1)定义:一般地,我们把函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).(2)对数函数的特征:a x 的系数:1a x 的底数:常数,且是不等于1的正实数a x 的真数:仅是自变量x判断一个函数是否为对数函数,只需看此函数是否具备了对数函数的特征.比如函数y =log 7x 是对数函数,而函数y =-3log 4x 和y =log x 2均不是对数函数,其原因是不符合对数函数解析式的特点.【例1-1】函数f (x )=(a 2-a +1)log (a +1)x 是对数函数,则实数a =__________.解析:由a 2-a +1=1,解得a =0,1.又a +1>0,且a +1≠1,∴a =1.答案:1【例1-2】下列函数中是对数函数的为__________.(1)y =log(a >0,且a ≠1);(2)y =log 2x +2;(3)y =8log 2(x +1);(4)y =log x 6(x >0,且x ≠1);(5)y =log 6x .解析:答案:2.对数函数y =log a x (a >0,且a ≠1)的图象与性质(1)图象与性质a >10<a <1图象性质(1)定义域{x |x >0}(2)值域{y |y R }(3)当x =1时,y =0,即过定点(1,0)(4)当x >1时,y >0;当0<x <1时,y <0(4)当x >1时,y <0;当0<x <1时,y >0(5)在(0,+∞)上是增函数(5)在(0,+∞)上是减函数谈重点对对数函数图象与性质的理解对数函数的图象恒在y 轴右侧,其单调性取决于底数.a >1时,函数单调递增;0<a <1时,函数单调递减.理解和掌握对数函数的图象和性质的关键是会画对数函数的图象,在掌握图象的基础上性质就容易理解了.我们要注意数形结合思想的应用.(2)指数函数与对数函数的性质比较解析式y =a x (a >0,且a ≠1)y =log a x (a >0,且a ≠1)性质定义域R (0,+∞)值域(0,+∞)R过定点(0,1)(1,0)单调性单调性一致,同为增函数或减函数奇偶性奇偶性一致,都既不是奇函数也不是偶函数(3)底数a 对对数函数的图象的影响①底数a 与1的大小关系决定了对数函数图象的“升降”:当a>1时,对数函数的图象“上升”;当0<a <1时,对数函数的图象“下降”.②底数的大小决定了图象相对位置的高低:不论是a >1还是0<a <1,在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大.点技巧对数函数图象的记忆口诀两支喇叭花手中拿,(1,0)点处把花扎,若是底数小于1,左上穿点渐右下,若是底数大于1,左下穿点渐右上,绕点旋转底变化,顺时方向底变大,可用直线y =1来切,自左到右a 变大.【例2】如图所示的曲线是对数函数y =log a x 的图象.已知a,43,35,110中取值,则相应曲线C 1,C 2,C 3,C4的a 值依次为()A 43,35,110B 43,110,35C .43,,35,110D .43110,35解析:由底数对对数函数图象的影响这一性质可知,C 4的底数<C 3的底数<C 2的底数<C 1的底数.故相应于曲线C 1,C 2,C 3,C 4,43,35,110.答案:A点技巧根据图象判断对数函数的底数大小的方法(1)方法一:利用底数对对数函数图象影响的规律:在x 轴上方“底大图右”,在x 轴下方“底大图左”;(2)方法二:作直线y =1,它与各曲线的交点的横坐标就是各对数的底数,由此判断各底数的大小.3.反函数(1)对数函数的反函数指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数.(2)互为反函数的两个函数之间的关系①原函数的定义域、值域是其反函数的值域、定义域;②互为反函数的两个函数的图象关于直线y =x 对称.(3)求已知函数的反函数,一般步骤如下:①由y =f (x )解出x ,即用y 表示出x ;②把x 替换为y ,y 替换为x ;③根据y =f (x )的值域,写出其反函数的定义域.【例3-1】若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=()A .log 2xB .12xC .12log xD .2x-2解析:因为函数y =a x (a >0,且a ≠1)的反函数是f (x )=log a x ,又f (2)=1,即log a 2=1,所以a =2.故f (x )=log 2x .答案:A【例3-2】函数f (x )=3x (0<x ≤2)的反函数的定义域为()A .(0,+∞)B .(1,9]C .(0,1)D .[9,+∞)解析:∵0<x ≤2,∴1<3x ≤9,即函数f (x )的值域为(1,9].故函数f (x )的反函数的定义域为(1,9].答案:B【例3-3】若函数y =f (x )的反函数图象过点(1,5),则函数y =f (x )的图象必过点()A .(5,1)B .(1,5)C .(1,1)D .(5,5)解析:由于原函数与反函数的图象关于直线y =x 对称,而点(1,5)关于直线y =x 的对称点为(5,1),所以函数y =f (x )的图象必经过点(5,1).答案:A 4.利用待定系数法求对数函数的解析式及函数值对数函数的解析式y =log a x (a >0,且a ≠1)中仅含有一个常数a ,则只需要一个条件即可确定对数函数的解析式,这样的条件往往是已知f (m )=n 或图象过点(m ,n )等等.通常利用待定系数法求解,设出对数函数的解析式f (x )=log a x (a >0,且a ≠1),利用已知条件列方程求出常数a 的值.利用待定系数法求对数函数的解析式时,常常遇到解方程,比如log a m =n ,这时先把对数式log a m =n 化为指数式的形式a n =m ,把m 化为以n 为指数的指数幂形式m =k n (k >0,且k ≠1),则解得a =k >0.还可以直接写出1na m =,再利用指数幂的运算性质化简1nm .例如:解方程log a 4=-2,则a -2=4,由于2142-⎛⎫= ⎪⎝⎭,所以12a =±.又a >0,所以12a =.当然,也可以直接写出124a -=,再利用指数幂的运算性质,得11212214(2)22a ---====.【例4-1】已知f (e x )=x ,则f (5)=()A .e 5B .5eC .ln 5D .log 5e解析:(方法一)令t =e x,则x =ln t ,所以f (t )=ln t ,即f (x )=ln x .所以f (5)=ln 5.(方法二)令e x =5,则x =ln 5,所以f (5)=ln 5.答案:C【例4-2】已知对数函数f (x )的图象经过点1,29⎛⎫⎪⎝⎭,试求f (3)的值.分析:设出函数f (x )的解析式,利用待定系数法即可求出.解:设f (x )=log a x (a >0,且a ≠1),∵对数函数f (x )的图象经过点1,29⎛⎫⎪⎝⎭,∴11log 299a f ⎛⎫== ⎪⎝⎭.∴a 2=19.∴a =11222111933⎡⎤⎛⎫⎛⎫==⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦.∴f (x )=13log x .∴f (3)=111331log 3log 3-⎛⎫= ⎪⎝⎭=-1.【例4-3】已知对数函数f (x )的反函数的图象过点(2,9),且f (b )=12,试求b 的值.解:设f (x )=log a x (a >0,且a ≠1),则它的反函数为y =a x (a >0,且a ≠1),由条件知a 2=9=32,从而a =3.于是f (x )=log 3x ,则f (b )=log 3b =12,解得b=123=5.对数型函数的定义域的求解(1)对数函数的定义域为(0,+∞).(2)在求对数型函数的定义域时,要考虑到真数大于0,底数大于0,且不等于1.若底数和真数中都含有变量,或式子中含有分式、根式等,在解答问题时需要保证各个方面都有意义.一般地,判断类似于y =log a f (x )的定义域时,应首先保证f (x )>0.(3)求函数的定义域应满足以下原则:①分式中分母不等于零;②偶次根式中被开方数大于或等于零;③指数为零的幂的底数不等于零;④对数的底数大于零且不等于1;⑤对数的真数大于零,如果在一个函数中数条并存,求交集.【例5】求下列函数的定义域.(1)y =5(2x -1)(5x -4);(3)y =.分析:利用对数函数y =log a x (a >0,且a ≠1)的定义求解.解:(1)要使函数有意义,则1-x >0,解得x <1,所以函数y =log 5(1-x )的定义域是{x |x <1}.(2)要使函数有意义,则54>0,21>0,211,x x x -⎧⎪-⎨⎪-≠⎩解得x >45且x ≠1,所以函数y =log (2x -1)(5x -4)的定义域是4,15⎛⎫⎪⎝⎭(1,+∞).(3)要使函数有意义,则0.5430,log(43)0,x x ->⎧⎨-≥⎩解得34<x ≤1,所以函数y =的定义域是3<14x x ⎧⎫≤⎨⎬⎩⎭.6.对数型函数的值域的求解(1)充分利用函数的单调性和图象是求函数值域的常用方法.(2)对于形如y =log a f (x )(a >0,且a ≠1)的复合函数,其值域的求解步骤如下:①分解成y =log a u ,u =f (x )这两个函数;②求f (x )的定义域;③求u 的取值范围;④利用y =log a u 的单调性求解.(3)对于函数y =f (log a x )(a >0,且a ≠1),可利用换元法,设log a x =t ,则函数f (t )(t ∈R )的值域就是函数f (log a x )(a >0,且a ≠1)的值域.注意:(1)若对数函数的底数是含字母的代数式(或单独一个字母),要考查其单调性,就必须对底数进行分类讨论.(2)求对数函数的值域时,一定要注意定义域对它的影响.当对数函数中含有参数时,有时需讨论参数的取值范围.【例6-1】求下列函数的值域:(1)y =log 2(x 2+4);(2)y =212log (32)x x +-.解:(1)∵x 2+4≥4,∴log 2(x 2+4)≥log 24=2.∴函数y =log 2(x 2+4)的值域为[2,+∞).(2)设u =3+2x -x 2,则u =-(x -1)2+4≤4.∵u >0,∴0<u ≤4.又y =12log u 在(0,+∞)上为减函数,∴12log u ≥-2.∴函数y =212log (32)x x +-的值域为[-2,+∞).【例6-2】已知f (x )=2+log 3x ,x ∈[1,3],求y =[f (x )]2+f (x 2)的最大值及相应的x 的值.分析:先确定y =[f (x )]2+f (x 2)的定义域,然后转化成关于log 3x 的一个一元二次函数,利用一元二次函数求最值.解:∵f (x )=2+log 3x ,x ∈[1,3],∴y =[f (x )]2+f (x 2)=(log 3x )2+6log 3x +6且定义域为[1,3].令t =log 3x (x ∈[1,3]).∵t =log 3x 在区间[1,3]上是增函数,∴0≤t ≤1.从而要求y =[f (x )]2+f (x 2)在区间[1,3]上的最大值,只需求y =t 2+6t +6在区间[0,1]上的最大值即可.∵y =t 2+6t +6在[-3,+∞)上是增函数,∴当t =1,即x =3时,y max =1+6+6=13.综上可知,当x =3时,y =[f (x )]2+f (x 2)的最大值为13.7.对数函数的图象变换及定点问题(1)与对数函数有关的函数图象过定点问题对数函数y =log a x (a >0,且a ≠1)过定点(1,0),即对任意的a >0,且a ≠1都有log a 1=0.这是解决与对数函数有关的函数图象问题的关键.对于函数y =b +k log a f (x )(k ,b 均为常数,且k ≠0),令f (x )=1,解方程得x =m ,则该函数恒过定点(m ,b ).方程f (x )=0的解的个数等于该函数图象恒过定点的个数.(2)对数函数的图象变换的问题①函数y =log a x (a >0,且a ≠1)――----------------→向左(b >0)或向右(b <0)平移|b |个单位长度函数y =log a (x +b )(a >0,且a ≠1)②函数y =log a x (a >0,且a ≠1)――---------------→向上(b >0)或向下(b <0)平移|b |个单位长度函数y =log a x +b (a >0,且a ≠1)③函数y =log a x (a >0,且a ≠1)―----------------―→当x >0时,两函数图象相同当x <0时,将x >0时的图象关于y 轴对称函数y =log a |x |(a >0,且a ≠1)④函数y =log a x (a >0,且a ≠1)――----------------------------------------→保留x 轴上方的图象同时将x 轴下方的图象作关于x 轴的对称变换函数y =|log a x |(a >0,且a ≠1)【例7-1】若函数y =log a (x +b )+c (a >0,且a ≠1)的图象恒过定点(3,2),则实数b ,c 的值分别为__________.解析:∵函数的图象恒过定点(3,2),∴将(3,2)代入y =log a (x +b )+c (a >0,且a ≠1),得2=log a (3+b )+c .又∵当a >0,且a ≠1时,log a 1=0恒成立,∴c =2.∴log a (3+b )=0.∴b =-2.答案:-2,2【例7-2】作出函数y =|log 2(x +1)|+2的图象.解:(第一步)作函数y =log 2x 的图象,如图①;(第二步)将函数y =log 2x 的图象沿x 轴向左平移1个单位长度,得函数y =log 2(x +1)的图象,如图②;(第三步)将函数y =log 2(x +1)在x 轴下方的图象作关于x 轴的对称变换,得函数y =|log 2(x +1)|的图象,如图③;(第四步)将函数y =|log 2(x +1)|的图象,沿y 轴方向向上平移2个单位长度,便得到所求函数的图象,如图④.8.利用对数函数的单调性比较大小两个对数式的大小比较有以下几种情况:(1)底数相同,真数不同.比较同底数(是具体的数值)的对数大小,构造对数函数,利用对数函数的单调性比较大小.要注意:明确所给的两个值是哪个对数函数的两个函数值;明确对数函数的底数与1的大小关系;最后根据对数函数的单调性判断大小.(2)底数不同,真数相同.若对数式的底数不同而真数相同时,可以利用顺时针方向底数增大画出函数的图象,再进行比较,也可以先用换底公式化为同底后,再进行比较.(3)底数不同,真数也不同.对数式的底数不同且指数也不同时,常借助中间量0,1进行比较.(4)对于多个对数式的大小比较,应先根据每个数的结构特征,以及它们与“0”和“1”的大小情况,进行分组,再比较各组内的数值的大小即可.注意:对于含有参数的两个对数值的大小比较,要注意对底数是否大于1进行分类讨论.【例8-1】比较下列各组中两个值的大小.(1)log31.9,log32;(2)log23,log0.32;(3)log aπ,log a3.141.分析:(1)构造函数y=log3x,利用其单调性比较;(2)分别比较与0的大小;(3)分类讨论底数的取值范围.解:(1)因为函数y=log3x在(0,+∞)上是增函数,所以f(1.9)<f(2).所以log31.9<log32.(2)因为log23>log21=0,log0.32<log0.31=0,所以log23>log0.32.(3)当a>1时,函数y=log a x在定义域上是增函数,则有log aπ>log a3.141;当0<a<1时,函数y=log a x在定义域上是减函数,则有log aπ<log a3.141.综上所得,当a>1时,log aπ>log a3.141;当0<a<1时,log aπ<log a3.141.【例8-2】若a2>b>a>1,试比较log a ab,log bba,log b a,log a b的大小.分析:利用对数函数的单调性或图象进行判断.解:∵b>a>1,∴0<ab<1.∴log a ab<0,log a b>log a a=1,log b1<log b a<log b b,即0<log b a<1.由于1<b a <b ,∴0<log b b a <1.由log b a -log b ba=2log b a b ,∵a 2>b >1,∴2ab>1.∴2log b a b >0,即log b a >log b b a.∴log a b >log b a >log b b a >log a ab.9.利用对数函数的单调性解对数不等式(1)根据对数函数的单调性,当a >0,且a ≠1时,有①log a f (x )=log a g (x )⇔f (x )=g (x )(f (x )>0,g (x )>0);②当a >1时,log a f (x )>log a g (x )⇔f (x )>g (x )(f (x )>0,g (x )>0);③当0<a <1时,log a f (x )>log a g (x )⇔f (x )<g (x )(f (x )>0,g (x )>0).(2)常见的对数不等式有三种类型:①形如log a f (x )>log a g (x )的不等式,借助函数y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论.②形如log a f (x )>b 的不等式,应将b 化为以a 为对数的对数式的形式,再借助函数y =log a x 的单调性求解.③形如log a f (x )>log b g (x )的不等式,基本方法是将不等式两边化为同底的两个对数值,利用对数函数的单调性来脱去对数符号,同时应保证真数大于零,取交集作为不等式的解集.④形如f (log a x )>0的不等式,可用换元法(令t =log a x ),先解f (t )>0,得到t 的取值范围.然后再解x 的范围.【例9-1】解下列不等式:(1)1177log log (4)x x >-;(2)log x (2x +1)>log x (3-x ).解:(1)由已知,得>0,4>0,<4,x x x x ⎧⎪-⎨⎪-⎩解得0<x <2.所以原不等式的解集是{x |0<x <2}.(2)当x >1时,有21>3,21>0,3>0,x x x x +-⎧⎪+⎨⎪-⎩解得1<x <3;当0<x <1时,有21<3,21>0,3>0,x x x x +-⎧⎪+⎨⎪-⎩解得0<x <23.所以原不等式的解集是20<<1<<33x x x ⎧⎫⎨⎬⎩⎭或.【例9-2】若22log 3a ⎛⎫ ⎪⎝⎭<1,求a 的取值范围.解:∵22log 3a ⎛⎫ ⎪⎝⎭<1,∴-1<2log 3a <1,即12log log log 3a a a a a <<.(1)∵当a >1时,y =log a x 为增函数,∴123a a <<.∴a >32,结合a >1,可知a >32.(2)∵当0<a <1时,y =log a x 为减函数,∴12>>3a a .∴a <23,结合0<a <1,知0<a <23.∴a 的取值范围是230<<>32a a a ⎧⎫⎨⎬⎩⎭,或.10.对数型函数单调性的讨论(1)解决与对数函数有关的函数的单调性问题的关键:一是看底数是否大于1,当底数未明确给出时,则应对底数a 是否大于1进行讨论;二是运用复合法来判断其单调性;三是注意其定义域.(2)关于形如y =log a f (x )一类函数的单调性,有以下结论:函数y =log a f (x )的单调性与函数u =f (x )(f (x )>0)的单调性,当a >1时相同,当0<a <1时相反.例如:求函数y =log 2(3-2x )的单调区间.分析:首先确定函数的定义域,函数y =log 2(3-2x )是由对数函数y =log 2u 和一次函数u =3-2x 复合而成,求其单调区间或值域时,应从函数u =3-2x 的单调性、值域入手,并结合函数y =log 2u 的单调性考虑.解:由3-2x >0,解得函数y =log 2(3-2x )∞设u =3-2x ,x ∞∵u =3-2x ∞y =log 2u 在(0,+∞)上单调递增,∴函数y =log 2(3-2x )∞∴函数y =log 2(3-2x )∞【例10-1】求函数y =log a (a -a x )解:(1)若a >1,则函数y =log a t 递增,且函数t =a -a x 递减.又∵a -a x >0,即a x <a ,∴x <1.∴函数y =log a (a -a x )在(-∞,1)上递减.(2)若0<a <1,则函数y =log a t 递减,且函数t =a -a x 递增.又∵a -a x >0,即a x <a ,∴x >1.∴函数y =log a (a -a x )在(1,+∞)上递减.综上所述,函数y =log a (a -a x )在其定义域上递减.析规律判断函数y =log a f (x )的单调性的方法函数y =log a f (x )可看成是y =log a u 与u =f (x )两个简单函数复合而成的,由复合函数单调性“同增异减”的规律即可判断.需特别注意的是,在求复合函数的单调性时,首先要考虑函数的定义域,即“定义域优先”.【例10-2】已知f (x )=12log (x 2-ax -a )在1,2⎛⎫-∞-⎪⎝⎭上是增函数,求a 的取值范围.解:1,2⎛⎫-∞-⎪⎝⎭是函数f (x )的递增区间,说明1,2⎛⎫-∞- ⎪⎝⎭是函数u =x 2-ax -a 的递减区间,由于是对数函数,还需保证真数大于0.令u (x )=x 2-ax -a ,∵f (x )=12log ()u x 在1,2⎛⎫-∞-⎪⎝⎭上是增函数,∴u (x )在1,2⎛⎫-∞-⎪⎝⎭上是减函数,且u (x )>0在1,2⎛⎫-∞- ⎪⎝⎭上恒成立.∴1,2210,2a u ⎧≥-⎪⎪⎨⎛⎫⎪-≥ ⎪⎪⎝⎭⎩即1,10.42a aa ≥-⎧⎪⎨+-≥⎪⎩∴-1≤a ≤12.∴满足条件的a 的取值范围是112a a ⎧⎫-≤≤⎨⎬⎩⎭.11.对数型函数的奇偶性问题判断与对数函数有关的函数奇偶性的步骤是:(1)求函数的定义域,当定义域关于原点不对称时,则此函数既不是奇函数也不是偶函数,当定义域关于原点对称时,判断f (-x )与f (x )或-f (x )是否相等;(2)当f (-x )=f (x )时,此函数是偶函数;当f (-x )=-f (x )时,此函数是奇函数;(3)当f (-x )=f (x )且f (-x )=-f (x )时,此函数既是奇函数又是偶函数;(4)当f (-x )≠f (x )且f (-x )例如,判断函数f (x )=log )a x (x ∈R ,a >0,且a ≠1)的奇偶性.解:∵f (-x )+f (x )==log )a x -+log )a x )=log a (x 2+1-x 2)=log a 1=0,∴f (-x )=-f (x ).∴f (x )为奇函数.【例11】已知函数f (x )=1log 1axx+-(a >0,且a ≠1).(1)求函数f (x )的定义域;(2)判断函数f (x )的奇偶性;(3)求使f (x )>0的x 的取值范围.分析:对于第(2)问,依据函数奇偶性的定义证明即可.对于第(3)问,利用函数的单调性去掉对数符号,解出不等式.解:(1)由11xx+->0,得-1<x <1,故函数f (x )的定义域为(-1,1).(2)∵f (-x )=1log 1ax x -+=1log 1a xx+--=-f (x ),又由(1)知函数f (x )的定义域关于原点对称,∴函数f (x )是奇函数.(3)当a >1时,由1log 1a x x +->0=log a 1,得11xx+->1,解得0<x <1;当0<a <1时,由1log 1ax x +->0=log a 1,得0<11xx+-<1,解得-1<x <0.故当a >1时,x 的取值范围是{x |0<x <1};当0<a <1时,x 的取值范围是{x |-1<x <0}.12.对数型函数模型的实际应用地震震级的变化规律、溶液pH 的变化规律、航天问题等,可以用对数函数模型来研究.此类题目,通常给出函数解析式模型,但是解析式中含有其他字母参数.其解决步骤是:(1)审题:弄清题意,分清条件和结论,抓住关键的词和量,理顺数量关系;(2)建模:将文字语言转化成数学语言,利用数学知识,求出函数解析式模型中参数的值;(3)求模:求解函数模型,得到数学结论;(4)还原:将用数学方法得到的结论还原为实际问题的结论.由此看,直接给定参数待定的函数模型时,利用待定系数法的思想,代入已知的数据得到相关的方程而求得待定系数.一般求出函数模型后,还利用模型来研究一些其他问题.代入法、方程思想、对数运算性质,是解答此类问题的方法精髓.【例12】我国用长征二号F 型运载火箭成功发射了“神舟”七号载人飞船,实现了中国历史上第一次的太空漫步,令中国成为世界上第三个有能力把人送上太空并进行太空漫步的国家(其中,翟志刚完全出舱,刘伯明的头部和手部部分出舱).在不考虑空气阻力的条件下,假设火箭的最大速度y (单位:km/s)关于燃料重量x (单位:吨)的函数关系式为y =k ln(m +x )-k )+4ln 2(k ≠0),其中m 是箭体、搭载的飞行器、航天员的重量和.当燃料重量为-1)m 吨时,火箭的最大速度是4km/s .(1)求y =f (x );(2)已知长征二号F 型运载火箭的起飞重量是479.8吨(箭体、搭载的飞行器、航天员、燃料),火箭的最大速度为8km/s ,求装载的燃料重量(e =2.7,精确到0.1).解:(1)由题意得当x =(-1)m 时,y =4,则4=k ln[m +-1)m ]-k ln()+4ln 2,解得k =8.所以y =8ln(m +x )-)+4ln 2,即y =8ln m xm+.(2)由于m +x =479.8,则m =479.8-x ,令479.888ln479.8x=-,解得x ≈302.1.故火箭装载的燃料重量约为302.1吨.。

函数的值域知识点总结

函数的值域知识点总结

函数的值域知识点总结一、函数的值域的概念和含义1. 函数的值域定义函数的值域指的是函数在定义域内可以取得的所有可能的输出值的集合。

它是函数所有可能输出的值的集合,可以用集合的形式或者区间的形式进行表示。

例如,对于函数f(x) =x^2,其值域为非负实数的集合,即R+ = {y | y ≥ 0}。

2. 值域的含义值域可以帮助我们了解函数在定义域内的输出情况,它描述了函数所有可能的输出值。

通过求解函数的值域,我们可以确定函数的变化范围,找到函数的最大值和最小值,以及理解函数的性质和行为。

函数的值域在数学分析、微积分、代数等领域都有着重要的应用。

二、函数值域的求解方法1. 代数方法对于一些简单的函数,我们可以通过代数方法来求解函数的值域。

例如,对于线性函数f(x) = ax + b,其值域为整个实数集合R;对于二次函数 f(x) = ax^2 + bx + c,可以通过公式法求解其最值,从而确定其值域范围。

2. 图像法对于一些复杂的函数,我们可以通过绘制函数的图像来观察函数的变化趋势,从而求解函数的值域。

通过分析函数的图像,我们可以找到函数的最值点,从而确定函数的值域范围。

3. 极限方法对于一些较复杂的函数,我们可以通过求函数的极限来确定函数的值域。

通过求解函数在无穷远处的极限值,我们可以得到函数的最大值和最小值,从而确定函数的值域。

4. 排除法有时候,我们可以通过排除法来确定函数的值域。

通过观察函数的定义域和性质,我们可以排除一些无法取得的值,从而确定函数的值域范围。

三、常见函数的值域1. 线性函数对于线性函数 f(x) = ax + b,其值域为整个实数集合R。

线性函数的图像是一条直线,可以取得任意的实数值。

对于二次函数 f(x) = ax^2 + bx + c,可以通过公式法求解其最值,从而确定其值域范围。

当a > 0时,函数的最小值为f(-b/2a),值域为[f(-b/2a), +∞);当a < 0时,函数的最大值为f(-b/2a),值域为(-∞, f(-b/2a)]。

高三复习对数函数知识点

高三复习对数函数知识点

高三复习对数函数知识点高三是每个学生都要经历的一段艰苦的时光。

对于理科生来说,高三的数学复习尤其重要,而其中一个需要掌握的关键知识点就是对数函数。

在这篇文章中,我将深入探讨高三复习对数函数的相关知识点,希望能对学生们的备考有所帮助。

一、对数函数的定义及性质对数函数是数学中的重要概念,它相当于指数运算的逆运算。

对数函数的底数是一个常数,大于1,并且对数函数的定义域是正实数集。

对数函数的定义可以表示为:如果 x = a^y,那么 y 就是以 a 为底的对数函数。

对数函数有一些重要的性质。

首先,对数函数的图像呈现出曲线状,且经过点 (1,0)。

其次,对于任意正数 a 和 b,以 a 为底的对数函数总是要比以 b 为底的对数函数更大。

再次,对数函数的值域是全体实数集。

二、对数函数的公式与变换对数函数有一些常见的公式与变换。

首先,对于以 10 为底的对数函数,我们常用 log 表示。

例如,log10(x) 就表示以 10 为底的x 的对数。

同时,我们还常使用自然对数函数ln(x),以e 为底。

对于以其它数为底的对数函数,我们可以通过换底公式进行转换。

对数函数还可以进行一些常见的变换。

例如,平移变换可以使对数函数的图像在横轴和纵轴方向上移动。

横向平移可以表示为loga(x-h),其中 h 表示横向平移的距离。

纵向平移可以表示为loga(x)+k,其中 k 表示纵向平移的距离。

另外,对数函数还可以进行压缩和拉伸变换,这些变换可以通过改变底数和系数进行实现。

三、对数函数的应用对数函数在现实生活中有很多应用。

其中一个常见的应用就是解决指数增长问题。

对数函数可以将指数增长转换为线性增长,从而更容易进行分析和计算。

例如,对于人口增长问题,我们可以使用对数函数来研究不同地区的人口变化趋势。

对数函数还被广泛应用于科学和工程领域。

例如,声音的强度和地震的震级都是使用对数函数进行测量和表达的。

此外,对数函数还可以用于解决复杂的计算问题,如指数方程和指数不等式。

对数函数(基础知识+基本题型)(含解析)

对数函数(基础知识+基本题型)(含解析)

4.4对数函数(基础知识+基本题型)知识点一 对数函数的概念一般地,我们把函数log (0,a y x a =>且1)a ≠叫做对数函数,其中x 是自变量,函数的定义域是()0,.+∞辨析 (1)对数函数的特征:①log a x 的系数是1;②log a x 的底数是不等于1的正数; ③log a x 的真数仅含自变量.x(2)求对数函数的定义域时,应注意:①对数的真数大于0,底数大于0且不等于1;②对含有字母的式子要分类讨论;③使式子符合实际背景.知识点二 对数函数的图象和性质1.对数函数log (0,a y x a =>且1)a ≠的图象和性质()0,+∞.R 2.对数函数的图象与性质的对应关系①这些图象都位于y 轴右方 ①x 可取任意正数,函数值.y R ∈ ②这些图象都经过点(1,0)②无论a 为任何正数,总有log 10a =③图象可以分为两类:一类图象在区间(0,1)内纵坐标都小于0,在区间()1,+∞内的纵坐标都大于0;另一类图象正好相反③当1a >时01log 0,1log 0;a a x x x x <<⇒<⎧⎨>⇒>⎩ 当01a <<时01log 0,1log 0a a x x x x <<⇒>⎧⎨>⇒>⎩ ④自左向右看,当1a >时,图象逐渐上升;当01a <<时,图象逐渐下降 ④当1a >时,函数log a y x =是增函数; 当01a <<时,函数log a y x =是减函数3.底数对函数图象的影响(1)函数log (0,a y x a =>且1)a ≠的图象无限地靠近y 轴,但永远不会与y 轴相交;(2)在同一平面直角坐标系中,log (0,a y x a =>且1)a ≠的图象与1log (0,ay x a =>且1)a ≠的图象关于x 轴对称.(3)对数函数单调性的记忆口诀:对数增减有思路,函数图象看底数;底数要求大于0,但等于1却不行; 底数若是大于1,函数从左往右增;底数0到1之间,函数从左往右减; 无论函数增和减,图象都过点(1,0).在同一坐标系内,当a>1时,随a 的增大,对数函数的图像愈靠近x 轴;当0<a<1时,对数函数的图象随a 的增大而远离x 轴.(见下图)知识点三 指数函数与对数函数的关系指数函数对数函数解析式()10≠>=a a a y x 且)10(log ≠>=a a x y a 且R ()+∞,0①一般地,函数()y f x a b =±±(a 、b 为正数)的图象可由函数()y f x =的图象变换得到。

指数与对数函数知识点总结

指数与对数函数知识点总结

二、对数函数(一)对数1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数,记作:N x a log =(a — 底数,N — 真数,N a log — 对数式)说明:○1 注意底数的限制0>a ,且1≠a ; ○2 x N N a a x =⇔=log ; ○3 注意对数的书写格式. 两个重要对数:○1 常用对数:以10为底的对数N lg ; ○2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln .指数式与对数式的互化幂值 真数b对数(二)对数的运算性质如果0>a ,且1≠a ,0>M ,0>N ,那么: ○1 M a (log ·=)N M a log +N a log ; ○2 =NM a log M a log -N a log ; ○3 n a M log n =M a log )(R n ∈. 注意:换底公式ab bc c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ;0>b ). 利用换底公式推导下面的结论(1)b m n b a n a mlog log =;(2)a b b a log 1log =. (二)对数函数1、对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。

如:x y 2log 2=,5log 5x y = 都不是对数函数,而只能称其为对数型函数.○2 对数函数对底数的限制:0(>a ,且)1≠a .。

对数与对数函数知识点及例题讲解

对数与对数函数知识点及例题讲解

对数与对数函数1.对数(1)对数的定义:如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b . (2)指数式与对数式的关系:a b =N log a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化. (3)对数运算性质: ①log a (MN )=log a M +log a N . ②log a NM =log a M -log a N .③log a M n =n log a M .(M >0,N >0,a >0,a ≠1) ④对数换底公式:log b N =bNa a log log (a >0,a ≠1,b >0,b ≠1,N >0).2.对数函数(1)对数函数的定义函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1对数函数的底数为什么要大于0且不为1呢?在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。

但是,根据对数定义: log a a=1;如果a=1或=0那么log a a 就可以等于一切实数(比如log 1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n = nlog a M 如果a<0,那么这个等式两边就不会成立 (比如,log (-2) 4^(-2) 就不等于(-2)*log (-2) 4;一个等于1/16,另一个等于-1/16) (2)对数函数的图象x y> Oxy<a <y = l o g x a 111()) x 轴对称.(3)对数函数的性质: ①定义域:(0,+∞). ②值域:R .③过点(1,0),即当x =1时,y =0.④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数.基础例题1.函数f (x )=|log 2x |的图象是11xy y y y OA BC D解析:f (x )=⎩⎨⎧<<-≥.10,log ,1,log 22x x x x答案:A2.若f -1(x )为函数f (x )=lg (x +1)的反函数,则f -1(x )的值域为___________________.解析:f -1(x )的值域为f (x )=lg (x +1)的定义域.由f (x )=lg (x +1)的定义域为(-1,+∞),∴f -1(x )的值域为(-1,+∞). 答案:(-1,+∞)3.已知f (x )的定义域为[0,1],则函数y =f [log 21(3-x )]的定义域是__________.解析:由0≤log 21(3-x )≤1⇒log 211≤log 21(3-x )≤log 2121⇒21≤3-x ≤1⇒2≤x ≤25. 答案:[2,25]4.若log x 7y =z ,则x 、y 、z 之间满足A.y 7=x zB.y =x 7zC.y =7x zD.y =z x解析:由log x 7y =z ⇒x z =7y ⇒x 7z=y ,即y =x 7z . 答案:B5.已知1<m <n ,令a =(log n m )2,b =log n m 2,c =log n (log n m ),则A.a <b <cB.a <c <bC.b <a <cD.c <a <b解析:∵1<m <n ,∴0<log n m <1. ∴log n (log n m )<0. 答案:D6.若函数f (x )=log a x (0<a <1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 等于 A.42B.22C.41D.21解析:∵0<a <1,∴f (x )=log a x 是减函数.∴log a a =3·log a 2a . ∴log a 2a =31.∴1+log a 2=31.∴log a 2=-32.∴a =42. 答案:A7.函数y =log 2|ax -1|(a ≠0)的对称轴方程是x =-2,那么a 等于A.21B.-21C.2D.-2解析:y =log 2|ax -1|=log 2|a (x -a1)|,对称轴为x =a1,由a1=-2 得a =-21. 答案:B注意:此题还可用特殊值法解决,如利用f (0)=f (-4), 可得0=log 2|-4a -1|.∴|4a +1|=1.∴4a +1=1或4a +1=-1. ∵a ≠0,∴a =-21.8.函数f (x )=log 2|x |,g (x )=-x 2+2,则f (x )·g (x )的图象只可能是xyxyx yxyABC D解析:∵f (x )与g (x )都是偶函数,∴f (x )·g (x )也是偶函数,由此可排除A 、D.又由x →+∞时,f (x )·g (x )→-∞,可排除B. 答案:C9.设f -1(x )是f (x )=log 2(x +1)的反函数,若[1+ f -1(a )][1+ f -1(b )]=8,则f (a +b )的值为 A.1B.2C.3D.log 23解析:∵f -1(x )=2x -1,∴[1+ f -1(a )][1+ f -1(b )]=2a ·2b =2a +b .由已知2a +b =8,∴a +b =3. 答案:C10.方程lg x +lg (x +3)=1的解x =___________________. 解析:由lg x +lg (x +3)=1,得x (x +3)=10,x 2+3x -10=0. ∴x =-5或x =2.∵x >0,∴x =2. 答案:2典型例题【例1】 已知函数f (x )=⎪⎩⎪⎨⎧<+≥,4),1(,4,)21(x x f x x则f (2+log 23)的值为 A.31B.61C.121D.241剖析:∵3<2+log 23<4,3+log 23>4, ∴f (2+log 23)=f (3+log 23)=(21)3+log 23=241. 答案:D【例2】 求函数y =log 2|x |的定义域,并画出它的图象,指出它的单调区间. 解:∵|x |>0,∴函数的定义域是{x |x ∈R 且x ≠0}.显然y =log 2|x |是偶函数,它的图象关于y 轴对称.又知当x >0时,y =log 2|x |⇔y =log 2x .故可画出y =log 2|x |的图象如下图.由图象易见,其递减区间是(-∞,0),递增区间是(0,+∞).1-1O xy注意:研究函数的性质时,利用图象会更直观.【例3】 已知f (x )=log 31[3-(x -1)2],求f (x )的值域及单调区间.解:∵真数3-(x -1)2≤3,∴log 31[3-(x -1)2]≥log 313=-1,即f (x )的值域是[-1,+∞).又3-(x-1)2>0,得1-3<x <1+3,∴x ∈(1-3,1]时,3-(x -1)2单调递增,从而f (x )单调递减;x ∈[1,1+3)时,f (x )单调递增.注意:讨论复合函数的单调性要注意定义域.【例4】已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围. 解:∵a >0且a ≠1,∴t =3-ax 为减函数.依题意a >1,又t =3-ax 在[0,2]上应有t >0,∴3-2a >0.∴a <23.故1<a <23.【例5】设函数f (x )=lg (1-x ),g (x )=lg (1+x ),在f (x )和 g (x )的公共定义域内比较|f (x )|与|g (x )|的大小. 解:f (x )、g (x )的公共定义域为(-1,1). |f (x )|-|g (x )|=|lg (1-x )|-|lg (1+x )|.(1)当0<x <1时,|lg (1-x )|-|lg (1+x )|=-lg (1-x 2)>0; (2)当x =0时,|lg (1-x )|-|lg (1+x )|=0;(3)当-1<x <0时,|lg (1-x )|-|lg (1+x )|=lg (1-x 2)<0. 综上所述,当0<x <1时,|f (x )|>|g (x )|;当x =0时,|f (x )|=|g (x )|;当-1<x <0时,|f (x )|<|g (x )|. 【例6】 求函数y =2lg (x -2)-lg (x -3)的最小值.解:定义域为x >3,原函数为y =lg 3)2(2--x x .又∵3)2(2--x x =3442-+-x x x =31)3(2)3(2-+-+-x x x =(x -3)+31-x +2≥4,∴当x =4时,y min =lg4.【例7】 (2003年北京宣武第二次模拟考试)在f 1(x )=x 21,f 2(x )=x 2,f 3(x )=2x ,f 4(x )=log 21x 四个函数中,x 1>x 2>1时,能使21[f (x 1)+f (x 2)]<f (221x x +)成立的函数是A.f 1(x )=x 21B.f 2(x )=x 2C.f 3(x )=2xD.f 4(x )=log 21x解析:由图形可直观得到:只有f 1(x )=x 21为“上凸”的函数. 答案:A探究创新1.若f (x )=x 2-x +b ,且f (log 2a )=b ,log 2[f (a )]=2(a ≠1). (1)求f (log 2x )的最小值及对应的x 值;(2)x 取何值时,f (log 2x )>f (1)且log 2[f (x )]<f (1)? 解:(1)∵f (x )=x 2-x +b ,∴f (log 2a )=log 22a -log 2a +b . 由已知有log 22a -log 2a +b =b ,∴(log 2a -1)log 2a =0. ∵a ≠1,∴log 2a =1.∴a =2.又log 2[f (a )]=2,∴f (a )=4. ∴a 2-a +b =4,b =4-a 2+a =2.故f (x )=x 2-x +2, 从而f (log 2x )=log 22x -log 2x +2=(log 2x -21)2+47.∴当log 2x =21即x =2时,f (log 2x )有最小值47. (2)由题意⎪⎩⎪⎨⎧<+->+-2)2(log 22log log 22222x x x x ⇒⎩⎨⎧<<-<<>⇒21102x x x 或0<x <1. 2.已知函数f (x )=3x +k (k 为常数),A (-2k ,2)是函数y = f -1(x )图象上的点.(1)求实数k 的值及函数f -1(x )的解析式;(2)将y = f -1(x )的图象按向量a =(3,0)平移,得到函数 y =g (x )的图象,若2 f -1(x +m -3)-g (x )≥1恒成立,试求实数m 的取值范围.解:(1)∵A (-2k ,2)是函数y = f -1(x )图象上的点, ∴B (2,-2k )是函数y =f (x )上的点.∴-2k =32+k .∴k =-3. ∴f (x )=3x -3.∴y = f -1(x )=log 3(x +3)(x >-3). (2)将y = f -1(x )的图象按向量a =(3,0)平移,得到函数 y =g (x )=log 3x (x >0),要使2 f -1(x +m -3)-g (x )≥1恒成立,即使2log 3(x +m )-log 3x ≥1恒成立,所以有x +xm +2m ≥3在x >0时恒成立,只要(x +xm +2m )min ≥3.又x +xm ≥2m (当且仅当x =xm ,即x =m 时等号成立),∴(x +xm +2m )min =4m ,即4m ≥3.∴m ≥169.小结1.对数的底数和真数应满足的条件是求解对数问题时必须予以特别重视的.2.比较几个数的大小是对数函数性质应用的常见题型.在具体比较时,可以首先将它们与零比较,分出正负;正数通常都再与1比较分出大于1还是小于1,然后在各类中间两两相比较.3.在给定条件下,求字母的取值范围是常见题型,要重视不等式知识及函数单调性在这类问题上的应用.。

对数函数知识点总结

对数函数知识点总结

对数函数(一)对数1.对数的概念:一般地,如果N a x=)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数,记作:N x a log =(a — 底数,N — 真数,N a log — 对数式)说明:○1 注意底数的限制0>a ,且1≠a ;○2 x N N a a x=⇔=log ;○3 注意对数的书写格式. 两个重要对数:○1 常用对数:以10为底的对数N lg ; ○2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . (二)对数的运算性质如果0>a ,且1≠a ,0>M ,0>N ,那么:○1 M a (log ·=)N M a log +N a log ; ○2 =N Ma log M a log -N a log ; ○3 na M log n =M a log )(R n ∈. 注意:换底公式abb c c a log log log =(0>a ,且1≠a ;0>c ,且1≠c ;0>b ).利用换底公式推导下面的结论(1)b mnb a n a m log log =;(2)a b b a log 1log =. (二)对数函数1、对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。

如:x y 2log 2=,5log 5x y = 都不是对数函数,而只能称其为对数型函数.○2 对数函数对底数的限制:0(>a ,且)1≠a . 2对数函数·例题解析例1.求下列函数的定义域:(1)2log x y a =; (2))4(log x y a -=; (3))9(log 2x y a -=.解:(1)由2x >0得0≠x ,∴函数2log x y a =的定义域是{}0x x ≠;(2)由04>-x 得4<x ,∴函数)4(log x y a -=的定义域是{}4x x <;(3)由9-02>-x 得-33<<x ,∴函数)9(log 2x y a -=的定义域是{}33x x -<<.例2.求函数251-⎪⎭⎫ ⎝⎛=xy 和函数22112+⎪⎭⎫ ⎝⎛=+x y )0(<x 的反函数。

指数函数和对数函数知识点总结

指数函数和对数函数知识点总结

指数函数和对数函数知识点总结一、指数函数1.定义:指数函数是以正数为底数、自变量为指数的函数。

一般形式为y=a^x,其中a>0且a≠12.特点:(1)当a>1时,指数函数呈递增趋势;(2)当0<a<1时,指数函数呈递减趋势;(3)a>1时,指数函数的图像在x轴的右侧逐渐上升,称为“增长指数函数”;(4)0<a<1时,指数函数的图像在x轴的右侧逐渐下降,称为“衰减指数函数”;(5)当x=0时,指数函数的值恒为1;(6)指数函数与直线y=0平行(若a>1)或经过点(0,1)(若0<a<1)。

3.基本性质:(1)a^m*a^n=a^(m+n);(2) (a^m)^n = a^(mn);(3) (ab)^m = a^m * b^m;(4)(a/b)^m=a^m/b^m。

二、对数函数1. 定义:对数函数是指以正数a(a>0且a≠1)为底数的对数。

一般形式为y=loga(x),其中x>0。

2.特点:(1)对数函数的定义域为正实数集(0,+∞),值域为实数集;(2) 指数函数y=a^x和对数函数y=loga(x)是互逆运算,即y=loga(a^x) = x,x=loga(a^x) = y;(3)当x>1时,对数函数的值大于0;(4)当0<x<1时,对数函数的值小于0;(5)a>1时,对数函数呈递增趋势;(6)0<a<1时,对数函数呈递减趋势;(7)当x=1时,对数函数的值恒为0;(8)对数函数的图像与直线y=x交于点(1,1)。

三、常用公式与性质1.e与自然对数:(1) e的定义:e=lim(1+1/n)^n,其中n为正整数;(2) 自然对数:ln(x)表示以e为底数的对数函数;(3) 自然对数的性质:ln(e^x)=x,e^(lnx)=x;2.指数方程与对数方程:(1)指数方程:a^x=b,其中a>0且a≠1;(2) 对数方程:loga(x)=b,其中a>0且a≠1;(3)指数方程求解的一般步骤:将方程两边取对数,利用对数的性质求解;(4)对数方程求解的一般步骤:将方程两边以a为底取指数,利用指数函数的性质求解。

对数函数及其性质知识点总结与例题讲解

对数函数及其性质知识点总结与例题讲解

底数
a 1
0 a 1
y
y
图象
1
O
1
x
O
x
定义域
0,
值域
R
定点 性
过定点 1,0 ,即当 x 1时, y 0
质 函数值 当 0 x 1 时, y 0 ;
当 0 x 1 时, y 0 ;
的正负
当 x 1时, y 0 .
当 x 1时, y 0 .
∴定点的坐标为 3,3
∴函数 y b xc 2 的图象恒过点 3,3
令 x c 3 c 0 ,则 c 3, y b0 2 3 ,符合题意.
∴实数 c 的值是 3.
例 9. 已知函数 f x log2 1 2x ,则函数的值域是【 】
注意 若比较图象与直线 y 1的交点,交点的横坐标越大,对应的函数的底数越小.
说明 在平面直角坐标系中,对数函数 y loga x 的图象与直线 y 1的交点为 a,1,即交
点的横坐标等于对数函数的底数,故在第一象限内,交点的横坐标越大,对数函数的底数就
越大;对数函数
y

log a
(A) 1,1
(B) 1,2
(C) 2,1
(D) 2,2
解:令 x 1 1,则 x 2 , y loga 1 1 1
∴函数 f x 的图象恒过点 2,1 .
选择【 C 】.
例 6. ( 1 ) 函 数 f x loga 2x 3 4 ( a 0 且 a 1) 的 图 象 恒 过 定 点
∴ log2 1≤ log2 x log2 64 ,∴ 0 ≤ log2 x 6 ,即 0 ≤ y 6 .

对数及对数函数hhc

对数及对数函数hhc
二.若f(x)的值域为R,求实数a的取值范 围.
解:先求函数的定义域
PAR
T2- aOxN>0E, 有
ax<2.
∵ a 是对数的底数,故有 a>0,
∴例 关函1于3数.x的已 的定知 减义函y域=为数l{,oa|gx求a<a(}2a.-的取ax值)在范[0围,1.]上是
设 u= 2- ax,若 a∈ (0,1),当 x∈ [0,1]时,u 是 x
的减函数,而 y= logau 是 u 的减函数,那么函数 y= loga(2- ax)在 [0,1]上是增函数,不合题意;
2
设 u=3+2x-x2(-1<x<3),
则 u=-(x-1)2+4,
∵-1<x<3,∴u∈(0,4].
∵y=log1u 是减函数,∴y∈[-2,+∞).
2
变式 求下列函数的值域. (1)y=log24xx--13; (2)y=log2x-(12)x(x∈[2,4]).
解:(1)∵4xx--13=4+x-1 1≠4,∴4xx--13>0,且4xx--13 ≠4.∴y≠log24=2.∴值域为{y|y≠2}.
(4) logam logan(a1)
点评
比较对数的大小,有三种具体情况:
一.同底数,不同真数,利用对数函数的单调性进行判断; 二.同真数,不同底数,利用对数换底公式转化为同底的对数; 三.不同底数,也不同真数,利用指数、对数互化或寻找中间量进行判断.(1)中是同真
不同底的两个对数,用对数换底公式比较简便;(2)题是函数值大小的比较,一般方 法是作差,寻找自变量的取值范围或临界点,再作判断.
解:在同一坐标系中分别画出 y 0.4x, y 3x, y log4 x 的

log函数运算注意事项

log函数运算注意事项

log函数运算注意事项一、log函数的定义与性质1.对数函数的定义:log函数是指以某个正数为底,另一个正数为真数的对数函数。

常见的对数函数有以2为底的对数函数(log2x)、以3为底的对数函数(log3x)等。

2.对数函数的性质:(1)log(a^b) = b * log(a)(2)log(ab) = log(a) + log(b)(3)log(a/b) = log(a) - log(b)(4)log(1) = 0(5)log(a^0) = 0(6)对数函数的值域:log函数的值域为实数集。

二、log函数的运算注意事项1.对数函数的底数:底数必须为正数且不等于1。

当底数为正数时,对数函数的值域为实数集;当底数为1时,对数函数的值为0。

2.对数函数的真数:真数必须为正数。

当真数为负数时,对数函数无定义。

3.对数函数的值域:log函数的值域为实数集。

4.对数函数的单调性:当底数大于1时,对数函数在实数集上为增函数;当底数在(0, 1)之间时,对数函数在实数集上为减函数。

三、log函数与其他数学概念的关系1.与指数函数的关系:指数函数与对数函数互为逆运算。

例如,当底数为2时,指数函数为2^x,对数函数为log2(x)。

2.与三角函数的关系:对数函数与三角函数有密切关系。

例如,正弦函数sin(x)可以表示为log(1 + cos(x))。

四、log函数在实际问题中的应用1.计算指数:利用对数函数可以方便地计算指数。

例如,log2(8) = 3,表示2的3次方等于8。

2.计算增长率:利用对数函数可以计算增长率。

例如,若某物品的增长率为r,原价为p,则经过t年后,价格为p * (1 + r)^t。

3.分析信号传输:在通信领域,对数函数用于分析信号传输。

例如,信号强度与传输距离的关系可以表示为log(信号强度) = k - log(传输距离)。

五、log函数的易错点与解题技巧1.底数与真数的判断:在计算log函数时,要正确判断底数和真数。

对数函数最大值最小值

对数函数最大值最小值

对数函数最大值最小值
对数函数是一种常用的数学函数,它主要是用来描述x和y之间的变化关系,它比较复杂,并且在几何和微积分中扮演了重要的角色。

本文将主要讨论对数函数的最大值和最小值。

首先,我们来看看最简单的一般对数函数形式,即 y=logax。

无论是定义域、值域还是极限,都可以用它来描述,它的最大值最小值也是可以求出来的。

定义域是指对数函数的定义范围,它一般包括正数区域、负数区域和零区域。

在正数区域中,y的最大值是x的最大值,而在负数区域中,y的最小值是x的最小值。

另外,对数函数的最大值和最小值也可以通过极限来求出。

以正无穷大和负无穷大为例,当x趋近于正无穷大时,y的极限值是x最大值;当x趋近于负无穷大时,y的极限值是x最小值。

因此,可以得出对数函数的最大值最小值:对数函数最大值=正无穷大,对数函数最小值=负无穷大。

另外,当y=logax时,有另外一种解法来求出它的最大值和最小值。

令偏导数f(x)=0,则可以求出最大值和最小值,即:最大值=ax,最小值=ax。

由此,得出最大值最小值:对数函数最大值=正无穷大,对数函数最小值=负无穷大。

总结如下:对数函数最大值和最小值可以通过定义域、极限和偏导数来求出,具体来说,它的最大值是正无穷大,最小值是负无穷大。

本文仅介绍了对数函数的最大值最小值,未讨论它的更多研究内
容。

期望本文能够为大家带来帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档