仪器分析-原子吸收光谱的产生及谱线轮廓
仪器分析教案第五章原子吸收光谱法
23:52:01
3)富燃性火焰:燃气与助燃气比例大于化学计量比, 燃助比大于1:3。这种火焰燃烧高度较高,温度较 低,噪声较大。但由于燃烧不完全,火焰呈强还原 性气氛,金属氧化物易被还原产生基态原子。适用 于易形成难熔氧化物的元素,如Mo,Cr等。 空气—乙炔火焰是原子吸收分析中最常用的火焰。
☆☆火焰原子化法的优点:重现性好、火焰稳定性 高、背景噪声低、易于操作的特点。 缺点:原子化效率仅为10%左右,灵敏度较低。
23:52:01
• 原子吸收光谱和原子发射光谱的比较 • 1.原子吸收法的选择性高,干扰较少且易于克服。 • 由于原于的吸收线比发射线的数目少得多,这样 谱线重叠的几率小得多。而且空心阴极灯一般并 不发射那些邻近波长的辐射线经,因此其它辐射 线干扰较小。 • 2.原子吸收具有较高的灵敏度。 • 在原子吸收法的实验条件下,原子蒸气中基态原 于数比激发态原子数多得多,所以测定的是大部 分原子。 • 3.原子吸收法 比发射法具有更佳的信噪比。 • 这是由于激发态原子数的温度系数显著大于基态 原子。
锐线光谱,光的强度稳定且背景小。
☆空心阴极灯、蒸气放电灯、无极放电灯 ☆空心阴极灯应用最广泛
直流电压 300V~500V
23:52:01
Anode Ne+
Optically transparent window
Cathode
M
M* →M + hn M
Shield
23:52:01
空心阴极灯的发射光谱主要是阴极元素的光谱, 用不同的待测元素作阴极,就制成相应待测元素的 空心阴极灯。
物,如AsH3 、SnH4 、BiH3等。这些氢化物经载气送入石
英管后,进行原子化与测定。
23:52:01
仪器分析 复习 重修 自学 预习5 原子吸收光谱分析法
原子吸收光谱分析法
原子吸收基本原理
第一节
一、共振线 二、基态原子数与原子化温度 三、定量基础
历史
原子吸收光谱法是一种基于待测基态原子对特征谱线的 吸收而建立的一种分析方法。这一方法的发展经历了3个发 展阶段:
原子吸收现象的发现
1802年Wollaston发现太阳光谱的暗线; 1859年Kirchhoff和 Bunson解释了暗线产生的原因;
试样雾滴在火焰中,经蒸发,干燥,离解(还原)等过 程产生大量基态原子。火焰原子化的方法就是使试样变成 原子蒸汽。 火焰温度的选择: (a)保证待测元素充分离解为基态原子的前提下,尽量 采用低温火焰;因为火焰温度越高,产生的热激发态原子 越多,则基态原子数量减少;但太低温就会使盐类无法解
离,降低灵敏度。
I
Ve
I 0V e KV L dv;当发射线宽《吸收线宽时,可以认为
0 Ve
KV 是常数,相当峰值吸收系数K 0:I e K 0 L 于是A lg 1 e
K0L
I
0
0V
dv
0.4343 K 0 L
K0=?
吸收线轮廓仅取决于多普勒变宽时 1 KV dv 2 ln 2 K 0v,结合积分吸收式 KV dv的值 2 ln 2 e 2 解得:K 0 fN 0 v mc
太阳光
暗 线
第一激发态
E
热能
基态
E = h = h
C
发现钠蒸汽发出的光线通过温度比较低的钠蒸汽,会引起 钠光的吸收,并且钠发射线和暗线在光谱中位置相同,由此 判断太阳连续光谱中的暗线是太阳外层中的钠原子对太阳光 谱中钠辐射吸收的结果
原子吸收光谱基本原理:
仪器分析原子吸收光谱分析
∫ I =
e 0
I0e-KLd
∫ A = lg
e 0
I0
d
∫e 0
I0e-KLd
第14页,本讲稿共55页
对锐线光源,可以认为Kν= b×K0 为常数:
A
=
lg 1 e-bK0L
=
lg
eK0Lb
=
0.4343K0Lb
Under normal operation condition for AAS, line profile is mainly determined by Doppler broadening, hence,
这以公式表明:积分吸收值与单位原子蒸汽中吸收辐 射的基态原子数呈简单的线性关系,这是原子吸收光谱分析
法的重要理论依据。
第10页,本讲稿共55页
前面公式中: e为电子电荷;m为电子质量;c为光速;N0
为单位体积内基态原子数;f 振子强度,即能
被入射辐射激发的每个原子的平均电子数,它正 比于原子对特定波长辐射的吸收几率。
若能测定积分吸收,则可求出原子浓度。 但是,测定谱线宽度仅为10-3nm的积分吸收, 需要分辨率非常高的色散仪器,技术上很难实现。 所以,1955年瓦尔西提出采用锐线光源来解决 求积分吸收值的难题。参见下图:
第11页,本讲稿共55页
第12页,本讲稿共55页
由图可见,在使用锐线光源时,光源发射线半宽度 很小,并且发射线与吸收线的中心频率一致。这时发射 线的轮廓可看作一个很窄的矩形,即峰值吸收系数K 在
一、原子吸收线和原子发射线
A
B
A 产生吸收光谱
B 产生发射光谱
E3
E0 基态能级
E1、E2、E3、激发态能级
E2
(完整word版)原子吸收光谱分析解读
原子吸收光谱分析4。
2.1 概述4。
2。
1。
1 基本概念1)原子光谱根据原子外层电子跃迁所产生的光谱进行分析的方法,称为原子光谱法,包括原子发射光谱法、原子吸收光谱法和原子荧光光谱法。
本章重点介绍应用广泛的原子吸收光谱法。
2)原子吸收光谱原子吸收光谱法,又称原子吸收分光光度法或简称原子吸收法,它是基于测量试样所产生的原子蒸气中基态原子对其特征谱线的吸收,从而定量测定化学元素的方法.4。
2.1。
2 仪器结构和过程图4-21 原子吸收示意图如上图,含Pb溶液将经过预处理-喷射成雾状进人燃烧火焰中,Pb化合物雾滴在火焰温度下,挥发并离解成Pb原子蒸气。
用Pb空心阴极灯作光源,产生Pb的特征谱线,通过Pb原子蒸气时,由于蒸气中基态Pb原子的吸收,Pb的特征谱线强度减弱,通过单色器和检测器测得其减弱程度,即可计算出溶液中Pb的含量。
4。
2。
1。
3 方法特点灵敏度高,10—9g/ml-10—12g/ml。
选择性好,准确度高。
单一元素特征谱线测定,多数情况无干扰。
测量范围广.测定70多种元素。
操作简便,分析速度快。
4。
2.2 原子吸收法基本原理 4。
2。
2.1 共振线和吸收线 1) 基本概念➢ 共振线电子从基态跃迁到能量最低的激发态(称为第一激发态),为共振跃迁,所产生的谱线称为共振吸收线(简称共振线).当电子从第一激发态跃回基态时,则发射出同样频率的谱线,称为共振发射线(也简称共振线)。
对大多数元素来说,共振线是指元素所有谱线中最灵敏的线。
➢ 特征谱线各种元素的原子结构和外层电子排布不同.不同元素的原子从基态激发至第一激发态(或由第一激发态跃回基态)时,吸收(或发射)的能量不同,因此各种元素的共振线不同而有其特征性,这种共振线称为元素的特征谱线。
2) 朗伯原理图4-22 原子吸收法的朗伯定律示意图原理公式:b K e I I νν-=0νK :吸收系数;ν:频率。
吸收线图4-23 吸收线轮廓图 图4—24 吸收线半宽度比较上述两个图,注意图的纵坐标参量的不同。
〖21世纪仪器分析教材〗原子吸收光谱分析篇
原子吸收光谱分析基本要点:1. 了解影响原子吸收谱线轮廓的因素;2. 理解火焰原子化和高温石墨炉原子化法的基本过程;3. 了解原子吸收分光光度计主要部件及类型;4. 了解原子吸收分光光度法干扰及其抑制方法;5. 掌握原子吸收分光光度法的定量分析方法及实验条件选择原则。
第一节原子吸收光谱分析概述一、原子吸收光谱分析定义:根据物质产生的原子蒸气中待测元素的基态原子对光源特征辐射谱线吸收程度进行定量的分析方法。
二、原子吸收光谱分析的特点:( 1 )灵敏度高:其检出限可达 10 -9 g /ml ( 某些元素可更高 ) ;( 2 )选择性好:分析不同元素时,选用不同元素灯,提高分析的选择性;( 3 )具有较高的精密度和准确度:试样处理简单。
第二节原子吸收光谱分析基本原理一、原子吸收光谱的产生及共振线在一般情况下,原子处于能量最低状态(最稳定态),称为基态(E 0 = 0)。
当原子吸收外界能量被激发时,其最外层电子可能跃迁到较高的不同能级上,原子的这种运动状态称为激发态。
处于激发电磁波的形式放出能量:共振发射线:电子从基态跃迁到能量最低的激发态时要吸收一定频率的光,它再跃迁回基态时,则发射出同样频率的光(谱线),这种谱线称为共振发射线。
共振吸收线:电子从基态跃迁至第一激发态所产生的吸收谱线称为共振吸收线。
共振线:共振发射线和共振吸收线都简称为共振线。
各种元素的原子结构和外层电子排布不同,不同元素的原子从基态激发至第一激发态(或由第一激发态跃迁返回基态)时,吸收(或发射)的能量不同,因而各种元素的共振线不同而各有其特征性,所以这种共振线是元素的特征谱线。
二、谱线轮廓与谱线变宽式中:Kn ——基态原子对频率为的光的吸收系数,它是光源辐射频率的n函数由于外界条件及本身的影响,造成对原子吸收的微扰,使其吸收不可能仅仅对应于一条细线,即原子吸收线并不是一条严格的几何线(单色l ),而是具有一定的宽度、轮廓,即透射光的强度表现为一个相似于图8-3的频率分布, 若用原子吸收系数Kn随n变化的关系作图得到吸收系数轮廓图:(二)谱线变宽引起谱线变宽的主要因素有:1. 自然宽度:在无外界影响下,谱线仍有一定宽度,这种宽度称为自然宽度,以ΔvN 表示。
仪器分析 第七章 原子吸收光谱法
第七章原子吸收光谱法1.原子吸收光谱的历史2.原子吸收光谱的特点3.原子吸收光谱与紫外可见吸收光谱的区别4.原子吸收光谱分析过程第一节概述1. 原子吸收光谱的历史◆1802年,沃拉斯顿(Wollaston)在研究太阳连续光谱时,首次发现太阳连续光谱中出现暗线。
◆1817年,夫琅和费(Fraunhofer)研究太阳连续光谱时再次发现这些暗线,但无法解释暗线产生的原因。
2/1363/1361825年,法国著名哲学家孔德在哲学讲义中说“恒星的化学组成是人类绝对不能得到的知识”◆1859年,本生、基尔霍夫研究碱金属和碱土金属火焰光谱时,发现钠蒸气发出的光通过温度较低的钠蒸气时,会引起钠光的吸收,并且钠在光谱中位置相同。
发射线与暗线D◆太阳光谱暗线:太阳外围大气圈中钠原子对太阳光谱中钠辐射特征波长光进行吸收的结果。
4/1365/136太阳中含有94种稳定和放射性元素:氢(71%)、氮(27%)、氧、碳、氖、硅、铁等。
◆1955年,澳大利亚物理学家Walsh(沃尔什)发表了著名论文《原子吸收光谱法在分析化学中的应用》,奠定了原子吸收光谱法的基础。
◆1960年以后,原子吸收光谱法得到迅速发展,成为微量、痕量金属元素的可靠分析方法。
6/1362. 原子吸收光谱法的特点✓检出限低:10-10~10-14g。
✓准确度高:1%~5%。
✓选择性好:一般情况下共存元素无干扰。
✓应用范围广:可测定70多种元素。
✗缺点:难熔元素、非金属元素测定困难,不能实现多元素同时分析。
7/1363. 原子吸收与紫外可见吸收的区别✓相同点:利用物质对辐射的吸收进行分析。
✗不同点:◆吸收机理不同:紫外可见为溶液中分子或离子宽带吸收,带宽为几纳米至几十纳米;原子吸收为气态基态原子的窄带吸收,带宽仅为10-3nm。
◆光源不同。
◆试样处理、实验方法及对仪器的要求不同。
8/1364. 原子吸收光谱分析过程◆确定待测元素。
◆选择该元素相应锐线光源,发射出特征谱线。
原子吸收光谱法的原理
原子吸收光谱法原子吸收光谱(Atomic Absorption Spectroscopy,AAS),又称原子分光光度法,是基于待测元素的基态原子蒸汽对其特征谱线的吸收,由特征谱线的特征性和谱线被减弱的程度对待测元素进行定性定量分析的一种仪器分析的方法。
中文名原子吸收光谱法外文名Atomic Absorption Spectroscopy光线范围紫外光和可见光出现时间上世纪50年代简称AAS测定方法标准曲线法、标准加入法别名原子吸收分光光度法基本原理原子吸收光谱法(AAS)是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。
由于各种原子中电子的能级不同,将有选择性地共振吸收一定波长的辐射光,这个共振吸收波长恰好等于该原子受激发后发射光谱的波长。
当光源发射的某一特征波长的光通过原子蒸气时,即入射辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使入射光减弱。
特征谱线因吸收而减弱的程度称吸光度A,在线性范围内与被测元素的含量成正比:A=KC式中K为常数;C为试样浓度;K包含了所有的常数。
此式就是原子吸收光谱法进行定量分析的理论基础由于原子能级是量子化的,因此,在所有的情况下,原子对辐射的吸收都是有选择性的。
由于各元素的原子结构和外层电子的排布不同,元素从基态跃迁至第一激发态时吸收的能量不同,因而各元素的共振吸收线具有不同的特征。
由此可作为元素定性的依据,而吸收辐射的强度可作为定量的依据。
AAS现已成为无机元素定量分析应用最广泛的一种分析方法。
该法主要适用样品中微量及痕量组分分析。
原子吸收光谱法谱线轮廓原子吸收光谱线并不是严格几何意义上的线,而是占据着有限的相当窄的频率或波长范围,即有一定的宽度。
原子吸收光谱的轮廓以原子吸收谱线的中心波长和半宽度来表征。
中心波长由原子能级决定。
仪器分析-原子光谱法
吸收光谱法
紫外可见分光光度法 原子吸收光谱法 红外光谱法 顺磁共振波谱法 核磁共振波谱法
散射
Roman 散射
迁 能 级 波长λ 类型 核能级 <0.005nm
KL层电 0.005~10nm 子跃迁 10~200nm
外 层 电 200~400nm 子跃迁
400~800nm
分子振 动能级
(2)检测元件
摄谱法之感光板
光电法之光电管,光电倍增管
固体成像器件 电荷注入检测器(CID) 电荷耦合检测器(CCD)
262000个点阵
(3)光谱仪(分光元件和检测元件的组合) 平面光栅(棱镜)+摄谱
凹面光栅+光电倍增管(二极管)阵列
全谱直读光谱仪- 中阶梯光栅+CID/CCD
化合物离解(气态、基态原子)—激发 (激发态原子)—基态(发射光谱)
摄谱 分析(包括定性和定量)
二、光谱分析仪器
光源与样品→单色器→检测器→读出器件
1. 光源
(1)概述
光源的作用: 蒸发、解离、原子化、激发、 跃迁。光源是决定分析的灵敏度和准确度 的重要因素。
光源的要求:比较稳定,>5000K,重现性 好,背景小,谱线简单,安全
(2)常用光源
直流电弧 交流电弧 电火花 电感耦合等离子体
ห้องสมุดไป่ตู้
直流电弧
电路结构及工作原理: 优点:分析绝对灵敏度高 缺点:重现性差、不宜定量 应用范围
试样引入激发光源的方法: 固体试样 溶液试样 气体试样:放电管
交流电弧
电路结构及工作原理: 优点:稳定性较好,适合定量。操作安全简便,
2.基本原理
《仪器分析》第十二章_原子吸收光谱法
当采用锐线光源时,测量是在原子吸收线附近一定频 率范围内进行,即
I 0 I d
0
I I 0e
K l
I e
0
K l
d
锐线光源的很小,可以近似用峰值吸收系数K0 来表 示原子对辐射的吸收,因此有吸光度A为:
I0 A lg lg I
质的强谱线。
空心阴极灯光的强度与灯的工作电流有很大关系。增
大灯电流,可以增加发射强度。但是,灯电流过大,会导 致一些不良现象,如阴极溅射增强,产生密度较大的电子 云,灯本身发生自蚀现象;加快内充气体的“消耗”而缩 短寿命;阴极温度过高,使阴极物质熔化;放电不正常,
灯光强度不稳定灯。灯电流太小,灯光强低,稳定性和信
(2)峰值吸收 1955年Walsh提出,在温度不太高的稳定火焰情况下,
峰值吸收系数与被测元素的原子浓度也成正比。通常情况下,
吸收轮廓决定于多普勒变宽,吸收系数为
2 ( 0 ) ln 2 D 2
K K 0e
K0 2 D
D 是多普勒 半宽度
K d mc N
于分析化学的原因。
e 2
0
f
m 是电子质量,f是振子强度,即能被入射 辐射激发的每个原子的平均电子数,正比 于原子对特定波长光的吸收概率。
若能测定积分吸收,则可以求出原子浓度。但是,测定谱 线宽度仅仅10-3nm的积分吸收,需要分辨率很高的色散仪器,
难以做到,这也是100多年前发现原子吸收现象却一直未能用
空心阴极灯工作原理:
当正、负两电极间施加适当的直流电压(300V—500V)
时,便开始放电,阴极发射的电子在电场作用下,高速射
仪器分析第6章 原子吸收光谱
化学计量火焰 由于燃气与助燃气之比与化学计量 反应关系相近,又称为中性火焰,这类火焰,温 度高、稳定、干扰小背景低,适合于许多元素的 测定。
富燃火焰 指燃气大于化学元素计量的火焰。其特 点是燃烧不完全,温度略低于化学火焰,具有还 原性,适合于易形成难解离氧化物的元素测定; 干扰较多,背景高。
(3)原子吸收法的选择性高,干扰较少且易于克服
(4)原子吸收条件下,原子蒸气中基态原子比激发 态原子数目多得多,所以测定的是大部分原子,这 就使得原子吸收法具有较高的灵敏度
原子吸收光谱的特点:
优点: (1) 检出限低,10-10~10-14g; (2) 准确度高,RSD约1%~5%; (3) 选择性高,一般情况下共存元素不干扰; (4) 应用广,可测定70多个元素(各种样品中) 局限性:难熔元素、非金属元素测定困难;不能同 时多元素测定
澳大利亚物理学家瓦尔西发表了著名论文:《原 子吸收光谱法在分析化学中的应用》奠定了原子吸收 光谱法的基础,之后原子吸收光谱法迅速发展。
原子吸收光谱与原子发射光谱的比较:
(1)原子吸收光谱分析利用的是原子吸收现象,而 发射光谱分析则基于原子发射现象
(2)原子吸收线比发射线的数目少的多,这样谱线 的重叠概率小
✓ 单道双光束型:利用参比光束补偿 光源引起的基线漂移。
1. 光源
作用:辐射待测元素的特征光谱(共振线和其它 非吸收谱线),以供测量之用。
要求: A. 能辐射锐线光源 B. 辐射的光强度必须足够、稳定且背景小 C. 灯供电稳定,以确保光强度稳定 空心阴极灯、蒸气放电灯、无极放电灯
空心阴极灯结构
♫ 干燥:试液随升温脱水干燥,由液体转化为固 体。一般情况下,90~120℃,15 ~ 30 s。
仪器分析第04章 原子吸收(荧光)光谱
N
1 2 k
(K 为激发态寿命或电子在高能 级上停留的时间,10-7-10-8 s)
原子在基态和激发态的寿命是有限的。电子在基态停留的时间长, 在激发态则很短。由海森堡测不准(Heisenberg Uncertainty principle) 原理,这种情况将导致激发态能量具有不确定的量,该不确定量使谱线 具有一定的宽度N (10-5nm),即自然宽度。 该宽度比光谱仪本身产生的宽度要小得多,只有极高分辨率的仪器 才能测出,故可勿略不计。
K d
e 2
mc
N0 f
式中,e为电子电荷;m为电子质量;f为振子强度,它是受到激发的每个原 子的平均电子数,与吸收几率成正比。
此式说明,在一定条件下,“积分吸收”只与基态原子数N0成正比 而与频率及产生吸收线的轮廓无关。只要测得积分吸收值,即可求出基 态原子数或浓度。因此 AAS 法是一种不需要标准比较的绝对分析方法。 积分吸收就是将原子吸收线轮廓所包含的吸收系数进行积分(即吸 收曲线下的总面积)。
因此,尽管原子吸收现象早在18世纪就被发现,但一直未用 于分析。直到1955年,Alan Walsh 提出以“峰值吸收”来代替“ 积分吸收”。从此,积分吸收难于测量的困难得以“间接”地解 决。
25
2. 峰值吸收 1955年,Walsh 指出,在温度不太高时,当发射线和吸收线满足以 下两个条件,即: 带宽 e a ; e a 中心波长一致 当e a时,发射线很窄,发射线的轮廓可认为是一个矩形,则 在发射线的范围内各波长的吸收系数近似相等,即K=K0(K ,积分吸 收系数;K0 ,峰值吸收系数),因此可以“峰值吸收”代替“积分吸收 ”:
同样频率的光辐射,其对应的谱线称为共振发射线。
原子吸收光谱法
结构 工作原理
《仪器分析》第四章原子吸收光谱法
石墨炉原子化系统
基本原理:利用大电流(数百安培)通过高阻值的石墨管所产 生的高温,使管中少量试液或固体试样蒸发和原子化。
电源:12~24V 0~500 A 直流电
《仪器分析》第四章原子吸收光谱法
石墨炉原子化步骤
四个阶段: 1.干燥 (去除溶剂) 2.灰化(去除基体) 3.原子化 4.净化(去除残渣),
石墨炉升温示意图
《仪器分析》第四章原子吸收光谱法
元 最 高 灰 化 最高原子化温 线性范围 推荐的改进剂
素 温 度 度(℃)
( ppb )
(℃)
Ag 800 Al 1200 As 1200
1500
1-15 0.005mgPd+0.03mgMg(NO3)2
反2230应0000物和产5物5--的1800熔0 沸0同.点0A1g5或mgSMe g(NO3)2
• f-----振子强度, N0----单位体积内的基态原子数, • e----为电子电荷, m--- -个电子的质量.
《仪器分析》第四章原子吸收光谱法
积分吸收的限制
要对半宽度(∆v)约为10-3 nm的吸收谱线进行积分, 需要极高分辨率的光学系统和极高灵敏度的检测器, 目前还难以做到。 这就是早在19世纪初就发现了原子吸收的现象, 却难以用于分析化学的原因。
Kv~v曲线反映出原子核外层电子 对不同频率的光辐射具有选择性
吸收特性。
《仪器分析》第四章原子吸收光谱法
影响原子谱线宽度的因素
由原子本身性质决定 由外界影响决定
①. 自然宽度ΔλN( Δ υ N)
它与原子发生能级间跃迁时激发态原子的有限寿命
有关。 一般情况下约相当于10-4 Å (10-5nm)
第八章 原子吸收光谱分析.
变宽程度
DVD 7.162107 V0
T M
多普勒变宽与吸收原子自身的相对原子质量的平方根成反比, 与火焰的温度平方根成正比,与谱线频率有关。
3、压力变宽
由于原子相互碰撞使能级发生稍微变化引起的变宽,又称
为碰撞(Collisional broadening)变宽。它是由于碰撞使
激发态寿命变短所致。外加压力越大,浓度越大,变宽越显
仪器分析-原子吸收光谱分析
K0Βιβλιοθήκη 2 lnDvD
2
e2 mc
N0
f
将上式带入朗伯比尔定律中得到
2 π ln 2 e2
A 0.4343K 0L 0.4343 D D mc N0 fL kLN0
由于N0 ∝N∝c
( N0基态原子数,N原子总数,c 待测元素浓度)
所以:A=KLN0=K′LN=K′′c
仪器分析-原子吸收光谱分析
原子吸收光谱分析的常规模式
定 量 分 析
3
仪器分析-原子吸收光谱分析
§8-2 原子吸收光谱分析基本原理
一、共振线
E3
1、共振吸收线
E2
使电子由基态跃迁到
第一激发态所产生的
吸收谱线称为共振吸
E1
收线(也简称共振线)
A
B
E0
A 产生吸收光谱
B 产生发射光谱
E0 基态能级 E1、E2、E3、激发态能级
吸收线的宽度受多种因素影响,一类是由原子性质所决定,另 一类是外界因素。
1、自然宽度 Δ N
无外界因素影响时,谱线固有的宽度叫自然宽度。
自然宽度与激发态原子的平均寿命有关。一般约10-5nm。
照射光具有一定的宽度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
谱线轮廓:谱线强度按频率大小有一定的分布
中心频率 特征波长
0
E h
hc
E
K0 - 极大吸收系数
Δ - 半宽度
原子吸收光谱的产生及谱线轮廓
谱线变宽因素
自然宽度(Natural Width) —— 激发态原子寿命(10-5 nm)
多普勒变宽(Doppler Broadening) —— 原子的无序运动(热变宽)
第四章 原子吸收光谱法
Atomic Absorption Spectroscopy(AAS)
主讲教师:杨屹
4.2
原 子 吸 收 光 产谱 生的 及 谱 线 轮 廓
原子吸收光谱的产生
目
录
原子吸收谱线的轮廓
谱线变宽因素
CONTENTS
原子吸收光谱的产生及谱线轮廓
原子吸收光谱的产生
通常情况下原子处于基态 。当外界提供的辐射能量恰好等 于原子核外层电子基态与某一激发态之间的能量差时,核 外电子将吸收特征能量的光辐射,由基态跃迁到相应的激 发态,产生原子吸收光谱。
劳伦兹变宽 (Lorentz Broadening) —— 原子与其他原子或分子之间的相互碰撞
原子吸收光谱的产生及谱线轮廓
赫尔兹马克变宽 (Holtz-Mark Broadening) —— 同种原子碰撞 (共振变宽)
场致变宽 —— 外部电场存在
谱线宽度 10-3nm~ 10-2nm
本节要求
1. 掌握 2.掌握
电子能级跃迁——紫外可见区
hν
气态原子——线光谱
原子吸收光谱的产生及谱线轮廓
原子吸收光谱的产生
使电子从基态跃 迁至第一激发态 所产生的吸收线 称为第一共振吸 收线(灵敏线)
由于原子结构和 外层电子排布不 同,共振线各有 特征,是元素的 特征谱线(定性)
吸收程度与基 态原子数成正 比(定量)
原子吸收光谱的产生及谱线轮廓