半导体物理与器件第四版课后习题答案2

合集下载

半导体物理与器件(尼曼第四版)答案

半导体物理与器件(尼曼第四版)答案

半导体物理与器件(尼曼第四版)答案第一章:半导体材料与晶体1.1 半导体材料的基本特性半导体材料是一种介于导体和绝缘体之间的材料。

它的基本特性包括:1.带隙:半导体材料的价带与导带之间存在一个禁带或带隙,是电子在能量上所能占据的禁止区域。

2.拉伸系统:半导体材料的结构是由原子或分子构成的晶格结构,其中的原子或分子以确定的方式排列。

3.载流子:在半导体中,存在两种载流子,即自由电子和空穴。

自由电子是在导带上的,在外加电场存在的情况下能够自由移动的电子。

空穴是在价带上的,当一个价带上的电子从该位置离开时,会留下一个类似电子的空位,空穴可以看作电子离开后的痕迹。

4.掺杂:为了改变半导体材料的导电性能,通常会对其进行掺杂。

掺杂是将少量元素添加到半导体材料中,以改变载流子浓度和导电性质。

1.2 半导体材料的结构与晶体缺陷半导体材料的结构包括晶体结构和非晶态结构。

晶体结构是指材料具有有序的周期性排列的结构,而非晶态结构是指无序排列的结构。

晶体结构的特点包括:1.晶体结构的基本单位是晶胞,晶胞在三维空间中重复排列。

2.晶格常数是晶胞边长的倍数,用于描述晶格的大小。

3.晶体结构可分为离子晶体、共价晶体和金属晶体等不同类型。

晶体结构中可能存在各种晶体缺陷,包括:1.点缺陷:晶体中原子位置的缺陷,主要包括实际缺陷和自间隙缺陷两种类型。

2.线缺陷:晶体中存在的晶面上或晶内的线状缺陷,主要包括位错和脆性断裂两种类型。

3.面缺陷:晶体中存在的晶面上的缺陷,主要包括晶面位错和穿孔两种类型。

1.3 半导体制备与加工半导体制备与加工是指将半导体材料制备成具有特定电性能的器件的过程。

它包括晶体生长、掺杂、薄膜制备和微电子加工等步骤。

晶体生长是将半导体材料从溶液或气相中生长出来的过程。

常用的晶体生长方法包括液相外延法、分子束外延法和气相外延法等。

掺杂是为了改变半导体材料的导电性能,通常会对其进行掺杂。

常用的掺杂方法包括扩散法、离子注入和分子束外延法等。

半导体物理与器件第四版课后习题标准答案

半导体物理与器件第四版课后习题标准答案

半导体物理与器件第四版课后习题答案————————————————————————————————作者:————————————————————————————————日期:2______________________________________________________________________________________3Chapter 33.1If o a were to increase, the bandgap energy would decrease and the material would beginto behave less like a semiconductor and morelike a metal. If o a were to decrease, the bandgap energy would increase and thematerial would begin to behave more like an insulator._______________________________________ 3.2Schrodinger's wave equation is:()()()t x x V x t x m ,,2222ψ⋅+∂ψ∂-η()tt x j ∂ψ∂=,ηAssume the solution is of the form:()()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=ψt E kx j x u t x ηexp , Region I: ()0=x V . Substituting theassumed solution into the wave equation, we obtain:()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎩⎨⎧∂∂-t E kx j x jku x m ηηexp 22 ()⎪⎭⎪⎬⎫⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u ηexp()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛-=t E kx j x u jE j ηηηexp which becomes()()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎩⎨⎧-t E kx j x u jk m ηηexp 222()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u jk ηexp 2()⎪⎭⎪⎬⎫⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u ηexp 22()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+=t E kx j x Eu ηexp This equation may be written as()()()()0222222=+∂∂+∂∂+-x u mE x x u x x u jk x u k ηSetting ()()x u x u 1= for region I, the equation becomes: ()()()()021221212=--+x u k dx x du jk dxx u d α where222ηmE=αQ.E.D.In Region II, ()O V x V =. Assume the same form of the solution:()()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=ψt E kx j x u t x ηexp , Substituting into Schrodinger's wave equation, we find:()()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎩⎨⎧-t E kx j x u jk m ηηexp 222()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u jk ηexp 2()⎪⎭⎪⎬⎫⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u ηexp 22()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+t E kx j x u V O ηexp()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=t E kx j x Eu ηexp This equation can be written as:______________________________________________________________________________________4()()()2222xx u x x u jk x u k ∂∂+∂∂+- ()()02222=+-x u mEx u mV O ηη Setting ()()x u x u 2= for region II, this equation becomes()()dx x du jkdx x u d 22222+()022222=⎪⎪⎭⎫ ⎝⎛+--x u mV k O ηα where again222ηmE=αQ.E.D._______________________________________ 3.3We have ()()()()021221212=--+x u k dx x du jk dxx u d α Assume the solution is of the form: ()()[]x k j A x u -=αexp 1 ()[]x k j B +-+αexpThe first derivative is()()()[]x k j A k j dxx du --=ααexp 1 ()()[]x k j B k j +-+-ααexpand the second derivative becomes()()[]()[]x k j A k j dxx u d --=ααexp 2212()[]()[]x k j B k j +-++ααexp 2Substituting these equations into the differential equation, we find()()[]x k j A k ---ααexp 2()()[]x k j B k +-+-ααexp 2(){()[]x k j A k j jk --+ααexp 2()()[]}x k j B k j +-+-ααexp ()()[]{x k j A k ---ααexp 22 ()[]}0exp =+-+x k j B α Combining terms, we obtain()()()[]222222αααα----+--k k k k k ()[]x k j A -⨯αexp()()()[]222222αααα--++++-+k k k k k()[]0exp =+-⨯x k j B α We find that00= Q.E.D.For the differential equation in ()x u 2 and theproposed solution, the procedure is exactly the same as above._______________________________________ 3.4We have the solutions()()[]x k j A x u -=αexp 1()[]x k j B +-+αexp for a x <<0 and()()[]x k j C x u -=βexp 2()[]x k j D +-+βexp for 0<<-x b .The first boundary condition is ()()0021u u =which yields0=--+D C B AThe second boundary condition is201===x x dx dudx du which yields()()()C k B k A k --+--βαα ()0=++D k βThe third boundary condition is ()()b u a u -=21 which yields()[]()[]a k j B a k j A +-+-ααexp exp ()()[]b k j C --=βexp ()()[]b k j D -+-+βexp______________________________________________________________________________________5and can be written as()[]()[]a k j B a k j A +-+-ααexp exp ()[]b k j C ---βexp ()[]0exp =+-b k j D βThe fourth boundary condition isbx a x dx dudx du -===21 which yields()()[]a k j A k j --ααexp()()[]a k j B k j +-+-ααexp()()()[]b k j C k j ---=ββexp()()()[]b k j D k j -+-+-ββexp and can be written as()()[]a k j A k --ααexp()()[]a k j B k +-+-ααexp ()()[]b k j C k ----ββexp()()[]0exp =+++b k j D k ββ_______________________________________ 3.5(b) (i) First point: πα=aSecond point: By trial and error, πα729.1=a (ii) First point: πα2=aSecond point: By trial and error, πα617.2=a _______________________________________ 3.6(b) (i) First point: πα=aSecond point: By trial and error, πα515.1=a (ii) First point: πα2=aSecond point: By trial and error, πα375.2=a _______________________________________ 3.7ka a aaP cos cos sin =+'ααα Let y ka =, x a =α Theny x x xP cos cos sin =+'Consider dydof this function.()[]{}y x x x P dyd sin cos sin 1-=+⋅'- We find()()()⎭⎬⎫⎩⎨⎧⋅+⋅-'--dy dx x x dy dx x x P cos sin 112y dydx x sin sin -=-Theny x x x x x P dy dx sin sin cos sin 12-=⎭⎬⎫⎩⎨⎧-⎥⎦⎤⎢⎣⎡+-' For πn ka y ==,...,2,1,0=n 0sin =⇒y So that, in general,()()dkd ka d a d dy dxαα===0 And22ηmE=α SodkdEm mE dk d ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-22/122221ηηα This implies thatdk dE dk d ==0α for an k π= _______________________________________ 3.8(a) πα=a 1π=⋅a E m o 212η______________________________________________________________________________________6()()()()2103123422221102.41011.9210054.12---⨯⨯⨯==ππa m E o η19104114.3-⨯=J From Problem 3.5 πα729.12=aπ729.1222=⋅a E m o η()()()()2103123422102.41011.9210054.1729.1---⨯⨯⨯=πE18100198.1-⨯=J12E E E -=∆1918104114.3100198.1--⨯-⨯= 19107868.6-⨯=Jor 24.4106.1107868.61919=⨯⨯=∆--E eV(b) πα23=aπ2223=⋅a E m o η()()()()2103123423102.41011.9210054.12---⨯⨯⨯=πE18103646.1-⨯=J From Problem 3.5, πα617.24=aπ617.2224=⋅a E m o η()()()()2103123424102.41011.9210054.1617.2---⨯⨯⨯=πE18103364.2-⨯=J34E E E -=∆1818103646.1103364.2--⨯-⨯= 1910718.9-⨯=Jor 07.6106.110718.91919=⨯⨯=∆--E eV_______________________________________ 3.9(a) At π=ka , πα=a 1π=⋅a E m o 212η()()()()2103123421102.41011.9210054.1---⨯⨯⨯=πE19104114.3-⨯=JAt 0=ka , By trial and error, πα859.0=a o()()()()210312342102.41011.9210054.1859.0---⨯⨯⨯=πo E19105172.2-⨯=J o E E E -=∆11919105172.2104114.3--⨯-⨯= 2010942.8-⨯=Jor 559.0106.110942.81920=⨯⨯=∆--E eV (b) At π2=ka , πα23=aπ2223=⋅a E m o η()()()()2103123423102.41011.9210054.12---⨯⨯⨯=πE18103646.1-⨯=J At π=ka . From Problem 3.5,πα729.12=aπ729.1222=⋅a E m o η()()()()2103123422102.41011.9210054.1729.1---⨯⨯⨯=πE18100198.1-⨯=J 23E E E -=∆1818100198.1103646.1--⨯-⨯= 19104474.3-⨯=Jor 15.2106.1104474.31919=⨯⨯=∆--E eV_____________________________________________________________________________________________________________________________73.10(a) πα=a 1π=⋅a E m o 212η()()()()2103123421102.41011.9210054.1---⨯⨯⨯=πE19104114.3-⨯=JFrom Problem 3.6, πα515.12=aπ515.1222=⋅a E m o η()()()()2103123422102.41011.9210054.1515.1---⨯⨯⨯=πE1910830.7-⨯=J 12E E E -=∆1919104114.310830.7--⨯-⨯= 19104186.4-⨯=Jor 76.2106.1104186.41919=⨯⨯=∆--E eV(b) πα23=aπ2223=⋅a E m o η()()()()2103123423102.41011.9210054.12---⨯⨯⨯=πE18103646.1-⨯=JFrom Problem 3.6, πα375.24=aπ375.2224=⋅a E m o η()()()()2103123424102.41011.9210054.1375.2---⨯⨯⨯=πE18109242.1-⨯=J 34E E E -=∆1818103646.1109242.1--⨯-⨯=1910597.5-⨯=Jor 50.3106.110597.51919=⨯⨯=∆--E eV _____________________________________3.11(a) At π=ka , πα=a 1π=⋅a E m o 212η()()()()2103123421102.41011.9210054.1---⨯⨯⨯=πE19104114.3-⨯=J At 0=ka , By trial and error, πα727.0=a o π727.022=⋅a E m o o η()()()()210312342102.41011.9210054.1727.0---⨯⨯⨯=πo E19108030.1-⨯=J o E E E -=∆11919108030.1104114.3--⨯-⨯= 19106084.1-⨯=Jor 005.1106.1106084.11919=⨯⨯=∆--E eV (b) At π2=ka , πα23=aπ2223=⋅a E m o η()()()()2103123423102.41011.9210054.12---⨯⨯⨯=πE18103646.1-⨯=JAt π=ka , From Problem 3.6, πα515.12=aπ515.1222=⋅a E m o η()()()()2103423422102.41011.9210054.1515.1---⨯⨯⨯=πE1910830.7-⨯=J 23E E E -=∆191810830.7103646.1--⨯-⨯=______________________________________________________________________________________81910816.5-⨯=Jor 635.3106.110816.51919=⨯⨯=∆--E eV_______________________________________ 3.12For 100=T K,()()⇒+⨯-=-1006361001073.4170.124g E164.1=g E eV200=T K, 147.1=g E eV 300=T K, 125.1=g E eV 400=T K, 097.1=g E eV 500=T K, 066.1=g E eV 600=T K, 032.1=g E eV _______________________________________ 3.13The effective mass is given by1222*1-⎪⎪⎭⎫ ⎝⎛⋅=dk E d m ηWe have()()B curve dkEd A curve dk E d 2222>so that ()()B curve m A curve m **<_______________________________________ 3.14The effective mass for a hole is given by1222*1-⎪⎪⎭⎫ ⎝⎛⋅=dk E d m p η We have that()()B curve dkEd A curve dk E d 2222> so that ()()B curve m A curve m p p **<_______________________________________ 3.15Points A,B: ⇒<0dkdEvelocity in -x direction Points C,D: ⇒>0dkdEvelocity in +x directionPoints A,D: ⇒<022dk Ednegative effective massPoints B,C: ⇒>022dkEd positive effective mass_______________________________________ 3.16For A: 2k C E i =At 101008.0+⨯=k m 1-, 05.0=E eV Or()()2119108106.105.0--⨯=⨯=E JSo ()2101211008.0108⨯=⨯-C3811025.1-⨯=⇒CNow ()()38234121025.1210054.12--*⨯⨯==C m η 311044.4-⨯=kgor o m m ⋅⨯⨯=--*31311011.9104437.4 o m m 488.0=*For B: 2k C E i =At 101008.0+⨯=k m 1-, 5.0=E eV Or ()()2019108106.15.0--⨯=⨯=E JSo ()2101201008.0108⨯=⨯-C 3711025.1-⨯=⇒CNow ()()37234121025.1210054.12--*⨯⨯==C m η321044.4-⨯=kgor o m m ⋅⨯⨯=--*31321011.9104437.4o m m 0488.0=*_____________________________________________________________________________________________________________________________93.17For A: 22k C E E -=-υ()()()2102191008.0106.1025.0⨯-=⨯--C3921025.6-⨯=⇒C ()()39234221025.6210054.12--*⨯⨯-=-=C m η31108873.8-⨯-=kgor o m m ⋅⨯⨯-=--*31311011.9108873.8o m m 976.0--=* For B: 22k C E E -=-υ()()()2102191008.0106.13.0⨯-=⨯--C382105.7-⨯=⇒C()()3823422105.7210054.12--*⨯⨯-=-=C m η3210406.7-⨯-=kgor o m m ⋅⨯⨯-=--*31321011.910406.7o m m 0813.0-=*_______________________________________ 3.18(a) (i) νh E =or ()()341910625.6106.142.1--⨯⨯==h E ν1410429.3⨯=Hz(ii) 141010429.3103⨯⨯===νλc E hc 51075.8-⨯=cm 875=nm(b) (i) ()()341910625.6106.112.1--⨯⨯==h E ν 1410705.2⨯=Hz(ii) 141010705.2103⨯⨯==νλc410109.1-⨯=cm 1109=nm _______________________________________ 3.19(c) Curve A: Effective mass is a constantCurve B: Effective mass is positive around 0=k , and is negativearound 2π±=k ._______________________________________ 3.20()[]O O k k E E E --=αcos 1 Then()()()[]O k k E dkdE---=ααsin 1()[]O k k E -+=ααsin 1 and()[]O k k E dkEd -=ααcos 2122Then221222*11ηηαE dk Ed m o k k =⋅== or212*αE m η=_______________________________________ 3.21(a) ()[]3/123/24l t dnm m m =*()()[]3/123/264.1082.04o o m m =o dnm m 56.0=*(b)oo l t cn m m m m m 64.11082.02123+=+=*oo m m 6098.039.24+=o cnm m 12.0=*_______________________________________ 3.22(a) ()()[]3/22/32/3lh hh dp m m m +=*______________________________________________________________________________________10()()[]3/22/32/3082.045.0o o m m +=[]o m ⋅+=3/202348.030187.0o dpm m 473.0=*(b) ()()()()2/12/12/32/3lh hh lh hh cpm m m m m ++=* ()()()()om ⋅++=2/12/12/32/3082.045.0082.045.0 o cpm m 34.0=*_______________________________________3.23For the 3-dimensional infinite potential well, ()0=x V when a x <<0, a y <<0, and a z <<0. In this region, the wave equation is:()()()222222,,,,,,z z y x y z y x x z y x ∂∂+∂∂+∂∂ψψψ()0,,22=+z y x mEψηUse separation of variables technique, so let ()()()()z Z y Y x X z y x =,,ψSubstituting into the wave equation, we have222222zZXY y Y XZ x X YZ ∂∂+∂∂+∂∂ 022=⋅+XYZ mEηDividing by XYZ , we obtain021*********=+∂∂⋅+∂∂⋅+∂∂⋅ηmE z Z Z y Y Y x X X Let01222222=+∂∂⇒-=∂∂⋅X k x X k x X X xx The solution is of the form: ()x k B x k A x X x x cos sin += Since ()0,,=z y x ψ at 0=x , then ()00=Xso that 0=B .Also, ()0,,=z y x ψ at a x =, so that()0=a X . Then πx x n a k = where...,3,2,1=x n Similarly, we have2221y k y Y Y -=∂∂⋅ and 2221z k zZ Z -=∂∂⋅From the boundary conditions, we find πy y n a k = and πz z n a k = where...,3,2,1=y n and ...,3,2,1=z n From the wave equation, we can write022222=+---ηmE k k k z y xThe energy can be written as()222222⎪⎭⎫ ⎝⎛++==a n n n m E E z y x n n n z y x πη _______________________________________ 3.24The total number of quantum states in the 3-dimensional potential well is given (in k-space) by()332a dk k dk k g T ⋅=ππ where222ηmEk =We can then writeηmEk 2=Taking the differential, we obtaindE Em dE E m dk ⋅⋅=⋅⋅⋅⋅=2112121ηηSubstituting these expressions into the densityof states function, we have()dE EmmE a dE E g T ⋅⋅⋅⎪⎭⎫ ⎝⎛=212233ηηππ Noting thatπ2h=ηthis density of states function can be simplified and written as______________________________________________________________________________________()()dE E m h a dE E g T ⋅⋅=2/33324πDividing by 3a will yield the density of states so that()()E hm E g ⋅=32/324π _______________________________________ 3.25For a one-dimensional infinite potential well,222222k an E m n ==*πη Distance between quantum states()()aa n a n k k n n πππ=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+=-+11Now()⎪⎭⎫ ⎝⎛⋅=a dkdk k g T π2NowE m k n*⋅=21ηdE Em dk n⋅⋅⋅=*2211η Then()dE Em a dE E g n T ⋅⋅⋅=*2212ηπDivide by the "volume" a , so()Em E g n *⋅=21πηSo()()()()()EE g 31341011.9067.0210054.11--⨯⋅⨯=π ()EE g 1810055.1⨯=m 3-J 1-_______________________________________ 3.26(a) Silicon, o nm m 08.1=*()()c nc E E h m E g -=*32/324π()dE E E h m g kTE E c nc c c⋅-=⎰+*232/324π()()kT E E c nc cE E h m 22/332/33224+*-⋅⋅=π()()2/332/323224kT h m n⋅⋅=*π ()()[]()()2/33342/33123210625.61011.908.124kT ⋅⋅⨯⨯=--π ()()2/355210953.7kT ⨯=(i) At 300=T K, 0259.0=kT eV ()()19106.10259.0-⨯=2110144.4-⨯=J Then()()[]2/3215510144.4210953.7-⨯⨯=c g25100.6⨯=m 3- or 19100.6⨯=c g cm 3-(ii) At 400=T K, ()⎪⎭⎫⎝⎛=3004000259.0kT034533.0=eV()()19106.1034533.0-⨯=21105253.5-⨯=J Then()()[]2/32155105253.5210953.7-⨯⨯=c g2510239.9⨯=m 3-or 191024.9⨯=c g cm 3-(b) GaAs, o nm m 067.0=*()()[]()()2/33342/33123210625.61011.9067.024kT g c ⋅⋅⨯⨯=--π ()()2/3542102288.1kT ⨯=______________________________________________________________________________________(i) At 300=T K, 2110144.4-⨯=kT J()()[]2/3215410144.42102288.1-⨯⨯=c g2310272.9⨯=m 3- or 171027.9⨯=c g cm 3-(ii) At 400=T K, 21105253.5-⨯=kT J()()[]2/32154105253.52102288.1-⨯⨯=c g2410427.1⨯=m 3- 181043.1⨯=c g cm 3-_______________________________________ 3.27(a) Silicon, o p m m 56.0=* ()()E E h mE g p-=*υυπ32/324()dE E E h m g E kTE p⋅-=⎰-*υυυυπ332/324()()υυυπE kTE pE E h m 32/332/33224-*-⎪⎭⎫ ⎝⎛-=()()[]2/332/333224kT h mp-⎪⎭⎫ ⎝⎛-=*π ()()[]()()2/33342/33133210625.61011.956.024kT ⎪⎭⎫ ⎝⎛⨯⨯=--π ()()2/355310969.2kT ⨯=(i)At 300=T K, 2110144.4-⨯=kT J ()()[]2/3215510144.4310969.2-⨯⨯=υg2510116.4⨯=m 3- or 191012.4⨯=υg cm 3-(ii)At 400=T K, 21105253.5-⨯=kT J ()()[]2/32155105253.5310969.2-⨯⨯=υg2510337.6⨯=m 3-or 191034.6⨯=υg cm 3- (b) GaAs, o p m m 48.0=*()()[]()()2/33342/33133210625.61011.948.024kT g ⎪⎭⎫ ⎝⎛⨯⨯=--πυ ()()2/3553103564.2kT ⨯=(i)At 300=T K, 2110144.4-⨯=kT J ()()[]2/3215510144.43103564.2-⨯⨯=υg2510266.3⨯=m 3- or 191027.3⨯=υg cm 3-(ii)At 400=T K, 21105253.5-⨯=kT J()()[]2/32155105253.53103564.2-⨯⨯=υg2510029.5⨯=m 3-or 191003.5⨯=υg cm 3-_______________________________________ 3.28(a) ()()c nc E E h m E g -=*32/324π()()[]()c E E -⨯⨯=--3342/33110625.61011.908.124πc E E -⨯=56101929.1 For c E E =; 0=c g1.0+=c E E eV; 4610509.1⨯=c g m 3-J 1-2.0+=c E E eV;4610134.2⨯=m 3-J 1- 3.0+=c E E eV; 4610614.2⨯=m 3-J 1- 4.0+=c E E eV; 4610018.3⨯=m 3-J 1-(b) ()E E hm g p-=*υυπ32/324()()[]()E E -⨯⨯=--υπ3342/33110625.61011.956.024E E -⨯=υ55104541.4______________________________________________________________________________________For υE E =; 0=υg 1.0-=υE E eV; 4510634.5⨯=υg m 3-J 1-2.0-=υE E eV;4510968.7⨯=m 3-J 1-3.0-=υE E eV; 4510758.9⨯=m 3-J 1-4.0-=υE E eV;4610127.1⨯=m 3-J 1-_______________________________________ 3.29(a) ()()68.256.008.12/32/32/3=⎪⎭⎫ ⎝⎛==**pnc m m g g υ(b) ()()0521.048.0067.02/32/32/3=⎪⎭⎫ ⎝⎛==**pncmm g g υ_______________________________________3.30 Plot_______________________________________ 3.31(a) ()()()!710!7!10!!!-=-=i i i i i N g N g W()()()()()()()()()()()()1201238910!3!7!78910===(b) (i) ()()()()()()()()12!10!101112!1012!10!12=-=i W 66= (ii)()()()()()()()()()()()()1234!8!89101112!812!8!12=-=i W 495=_______________________________________ 3.32()⎪⎪⎭⎫ ⎝⎛-+=kT E E E f F exp 11(a) kT E E F =-, ()()⇒+=1exp 11E f ()269.0=E f(b) kT E E F 5=-, ()()⇒+=5exp 11E f()31069.6-⨯=E f (c) kT E E F 10=-, ()()⇒+=10exp 11E f()51054.4-⨯=E f_______________________________________ 3.33()⎪⎪⎭⎫ ⎝⎛-+-=-kT E E E f F exp 1111or()⎪⎪⎭⎫⎝⎛-+=-kT E E E f F exp 111(a) kT E E F =-, ()269.01=-E f (b) kT E E F 5=-, ()31069.61-⨯=-E f (c) kT E E F 10=-, ()51054.41-⨯=-E f_______________________________________ 3.34(a) ()⎥⎦⎤⎢⎣⎡--≅kT E E f F F exp c E E =; 61032.90259.030.0exp -⨯=⎥⎦⎤⎢⎣⎡-=F f 2kT E c +; ()⎥⎦⎤⎢⎣⎡+-=0259.020259.030.0exp F f 61066.5-⨯=kT E c +; ()⎥⎦⎤⎢⎣⎡+-=0259.00259.030.0exp F f 61043.3-⨯=23kT E c +; ()()⎥⎦⎤⎢⎣⎡+-=0259.020259.0330.0exp F f 61008.2-⨯=kT E c 2+; ()()⎥⎦⎤⎢⎣⎡+-=0259.00259.0230.0exp F f 61026.1-⨯=______________________________________________________________________________________(b) ⎥⎦⎤⎢⎣⎡-+-=-kT E E f F F exp 1111()⎥⎦⎤⎢⎣⎡--≅kT E E F exp υE E =; ⎥⎦⎤⎢⎣⎡-=-0259.025.0exp 1F f 51043.6-⨯= 2kT E -υ; ()⎥⎦⎤⎢⎣⎡+-=-0259.020259.025.0exp 1F f 51090.3-⨯=kT E -υ; ()⎥⎦⎤⎢⎣⎡+-=-0259.00259.025.0exp 1F f 51036.2-⨯=23kT E -υ;()()⎥⎦⎤⎢⎣⎡+-=-0259.020259.0325.0exp 1F f 51043.1-⨯= kT E 2-υ;()()⎥⎦⎤⎢⎣⎡+-=-0259.00259.0225.0exp 1F f 61070.8-⨯=_______________________________________ 3.35()()⎥⎦⎤⎢⎣⎡-+-=⎥⎦⎤⎢⎣⎡--=kT E kT E kT E E f F c F F exp exp and()⎥⎦⎤⎢⎣⎡--=-kT E E f F F exp 1()()⎥⎦⎤⎢⎣⎡---=kT kT E E F υexp So ()⎥⎦⎤⎢⎣⎡-+-kT E kT E F c exp()⎥⎦⎤⎢⎣⎡+--=kT kT E E F υexp Then kT E E E kT E F F c +-=-+υOr midgap c F E E E E =+=2υ_______________________________________ 3.3622222man E n πη= For 6=n , Filled state()()()()()2103122234610121011.92610054.1---⨯⨯⨯=πE18105044.1-⨯=Jor 40.9106.1105044.119186=⨯⨯=--E eVFor 7=n , Empty state()()()()()2103122234710121011.92710054.1---⨯⨯⨯=πE1810048.2-⨯=Jor 8.12106.110048.219187=⨯⨯=--E eVTherefore 8.1240.9<<F E eV_______________________________________ 3.37(a) For a 3-D infinite potential well ()222222⎪⎭⎫⎝⎛++=a n n n mE z y x πη For 5 electrons, the 5thelectron occupies the quantum state 1,2,2===z y x n n n ; so()2222252⎪⎭⎫ ⎝⎛++=a n n n m E z y x πη()()()()()21031222223410121011.9212210054.1---⨯⨯++⨯=π 1910761.3-⨯=Jor 35.2106.110761.319195=⨯⨯=--E eV For the next quantum state, which is empty, the quantum state is 2,2,1===z y x n n n . This quantum state is at the same energy, so 35.2=F E eV(b) For 13 electrons, the 13th electronoccupies the quantum state______________________________________________________________________________________3,2,3===z y x n n n ; so ()()()()()2103122222341310121011.9232310054.1---⨯⨯++⨯=πE 1910194.9-⨯=Jor 746.5106.110194.9191913=⨯⨯=--E eVThe 14th electron would occupy the quantum state 3,3,2===z y x n n n . This state is at the same energy, so 746.5=F E eV_______________________________________ 3.38The probability of a state at E E E F ∆+=1 being occupied is()⎪⎭⎫ ⎝⎛∆+=⎪⎪⎭⎫ ⎝⎛-+=kT E kT E E E f F exp 11exp 11111 The probability of a state at E E E F ∆-=2being empty is()⎪⎪⎭⎫ ⎝⎛-+-=-kT E E E f F 222exp 1111⎪⎭⎫ ⎝⎛∆-+⎪⎭⎫ ⎝⎛∆-=⎪⎭⎫ ⎝⎛∆-+-=kT E kT E kT E exp 1exp exp 111 or()⎪⎭⎫ ⎝⎛∆+=-kT E E f exp 11122 so ()()22111E f E f -= Q.E.D._______________________________________ 3.39(a) At energy 1E , we want01.0exp 11exp 11exp 1111=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-+-⎪⎪⎭⎫ ⎝⎛-kT E E kT E E kT E E F F FThis expression can be written as01.01exp exp 111=-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-+kT E E kT E E F For()⎪⎪⎭⎫⎝⎛-=kT E E F 1exp 01.01Then()100ln 1kT E E F += orkT E E F 6.41+= (b)At kT E E F 6.4+=,()()6.4exp 11exp 1111+=⎪⎪⎭⎫ ⎝⎛-+=kT E E E f F which yields()01.000990.01≅=E f_______________________________________ 3.40 (a)()()⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--=0259.050.580.5exp exp kT E E f F F 61032.9-⨯=(b) ()060433.03007000259.0=⎪⎭⎫⎝⎛=kT eV31098.6060433.030.0exp -⨯=⎥⎦⎤⎢⎣⎡-=F f (c) ()⎥⎦⎤⎢⎣⎡--≅-kT E E f F F exp 1 ⎥⎦⎤⎢⎣⎡-=kT 25.0exp 02.0______________________________________________________________________________________or 5002.0125.0exp ==⎥⎦⎤⎢⎣⎡+kT ()50ln 25.0=kTor()()⎪⎭⎫⎝⎛===3000259.0063906.050ln 25.0T kTwhich yields 740=T K_______________________________________ 3.41 (a)()00304.00259.00.715.7exp 11=⎪⎭⎫ ⎝⎛-+=E for 0.304%(b) At 1000=T K, 08633.0=kT eV Then()1496.008633.00.715.7exp 11=⎪⎭⎫ ⎝⎛-+=E for 14.96%(c) ()997.00259.00.785.6exp 11=⎪⎭⎫⎝⎛-+=E for 99.7% (d)At F E E =, ()21=E f for alltemperatures_______________________________________ 3.42(a) For 1E E =()()⎥⎦⎤⎢⎣⎡--≅⎪⎪⎭⎫ ⎝⎛-+=kT E E kTE E E fF F11exp exp 11Then()611032.90259.030.0exp -⨯=⎪⎭⎫ ⎝⎛-=E fFor 2E E =,82.030.012.12=-=-E E F eV Then()⎪⎭⎫ ⎝⎛-+-=-0259.082.0exp 1111E for()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛---≅-0259.082.0exp 111E f141078.10259.082.0exp -⨯=⎪⎭⎫ ⎝⎛-=(b) For 4.02=-E E F eV, 72.01=-F E E eV At 1E E =,()()⎪⎭⎫⎝⎛-=⎥⎦⎤⎢⎣⎡--=0259.072.0exp exp 1kT E E E f F or()131045.8-⨯=E f At 2E E =,()()⎥⎦⎤⎢⎣⎡--=-kT E E E f F 2exp 1⎪⎭⎫ ⎝⎛-=0259.04.0expor()71096.11-⨯=-E f_______________________________________ 3.43(a) At 1E E =()()⎪⎭⎫⎝⎛-=⎥⎦⎤⎢⎣⎡--=0259.030.0exp exp 1kT E E E f F or()61032.9-⨯=E f At 2E E =, 12.13.042.12=-=-E E F eV So()()⎥⎦⎤⎢⎣⎡--=-kT E E E f F 2exp 1⎪⎭⎫ ⎝⎛-=0259.012.1exp______________________________________________________________________________________or()191066.11-⨯=-E f(b) For 4.02=-E E F ,02.11=-F E E eV At 1E E =,()()⎪⎭⎫⎝⎛-=⎥⎦⎤⎢⎣⎡--=0259.002.1exp exp 1kT E E E f F or()181088.7-⨯=E f At 2E E =,()()⎥⎦⎤⎢⎣⎡--=-kT E E E f F 2exp 1⎪⎭⎫ ⎝⎛-=0259.04.0expor ()71096.11-⨯=-E f_______________________________________ 3.44()1exp 1-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+=kTE E E f Fso()()2exp 11-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+-=kT E E dE E df F⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛⨯kT E E kT F exp 1 or()2exp 1exp 1⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛-=kT E E kT E E kT dE E df F F (a) At 0=T K, For()00exp =⇒=∞-⇒<dE dfE E F()0exp =⇒+∞=∞+⇒>dEdfE E FAt -∞=⇒=dEdfE E F(b) At 300=T K, 0259.0=kT eVFor F E E <<,0=dE dfFor F E E >>, 0=dEdfAt F E E =,()()65.91110259.012-=+⎪⎭⎫ ⎝⎛-=dE df (eV)1-(c) At 500=T K, 04317.0=kT eVFor F E E <<, 0=dE dfFor F E E >>, 0=dEdfAt F E E =, ()()79.511104317.012-=+⎪⎭⎫ ⎝⎛-=dE df (eV)1- _______________________________________ 3.45(a) At midgap E E =,()⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛-+=kTE kTE E E f gF2exp 11exp 11Si: 12.1=g E eV, ()()⎥⎦⎤⎢⎣⎡+=0259.0212.1exp 11E for()101007.4-⨯=E fGe: 66.0=g E eV______________________________________________________________________________________()()⎥⎦⎤⎢⎣⎡+=0259.0266.0exp 11E for()61093.2-⨯=E f GaAs: 42.1=g E eV ()()⎥⎦⎤⎢⎣⎡+=0259.0242.1exp 11E for()121024.1-⨯=E f(b) Using the results of Problem 3.38, the answers to part (b) are exactly the same as those given in part (a)._______________________________________ 3.46(a) ()⎥⎦⎤⎢⎣⎡--=kT E E f F F exp ⎥⎦⎤⎢⎣⎡-=-kT 60.0exp 108 or ()810ln 60.0+=kT()032572.010ln 60.08==kT eV()⎪⎭⎫⎝⎛=3000259.0032572.0Tso 377=T K(b) ⎥⎦⎤⎢⎣⎡-=-kT 60.0exp 106()610ln 60.0+=kT()043429.010ln 60.06==kT ()⎪⎭⎫⎝⎛=3000259.0043429.0Tor 503=T K_______________________________________ 3.47(a) At 200=T K,()017267.03002000259.0=⎪⎭⎫⎝⎛=kT eV⎪⎪⎭⎫ ⎝⎛-+==kTE E f FF exp 1105.019105.01exp =-=⎪⎪⎭⎫⎝⎛-kT E E F()()()19ln 017267.019ln ==-kT E E F 05084.0=eV By symmetry, for 95.0=F f , 05084.0-=-F E E eVThen ()1017.005084.02==∆E eV (b) 400=T K, 034533.0=kT eV For 05.0=F f , from part (a),()()()19ln 034533.019ln ==-kT E E F 10168.0=eV Then ()2034.010168.02==∆E eV_______________________________________。

半导体物理第四版答案

半导体物理第四版答案

半导体物理第四版答案【篇一:(考试范围)半导体物理学课后题答案】格常数为a的一维晶格,导带极小值附近能量ec(k)和价带极大值附近能量ev(k)分别为:h2(k?k1)2h2k2h2k213h2k2,ev(k) ec(k)= 3m0m06m0m0m0为电子惯性质量,k1?a,a?0.314nm。

试求:(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化解:(1)导带:2?2k2?2(k?k1)由??03m0m03k14d2ec2?22?28?2203m0m03m0dk得:k?所以:在k?价带:dev6?2k0得k?0dkm0d2ev6?2又因为0,所以k?0处,ev取极大值2m0dk?2k123因此:eg?ec(k1)?ev(0)??0.64ev412m03k处,ec取极小值4(2)m*nc22decdk23?m0 83k?k141(3)m*nv22devdk2k?01m06(4)准动量的定义:p??k所以:?p?(?k)3k?k143(k)k0k107.951025n/s42. 晶格常数为0.25nm的一维晶格,当外加102v/m,107 v/m的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:f?qe?h (0t1k?k得?t?qet)8.27108s1.61019102(0a8.271013s)?107t21.61019半导体物理第2章习题5. 举例说明杂质补偿作用。

当半导体中同时存在施主和受主杂质时,若(1) ndna因为受主能级低于施主能级,所以施主杂质的电子首先跃迁到na个受主能级上,还有nd-na个电子在施主能级上,杂质全部电离时,跃迁到导带中的导电电子的浓度为n= nd-na。

即则有效受主浓度为naeff≈ nd-na (2)nand施主能级上的全部电子跃迁到受主能级上,受主能级上还有na-nd个空穴,它们可接受价带上的na-nd个电子,在价带中形成的空穴浓度p= na-nd. 即有效受主浓度为naeff≈ na-nd (3)na?nd时,不能向导带和价带提供电子和空穴,称为杂质的高度补偿 6. 说明类氢模型的优点和不足。

半导体物理与器件第四版课后习题答案1

半导体物理与器件第四版课后习题答案1

______________________________________________________________________________________Chapter 1Problem Solutions1.1 (a)fcc: 8 corner atoms 18/1atom6 face atoms32/1atomsTotal of 4 atoms per unit cell (b)bcc: 8 corner atoms 18/1atom1 enclosed atom=1 atom Total of 2 atoms per unit cell(c)Diamond: 8 corner atoms 18/1atom6 faceatoms 32/1atoms4 enclosedatoms= 4 atomsTotal of 8 atoms per unit cell_______________________________________ 1.2 (a)Simple cubic lattice: r a 2Unit cell vol33382rra1 atom per cell, so atom vol 3413r ThenRatio%4.52%10083433rr(b)Face-centered cubic latticerd aa rd22224Unit cell vol 33321622rr a4 atoms per cell, so atom vol3443r ThenRatio%74%10021634433rr (c)Body-centered cubic latticeraa rd3434Unit cell vol 3334ra2 atoms per cell, so atom vol 3423r ThenRatio%68%1003434233r r (d)Diamond lattice Body diagonal raa rd3838Unit cell vol3338r a8 atoms per cell, so atom vol 3483r ThenRatio%34%1003834833rr _______________________________________1.3(a)oA a43.5; From Problem 1.2d,ra38Then oAa r176.18343.583Center of one silicon atom to center ofnearest neighboroAr 35.22______________________________________________________________________________________ (b)Number density22381051043.58cm 3(c)Mass density23221002.609.28105..AN W t At N 33.2grams/cm3_______________________________________1.4(a)4 Ga atoms per unit cell Number density381065.54Density of Ga atoms 221022.2cm34 As atoms per unit cell Density of As atoms 221022.2cm3(b)8 Ge atoms per unit cell Number density381065.58Density of Ge atoms221044.4cm3_______________________________________ 1.5From Figure 1.15 (a)aa d4330.0232oAd 447.265.54330.0(b)aa d7071.022oAd 995.365.57071.0_______________________________________1.674.5423232222sin a a 5.109_______________________________________ 1.7(a) Simple cubic: oAr a 9.32(b)fcc:oAr a515.524(c) bcc:oA r a 503.434(d) diamond:oAra007.9342_______________________________________ 1.8 (a)Br 2035.122035.12oBAr 4287.0(b)oAa 07.2035.12(c)A-atoms: # of atoms1818Density381007.21231013.1cm3B-atoms: # of atoms3216Density381007.23231038.3cm3_______________________________________ 1.9(a)oAr a 5.42# of atoms1818Number density38105.412210097.1cm3______________________________________________________________________________________Mass density AN W t At N ..23221002.65.12100974.1228.0gm/cm3(b)oAr a196.534# of atoms 21818Number density3810196.5222104257.1cm3Mass density23221002.65.12104257.1296.0gm/cm3_______________________________________ 1.10From Problem 1.2, percent volume of fcc atoms is 74%; Therefore after coffee is ground,Volume = 0.74 cm3_______________________________________1.11(b)oAa 8.20.18.1(c)Na: Density38108.22/1221028.2cm3Cl: Density221028.2cm3(d)Na: At. Wt. = 22.99 Cl: At. Wt. = 35.45 So, mass per unit cell23231085.41002.645.352199.2221Then mass density21.2108.21085.43823grams/cm3_______________________________________ 1.12(a)oAa 88.122.223Then oA a 62.4Density of A:22381001.11062.41cm3Density of B:22381001.11062.41cm3(b)Same as (a) (c)Same material_______________________________________ 1.13oAa619.438.122.22(a) For 1.12(a), A-atomsSurface density28210619.411a1410687.4cm2For 1.12(b), B-atoms: oAa 619.4Surface density14210687.41acm2For 1.12(a) and (b), Same material(b) For 1.12(a), A-atoms;oAa 619.4Surface density212a1410315.3cm2B-atoms;Surface density______________________________________________________________________________________14210315.321a cm 2For 1.12(b), A-atoms;oAa 619.4Surface density212a1410315.3cm2B-atoms;Surface density14210315.321acm2For 1.12(a) and (b), Same material_______________________________________ 1.14 (a)Vol. Density31oaSurface Density212oa(b)Same as (a)_______________________________________ 1.15 (i)(110) plane(see Figure 1.10(b))(ii) (111) plane(see Figure 1.10(c))(iii) (220) plane,1,1,21,21Same as (110) plane and [110]direction(iv) (321) plane6,3,211,21,31Intercepts of plane at6,3,2sq p [321] direction is perpendicular to(321) plane_______________________________________1.16(a)31311,31,11(b)12141,21,41_______________________________________ 1.17Intercepts: 2, 4, 331,41,21(634) plane_______________________________________ 1.18(a)oAa d 28.5(b)oAa d734.322(c)oAa d048.333_______________________________________ 1.19(a) Simple cubic(i) (100) plane:Surface density2821073.411a141047.4cm 2(ii) (110) plane:Surface density212a141016.3cm 2(iii) (111) plane: Area of planebh21where oAa b 689.62Now2222243222a a a hSooAh793.573.426______________________________________________________________________________________Area of plane881079304.51068923.62116103755.19cm 2Surface density16103755.19613141058.2cm2(b) bcc(i) (100) plane:Surface density 1421047.41acm2(ii) (110) plane: Surface density222a141032.6cm 2(iii) (111) plane:Surface density16103755.19613141058.2cm2(c) fcc(i) (100) plane:Surface density 1421094.82acm2(ii) (110) plane: Surface density222a141032.6cm 2(iii) (111) plane:Surface density16103755.19213613151003.1cm2_______________________________________ 1.20 (a)(100) plane: - similar to a fcc:Surface density281043.52141078.6cm 2(b)(110) plane:Surface density281043.524141059.9cm2(c)(111) plane: Surface density281043.5232141083.7cm2_______________________________________1.21oAr a703.6237.2424(a)#/cm338310703.64216818a2210328.1cm3(b)#/cm222124142a210703.62281410148.3cm2(c)oA a d74.422703.622(d)# of atoms2213613Area of plane: (see Problem 1.19)oAa b4786.92oAa h2099.826Area88102099.8104786.92121bh______________________________________________________________________________________15108909.3cm2#/cm215108909.32=141014.5cm2oAa d87.333703.633_______________________________________ 1.22Density of silicon atoms 22105cm3and4 valence electrons per atom, soDensity of valence electrons 23102cm3_______________________________________ 1.23Density of GaAs atoms22381044.41065.58cm3An average of 4 valence electrons peratom,SoDensity of valence electrons231077.1cm3_______________________________________ 1.24 (a)%10%10010510532217(b)%104%10010510262215_______________________________________ 1.25 (a)Fraction by weight7221610542.106.2810582.10102(b)Fraction by weight5221810208.206.2810598.3010_______________________________________ 1.26Volume density 1631021dcm3So610684.3dcmoAd 4.368We haveoo Aa 43.5Then85.6743.54.368oa d _______________________________________ 1.27Volume density 1531041dcm 3So61030.6dcmoAd630We have oo Aa 43.5Then11643.5630oa d _______________________________________。

半导体物理与器件习题答案

半导体物理与器件习题答案

半导体物理与器件习题答案【篇一:半导体物理与器件课后习题2】图3.35所示色e-k关系曲线表示了两种可能的价带。

说明其中哪一种对应的空穴有效质量较大。

为什么?解:图中b曲线对应的空穴有效质量较大空穴的有效质量: m*p?1 21de?222?dk?图中曲线a的弯曲程度大于曲线bd2e 故 22dkd2e?22dkba?m*p?a??m*p?b?3.16 图3.37所示为两种不同半导体材料导带中电子的e-k关系抛物线,试确定两种电子的有效质量(以自由电子质量为单位)。

解:e-k关系曲线k=0附近的图形 ?k2近似于抛物线故有:e?ec? *2mn由图可知 ec?0①对于a曲线1??1.055?10?0.1????2k210-10??*?31? ?4.97?10kg?0.55me 有mn(a)?-192e0.07?1.06?10 ?-342?2②对于b曲线有1??1.055?10??0.1?-10?22?k10?32m*??4.97?10kg?0.055men (b)?-192e0.7?1.06?10 ?-342?23.20 硅的能带图3.23b所示导带的最小能量出现在[100]方向上。

最小值附近一维方向上的能量可以近似为s(k?k0) e?e0?e1co?其中k0是最小能量的k值。

是确定k?k0时的粒子的有效质量。

解:导带能量最小值附近一维方向上的能量e?e0?e1cos?(k?k0) d2e ?22??2e1cos?(k?k0) dkd2e当k?k0时 cos?(k?k0)?1;22??2e1dk 11d2e?*?222又mn?dk?2?k?k0时粒子的有效质量为:m?2?e1 *n3.24 试确定t=300k时gaas中ev和ev-kt之间的总量子态数量。

h3?3*2pev?e当t=300k时 gaas中ev和ev?kt之间总量子态数量:h3h36.6262?10?3432?1.38?103?23?30032?3.28?10?7cm?33.37 某种材料t=300k时的费米能级为6.25ev。

半导体物理 课后习题答案

半导体物理 课后习题答案

第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。

试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eV m k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:tkhqE f ∆∆== 得qE k t -∆=∆sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ第三章习题和答案1. 计算能量在E=E c 到2*n 2C L 2m 100E E π+= 之间单位体积中的量子态数。

解322233*28100E 21233*22100E 0021233*231000L 8100)(3222)(22)(1Z VZZ )(Z )(22)(2322C 22C L E m h E E E m V dE E E m V dE E g V d dEE g d E E m V E g c nc C n l m h E C n l m E C n n c n c πππππ=+-=-====-=*++⎰⎰**)()(单位体积内的量子态数)(2. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6)。

半导体物理与器件(尼曼第四版)答案之第一部分-半导体属性

半导体物理与器件(尼曼第四版)答案之第一部分-半导体属性

半导体物理与器件(尼曼第四版)答案之第一部分-半导体属性
1. 导电性:
半导体材料是指在电声信号强度及温度变化范围内,具有显著能量带隙、静电屏蔽能力和较强导电性的半导体物质。

其导电性取决于半导体物质的原子结构和物理性质。

值得注意的是,半导体材料具有非常高的电阻率,其电阻率取决于半导体材料中存在的空穴和电子的数量及相应的电子移动速率。

在常温下,半导体物质的电阻率可以达到106到1012欧姆之间的数字,而在低温和高温下,电阻率几乎可以忽略不计。

2. 光电效应:
半导体物质具有光电效应,即半导体物质可以在受到光照时发生微小变化。

由于半导体物质具有光电效应,因此,当光照在半导体物质上时,可以产生电压,从而使半导体物质的电阻率发生变化,产生静电效应。

这种光电效应可以被用于光电器件的研制中,例如太阳能电池,光敏电阻等等,具有十分广阔的应用范围。

3. 热敏性:
半导体物质具有高的热敏性,当温度发生变化时,半导体物质的性质也会发生变化。

当温度提高时,半导体物质开始呈现出热电效应,其电阻率会随着温度提高而减小,而当温度降低时,会出现负热效应,其电阻会随着温度降低而增加。

因此,半导体物质的热敏性可以被利用于研制热敏电阻、热敏电容等等的器件中。

半导体物理课后习题解答

半导体物理课后习题解答

半导体物理习题解答1-1.(P 32)设晶格常数为a 的一维晶格,导带极小值附近能量E c (k )和价带极大值附近能量E v (k )分别为:E c (k)=0223m k h +022)1(m k k h -和E v (k)= 0226m k h -0223m k h ;m 0为电子惯性质量,k 1=1/2a ;a =0.314nm 。

试求: ①禁带宽度;②导带底电子有效质量; ③价带顶电子有效质量;④价带顶电子跃迁到导带底时准动量的变化。

[解] ①禁带宽度Eg根据dk k dEc )(=0232m k h +012)(2m k k h -=0;可求出对应导带能量极小值E min 的k 值:k min =143k , 由题中E C 式可得:E min =E C (K)|k=k min =2104k m h ; 由题中E V 式可看出,对应价带能量极大值Emax 的k 值为:k max =0;并且E min =E V (k)|k=k max =02126m k h ;∴Eg =E min -E max =021212m k h =20248a m h =112828227106.1)1014.3(101.948)1062.6(----⨯⨯⨯⨯⨯⨯⨯=0.64eV ②导带底电子有效质量m n0202022382322m h m h m h dkE d C =+=;∴ m n =022283/m dk E d h C= ③价带顶电子有效质量m ’02226m h dk E d V -=,∴0222'61/m dk E d h m Vn-== ④准动量的改变量h △k =h (k min -k max )= ah k h 83431=[毕]1-2.(P 33)晶格常数为0.25nm 的一维晶格,当外加102V/m ,107V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

[解] 设电场强度为E ,∵F =hdtdk=q E (取绝对值) ∴dt =qE h dk∴t=⎰tdt 0=⎰a qE h 210dk =aqE h 21 代入数据得: t =E⨯⨯⨯⨯⨯⨯--1019-34105.2106.121062.6=E 6103.8-⨯(s )当E =102 V/m 时,t =8.3×10-8(s );E =107V/m 时,t =8.3×10-13(s )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Chapter 22、1Sketch_______________________________________2、2Sketch_______________________________________2、3Sketch_______________________________________2、4From Problem 2、2, phase t xωλπ-=2= constant Then⎪⎭⎫ ⎝⎛+==⇒=-⋅πλωυωλπ2,02p dt dx dt dx From Problem 2、3, phase t xωλπ+=2 = constantThen ⎪⎭⎫⎝⎛-==⇒=+⋅πλωυωλπ2,02p dt dx dt dx _______________________________________2、5E hchc h E =⇒==λλν Gold: 90.4=E eV ()()19106.190.4-⨯= JSo, ()()()()51910341054.2106.190.410310625.6---⨯=⨯⨯⨯=λcm orμλ254.0=m Cesium: 90.1=E eV ()()19106.190.1-⨯= JSo,()()()()51910341054.6106.190.110310625.6---⨯=⨯⨯⨯=λcm orμλ654.0=m_______________________________________2、6(a) 9341055010625.6--⨯⨯==λhp2710205.1-⨯=kg-m/s 331271032.11011.9102045.1⨯=⨯⨯==--m p υm/s or 51032.1⨯=υcm/s(b) 9341044010625.6--⨯⨯==λh p 2710506.1-⨯=kg-m/s331271065.11011.9105057.1⨯=⨯⨯==--m p υm/s or 51065.1⨯=υcm/s (c) Yes_______________________________________ 2、7(a) (i) ()()()1931106.12.11011.922--⨯⨯==mE p 2510915.5-⨯=kg-m/s925341012.110915.510625.6---⨯=⨯⨯==p h λm or o A 2.11=λ(ii)()()()1931106.1121011.92--⨯⨯=p 241087.1-⨯=kg-m/s1024341054.3108704.110625.6---⨯=⨯⨯=λm or oA 54.3=λ(iii) ()()()1931106.11201011.92--⨯⨯=p 2410915.5-⨯=kg-m/s1024341012.110915.510625.6---⨯=⨯⨯=λm or oA 12.1=λ (b)()()()1927106.12.11067.12--⨯⨯=p 2310532.2-⨯=kg-m/s1123341062.210532.210625.6---⨯=⨯⨯=λm or oA 262.0=λ_______________________________________2、8()03885.00259.02323=⎪⎭⎫⎝⎛==kT E avg eVNowavg avg mE p 2=()()()1931106.103885.01011.92--⨯⨯= or2510064.1-⨯=avg p kg-m/sNow9253410225.610064.110625.6---⨯=⨯⨯==p h λm oroA 25.62=λ_______________________________________2、9pp p hch E λν==Nowmp E ee 22= and221⎪⎪⎭⎫ ⎝⎛=⇒=ee e e h m E hp λλ Set e p E E = and e p λλ10=Then22102121⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=p ep h m hm hcλλλ which yieldsmchp 2100=λ100221002mc mc h hc hc E E p p =⋅===λ ()()1001031011.922831⨯⨯=-151064.1-⨯=J 25.10=keV _______________________________________2、10(a) 1034108510625.6--⨯⨯==λhp2610794.7-⨯= kg-m/s431261056.81011.910794.7⨯=⨯⨯==--m p υm/s or 61056.8⨯=υcm/s()()243121056.81011.92121⨯⨯==-υm E211033.3-⨯=Jor 219211008.2106.110334.3---⨯=⨯⨯=E eV (b) ()()23311081011.921⨯⨯=-E2310915.2-⨯=Jor 419231082.1106.110915.2---⨯=⨯⨯=E eV ()()3311081011.9⨯⨯==-υm p2710288.7-⨯=kg-m/s827351009.910288.710625.6---⨯-⨯⨯==p h λmor oA 909=λ_______________________________________2、11(a) ()()1083410110310625.6--⨯⨯⨯===λνhch E 151099.1-⨯=J Now1915106.11099.1--⨯⨯==⇒⋅=e E V V e E41024.1⨯=V V 4.12=kV (b)()()15311099.11011.922--⨯⨯==mE p231002.6-⨯=kg-m/s Then1123341010.11002.610625.6---⨯=⨯⨯==p h λm oroA 11.0=λ_______________________________________2、126341010054.1--⨯=∆=∆x p 2810054.1-⨯=kg-m/s_______________________________________2、13(a) (i) =∆∆x p26103410783.8101210054.1---⨯=⨯⨯=∆p kg-m/s (ii)p m p dp d p dp dE E ∆⋅⎪⎪⎭⎫⎝⎛=∆⋅=∆22 mpp p m p ∆=∆⋅=22 Now mE p 2=()()()1931106.1161092--⨯⨯= 2410147.2-⨯=kg-m/s so ()()31262410910783.8101466.2---⨯⨯⨯=∆E1910095.2-⨯=Jor 31.1106.110095.21919=⨯⨯=∆--E eV(b) (i) 2610783.8-⨯=∆p kg-m/s (ii)()()()1928106.1161052--⨯⨯=p 231006.5-⨯=kg-m/s()()28262310510783.81006.5---⨯⨯⨯=∆E 2110888.8-⨯=Jor 219211055.5106.110888.8---⨯=⨯⨯=∆E eV _______________________________________2、143223410054.11010054.1---⨯=⨯=∆=∆x p kg-m/s150010054.132-⨯=∆=∆⇒=m p m p υυ 36107-⨯=∆υm/s_______________________________________2、15(a) =∆∆t E()()1619341023.8106.18.010054.1---⨯=⨯⨯=∆t s (b) 1034105.110054.1--⨯⨯=∆=∆x p 251003.7-⨯=kg-m/s_______________________________________2、16(a) If ()t x ,1ψ and ()t x ,2ψ are solutionstoSchrodinger's wave equation, then()()()()t t x j t x x V x t x m ∂ψ∂=ψ+∂ψ∂⋅-,,,2112122 and()()()()t t x j t x x V x t x m ∂ψ∂=ψ+∂ψ∂⋅-,,,2222222 Adding the two equations, we obtain()()[]t x t x x m ,,221222ψ+ψ∂∂⋅- ()()()[]t x t x x V ,,21ψ+ψ+()()[]t x t x tj ,,21ψ+ψ∂∂=which is Schrodinger's wave equation 、 So ()()t x t x ,,21ψ+ψ is also a solution 、(b) If ()()t x t x ,,21ψ⋅ψ were a solution toSchrodinger's wave equation, then we could write []()[]21212222ψ⋅ψ+ψ⋅ψ∂∂⋅-x V x m[]21ψ⋅ψ∂∂=tjwhich can be written as⎥⎦⎤⎢⎣⎡∂ψ∂⋅∂ψ∂+∂ψ∂ψ+∂ψ∂ψ-x x x x m 2121222221222()[]⎥⎦⎤⎢⎣⎡∂ψ∂ψ+∂ψ∂ψ=ψ⋅ψ+t t j x V 122121 Dividing by 21ψ⋅ψ, we find⎥⎦⎤⎢⎣⎡∂ψ∂∂ψ∂ψψ+∂ψ∂⋅ψ+∂ψ∂⋅ψ-x x x xm21212121222222112 ()⎥⎦⎤⎢⎣⎡∂ψ∂ψ+∂ψ∂ψ=+t t j x V 112211Since 1ψ is a solution, then()tj x V x m ∂ψ∂⋅ψ⋅=+∂ψ∂⋅ψ⋅-1121212112Subtracting these last two equations, we have⎥⎦⎤⎢⎣⎡∂ψ∂∂ψ∂ψψ+∂ψ∂⋅ψ-x x x m 212122222212t j ∂ψ∂⋅ψ⋅=221 Since 2ψ is also a solution, we have()t j x V x m ∂ψ∂⋅ψ⋅=+∂ψ∂⋅ψ⋅-2222222112 Subtracting these last two equations, we obtain()02221212=-∂ψ∂⋅∂ψ∂⋅ψψ⋅-x V xx mThis equation is not necessarily valid, which means that 21ψψ is, in general, not a solutionto Schrodinger's wave equation 、_______________________________________2、1712cos 2312=⎪⎭⎫⎝⎛⎰+-dx x A π()12sin 2312=⎥⎦⎤⎢⎣⎡++-ππx x A 121232=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--Aso 212=Aor 21=A_______________________________________2、18()1cos 22/12/12=⎰+-dx x n A π()142sin 22/12/12=⎥⎦⎤⎢⎣⎡++-ππn x n x A ⎪⎭⎫⎝⎛==⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--211414122A Aor 2=A_______________________________________2、19Note that 10*=ψ⋅ψ⎰∞dxFunction has been normalized 、 (a) Nowdx a x a P oa o o 24exp 2⎰⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-=dx a x a oa o o⎰⎪⎪⎭⎫⎝⎛-=42exp 2402exp 22o a o o o a x a a ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛-=or()⎪⎭⎫ ⎝⎛--=⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎪⎭⎫⎝⎛--=21exp 1142exp 1o oa a P which yields 393.0=P (b)dx a x a P o oa a o o 224exp 2⎰⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-=dx a x a o oa a o o⎰⎪⎪⎭⎫⎝⎛-=242exp 22exp 22o oa a o o o a x a a ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛-=or()()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛----=21exp 1exp 1Pwhich yields239.0=P (c)dx a x a P oa o o 20exp 2⎰⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-= dx a x a oa o o⎰⎪⎪⎭⎫⎝⎛-=2exp 2o a o o oa x a a 02exp 22⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛-=()()[]12exp 1---= which yields 865.0=P_______________________________________2、20()dx x P 2⎰=ψ(a)dx x a a ⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛⎰2cos 224/0π 4/042sin 22a a a x x a ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=ππ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=a a a ππ42sin 242 ()()⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛=π4182a a a or 409.0=P(b) dx a x a P a a ⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛=⎰π2/4/2cos 2 2/4/42sin 22a a a a x x a ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=ππ()⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=a a a a a ππππ42sin 84sin 42 ⎥⎦⎤⎢⎣⎡--+=π41810412or 0908.0=P(c) dx a x a P a a ⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛=⎰+-π22/2/cos 2 2/2/42sin 22a a a a x x a +-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=ππ()()⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=a a a a a ππππ4sin 44sin 42 or 1=P_______________________________________2、21(a) dx a x a P a ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎰π2sin 224/04/0244sin 22a a a x x a ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=ππ()⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=a a a ππ8sin 82or 25.0=P(b) dx a x a P a a ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎰π2sin 222/4/ 2/4/244sin 22a a a a x x a ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=ππ()()⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=a a a a a ππππ8sin 882sin 42 or 25.0=P(c) dx a x a P a a ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎰+-π2sin 222/2/ 2/2/244sin 22a a a a x x a +-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=ππ()()⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=a a a a a ππππ82sin 482sin 42 or 1=P_______________________________________2、22(a) (i) 481210108108=⨯⨯==k p ωυm/s or 610=p υcm/s9810854.710822-⨯=⨯==ππλk mor oA 54.78=λ (ii)()()431101011.9-⨯==υm p271011.9-⨯=kg-m/s()()24312101011.92121-⨯==υm E2310555.4-⨯=Jor 419231085.2106.110555.4---⨯=⨯⨯=E eV (b) (i) 491310105.1105.1-=⨯-⨯==k p ωυm/s or 610-=p υcm/s991019.4105.122-⨯=⨯==ππλk m or oA 9.41=λ(ii) 271011.9-⨯-=p kg-m/s41085.2-⨯=E eV_______________________________________2、23(a) ()()t kx j Ae t x ω+-=ψ,(b) ()()21921106.1025.0υm E =⨯=- ()2311011.921υ-⨯= so 41037.9⨯=υm/s 61037.9⨯=cm/sFor electron traveling in x -direction, 61037.9⨯-=υcm/s()()4311037.91011.9⨯-⨯==-υm p2610537.8-⨯-=kg-m/s926341076.710537.810625.6---⨯=⨯⨯==p h λm8910097.81076.722⨯=⨯==-πλπk m 1- ()()481037.910097.8⨯⨯=⋅=υωkor 1310586.7⨯=ωrad/s_______________________________________2、24(a) ()()4311051011.9⨯⨯==-υm p 2610555.4-⨯=kg-m/s8263410454.110555.410625.6---⨯=⨯⨯==p h λm881032.410454.122⨯=⨯==-πλπk m 1- ()()481051032.4⨯⨯==υωk131016.2⨯=rad/s (b) ()()631101011.9-⨯=p251011.9-⨯=kg-m/s1025341027.71011.910625.6---⨯=⨯⨯=λm 9101064.810272.72⨯=⨯=-πk m 1- ()()15691064.8101064.8⨯=⨯=ωrad/s _______________________________________2、25()()()2103122342222210751011.9210054.12---⨯⨯⨯==ππn ma n E n()212100698.1-⨯=n E n Jor()19212106.1100698.1--⨯⨯=n E nor ()3210686.6-⨯=n E n eV Then311069.6-⨯=E eV221067.2-⨯=E eV231002.6-⨯=E eV_______________________________________2、26(a) ()()()2103122342222210101011.9210054.12---⨯⨯⨯==ππn ma n E n ()20210018.6-⨯=n J or()()3761.0106.110018.6219202n n E n =⨯⨯=--eV Then376.01=E eV 504.12=E eV 385.33=E eV(b) Ehc ∆=λ ()()19106.1504.1385.3-⨯-=∆E191001.3-⨯=J()()198341001.310310625.6--⨯⨯⨯=λ710604.6-⨯=m or 4.660=λnm_______________________________________2、27(a) 22222ma n E n π =()()()223223423102.11015210054.11015----⨯⨯⨯=⨯πn()622310538.21015--⨯=⨯n or 2910688.7⨯=n (b) 151≅+n E mJ (c) No_______________________________________2、28For a neutron and 1=n :()()()2142722342221101066.1210054.12---⨯⨯==ππma E13103025.3-⨯=Jor6191311006.2106.1103025.3⨯=⨯⨯=--E eV For an electron in the same potential well: ()()()2143122341101011.9210054.1---⨯⨯=πE10100177.6-⨯=J or9191011076.3106.1100177.6⨯=⨯⨯=--E eV _______________________________________2、29Schrodinger's time-independent waveequation()()()()02222=-+∂∂x x V E mx x ψψWe know that()0=x ψ for 2a x ≥ and 2ax -≤We have()0=x V for 22a x a +<<-so in this region()()02222=+∂∂x mEx x ψψThe solution is of the form ()kx B kx A x sin cos +=ψ where22 mEk =Boundary conditions:()0=x ψ at 2,2a x a x +=-= First mode solution: ()x k A x 111cos =ψ where222112ma E a k ππ=⇒=Second mode solution: ()x k B x 222sin =ψ where22222242ma E a k ππ=⇒= Third mode solution: ()x k A x 333cos =ψ where22233293ma E a k ππ=⇒= Fourth mode solution: ()x k B x 444sin =ψ where222442164ma E a k ππ=⇒= _______________________________________2、30The 3-D time-independent wave equation incartesian coordinates for ()0,,=z y x V is:()()()222222,,,,,,z z y x y z y x x z y x ∂∂+∂∂+∂∂ψψψ ()0,,22=+z y x mEψUse separation of variables, so let ()()()()z Z y Y x X z y x =,,ψSubstituting into the wave equation, we obtain222222zZXY y Y XZ x X YZ ∂∂+∂∂+∂∂ 022=+XYZ mEDividing by XYZ and letting222 mEk =, wefind(1) 01112222222=+∂∂⋅+∂∂⋅+∂∂⋅k zZ Z y Y Y x X XWe may set01222222=+∂∂⇒-=∂∂⋅X k xX k x X X x x Solution is of the form()()()x k B x k A x X x x cos sin += Boundary conditions: ()000=⇒=B X and ()an k a x X x x π=⇒==0 where ....3,2,1=x n Similarly, let2221y k y Y Y -=∂∂⋅ and 2221z k zZ Z -=∂∂⋅Applying the boundary conditions, we finda n k y y π=, ....3,2,1=y nan k z z π=, ...3,2,1=z nFrom Equation (1) above, we have02222=+---k k k k z y x or222222 mEk k k k z y x ==++so that()2222222z y x n n n n n n maE E z y x ++=→π _______________________________________2、31 (a)()()()0,2,,22222=⋅+∂∂+∂∂y x mEy y x x y x ψψψSolution is of the form:()y k x k A y x y x sin sin ,⋅=ψWe find()y k x k Ak x y x y x x sin cos ,⋅=∂∂ψ ()y k x k Ak xy x y x x sin sin ,222⋅-=∂∂ψ()y k x k Ak y y x y x y cos sin ,⋅=∂∂ψ()y k x k Ak yy x y x y sin sin ,222⋅-=∂∂ψSubstituting into the original equation, we find:(1) 02222=+--mE k k y xFrom the boundary conditions, 0sin =a k A x , where oA a 40= So an k x x π=, ...,3,2,1=x n Also 0sin =b k A y , where oA b 20= So bn k y y π=, ...,3,2,1=y n Substituting into Eq 、 (1) above⎪⎪⎭⎫ ⎝⎛+=22222222b n an m E y x n n yx ππ (b)Energy is quantized - similar to 1-D result 、There can be more than one quantum stateper given energy - different than 1-D result 、_______________________________________2、32(a) Derivation of energy levels exactly thesame as in the text(b) ()21222222n n maE -=∆π For 1,212==n n Then22223ma E π =∆(i) For oA a 4= ()()()2102722341041067.1210054.13---⨯⨯⨯=∆πE2210155.6-⨯=Jor 319221085.3106.110155.6---⨯=⨯⨯=∆E eV(ii) For 5.0=a cm()()()22272234105.01067.1210054.13---⨯⨯⨯=∆πE3610939.3-⨯=Jor1719361046.2106.110939.3---⨯=⨯⨯=∆E eV _______________________________________2、33(a) For region II, 0>x()()()0222222=-+∂∂x V E mx x O ψψGeneral form of the solution is()()()x jk B x jk A x 22222exp exp -+=ψ where()O V E mk -=222 Term with 2B represents incident wave andterm with 2A represents reflected wave 、 Region I, 0<x()()0212212=+∂∂x mEx x ψψGeneral form of the solution is()()()x jk B x jk A x 11111exp exp -+=ψ where212 mEk =Term involving 1B represents the transmitted wave and the term involving 1A represents reflected wave: but if a particle is transmitted into region I, it will not be reflected so that 01=A 、 Then()()x jk B x 111exp -=ψ()()()x jk B x jk A x 22222exp exp -+=ψ (b)Boundary conditions: (1) ()()0021===x x ψψ(2) 0201==∂∂=∂∂x x x x ψψ Applying the boundary conditions to the solutions, we find221B A B +=112222B k B k A k -=-Combining these two equations, we find212122B k k k k A ⋅⎪⎪⎭⎫⎝⎛+-=212212B k k k B ⋅⎪⎪⎭⎫⎝⎛+=The reflection coefficient is21212*22*22⎪⎪⎭⎫ ⎝⎛+-==k k k k B B A A R The transmission coefficient is()2212141k k k k T R T +=⇒-=_______________________________________2、34()()x k A x 222exp -=ψ()()x k A A x P 2*2222exp -==ψwhere ()222 E V m k o -=()()()34193110054.1106.18.25.31011.92---⨯⨯-⨯=9210286.4⨯=k m 1- (a) For 101055-⨯==oA x m ()x k P 22exp -=()()[]109105102859.42exp -⨯⨯-= 0138.0=(b) For 10101515-⨯==oA x m()()[]1091015102859.42exp -⨯⨯-=P61061.2-⨯= (c) For 10104040-⨯==oA x m()()[]1091040102859.42exp -⨯⨯-=P151029.1-⨯=_______________________________________2、35()a k VE VET o o22exp 116-⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛≅ where ()222 E V m k o -=()()()34193110054.1106.11.00.11011.92---⨯⨯-⨯=or 2k 910860.4⨯=m 1-(a) For 10104-⨯=a m()()[]1091041085976.42exp 0.11.010.11.016-⨯⨯-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛≅T 0295.0=(b) For 101012-⨯=a m()()[]10910121085976.42exp 0.11.010.11.016-⨯⨯-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛≅T 51024.1-⨯=(c) υe N J t =, where t N is the density of transmitted electrons 、 1.0=E eV 20106.1-⨯=J ()23121011.92121υυ-⨯==m510874.1⨯=⇒υm/s 710874.1⨯=cm/s()()719310874.1106.1102.1⨯⨯=⨯--t N810002.4⨯=t N electrons/cm 3 Density of incident electrons,10810357.10295.010002.4⨯=⨯=i N cm 3-_______________________________________2、36()a k VEV E T O O 22exp 116-⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛≅ (a) For ()o m m 067.0=()222 E V m k O -=()()()()()2/1234193110054.1106.12.08.01011.9067.02⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⨯⨯-⨯=---or9210027.1⨯=k m 1- Then⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=8.02.018.02.016T()()[]109101510027.12exp -⨯⨯-⨯ or138.0=T (b) For ()o m m 08.1=2k =()()()()()2/1234193110054.1106.12.08.01011.908.12⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⨯⨯-⨯---or9210124.4⨯=k m 1- Then⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=8.02.018.02.016T()()[]109101510124.42exp -⨯⨯-⨯or51027.1-⨯=T_______________________________________2、37()a k VE VET o o22exp 116-⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛≅ where ()222 E V m k o -=()()()341962710054.1106.1101121067.12---⨯⨯⨯⨯-⨯=1410274.7⨯=m 1- (a)()()[]14141010274.72exp 121112116-⨯-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛≅T[]548.14exp 222.1-=710875.5-⨯= (b)()()710875.510-⨯=T()[]a 1410274.72exp 222.1⨯-=()⎪⎭⎫⎝⎛⨯=⨯-61410875.5222.1ln 10274.72a or 1410842.0-⨯=a m_______________________________________2、38Region I ()0<x , 0=V ;Region II ()a x <<0, O V V = Region III ()a x >, 0=V (a) Region I:()()()x jk B x jk A x 11111exp exp -+=ψ(incident) (reflected)where212 mEk =Region II:()()()x k B x k A x 22222exp exp -+=ψwhere ()222 E V m k O -=Region III:()()()x jk B x jk A x 13133exp exp -+=ψ (b)In Region III, the 3B term represents areflected wave 、 However, once a particleis transmitted into Region III, there will not be a reflected wave so that 03=B 、(c) Boundary conditions:At 0=x : ⇒=21ψψ2211B A B A +=+ ⇒=dx d dx d 21ψψ22221111B k A k B jk A jk -=-At a x =: ⇒=32ψψ()()a k B a k A 2222exp exp -+()a jk A 13exp =⇒=dxd dx d 32ψψ()()a k B k a k A k 222222exp exp -- ()a jk A jk 131exp = The transmission coefficient is defined as*11*33A A A A T = so from the boundary conditions, wewant to solve for 3A in terms of 1A 、Solvingfor 1A in terms of 3A , we find(){()()[]a k a k k k k k jA A 2221222131exp exp 4---+= ()()[]}a k a k k jk 2221exp exp 2-+-()a jk 1exp ⨯We then find()(){()[a k k k k k A A A A 22122221*33*11exp 4-=()]22exp a k --()()[]}2222221exp exp 4a k a k k k -++ We have()222 E V m k O -= If we assume that E V O >>, then a k 2 will be large so that ()()a k a k 22exp exp ->> We can then write()(){()[]222122221*33*11exp 4a k k k k k A A A A -= ()[]}222221exp 4a k k k + which becomes()()()a k k k k k A A A A 22122221*33*112exp 4+= Substituting the expressions for 1k and2k , we find222212 O mV k k =+ and()⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=22222122 mE E V m k k O ()()E E V m O -⎪⎭⎫ ⎝⎛=222()()E V E V m O O ⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛=1222 Then()()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=E V E V m a k mV A A A A O O O12162exp 222222*33*11()a k V EV E A A O O 2*332exp 116-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=Finally,()a k V E V E A A A A T O O 2*11*332exp 116-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛== _____________________________________2、39 Region I: 0=V ()()⇒=+∂∂0212212x mE x x ψψ()()()x jk B x jk A x 11111exp exp -+=ψincidentreflectedwhere212 mEk = Region II: 1V V = ()()()⇒=-+∂∂02221222x V E m x x ψψ ()()()x jk B x jk A x 22222exp exp -+=ψ transmitted reflectedwhere()2122V E m k -= Region III: 2V V =()()()⇒=-+∂∂02322232x V E m x x ψψ()()x jk A x 333exp =ψtransmitted where ()2232 V E m k -=There is no reflected wave in Region III 、 The transmission coefficient is defined as:*11*3313*11*3313A A A A k k A A A A T ⋅=⋅=υυ From the boundary conditions, solve for 3Ain terms of 1A 、 The boundary conditions are:At 0=x : ⇒=21ψψ2211B A B A +=+⇒∂∂=∂∂xx 21ψψ22221111B k A k B k A k -=-At a x =: ⇒=32ψψ ()()a jk B a jk A 2222exp exp -+ ()a jk A 33exp =⇒∂∂=∂∂xx 32ψψ()()a jk B k a jk A k 222222exp exp --()a jk A k 333exp = But ⇒=πn a k 22 ()()1exp exp 22=-=a jk a jk Then, eliminating 1B , 2A , 2B from the boundary condition equations, we find()()23131231211344k k k k k k k k k T +=+⋅= _______________________________________2、40 (a) Region I: Since E V O >, we can write()()()0212212=--∂∂x E V m x x O ψψRegion II: 0=V , so()()0222222=+∂∂x mEx x ψψRegion III: 03=⇒∞→ψV The general solutions can be written, keeping in mind that 1ψ must remain finite for 0<x , as()()x k B x 111exp =ψ()()()x k B x k A x 22222cos sin +=ψ ()03=x ψ where()212 E V m k O -= and222 mEk =(b) Boundary conditionsAt 0=x : ⇒=21ψψ21B B = 221121A k B k xx =⇒∂∂=∂∂ψψ At a x =: ⇒=32ψψ ()()0cos sin 2222=+a k B a k A or()a k A B 222tan -= (c)12122211B k k A A k B k ⎪⎪⎭⎫⎝⎛=⇒=and since 21B B =, then2212B k k A ⎪⎪⎭⎫⎝⎛=From ()a k A B 222tan -=, we can write ()a k B k k B 22212tan ⎪⎪⎭⎫⎝⎛-=or()a k k k 221tan 1⎪⎪⎭⎫⎝⎛-=This equation can be written as⎥⎥⎦⎤⎢⎢⎣⎡⋅⋅--=a mE E EV O 22tan 1 or⎥⎥⎦⎤⎢⎢⎣⎡⋅-=-a mE E V EO 22tan This last equation is valid only forspecific values of the total energy E 、 The energy levels are quantized 、_______________________________________2、41 ()222424ne m E o o n ∈-=π(J)()222324n e m o o ∈-=π(eV)()()()[]()22342123193110054.121085.84106.11011.9n----⨯⨯⨯⨯-=πor258.13n E n -= (eV) 58.1311-=⇒=E n eV 395.322-=⇒=E n eV 51.133-=⇒=E n eV 849.044-=⇒=E n eV_______________________________________2、42We have⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫⎝⎛⋅=o oa r a exp 112/3100πψ and*10010024ψψπr P =⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛⋅⋅=o o a r a r 2exp 11432ππ or()⎪⎪⎭⎫ ⎝⎛-⋅=o o a r r a P 2exp 423 To find the maximum probability()0=drr dP()()⎪⎪⎭⎫ ⎝⎛-⎪⎩⎪⎨⎧⎪⎪⎭⎫ ⎝⎛-=o o o a r r a a 2exp 2423 ⎪⎭⎪⎬⎫⎪⎪⎭⎫ ⎝⎛-+o a r r 2exp 2 which giveso oa r a r=⇒+-=10 or o a r = is the radius that gives the greatest probability 、 _______________________________________2、43100ψ is independent of θ and φ, so the wave equation in spherical coordinates reduces to ()()021222=-+⎪⎭⎫ ⎝⎛∂∂∂∂⋅ψψr V E m r r r r o where()r a m r e r V o o o 224 -=∈-=π For ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⋅=o o a r a exp 112/3100πψ Then ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⋅=∂∂o o o a r a a r exp 1112/3100πψ so⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⋅-=∂∂o o a r r a r r exp 1122/51002πψ We then obtain2/5100211⎪⎪⎭⎫⎝⎛⋅-=⎪⎪⎭⎫ ⎝⎛∂∂∂∂o a r r r πψ ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⨯o o o a r a r a r r exp exp 22 Substituting into the wave equation, we have⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⋅-o o o o a r a r a r r a r exp exp 21122/52π⎥⎦⎤⎢⎣⎡++r a m E m o o o 2220exp 112/3=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⋅⎪⎪⎭⎫ ⎝⎛⨯o o a r a π where ()222241224oo o o a m e m E E -=∈-==π Then the above equation becomes⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡--⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⋅o o o o a r r a r a r a 222/321exp 11π 022222=⎪⎭⎪⎬⎫⎪⎪⎭⎫ ⎝⎛+-+r a m a m m o o o o oor ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⋅o o a r a exp 112/3π0211222=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎪⎭⎫ ⎝⎛+-++-⨯r a a a r a o o o o which gives 0 = 0 and shows that 100ψ is indeed a solution to the wave equation 、 _______________________________________ 2、44All elements are from the Group I column ofthe periodic table 、 All have one valence electron in the outer shell 、 _______________________________________。

相关文档
最新文档