灰度预测模型详解举例分析
灰色预测模型及MATLAB实例

灰⾊预测模型及MATLAB实例下⾯将主要从三⽅⾯进⾏⼤致讲解,灰⾊预测概念及原理、灰⾊预测的分类及求解步骤、灰⾊预测的实例讲解。
⼀、灰⾊预测概念及原理:1.概述:关于所谓的“颜⾊”预测或者检测等,⼤致分为三⾊:⿊、⽩、灰,在此以预测为例阐述。
其中,⽩⾊预测是指系统的内部特征完全已知,系统信息完全充分;⿊⾊预测指系统的内部特征⼀⽆所知,只能通过观测其与外界的联系来进⾏研究;灰⾊预测则是介于⿊、⽩两者之间的⼀种预测,⼀部分已知,⼀部分未知,系统因素间有不确定的关系。
细致度⽐较:⽩>⿊>灰。
2.原理:灰⾊预测是通过计算各因素之间的关联度,鉴别系统各因素之间发展趋势的相异程度。
其核⼼体系是灰⾊模型(Grey Model,GM),即对原始数据做累加⽣成(或者累减、均值等⽅法)⽣成近似的指数规律在进⾏建模的⽅法。
⼆、灰⾊预测的分类及求解步骤:1.GM(1,1)与GM(2,1)、DGM、Verhulst模型的分类⽐较:预测模型适⽤场景涉及的序列GM(1,1)模型⼀阶微分⽅程,只含有1个变量的灰⾊模型。
适⽤于有较强指数规律的序列。
累加序列均值序列GM(2,1)模型适⽤于预测预测具有饱和的S形序列或者单调的摆动发展序列缺陷。
累加序列累减序列均值序列DGM模型累加序列累减序列Verhulst模型累加序列均值序列2.求解步骤思维导图:其中预测过程可能会涉及以下三种序列、⽩化微分⽅程、以及⼀系列检验,由于⼤致都相同,仅仅是某些使⽤累加和累减,⽽另外⼀些则使⽤累加、累减和均值三个序列的差别⽽已。
于是下⾯笔者将对其进⾏归纳总结再进⾏绘制思维导图,帮助读者理解。
(1)原始序列(参考数据列):(2)1次累加序列(1-AGO):(3)1次累减序列(1-IAGO ):(也就是原始序列中,后⼀项依次减去前⼀项的值,例如,[x(2)-x(1),x(3-x(2),...,x(n)-x(n-1))]。
)(4)均值⽣成序列:(这是对累加序列"(前⼀项+后⼀项)/2"得出的结果。
灰色预测模型2015

? 灰色系统是通过对原始数据的整理来寻找其变化规 律的,这是一种 就数据寻找数据的现实规律 的途径, 称为灰色序列生成。
? (灰色系统理论认为,尽管客观表象复杂,数理离 乱,但总是有整体功能的,因此必然蕴含某种内在 规律。关键在于如何选择适当的方式去挖掘和利用
它。一切灰色序列都能 通过某种生成弱化其随机性,
显现其规律性 。)
? 灰色理论中 常用的生成方法 有:
累加生成( AGO),即累加生成算子;
累减生成(IAGO)或逆累加生成以及均值生成 Z。
? 生成法如下:
? 设原始数据列为:x(0) ? {x(0) (1),x(0) (2), , x(0) (n)},则
? ? ? ? a? ?
k?2
k?2
n
(n ? 1)
z(1) (k)
2
?
? ?
n
k?2
2
z(1)
(k
)
? ?
k?2
? k? 2
?
? ? ? ? ? ? n
n
x(0) (k) ?
z(1) (k) 2 ?
n
n
z(1) (k) ?
z(1) (k)
b? ? k? 2
k?2
k?2
k?2
? ? ? ? n
(n ? 1)
其中x(0)(k)>=0,k=1,2, …,n; X(1)为X(0)的1-AGO序列:
X(1) ? (x(1)(1),x(1)(2),???, x(1)(n))
k
? 其中x(1) (k) ? x(0)(i), k ? 1,2,???, n ; Z(1)为X(1)的紧邻均值生成序
数学建模-灰色预测模型(讲解

2 灰色系统的模型
在灰色系统理论中,把一切随机变量都看作灰色数,
即使在指定范围内变化的所有白色数的全体,对灰数处理 主要是利用数据处理的方法去寻求数据间的内在规律,通 过对已知数据列中的数据进行处理而产生新的数据列,以 此来研究寻求数据的规律性,这种方法称为数据的生成。
得到原始数据序列
7.3 销售额预测
注意到一阶常微分方程是导出GM(1,1)模型的桥梁,在我 们应用GM(1,1)模型于实际问题预测时,不必求解一阶常 微分方程。
7.2 灰色系统的模型
4.GM(1,1)的建模步骤 综上所述,GM(1,1)的建模步骤如下:
销售额预测
7.3 销售额预测
随着生产的发展、消费的扩大,市场需求通常总是 增加的,一个商店、一个地区的销售额常常呈增长趋 势. 因此,这些数据符合建立灰色预测模型的要求。
或称相减生成,它是指后前两个数据之差,如上例中
7.2 灰色系统的模型
x(1) (5) x(1) (5) x(1) (4) 34 27 7, x(1) (4) x(1) (4) x(1) (3) 27 17 10, x(1) (3) x(1) (3) x(1) (2) 17 9 8, x(1) (2) x(1) (2) x(1) (1) 9 6 3, x(1) (1) x(1) (1) x(1) (0) 6 0 6. 归纳上面的式子得到如下结果:一次后减
1 灰色系统的定义和特点 2 灰色系统的模型 3 Sars 疫情 4 销售额预测 5 城市道路交通事故次数的灰色预测 6 城市火灾发生次数的灰色预测 7灾变与异常值预测
灰色预测模型

灰色系统模型(Grey Model,GM)一:解决的关键问题 (所谓灰色系统是指部分信息已知而部分信息未知的系统,灰色系统所要考察和研究的是对信息不完备的系统,通过已知信息来研究和预测未知领域从而达到了解整个系统的目的)灰色系统模型作为一种预测方法广泛应用于工程控制,经济管理,社会系统等众多领域。
二:GM(1,1)模型(一):对原始序列累加处理一次累加生产序列②(即1-AGO序列),表示为其中,一次累加序列(1)X 的第k 项由原序列的前k 项和产生,即: 由(1)X 的相邻项平均得到(1)X 的紧邻均值生成序列(1)z ,表示为:根据上述序列,有灰色系统模型GM(1,1)的基本形式:(二)构造GM(1,1)模型方程组的矩阵形式,并求解参数 GM(1,1)模型的微分方程基本形式:(三)求的时间响应序列,累减得到原序列的预测值(四)模型检验残差的均值、方差分别为:21S C S 称为均方差比值,对于给定的00C ,当0C C 时,称模型为均方差比合格模型;1(()0.6745)p p k S 称为小误差概率,对于给定的00P ,当0P P 时,称模型为小误差概率合格模型。
一般均方差比值C 越小越好(因为C 小说明S 小,1S 大,即残差方差小,原始数据方差大,说明残差比较集中,摆动幅度小,原始数据比较分散,摆动幅度大,所以模拟效果好,要求2S 与1S 相比尽可能小),以及小误差概率p 越大越好,给定000,,,C p 的一组取值,就确定了检验模型模拟精度的一个等级,常用的精度等级见表1。
软件DPS 的分析结果也提供了C 、p 的检验结果。
(五)残差修正模型(六)建立新陈代谢GM(1,1)进行动态预测在实际建模过程中,原始数据序列的数据不一定全部用来建模。
我们在原始数据序列中取出一部分数据,就可以建立一个模型。
一般说来,取不同的数据,建立的模型也不一样,即使都建立同类的GM(1,1)模型,选择不同的数据,参数a,b的值也不一样。
灰色预测模型GM(1_1)及其应用

灰色预测模型GM(1,1)的应用一、问题背景:蠕变是材料在高温下的一个重要性能。
处于高温状态下的材料长期受到载荷作用时,即使其载荷较低,并且在短时间的高温拉伸试验中材料不发生变形,但在此情况下仍会有微小的蠕变,极端的情况下,甚至会使材料发生破坏。
高温材料多应用于各种车辆的发动机及冶金厂中各种设备上,如果因蠕变引起破坏,可能造成很大的事故。
为了保证设备的安全可靠,在某一使用温度下,预先知道该材料对不同载荷应力下断裂的时间是很重要的。
过去,人们都是通过蠕变试验测量断裂时间。
而做蠕变试验时,需要很长时间才能得到结果,即使通过试验得出的数据,也只是对某几个具体试样而言,存在很大的偶然性,不能代表普遍的规律。
如果将实测的数据用灰色系统理论来处理,可以预测在某一温度下的任何载荷应力的断裂时间。
二、低合金钢铸件蠕变性能的灰色预测下面是对Cr-mo-0.25V 低合金钢铸件高温蠕变情况利用灰色系统理论进行研究。
在500℃的高温下,已测得此铸件在载荷分别为37,36,35,34,33(kg/mm 2)情况下的蠕变断裂时间见下表。
数 列 序 数 K1 2 3 4 5载荷应力(kg/mm 2) 37 36 35 34 33 断裂时间()(100)0(K X ⨯小时)2.38 2.80 4.25 6.85 11.30 一次累加数列)()1(K X 2.38 5.18 9.43 16.28 27.581、建立GM (1,1)模型(1)数据处理:将同一数据列的前k 项元素累加后生成新数据列的第k 项元素。
即根据断裂时间数列)()0(k X 由∑==kn n X k X 1)0()1()()(得到 )()1(k X 。
(2)建立矩阵B,y:根据⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+--+-+-=1)]()1([5.01)]3()2([5.01)]2()1([5.0)1()1()1()1()1()1(N X N X X X X X B 得到 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=19.2118.12130.7178.3B根据 T N N X X X Y )](,),3(),2([)0()0()0( =,得到 T N Y ]3.11,85.6,25.4,80.2[=(3)求出逆矩阵1()T BB - (4)作最小二乘估计,求参数u a ,N T T Y B B B u a 1)(ˆ-=⎪⎪⎭⎫⎝⎛=α 可得,⎪⎪⎭⎫ ⎝⎛-=97.05.0ˆα a = -0.5, u=0.97(5)建立时间响应函数,计算拟合值把a 和u 分别代入au e a u X t X at +-=+-))1(()1(ˆ)0()1(可得到解为2.24.4)1(ˆ5.0)1(-=+t e t X, 取t 为应力序数k 时,即得到时间响应方程为:2.24.4)1(ˆ5.0)1(-=+k e k X即可得到生成累加数列),2,1()1(ˆ)1( =+k k X 。
灰色预测原理及实例

灰色预测原理及实例
一、灰色预测原理
灰色预测,是指根据动态系统的过去试验数据和实测数据,利用灰色规律进行预测的一种数学方法。
灰色预测的基本思想是:由内在原理和系统的实际运行数据,建立有关系的关于未来时间的数学模型,即所谓的灰色系统模型,从而建立未来状态的预测模型。
二、灰色预测实例
1、灰色模型在汽车行业的应用
汽车行业是一个特殊的行业,其市场受到很多因素的影响,因此,在汽车行业预测中,灰色模型能够很好地发挥其优势。
首先,根据汽车市场的详细统计数据,如汽车生产量、销售量,可以采集过去一定时间段内(如一年、两年)汽车的生产量及销售量等数据,将这些数据经过一定的模型处理,形成一个灰色模型,利用该模型可以预测汽车行业的今后发展趋势。
2、灰色模型在电力行业的应用。
线性回归和灰色预测模型案例

预测未来2015年到2020年的货运量灰色预测模型是通过少量的、不完全的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测. 预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断.灰色系统的定义灰色系统是黑箱概念的一种推广;我们把既含有已知信息又含有未知信息的系统称为灰色系统.作为两个极端,我们将称信息完全未确定的系统为黑色系统;称信息完全确定的系统为白色系统.区别白色系统与黑色系统的重要标志是系统各因素之间是否具有确定的关系;建模原理模型的求解原始序列为:)16909 15781 13902 12987 12495 11067 101499926 9329 10923 7691())6(),...1(()0()0()0(==x x x构造累加生成序列)131159,114250,98469,84567,71580,59085,48018,37869,27943,18614,7691())6(),...1(()1()1()1(==x x x归纳上面的式子可写为称此式所表示的数据列为原始数据列的一次累加生成,简称为一次累加生成.对(1)X 作紧邻均值生成,....2))1()((21)()1()1()1(=-+=k k z k z k zMATLAB 代码如下:x=7691 18614 27943 37869 48018 590857 71580 84567 98469 114250 131159; z1=x1; for i=2:6 zi=xi+xi-1; endformat long g z z =Columns 1 through 37691Columns 4 through 632906Columns 7 through 991518Columns 10 through 11因此)53551.5 42943.5 3290623278.5 13152.5 ())5(),...1(()1()1()1(==z z z构造B 矩阵和Y 矩阵;对参数ˆα进行最小二乘估计,采用matlab 编程完成解答如下:B= -32906 -91518 ',ones10,1;Y=18614 27943 37869 48018 59085 71580 84567 98469 114250 131159'; format long g a=invB'BB'Y结果如下:a =即∂=,u=59277∂u = 则GM1,1白化方程为59277x 085.0)1(=-dtdx 预测模型为:697376.471-471.705067)1(ˆk *0.085)1(e k x =+再次通过线性回归模型对货运量进行预测:线性回归预测模型:一、定义一元线性回归预测是处理因变量y与自变量x 之间线性关系的回归预测法.二、模型的建立:1,设年份y, 货运量x y随x的变化函数,建立一元线性回归方程:Y=β0 + β1x其中β0、β1称为回归系数;散点图如下:首先根据x、y的现有统计数据,在直角坐标系中作散点图,观察y随x而变是否为近似的线性关系;若是,则求出的β0、β1值,就可确定其数学模型,然后由x的未来变化去求相应的y 值;,2,确定方法—最小二乘法使拟合的数值与实际值的总方差为最小,即拟合程度最好,则得两者之差e i根据极值原理,式对a、b分别求偏导,并令其=0,得z)()(()()222iiiiQiia aa b aaa ba bxyy xy x∂∂=∂∂∂=---∂=-----∑∑∑三,模型的求解:运用MATLAB 软件对数据进行一元线性回归分析:代码如下:x=1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 '; x=ones11,1 x;y=7691 10923 9329 9926 10149 11067 12495 12987 13902 15781 16909'; plotx,y, '+';b,bint,r,rint,stats=regressy,x b,bint ,stats ,rcoplotr,rint;()()()()()()()()222i i i i i i i Q y b x x y i b b y b x b x b y b x xy x x y x x ∂∂⎡⎤=---∑⎣⎦∂∂∂⎡⎤⎡⎤=-----⎣⎦⎣⎦∂⎡⎤=-----⎣⎦∑∑()()()()()()2002(7.4.8)i i i i xy xxx x y y b x x ix x y y b x xiS S =---=---==-∑∑∑∑令其,即所以结果:b =+006bint =+006stats =+005注:+006 为110^6 后同理因为,p<,所以可知回归方程为y=-1579600 + 800x 先观察观察模型残差:如图所示,应该剔除第2组数据;MATLAB代码为:x=1991 1993 1994 1995 1996 1997 1998 1999 2000 2001 ';x=ones10,1 x;y=7691 9329 9926 10149 11067 12495 12987 13902 15781 16909'; plotx,y, '+';b,bint,r,rint,stats=regressy,xb,bint ,stats ,rcoplotr,rint;结果为:b =+006bint =+006stats =+005其中:+006 为110^6同理+005 为110^5剔除之后结果如下:回归系数回归系数估计值回归系数置信区间β0+006 +006 +005β1+006 +006 +006R2= F= +005 p< s2 = +005将异常数据去除后,再次对去除异常点的数据进行最小二乘法拟合一个多元回归模型,残差图如下:因为,p<, 无异常数据可剔除因此,可知最终回归方程为y=-1787900 + 900x,对ployfit拟合的函数进行评价与估计;运用polyconf函数对多项式评价和置信区间估计,matlab代码如下:x=1991 1993 1994 1995 1996 1997 1998 1999 2000 2001 ;y=7691 9329 9926 10149 11067 12495 12987 13902 15781 16909;p,S=polyfitx,y,1结果为:p =+006S =R: 2x2 doubledf: 8normr: +003对2015年的货运量预测,即y=polyconfp,2015y =+004DELTA =+003其中所以预测区间为:+004-+003, +004++003即,2015年的货运量在之间;同理对2016年的货运量预测,即y =+004DELTA =+003所以预测区间为:+004-+003, +004++003即,2016年的货运量在之间;对2017年的货运量预测,即y =+004DELTA =+003所以预测区间为:+004- +003, +004++003 即,2017年的货运量在之间;对2018年的货运量预测,即y =+004DELTA =+003所以预测区间为:+004- +003, +004+ +003 即,2018年的货运量在之间;对2019年的货运量预测,即y =+004DELTA =+003所以预测区间为:+004-+003, +004+ +003即,2019年的货运量在之间;对2020年的货运量预测,即y =+004DELTA =+003所以预测区间为:+004-+003, +004++003即,2020年的货运量在之间;附:MATLAB代码:1, x=1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 ';x=ones11,1 x;y=7691 10923 9329 9926 10149 11067 12495 12987 13902 15781 16909'; plotx,y, '+';b,bint,r,rint,stats=regressy,xb,bint ,stats ,rcoplotr,rint;2,x=1991 1993 1994 1995 1996 1997 1998 1999 2000 2001 ';x=ones10,1 x;y=7691 9329 9926 10149 11067 12495 12987 13902 15781 16909'; plotx,y, '+';b,bint,r,rint,stats=regressy,xb,bint ,stats ,rcoplotr,rint;3,x=1991 1993 1994 1995 1996 1997 1998 1999 2000 2001 ;y=7691 9329 9926 10149 11067 12495 12987 13902 15781 16909;p,S=polyfitx,y,1y=polyconfp,2015。
【数学建模】灰色预测模型(预测)

【数学建模】灰色预测模型(预测)文章目录•一、算法介绍•o 1.灰色预测模型o 2.灰色系统理论o 3. 针对类型o 4. 灰色系统o 5. 灰色生成o 6. 累加生成o7. GM(1,1)模型o▪推导▪精度检验▪精度检验等级参照表•二、适用问题•三、算法总结•o 1. 步骤•四、应用场景举例•o 1. 累加生成o 2. 建立GM(1,1)模型o 3. 检验预测值•五、MATLAB代码•六、实际案例•七、论文案例片段(待完善)灰色预测模型主要针对数学建模问题中的一些小的子问题进行求解,如果想直接使用请跳转至——四、五另外之前看过一篇比较完整的【数学建模常用算法】之灰色预测模型GM,作者:張張張張视频回顾一、算法介绍1.灰色预测模型灰色预测模型(Gray Forecast Model)是通过少量的、不完全的的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测.预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断。
2.灰色系统理论灰色系统理论是研究解决灰色系统分析、建模、预测、决策和控制的理论.灰色预测是对灰色系统所做的预测。
目前常用的一些预测方法(如回归分析等),需要较大的样本,若样本较小,常造成较大误差,使预测目标失效。
灰色预测模型所需建模信息少,运算方便,建模精度高,在各种预测领域都有着广泛的应用,是处理小样本预测问题的有效工具。
3. 针对类型灰色系统理论是由华中理工大学邓聚龙教授于1982年提出并加以发展的。
二十几年来,引起了不少国内外学者的关注,得到了长足的发展。
目前,在我国已经成为社会、经济、科学技术在等诸多领域进行预测、决策、评估、规划控制、系统分析与建模的重要方法之一。
特别是它对时间序列短、统计数据少、信息不完全系统的分析与建模,具有独特的功效,因此得到了广泛的应用.4. 灰色系统灰色系统是黑箱概念的一种推广。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
灰色系统预测重点内容:灰色系统理论的产生和发展动态,灰色系统的基本概念,灰色系统与模糊数学、黑箱方法的区别,灰色系统预测GM (1,1)模型,GM(1,N)模型,灰色系统模型的检验,应用举例。
1灰色系统理论的产生和发展动态1982邓聚龙发表第一篇中文论文《灰色控制系统》标志着灰色系统这一学科诞生。
1985灰色系统研究会成立,灰色系统相关研究发展迅速。
1989海洋出版社出版英文版《灰色系统论文集》,同年,英文版国际刊物《灰色系统》杂志正式创刊。
目前,国际、国内200多种期刊发表灰色系统论文,许多国际会议把灰色系统列为讨论专题。
国际著名检索已检索我国学者的灰色系统论著500多次。
灰色系统理论已应用范围已拓展到工业、农业、社会、经济、能源、地质、石油等众多科学领域,成功地解决了生产、生活和科学研究中的大量实际问题,取得了显著成果。
2灰色系统的基本原理2.1灰色系统的基本概念我们将信息完全明确的系统称为白色系统,信息未知的系统称为黑色系统,部分信息明确、部分信息不明确的系统称为灰色系统。
系统信息不完全的情况有以下四种:1.元素信息不完全2.结构信息不完全3.边界信息不完全4.运行行为信息不完全2.2灰色系统与模糊数学、黑箱方法的区别主要在于对系统内涵与外延处理态度不同;研究对象内涵与外延的性质不同。
灰色系统着重外延明确、内涵不明确的对象,模糊数学着重外延不明确、内涵明确的对象。
“黑箱”方法着重系统外部行为数据的处理方法,是因果关系的两户方法,使扬外延而弃内涵的处理方法,而灰色系统方法是外延内涵均注重的方法。
2.3灰色系统的基本原理 公理1:差异信息原理。
“差异”是信息,凡信息必有差异。
公理2:解的非唯一性原理。
信息不完全,不明确地解是非唯一的。
公理3:最少信息原理。
灰色系统理论的特点是充分开发利用已有的“最少信息”。
公理4:认知根据原理。
信息是认知的根据。
公理5:新信息优先原理。
新信息对认知的作用大于老信息。
公理6:灰性不灭原理。
“信息不完全”是绝对的。
2.4灰色系统理论的主要内容灰色系统理论经过10多年的发展,已基本建立起了一门新兴学科的结构体系,其主要内容包括以“灰色朦胧集”为基础的理论体系、以晦涩关联空间为依托的分析体系、以晦涩序列生成为基础的方法体系,以灰色模型(G ,M )为核心的模型体系。
以系统分析、评估、建模、预测、决策、控制、优化为主体的技术体系。
灰色关联分析 灰色统计 灰色聚类3灰色系统预测模型灰色预测方法的特点表现在:首先是它把离散数据视为连续变量在其变化过程中所取的离散值,从而可利用微分方程式处理数据;而不直接使用原始数据而是由它产生累加生成数,对生成数列使用微分方程模型。
这样,可以抵消大部分随机误差,显示出规律性。
3.1灰色系统理论的建模思想下面举一个例子,说明灰色理论的建模思想。
考虑4个数据,记为)4(),3(),2(),1()0()0()0()0(X X X X上图表明原始数据)0(X 没有明显的规律性,其发展态势是摆动的。
如果将原始数据作累加生成,记第K 个累加生成为)()1(K X ,并且1)1()1()0()1(==X X321)2()1()2()0()0()1(=+=+=X X X5.45.121)3()2()1()3()0()0()0()1(=++=++=X X X X5.735.121)4()3()2()1()4()0()0()0()0()1(=+++=+++=X X X X X上图表明生成数列X 是单调递增数列。
3.2灰色系统预测模型建立 1. 数列预测GM (1,1)模型灰色系统理论的微分方程成为Gm 模型,G 表示gray (灰色),m 表示model (模型),Gm (1,1)表示1阶的、1个变量的微分方程模型。
Gm (1,1)建模过程和机理如下: 记原始数据序列)0(X 为非负序列其中,n k k x ,,2,1,0)()0( =≥ 其相应的生成数据序列为)1(X其中,n k i x k x k i ,,2,1,)()(1)0()1( ==∑=)1(Z 为)1(X 的紧邻均值生成序列 {})(,),2(),1()1()1()1()1(n z z z Z =其中,n k k x k x k Z ,2,1),1(5.0)(5.0)()1()1()1(=-+=称b k az k x =+)()()1()0(为Gm(1,1)模型,其中a ,b 是需要通过建模求解的参数,若T =),(b a a 为参数列,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=)()3()2()0()0()0(n x x x Y ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=)5(1)4(1)3(1)2()1()1()1()1(z z z z B 则求微分方程b k az k x =+)()()1()0(的最小二乘估计系数列,满足Y B B B a T T 1)(ˆ-= 称b ax dtdx =+)1()1(为灰微分方程,b k az k x =+)()()1()0(的白化方程,也叫影子方程。
如上所述,则有1.白化方程b ax dtdx =+)1()1(的解或称时间响应函数为 abe a b x t xat +-=-))0(()(ˆ)1()1( 2.Gm(1,1)灰微分方程b k az k x =+)()()1()0(的时间响应序列为()()()()()()()()(){}n x x x x X 00000,...,3,2,1=()()()()()()()()(){}n x x x x X 11111,..,.3,2,1=n k abe a b x k xak ,,2,1,))0(()1(ˆ)1()1( =+-=+- 3.取)1()0()0()1(x x =,则n k abe a b x k xak ,,2,1,))1(()1(ˆ)0()1( =+-=+- 4.还原值n k k x k x k x,,2,1),(ˆ)1(ˆ)1(ˆ)1()1()0( =-+=+ 2. 系统综合预测GM (1,N )模型P1344灰色系统模型的检验定义1.设原始序列{})(,),2(),1()0()0()0()0(n x x x X =相应的模型模拟序列为 {})(ˆ,),2(ˆ),1(ˆˆ)0()0()0()0(n x x x X= 残差序列{})(),2(),1()0(n εεεε ={})(ˆ)(,),2(ˆ)2(),1(ˆ)1()0()0()0()0()0()0(n x n x x x x x ---= 相对误差序列⎭⎬⎫⎩⎨⎧=∆)()(,,)2()2(,)1()1()0()0()0(n x n x x εεε{}nk 1∆=1.对于k <n,称)()()0(k x k k ε=∆为k 点模拟相对误差,称)()()0(n x n n ε=∆为滤波相对误差,称∑=∆=∆nk k n 11为平均模拟相对误差;2.称∆-1为平均相对精度,n ∆-1为滤波精度;3.给定α,当α<∆,且α<∆n 成立时,称模型为残差合格模型。
定义2设)0(X 为原始序列,)0(ˆX 为相应的模拟误差序列,ε为)0(X 与)0(ˆX 的绝对关联度,若对于给定的00,0εεε>>,则称模型为关联合格模型。
定义3设)0(X 为原始序列,)0(ˆX为相应的模拟误差序列,)0(ε为残差序列。
∑==n k k x n x 1)0()(1为)0(X 的均值, 21)0(21))((1x k x n s n k -=∑=为)0(x 的方差,∑==nk k n 1)(1εε为残差均值,∑=-=n k k n s 1222))((1εε为残差方差,1.称12s sc =为均方差比值;对于给定的00>c ,当0c c <时,称模型为均方差比合格模型。
2.称()16745.0)(s k p p <-=εε为小误差概率,对于给定的00>p ,当0p p >时,称模型为小误差概率合格模型。
5应用举例例 1 设原始序列{})5(),4(),3(),2(),1()0()0()0()0()0()0(x x x x x X =()679.3,390.3,337.3,278.3,874.2=建立Gm(1,1)模型,并进行检验。
解:1)对)0(X 作1-AGO ,得[D 为)0(X 的一次累加生成算子,记为1-AGO ,A cumulated Generating Operator]{})5(),4(),3(),2(),1()1()1()1()1()1()1(x x x x x X =()558.16,579.12,489.9,152.6,874.2=2)对)1(X 作紧邻均值生成,令)1(5.0)(5.0)()1()1()1(-+=k x k x k Z{})5(),4(),3(),2(),1()1()1()1()1()1()1(z z z z z Z =()718.14,84.11,820.7,513.4,874.2=于是,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=1718.14184.111820.71513.41)5(1)4(1)3(1)2()1()1()1()1(z z z z B ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=679.3390.3337.3278.3)5()4()3()2()0()0()0()0(x x x x Y⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----•⎥⎦⎤⎢⎣⎡----=T 1718.14184.111820.71513.41111718.14184.11820.7513.4B B ⎥⎦⎤⎢⎣⎡--=4235.38235.38221.423 ⎥⎦⎤⎢⎣⎡==⎥⎦⎤⎢⎣⎡--=--T832371.11665542.0165542.0017318.04235.38235.38221.423)(11B B ⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-⨯=221.423235.38235.384969.2301221.423235.38235.384235.384221.42312⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡•⎥⎦⎤⎢⎣⎡----•⎥⎦⎤⎢⎣⎡==T -T 679.3390.3337.3278.31111718.14184.11820.7513.4832371.11665542.0165542.0017318.0)(ˆ1Y B B B a⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡•⎥⎦⎤⎢⎣⎡---=679.3390.3337.3278.3604076.10019051.0537833.0085280.1089344.0028143.0030115.0087386.0 ⎥⎦⎤⎢⎣⎡-=065318.3037156.0 3)确定模型065318.3037156.0)1()1(=-x dtdx 及时间响应式a be a b x k xak +-=+-))1(()1(ˆ)0()1( 4986.823728.85037156.0-=ke4)求)1(X 的模拟值{})5(ˆ),4(ˆ),3(ˆ),2(),1(ˆˆ)1()1()1()1()1()1(x x x xx X = =(2.8740,6.1058,9.4599,12.9410,16.5538) 5)还原出)0(X 的模拟值,由)(ˆ)1(ˆ)1(ˆ)1()1()0(k x k x k x-+=+ 得 {})5(ˆ),4(ˆ),3(ˆ),2(ˆ),1(ˆˆ)0()0()0()0()0()0(x x x x x X= =(2.8740,3.2318,3.3541,3.4811,3.6128)[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡•==T )5()4()3()2()5()4()3()2(εεεεεεεεεεs []⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--•--=0662.00911.00171.00462.00662.00911.00171.00462.0 =0.0151085平均相对误差%)80.1%69.2%51.0%41.1(414151+++=∆=∆∑=k k=1.0625%计算X 与Xˆ的灰色关联度 ))1()5((21)1()((42x x x k x S k -+-=∑= =)874.2679.3(21)874.2390.3()874.2337.3()874.2278.3(-+-+-+-0.40250.5160.4630.404+++==1.7855)1(ˆ)5(ˆ(21)1(ˆ)(ˆ(ˆ42x x x k x Sk -+-=∑= )874.26128.3(21)874.24811.3()874.23541.3()874.22318.3(-+-+-+-=3694.06071.04801.03578.0+++==1.8144[][]∑=---+---=-42))1(ˆ)5(ˆ())1()5((21))1(ˆ)(ˆ())1()((ˆk x x x x x k x x k x S S)4025.03694.0(21)516.06071.0()463.04801.0()404.03578.0(-+-+-+-=01655.0091.00171.00462.0-++-==0.0453564525.45999.404535.08144.17855.118144.17855.11ˆˆ1ˆ1=+++++=-+++++=S S SS S S ε=0.9902>0.90精度为一级,可以用4986.823728.85)1(ˆ037156.0)1(-=+k e k x)(ˆ)1(ˆ)1(ˆ)1()1()0(k x k x k x-+=+预测。