不定方程组的经典解题方法
不定方程的四种基本解法
不定方程的四种基本解法哎,说起不定方程啊,可能不少小伙伴儿一听这个词儿,脑瓜子就开始嗡嗡的。
但其实呢,不定方程这东西,虽然看上去复杂了点儿,但咱们只要掌握了四种基本解法,就能跟它说拜拜,从此不再头疼啦!第一种解法,咱们叫它“试探法”,也叫“瞎猫碰上死耗子法”。
为啥这么说呢?因为这种方法就是靠咱们的感觉和运气,去猜一个可能的解。
听起来有点儿不靠谱是吧?但其实,有时候咱们还真能歪打正着,找到答案呢!比如说,给定一个不定方程,咱们可以先试着代入几个数,看看符不符合条件。
如果不行,就再换几个试试。
这种方法虽然有点笨,但有时候还真能解决问题。
毕竟,谁说运气不是实力的一部分呢?第二种解法,咱们得叫它“枚举法”,听着就挺高大上的吧?其实说白了,就是“一一列举法”。
这种方法适用于那些可能的解不太多的情况。
咱们可以把所有可能的解都列出来,然后一个个地检查,看哪个是符合条件的。
这种方法虽然有点儿费时费力,但胜在稳妥。
毕竟,咱们只要耐心点儿,总能找到正确答案的。
这就跟咱们平时找东西一样,虽然过程可能有点儿曲折,但总能找到的,对吧?第三种解法,咱们叫它“公式法”。
这种方法比较厉害,它是根据不定方程的特点,推导出一种公式,然后用这个公式去求解。
这种方法的好处是,只要咱们掌握了公式,就能很快地找到答案。
不过呢,这种方法也有个缺点,就是公式有时候挺难记的。
不过,这难不倒咱们,咱们可以多练习几次,就能把公式牢牢地记在脑子里了。
毕竟,熟能生巧嘛!第四种解法,咱们叫它“图像法”。
这种方法比较直观,它是用图形来表示不定方程的解。
咱们可以在坐标轴上画出不定方程的图像,然后通过观察图像,来找到符合条件的解。
这种方法的好处是,能让咱们更直观地理解不定方程的解,而且有时候还能发现一些隐藏的规律呢!不过呢,这种方法也有个缺点,就是得有点儿想象力。
毕竟,咱们得把抽象的不定方程想象成具体的图形,这可得费点儿劲儿。
不过,只要咱们肯动脑筋,就一定能做到的!其实啊,不定方程的解法还有很多,但上面这四种是最常用的。
不定方程的解题方法主要有
不定方程的解题方法主要有:一、利用数字特性解题;二、代入排除法;三、赋特值的方法。
这些方法在以前都曾涉及到,在2012年国家公务员考试中,不定方程题主要考查了前两种方法的运用。
例1、某儿童艺术培训中心有5名钢琴师与6名拉丁舞教师,培训中心将所有的钢琴学员和拉丁舞学员共76人分别平均的分给各个老师带领,刚好能分配完,且每位老师带的学生数量都是质数。
后来由于学生数量减少,培训中心只留下了4名钢琴师和3名拉丁舞教师,但每名教师所带的学生数量不变,那么目前培训中心剩多少学员?()(2012年国家公务员考试行测试卷第68题)A、36B、37C、39D、41答案:D解析:设每位钢琴师带x人,拉丁舞老师带y人,则根据题意,5x+6y=76,其中x、y均为质数。
这是典型的不定方程,根据奇偶特性,6y为偶数,5x+6y=76,即5x与6y 的和为偶数,所以5x也应该为偶数,推出x为偶数,结合前面的要求,x还是一个质数,所以可以确定x为偶质数,也就是x=2,进一步推出y=11,根据题目意思,目前培训中心剩的学员数量为4×2+3×11=41人。
总结:本题主要考查数字特性在不定方程中的运用。
例2、超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装盒每个装装5个苹果,共用了十多个盒子,刚好装完。
问两种包装盒相差多少个?()(2012年国家公务员考试行测试卷第76题)A、3B、4C、7D、13答案:D解析:设大包装盒有x个,小包装盒有y个,则12x+5y=99,(要求X+Y﹥10),这是非常典型的不定方程,结合奇偶特性,12x为偶数,12x与5y的和为奇数,所以5y一定是奇数,并且5y的尾数一定是5,同时可以推出12x的尾数一定是4,所以x可能等于2或者7,若x=2,则y=15,满足条件,所以两种包装盒相差15-2=13个。
(若x=7,则y=3,不满足X+Y﹥10这个条件,舍去)总结:本题主要考查数字特性在不定方程中的运用。
不定方程常用六大解法
不定方程常用六大解法不定方程,听起来是不是有点高深?其实嘛,这就像找一把钥匙,钥匙能打开无数扇门。
今天咱们就聊聊不定方程的常用六大解法,轻松又幽默地走一遭,保证你听了后,能够眉开眼笑。
我们得说说“枚举法”。
这法子就像是逛超市,看见什么就试什么。
对于简单的不定方程,咱可以一个个地把可能的解都试一遍,最后总能找到那个合适的,简直就是开盲盒的乐趣!比如,假如有个方程让你找两个数,能不能说得通呢?你就一个个试着往里代,嘿,看看有没有合适的答案,简直像是在和数学玩捉迷藏。
接下来是“辗转相除法”。
这法子就像是把问题拆开,从大到小,一步步走。
这就像是做减法,遇到难题,咱就把它分解成更小的部分,慢慢来。
比如说你有个复杂的方程,先算出个简单的结果,然后再逐步递推,真是稳扎稳打,像是爬山一样,一步一个脚印,最后能看到山顶的美景。
然后,我们不能忘记“数形结合法”。
这玩意儿就像把方程画成图,形象化的东西总是让人觉得好理解。
想象一下,把数轴上点一点,给每个可能的解都标上一个小旗子,嘿!一眼就能看出哪些地方有解,哪些地方是死胡同,简直就像开了一场小小的数学派对,大家欢聚一堂,热热闹闹。
再往下说“求解特解法”。
这个方法有点像找特定的那种解,比如你想找一个特定的答案,可以试着先求出特解,然后再加上一些通解,哇,简直就是在做数学的“DIY”。
把各种材料拼凑在一起,最终呈现出一个完整的方程,就像做蛋糕,先有底再加上奶油,最后切开一看,哇,真香!接着咱们说说“同余法”。
这玩意儿有点像打麻将,讲究的是配合和策略。
你得找到一些数字之间的关系,像是把牌搭配起来,才能找到那种刚刚好的解。
用同余法解决不定方程,就像是在解谜,你得灵活应对,变换策略,嘿,最后能把谜底揭开,真是让人倍感成就感。
最后得提一下“二次方程法”,听上去很专业对吧?但其实不然。
这个方法就像是利用已知的解来推导未知的解。
比如说,你已经知道了一个方程的解,接着就可以运用二次方程的方法,推导出更多的解,简直就像是在编故事,从一个角色引出另外的角色,最后形成一个完整的故事链。
不定方程解题最快的方法
不定方程解题最快的方法不定方程是数学中一类非常常见的方程,其特点是未知数的个数多于方程个数,无法通过直接列方程求解。
面对这种类型的问题,快速有效的解题方法对于学生和研究者来说至关重要。
在这篇文章中,我们将探讨不定方程解题最快的方法。
一、理解不定方程的特点不定方程的特点在于未知数的个数多于方程个数,因此无法直接列方程求解。
这种类型的方程常常出现在日常生活中,如人数、物品数量等不确定的场合。
因此,掌握不定方程的特点是解决这类问题的第一步。
二、观察法与列举法观察法是解决不定方程的初步方法,通过观察已知条件,可以发现一些规律或线索。
列举法则是将所有可能的答案列举出来,逐一验证是否符合题意。
这两种方法在解决简单的不定方程问题时非常有效。
三、代数法与公式法当不定方程的个数较少,可以通过列方程求解时,代数法和公式法就变得非常有用。
代数法是通过建立方程组,利用代数知识求解未知数。
公式法则是在某些特殊情况下,利用已知条件通过公式求解未知数。
这两种方法需要一定的数学基础和技巧。
四、技巧与策略除了上述方法外,解决不定方程还有一些技巧和策略。
首先,对于简单的方程组,可以通过枚举部分答案,利用排除法快速找到答案。
其次,对于较大规模的不定方程问题,可以利用数学软件或计算机程序进行求解,提高解题效率。
最后,理解不定方程的本质和特点,根据实际情况灵活选择合适的方法,是提高解题速度的关键。
五、案例分析假设有10个人参加一场聚会,每人至少有一种饮料选择(果汁、咖啡、茶)。
已知聚会场所提供了三种饮料(牛奶、可乐、啤酒),且每种饮料的数量都足够。
为了方便起见,我们设聚会场所提供的饮料数量分别为:牛奶10瓶,可乐20瓶,啤酒15瓶。
现在我们需要求解在这些人中,至少有一种饮料选择的人数。
这是一个典型的不定方程问题。
策略:根据上述技巧和策略,我们可以采取列举法逐一列举所有可能的选择,再排除不符合条件的答案。
答案:15人。
这是因为每个人至少有一种饮料选择,而聚会总共有10个人,因此至少有一种饮料选择的人数为10+1=11-3=8+2=7+4=15人。
不定方程组的通解
不定方程组的通解一、引言在数学中,方程是研究数量关系的基本工具之一。
方程可以分为线性方程和非线性方程两大类。
而不定方程组则是非线性方程组的一个重要分支。
不定方程组是指含有未知数的多个方程的集合,其解满足所有这些方程。
本文将介绍不定方程组的通解及其求解方法。
首先会对不定方程组进行定义和分类,并介绍一些常见的不定方程组问题。
然后会详细介绍如何求解一般形式的不定方程组,并给出具体示例。
最后会总结本文所介绍的内容,并展望不定方程组在数学中的应用。
二、定义和分类2.1 定义不定方程组是指含有未知数的多个方程的集合,其解满足所有这些方程。
2.2 分类根据未知数和系数之间的关系,不定方程组可以分为以下几类:2.2.1 线性不定方程组线性不定方程组是指所有未知数都只有一次幂,并且系数都是常数的情况。
例如:3x + 4y = 75x - 2y = 12.2.2 二次不定方程组二次不定方程组是指至少有一个未知数的平方项,并且系数可以是常数或者其他未知数的情况。
例如:x^2 + y^2 = 25x^2 - y = 72.2.3 指数不定方程组指数不定方程组是指至少有一个未知数的指数项,并且系数可以是常数或者其他未知数的情况。
例如:3^x + 4^y = 135^x - 2^y = 9三、求解方法3.1 线性不定方程组的通解求解方法线性不定方程组的通解求解方法主要有以下几种:3.1.1 列主元素消去法列主元素消去法是线性代数中常用的一种求解线性方程组的方法。
通过选取系数矩阵中每一列中绝对值最大的元素作为主元,然后进行消去操作,最终得到行简化阶梯形矩阵。
根据行简化阶梯形矩阵可以直接得到线性方程组的通解。
3.1.2 克拉默法则克拉默法则是一种利用行列式求解线性方程组的方法。
通过构造增广矩阵,并计算系数矩阵和常数向量的行列式,可以得到线性方程组的解。
3.1.3 矩阵求逆法矩阵求逆法是一种利用矩阵的逆求解线性方程组的方法。
通过将系数矩阵和常数向量构造成增广矩阵,然后求出系数矩阵的逆矩阵,最后将逆矩阵与常数向量相乘,可以得到线性方程组的解。
简单不定方程的四种基本解法
简单不定方程的四种基本解法
简单不定方程的四种基本解法
简介
不定方程是指含有未知数的整数方程,其解为整数或分数。
不定方程
是数论中的一个重要分支,具有广泛的应用价值。
在实际问题中,往
往需要求解不定方程来得到问题的解答。
本文将介绍四种基本的解决
不定方程的方法。
一、贪心算法
贪心算法是一种常见且有效的算法,它通常用于求解最优化问题。
在
求解不定方程时,贪心算法可以通过枚举未知数的值来逐步逼近最优解。
二、辗转相除法
辗转相除法也称为欧几里得算法,它是一种求最大公约数的有效方法。
在求解不定方程时,我们可以使用辗转相除法来判断是否存在整数解。
三、裴蜀定理
裴蜀定理是指对于任意给定的整数a和b,它们的最大公约数d可以
表示成ax+by的形式,其中x和y为整数。
在求解不定方程时,我们可以使用裴蜀定理来判断是否存在整数解,并且可以通过扩展欧几里
得算法来求得x和y。
四、同余模运算
同余模运算是指在模n的情况下,两个整数a和b满足a≡b(mod n)。
在求解不定方程时,我们可以使用同余模运算来判断是否存在整数解,并且可以通过中国剩余定理来求得解的具体值。
结论
以上四种方法是求解不定方程的基本方法,在实际问题中,我们可以
根据具体情况选择合适的方法来求解问题。
同时,需要注意的是,在
使用这些方法时需要注意算法复杂度和精度问题,以保证算法的正确
性和效率。
不定方程的四种常用解法,多种方法叠加使用效果更佳
不定方程的四种常用解法,多种方法叠加使用效果更佳含有未知数的等式称之为方程。
小学阶段最开始接触的是一个方程只有一个未知数的情况。
比如3x+2=8,解得x=2,这样解出来的答案是唯一性的。
但是有时候我们会遇到一个方程,有两个甚至三个未知数。
这样未知数个数大于方程个数的方程(组)叫不定方程(组)。
不定方程,一般情况下解是不唯一的。
方程比如说x+y=10,问这个方程有多少组解?如果不给其他条件限制,那么这个方程会有无数组解。
所以大多数的不定方程都会有较多的限制条件。
比如说限制这些未知数均为自然数,或在某个范围内。
还是以x+y=10为例,如果x、y都是自然数,那么x、y的解会有11组。
在小升初或各大小学杯赛题目中,会出现解不定方程。
不定方程,有四种比较常用的解法。
第一种:枚举法。
枚举法在很多地方都会用得上。
比如说计数,找规律等,虽然效率不是很高但适用范围比较广。
这种方法适用于一些系数比较大的不定方程。
因为系数比较大,出现的可能性就比较少,所以可以利用枚举的方法来解答。
比如说求这个不定方程的解,7x+2y=24(x、y均为自然数)。
因为x前面的它的系数比较大,所以说x的取值范围相对来说会比较小。
因为x、y都属于自然数,x最大是3,最小是0。
也就是说,x 有可能等于0、1、2、3,最多就这4种情况,我们可以把这些x的值分别代入这个方程中解出y的值。
我们会发现x=1和x=3这两种情况是不成立的。
第二种方法,奇偶性分析。
照样以上面的例题为例,我们用奇偶分析来帮助我们缩小x的取值范围。
两个数的和等于24,是一个偶数。
2y也一定是个偶数,所以说7x 的值一定是个偶数。
7是奇数,所以说x只能是偶数。
那么x又是从0~3,那么所以说x只能是0或者2这两种可能。
最后算出有两组答案:x=0,y=12;x=2,y=5。
第三种:余数分析。
也是用的比较多的方法,通常从系数较小的未知数入手。
它的原理其实就是利用了:和的余数等于余数的和,进行判断分析。
不定方程组的解法
不定方程组的解法1. 引言在高中数学中,不定方程组通常是初等代数学习中的一部分。
不定方程组是指方程组中未知数的个数等于或大于方程的个数,同时这些方程中的系数不全为常数的方程组。
解决这些方程组的问题通常是找到一组合适的值满足所有方程,即找到所有未知数的值,这些值称为方程组的解。
本文将介绍几种不定方程组的解法。
2. 全消元法全消元法是求解不定方程组的一种基本方法。
它的基本思想是通过将方程组中一部分未知数用其他未知数来表示,逐步消去所有未知数的系数,以达到求解的目的。
举例来说,考虑以下不定方程组:$$\begin{cases}x+2y+3z=6\\2x-y+z=1\\3x+y+2z=8\end{cases}$$我们可以使用全消元法解决这个问题。
我们可以先使用第二个方程的系数消除第一和第三个方程中的$x$系数。
消去后,方程组变为:$$\begin{cases}x+4y=4\\-9y-4z=-10\\5y+4z=4\end{cases}$$然后,我们使用第一和第三个方程的系数消除$y$系数。
消去后,方程组变为:$$\begin{cases}29x=-8\\-29z=-42\end{cases}$$这里$x=\frac{-8}{29}$,$z=\frac{42}{29}$。
通过代回,我们可以求出$y$。
因此,由于全消元法,我们可以找到方程组的唯一解。
3. 高斯-约旦消元法高斯-约旦消元法也是一种求解不定方程组的方法。
它的基本思想是通过加减消元和除法操作来将方程组转化为阶梯形矩阵,从而解决问题。
举例来说,考虑以下不定方程组:$$\begin{cases}x+2y+3z=6\\2x-y+z=1\\3x+y+2z=8\end{cases}$$我们可以使用高斯-约旦消元法解决这个问题。
我们可以先使用第一个方程的系数消除第二个方程中的$x$系数。
消去后,方程组变为:$$\begin{cases}x+2y+3z=6\\-5y-z=-11\\3x+y+2z=8\end{cases}$$然后,我们使用第二个方程的系数消除第三个方程中的$x$系数。
三元一次不定方程组的经典解题方法
三元一次不定方程组的经典解题方法对于不定方程组很多同学都觉得摸不着头脑,未知数和方程数都较多,感觉自己好像会其实又不会。
那本文就来给大家讲解不定方程组的经典解法。
不定方程组常分为两种形式,一种是不定方程组求个体,另一种是不定方程组求整体的。
【例1】某公司的6名员工一起去用餐,他们各自购买了三种不同食品中的一种,且每人只购买了一份。
已知盖饭15元一份,水饺7元一份,面条9元一份,他们一共花费了60元。
问他们中最多有几人买了水饺?( )A. 1B. 2C. 3D. 4解析:此题是典型的不定方程组求个体的题型,方法是消元变成不定方程用数字特性或者代入排除法。
设出未知数,列方程为:⎩⎨⎧=++=++6097156z y x z y x因为求的是水饺,消掉未知数z 得到不定方程3x-y=3,变形得到方程y=3x-3,根据数字特性知道y 应该是3的倍数,答案选C 。
代入排除,只有选项C 带入x 可以得到整体,满足题意,答案选C 。
【例2】甲买了3支签字笔、7支圆珠笔和1支铅笔,共花了32元,乙买了4支同样的签字笔、10支圆珠笔和1支铅笔,共花了43元。
如果同样的签字笔、圆珠笔、铅笔各买一支,共用多少钱?( )A. 21元B. 11元C. 10元D. 17元 解析:本题是求的是整体z y x ++整体的题型,方法是极值法或待定系数法。
设未知数列方程为: ⎩⎨⎧=++=++431043273z y x z y x极值法:设y=0,得到方程:⎩⎨⎧=+=+434323z x z x ,解得x=11,z=-1 所以10=++z y x ,本题答案C 。
待定系数法:设x+y+z=a(3x+7y+z)+b(4x+10y+z)=(3a+4b)x+(7a+10b)y+(a+b)z根据相同未知数的系数相等得3a+4b=1;7a+10b=1;a+b=1。
解得a=3,b=﹣2.所以x+y+z=a(3x+7y+z)+b(4x+10y+z)=3×32-2×43=10,本题选C 。
3.2 不定方程的常用解法
3.2 不定方程的常用解法对于高次不定方程,求出其通解然后再讨论有时是不现实的,因为我们甚至还没有找到判别一个高次不定方程是否有解的统一方法,当然要求出通解就更难了.或许正是因为没有统一的方法来处理高次不定方程,对具体的问题往往有许多方法来处理,并且每一种方法都表现出一定的创造性,所以,高次不定方程的问题频繁在数学竞赛中出现.当然,结合整除与同余的一些理论,求解高次不定方程也有一些常见的处理思路和解决办法. 一、因式分解法将方程的一边变为常数,而含字母的一边可以进行因式分解,这样对常数进行素因数分解后,对比方程两边,考察各因式的每种取值情况就可将不定方程变为若干个方程组去求解.这就是因式分解法处理不定方程的基本思路.例1 求方程()101xy x y -+= ① 的整数解.解:利用十字相乘,可将①变形为()()1010101x y --= 而101为素数,故()1010x y -,-=(1,101),(101,1),(-1,-101),(-101,-1). 分别求解,得方程的整数解为()x y ,=(11,111),(111,11),(9,-91),(-91,9). 例2 是否存在整数x 、y 、z ,使得44422222222224x y z x y y z z x ++=+++?解:若存在整数x 、y 、z 满足条件,则()22222244424222x y y z z x x y z -=++-++ =()()22222242224x yx y z z x y-+++-+=()2222224x y zxy -+-+=()()22222222xy x y z xy x y z ++---+=()()()()2222x y z z x y +---=()()()()x y z x y z z x y y z x +++-+-+-,这要求-24能表示为4个整数x y z ++,x y z +-,z x y +-,y z x +-的乘积的形式,而这4个数中任意两个数之差都为偶数,故这4个数具有相同的奇偶性,由-24为偶数,知它们都是偶数,但这要求42|24,矛盾. 所以,不存在符合要求的整数.说明 熟悉海伦公式的读者可以一眼看穿问题的本质.事实上,ABC S ∆a 、b 、c 为△ABC的三边长,这就是海伦公式.根号里面的式子展开后就是222a b +222b c +222c a -4a -4b -4c .例3 求所有的正整数对(m ,n ),使得5471mn n +=-. ①解:将①移项后作因式分解,得()545433711m n n n n n n =++=++-- =()()()322111n n n n n n ++--++=()()3211n n n n -+++ ② 由①知n >1,而n =2时,可得m =2.下面考虑n >2的情形,我们先看②式右边两个式子的最大公因数.()()()()32322111111n n n n n n n n n n n -+,++=-+-+++-,+=()()()()22212123n n n n n n n n -+,++=-++++-+,+ =()27n -+,.故()3211|7n n n n -+,++.结合②式知31n n -+与21n n ++都是7的幂次,而它们在n ≥3时,都大于7,这导致 ()()2327|11n n n n -+++,与前所得矛盾.综上可知,只有(m ,n )=(2,2)符合要求.说明 对①式变形后,所得②式两边符合因式分解方法解不定方程的套路,但7m并不是一个常数,这里需要有另外的方法来处理才能继续下去.活学活用方能攻城拔寨.二、配方法配方是代数变形中的常见方法,在处理不定方程的问题时还可综合利用完全平方数的特性,因此配方法在求解不定方程时大有用武之地.例4 求不定方程2234335x xy y -+=的全部整数解. 解:对方程两边都乘以3,配方后即得()22325105x y y -+=. ①由①式得 25105y ≤, 所以 4y ≤.当4y =时,325x y -=,此时原方程的解为(x ,y )=(1,4),(―1,―4). 当1y =时,3210x y -=,此时原方程的解为(x ,y )=(4,1),(―4,―1).当023y =,,时,()232x y -分别为105,85,60 .此时,所得的方程组显然无整数解. 上面的讨论表明,原方程有4组解:(x ,y )=(4,1),(1,4),(―4,―1),(―1,―4). 例5 求方程2432x x y y y y +=+++的整数解.解:同上例,对方程两边同乘以4,并对左边进行配方,得()()24322141x y y y y +=++++. ①下面对①式右端进行估计.由于()43241y y y y ++++ ()222212y y y y =++-+ ()2222341y y y y =++++, 从而,当y >2或y <-1时,有()()()2222222121y y x y y +<+<++.由于22y y +与22y y ++1是两个连续的整数,它们的平方之间不会含有完全平方数,故上式不成立. 因此只需考虑当-1≤y ≤2时方程的解,这是平凡的,容易得到原方程的全部整数解是 (x ,y )=(0,-1),(-1,-1),(0,0)(-1,0),(-6,2),(5,2). 例6 求所有的正整数n ≥2,使得不定方程组22121222232322112211501612501612501612501612n nn n nn x x x x x x x x x x x xx x x x ⎧⎪⎪⎪⋯⎨⎪⎪⎪⎩--++=+++=+++=+++=+ 有整数解.解:移项后配方,方程组变形为()()()()()()()()122122223221221850850850850n n n n x x x x x x n x x ⎧⎪⎪⎪⎪⋯⎨⎪⎪⎪⎪⎩---+-6=, ①-+-6=, ②-+-6=, -+-6=.由于50表示为两个正整数的平方和只有两种:2222501755=+=+,所以,由①知261x -=、5或7,而由②知281x -=、5或7,从而21x =、7、13.进一步,可知对每个1≤i ≤n ,都有1i x =,7或13,依11x =、7、13 ,分三种情况讨论. 若11x =,则由①知27x =,再由②知313x =,依次往下递推,可知当()1mod3k ≡时,1k x =;当()2mod3k ≡时,7k x =;当()0mod3k ≡时,13k x =.所以,由第n 式,知当且仅当()11mod3n ≡+时,原方程组有整数解,即当且仅当3|n 时,n 符合要求.对另外两种情况17x =和113x =同样讨论,得到的条件是一样的. 综上可知,满足条件的n 是所有3的倍数.说明 进一步讨论可知,当3|n 时,方程组恰有3组整数解.三、不等式估计利用不等式的知识,先确定不定方程中的某个字母的范围,然后逐个枚举得到所有解,这个方法称为不等式估计,它也是我们处理不定方程的常见方法.当然,如果能够恰当地利用字母的对称性等,那么作不等式估计时会简洁很多.例7 求不定方程3361x y xy -=+的正整数解.解:设(x ,y )为方程的正整数解,则x >y .设x =y +d ,则d 为正整数,且()()3361y d y y d y ++=+-22333dy yd d =++,即有 ()()23313161d y d d y d -+-+=.故 361d <, 于是 3d ≤. 分别令1d =、2、3代入,得222161y y ++=, 2510861y y ++=, 28242761y y ++=.只有第一个方程有整数解,并由y 为正整数知y =5,进而x =6.所以,原方程只有一组正整数解(x ,y )=(6,5). 例8 求所有的正整数a 、b ,使得22444aa b ++=. ①解:若(a ,b )是满足①的正整数数对,则2b 为偶数,且24ab >,从而b 为偶数,且2ab >,故22ab ≥+.于是()22244422a aa b ++=≥+4a =+4·2a +4,知22aa ≥,可得4a ≤(对a 归纳可证:当5a ≥时,有22aa <).分别就a =1,2,3,4代入①式,可得方程的所有正整数解为(a ,b )=(2,6)或(4,18).例9 求所有的正整数数组(a ,b ,c ,x ,y ,z ),使得a b c xyz x y z abc ⎧⎨⎩++=,++=,这里a b c ≥≥,x y z ≥≥.解:由对称性,我们只需考虑x a ≥的情形.这时 33xyz a b c a x =++≤≤, 故 3yz ≤,于是 (y ,z )=(1,1),(2,1),(3,1).当(y ,z )=(1,1)时,a b c x ++=且2x abc +=,于是 2abc a b c =+++. 若2c ≥,则2324a b c a a abc +++≤+≤≤, 等号当且仅当2a b c ===时成立.若1c =,则3ab a b =++, 即 ()()114a b --=,得 (a ,b )=(5,2),(3,3).当(y ,z )=(2,1)时,2266abc x a b c =+=+++,与上述类似讨论可知c =1,进而()()212115a b --=,得 (a ,b )=(3,2). 当(y ,z )=(3,1)时,331212abc x a b c =+=+++,类似可知,此时无解.综上所述,可知(a ,b ,c ,x ,y ,z ) =(2,2,2,6,1,1),(5,2,1,8,1,1),(3,3,1,7,1,1), (3,2,1,3,2,1),(6,1,1,2,2,2),(8,1,1,5,2,1), (7,1,1,3,3,1).说明 此题中如果没有条件a ≥b ≥c 和x ≥y ≥z ,也需要利用对称性作出这样的假设后再处理,解题中利用对称性假设x ≥a 是巧妙的,这样问题就转化为只有3种情况而便于处理了.四、同余方法若不定方程()120n F x x x ,,…,=有整数解,则对任意的*m N ∈,其整数解(1x ,2x ,…,n x )均满足()()120mod n F x x x m ≡,,…,.运用这一条件,同余可以作为不定方程是否有整数解的一块试金石. 例10 证明:不定方程22386x y z +-= ①没有整数解.证明 若(x ,y ,z )是方程①的整数解,对①的两边模2,可知x 、y 同奇偶;再对①两边模4可知x 、y 都为奇数,于是()221mod8x y ≡≡,这要求6()22382mod8x y z ≡=+-,矛盾.故方程①没有整数解.说明 利用同余方法解不定方程问题时,选择恰当的数作为模是十分重要的,它不仅涉及问题解决的繁简程度,重要的是能否卡住字母的范围或导出矛盾. 例11 求所有的非负整数x 、y 、z ,使得223xyz +=. ①解:(1)当y =0时,有()()22111xz z z =-=-+,于是可设 2z α-1=,2z β+1=,0αβ≤≤,因此 222βα-=.此时,若2α≥,则4|22βα-,与42矛盾,故1α≤.而0α=导致23β=,矛盾,故1α=,2β=,所以 z =3,x =3,得 (x ,y ,z )=(3,0,3)(2)当y >0时,由于323xy+,故3z ,所以 ()21mod3z ≡.对①两边模3,知()()11mod3x≡-, 故x 为偶数,现在设x =2m ,则 ()()223mmyz z -+=,所以可设 23mz α-=,23m z β+=,0αβ≤≤,y αβ+=, 于是 1332m βα+-=,若α≥1,则3|33βα-,但132m +,矛盾,故α=0,因此1312m β+-=. 当m =0时,β=1,得(x ,y ,z )=(0,1,2); 当m >0时,()120mod4m +=,故 ()31mod4β=, 这要求β位偶数,设β=2n ,则()()122313131m n n n +=-=-+, 同y =0时的讨论,可知 312n-=,即n =1,进而m =2,得 (x ,y ,z )=(4,2,5). 所以(x ,y ,z )=(3,0,3),(0,1,2),(4,2,5).例12 设m 、n 为正整数,且n >1,求25m n -的最小值.解:由于25m n -为奇数,而m =7,n =3时,253m n -=,故若能证明n >1时,251m n -≠,则所求的最小值为3.若存在正整数m 、n ,使得n >1,且251m n -=,则251m n -=或251m n-=-. 如果251mn-=,那么m ≥3,两边模8,要求()57mod8n ≡, 但对任意正整数n ,51n≡或()5mod8,矛盾,故251mn-=不成立. 如果251m n-=-,那么由n >1,知m ≥3.两边模8,得 ()51mod8n≡,可知n 为偶数.设n =2x ,x 为正整数,则 ()()25151m x x =-+, 由于51x-与51x+是两个相邻偶数,这要求512x -=,514x+=, 不可能.所以,25mn-的最小值为3.说明 上面的两个例子都用到了一个结论:两个差为2的正整数之积为2的幂次,则这两个数只能为2和4.该结论在例11的前半段解答中已予以证明.五、构造法有些不定方程的问题只需证明该方程有解或有无穷多个解,这时经常采用构造法来处理. 例13 证明:方程253x y z +=有无穷多组满足0xyz ≠的整数解.证明 取15102k x +=,642k y +=,1072k z +=,k 为非负整数,则这样的x 、y 、z 满足253x y z +=,所以方程有无穷多组满足0xyz ≠的整数解.另证 先求方程的一组特解,易知x =10,y =3,z =7 是方程253x y z +=的一组解.因而1510k x a =,63k y a =,107k z a =(a ,k 为非负整数)是方程的解.例14 证明:对任意整数n ,方程222x y z n +-= ①证明 现有命题“当m 为奇数或4的倍数时,方程22a b m -=有整数解(a ,b )”,它对解决本题是有用的.这个命题基于下面2个恒等式:()22121k k k +-=+,()()2214k k k +--1=.对于方程①,只需取x ,使x 与n 的奇偶性相反(这样的x 有无穷多个),从而利用上述命题,方程 222y z n x -=- 有整数解,可知方程①有无穷多组整数解.例15 是否存在两两不同的正整数m 、n 、p 、q ,使得m n p q +=+2012都成立?解:存在满足条件的正整数.由方程的结构,我们寻找形如2m a =,3n b =,2p c =,3q d =的正整数.这里a 、b 、c 、d 为正整数. 此时,条件转化为2012a b c d +=+>,2323a b c d +=+,即 a c d b -=-,()()()()22a c a c d b d bd b -+=-++.令1d b -=,即1b d =-,且使2012b >,则b 、d 的奇偶性不同,现令2212b bd d a +++=,2212b bd dc ++-=,那么a 、c 为正整数,且由a 、b 、c 、d 确定的m 、n 、p 、q 满足条件.例16 证明:存在无穷多组正整数组()x y z ,,,使得x 、y 、z 两两不同,并且 33xx y z =+.证明 一个想法是:将x 取为3k +1形式的数,这时()3131k x x k +=+()()33131kk k =++ ()()3333131k kk k k =+++因此,如果使3k 为一个完全立方数,那么符合要求的正整数x 、y 、z 就找到了.为此,令323m k +=,这里m 为正整数,那么令31x k =+,()1331km x k +=+,()31kz k =+,则x 、y 、z 两两不同,且满足33xx y z =+.命题获证.说明 如果不要求x 、y 、z 两两不同,我们还可以这样来构造:取2m y z ==,2x α=,则当231m αα•=+时,就有33xx y z =+.容易看出满足231m αα•=+的正整数对()m α,有无穷多对.。
不定方程三种解法
不定方程三种解法不定方程是指方程中含有一个或多个未知量,并且在给定范围内存在多个整数解的方程。
解决不定方程的问题在数学中具有重要意义,因为它们可以应用于各种实际问题,如商业、工程和密码学等领域。
在这篇文章中,我们将讨论三种解决不定方程的常见方法。
## 1. 穷举法穷举法是最简单的解决不定方程的方法之一。
它的原理是通过穷举所有可能的解来找到符合方程要求的整数解。
首先,我们需要确定未知数的取值范围。
然后,使用循环结构,从最小值开始逐个尝试,直到找到满足方程条件的解或超出最大值。
例如,考虑求解方程x + y = 8,其中x和y是整数。
我们可以通过以下伪代码来实现穷举法:```for x in range(1, 9):for y in range(1, 9):if x + y == 8:print("x =", x, "y =", y)```通过这个方法,我们可以得到方程的所有整数解:(1, 7), (2, 6), (3, 5), (4, 4), (5, 3), (6, 2), (7, 1)和(8, 0)。
然而,穷举法在大规模的问题上效率较低,因为它需要遍历所有可能的解,而不是有针对性地解决问题。
## 2. 辗转相除法辗转相除法,也称为欧几里德算法,用于求解关于两个未知数的不定方程。
这种方法的关键思想是利用两个整数的最大公约数来解决方程。
例如,考虑求解方程ax + by = c,其中a、b和c是已知整数,x和y是未知数。
我们可以使用辗转相除法来求解。
首先,我们需要计算a和b的最大公约数。
然后,检查c是否可以被最大公约数整除。
如果是,则方程有解,否则方程无解。
如果方程有解,我们可以使用扩展欧几里德算法来找到x和y的值。
扩展欧几里德算法可以通过递归方式计算出未知数的值。
辗转相除法是一种较为高效的方法,因为它只需要计算最大公约数和进行有限次的递归运算。
## 3. 数论方法数论方法是解决特定类型不定方程的一种方法。
最实用的不定方程解题方法
最实用的不定方程解题方法最实用的不定方程解题一、欧几里德算法•概述:欧几里德算法也被称为辗转相除法,用于求解两个数的最大公约数。
•步骤:1.输入两个整数a和b。
2.若b等于0,则a即为最大公约数。
3.若b不等于0,则令c等于a除以b的余数,再将b赋值给a,c赋值给b,继续执行第2步。
4.重复第2步和第3步,直到b等于0。
•示例:解不定方程11x + 15y = 1二、穷举法•概述:穷举法是一种简单直接的方法,通过对可能的解进行遍历来求解不定方程。
•步骤:1.确定解的范围,可以根据方程中的系数来进行估算。
2.使用两层循环,穷举所有可能的解。
3.在每次循环中,代入方程并判断是否满足。
4.若满足方程,则输出解。
5.若不满足方程,则继续下一次循环。
•示例:解不定方程3x + 5y = 7三、贝祖等式•概述:贝祖等式是一种特殊的不定方程解法,可以用来判断不定方程是否有整数解以及如何找出解。
•步骤:1.确定a和b的最大公约数g。
2.判断c是否为g的倍数,若不是则方程无整数解。
3.若c为g的倍数,则存在整数解。
4.通过扩展欧几里德算法,求出方程的一组特解(x0, y0)。
5.方程的通解为(x, y) = (x0 + k * b / g, y0 - k * a /g),其中k为任意整数。
•示例:解不定方程12x + 16y = 4四、线性同余方程•概述:线性同余方程是一种特殊的不定方程形式,可以通过模运算求解。
•步骤:1.确定方程形式为ax ≡ b (mod m)。
2.使用扩展欧几里德算法,求解方程ax + my = 1,得到一组解(x0, y0)。
3.解为x ≡ b * x0 (mod m)。
•示例:解不定方程7x ≡ 3 (mod 5)五、数学建模软件•概述:除了手工计算,还可以借助数学建模软件进行不定方程的求解。
•步骤:1.安装并打开数学建模软件,如Mathematica、Matlab等。
2.输入不定方程表达式。
不定方程组的通解
不定方程组的通解【原创实用版】目录一、不定方程组的概念二、通解的定义三、求解不定方程组的方法四、举例说明正文一、不定方程组的概念不定方程组是指包含两个或两个以上未知数的方程组,且未知数的系数不全为常数。
例如,x + y = 3 和 2x - y = 1 就是一个包含两个未知数 x 和 y 的不定方程组。
二、通解的定义不定方程组的通解是指能够同时满足所有方程的变量的值。
比如,对于上面的例子,x = 1, y = 2 就是这个不定方程组的通解。
三、求解不定方程组的方法求解不定方程组的方法通常有以下两种:1.代入法:先从一个方程中解出一个变量,然后将其代入到另一个方程中,从而解出另一个变量。
例如,对于 x + y = 3 和 2x - y = 1,我们可以先从第一个方程中解出 y = 3 - x,然后将其代入到第二个方程中,得到 2x - (3 - x) = 1,从而解出 x = 1,再代入到 y = 3 - x 中,得到 y = 2。
2.消元法:通过加减消去一个变量,从而得到一个新的方程,然后再通过代入法解出另一个变量。
例如,对于 x + y = 3 和 2x - y = 1,我们可以将第一个方程乘以 2,得到 2x + 2y = 6,然后将其与第二个方程相减,得到 3y = 5,从而解出 y = 5/3,再代入到 x + y = 3 中,得到x = 4/3。
四、举例说明假设我们有以下不定方程组:x + y = 52x - y = 3我们可以使用代入法或者消元法来求解。
代入法的步骤如下:1.从第一个方程中解出 y = 5 - x2.将 y = 5 - x 代入到第二个方程中,得到 2x - (5 - x) = 3,解出 x = 23.将 x = 2 代入到 y = 5 - x 中,得到 y = 3所以,这个不定方程组的解是 x = 2, y = 3。
不定方程组的通解
不定方程组的通解不定方程组是指含有未知数的方程组,其中未知数的个数大于方程的个数。
求解不定方程组的通解通常需要使用特定的求解方法。
一种常见的不定方程组求解方法是通过高斯消元法来将方程组化为梯形矩阵形式,并进一步化简为行阶梯形式。
通过化简后的行阶梯形矩阵,可以得到方程组的解的个数以及解的形式。
下面以一个简单的不定方程组为例来说明高斯消元法的求解过程。
假设有一个包含两个未知数x和y的不定方程组:方程一:2x + 3y = 7方程二:4x + 6y = 3首先,我们可以通过第一步将方程二乘以(-1/2)并与方程一相加来消除x的系数,得到新的方程二:方程一:2x + 3y = 7方程二:0x + 0y = -4化简后的行阶梯形式如下所示:方程一:2x + 3y = 7方程二:0 = -4从化简后的方程组可以看出,方程二为一个恒等式等于一个非零值,这说明方程组无解。
因此,不定方程组的通解为无解。
另一种常见的不定方程组求解方法是通过参数化的方式来得到方程组的通解。
下面以一个带有参数的不定方程组为例来说明参数化求解方法。
假设有一个包含两个未知数x和y的不定方程组:方程一:x - 2y = 1方程二:2x - 4y = 2首先,我们可以通过第一步将方程二乘以(-1/2)并与方程一相加来消除x的系数,得到新的方程二:方程一:x - 2y = 1方程二:0x + 0y = 0化简后的行阶梯形式如下所示:方程一:x - 2y = 1方程二:0 = 0从化简后的方程组可以看出,方程二为一个恒等式等于零,这说明方程二是多余的。
因此,我们只需要考虑方程一来求解不定方程组。
由方程一可得:x = 2y + 1其中,y为任意实数。
因此,不定方程组的通解可以表示为:x = 2y + 1, y为任意实数。
简而言之,不定方程组的通解可以通过高斯消元法或参数化的方法来求解。
高斯消元法主要利用矩阵化简的方式进行求解,可以判断出方程组的解的个数和形式。
不定方程求解题技巧
不定方程求解题技巧不定方程是指在未知数为整数的条件下,求满足方程的整数解的问题。
解不定方程的方法有很多种,下面将介绍一些常见的技巧和方法。
1. 分类讨论法这种方法适用于一元不定方程,即方程只有一个未知数。
根据方程中未知数的系数,可以将不定方程分为以下几类:A. 当方程中未知数系数为1时,通常可以考虑逐个尝试法,即从0开始尝试,逐渐增加或减少,直到找到满足方程的整数解为止。
B. 当方程中未知数系数为负数时,可以将方程两边同时乘以-1,转化为系数为正数的方程,然后按照分类A的方法求解。
C. 当方程中未知数系数为其他整数时,可以将方程两边同时乘以适当的倍数,转化为系数为1或负数的方程,然后按照分类A或B的方法求解。
2. 辗转相除法辗转相除法是求解线性不定方程(即方程的最高次数为1)的有效方法。
假设要解形如ax + by = c的方程(a、b、c为整数),首先通过欧几里得算法求得a和b的最大公约数d。
然后,如果c不是d的倍数,那么方程无整数解。
如果c是d的倍数,可以将方程两边同除以d,得到形如(a/d)x + (b/d)y = c/d的新方程。
由于a/d和b/d互质,可以通过扩展欧几里得算法求得一个整数解x0和y0。
然后,通解可以表示为x = x0 + (b/d)t和y = y0 - (a/d)t (t为整数),对所有整数t都满足原方程。
3. 特殊解与通解对于一些特殊的不定方程,可以通过观察得到一个或多个特殊解,并通过特殊解推导出通解。
例如,对于二次不定方程x^2 + y^2 = z^2(其中x、y、z为整数),可以取特殊解x = 3,y = 4,z = 5,然后可以推导出通解x = 3(m^2 - n^2),y = 4mn,z = 5(m^2 + n^2)(m、n 为整数)。
通过这个通解,可以找到无穷多个满足方程的整数解。
4. 数论方法数论是研究整数性质的一门学科,其中有许多定理和技巧可以应用于解不定方程。
不定方程组求解方法归纳
不定方程组求解方法归纳不定方程组求解方法归纳不定方程组是数学中的一种基本问题,其求解方法有很多种。
下面我们将根据不定方程组的不同形式和特点,归纳总结出几种常见的求解方法。
第一种方法是试错法。
这种方法适用于一些简单的不定方程组,通过列举所有可能的解,然后逐个验证,找出符合方程的解。
这种方法的优点是简单直观,但对于复杂的不定方程组,列举解的数量往往非常庞大,使得试错法变得不太实际。
第二种方法是代入法。
这种方法适用于一些特殊的不定方程组,通过将一个未知数表示成其他未知数的函数形式,然后代入方程组中的其他方程,最终得到关于一个未知数的方程。
然后再根据这个方程,通过求解或逐步代入的方法,得到该未知数的值。
然后将该值带入其他方程,逐步求解其他未知数。
这种方法的优点是可以减少未知数的数量,但对于复杂的方程组,求解过程可能会比较繁琐。
第三种方法是线性代数法。
这种方法适用于一些线性方程组,通过矩阵的消元法,将方程组转化为阶梯形或行最简形,然后通过回代法求解未知数的值。
这种方法的优点是适用范围广,可以解决复杂的线性方程组,但对于非线性方程组,这种方法就不适用了。
第四种方法是数论方法。
这种方法适用于一些特殊的不定方程组,如整数解、奇偶解等。
通过数论的相关理论,可以得到一些特殊解的性质,从而简化求解过程。
这种方法的优点是可以通过一些数论技巧,简化解的求取过程,但对于一般的不定方程组,这种方法并不适用。
综上所述,不定方程组的求解方法有多种,可以根据方程组的形式和特点选择合适的方法。
试错法适用于简单方程组,代入法适用于特殊方程组,线性代数法适用于线性方程组,数论方法适用于特殊的不定方程组。
在实际应用中,我们可以根据具体情况选择合适的方法,来求解不定方程组。
不定方程三种解法
不定方程三种解法不定方程是一个未知数在给定条件下需要满足的方程。
解决不定方程的问题在数学中起着重要的作用,因为它们经常出现在实际问题中,例如计算和数学建模中。
下面将介绍三种常见的解决不定方程的方法:试位法、绝对值法和齐次方程法。
1. 试位法:试位法是一种通过试探不同的解来逐步逼近正确解的方法。
该方法常用于寻找近似解或数值解的情况下。
它的基本思想是将不定方程转化为函数或方程组的零点问题,通过迭代逼近的方法找到近似解。
试位法的具体步骤如下:a. 确定一个初始区间,例如[1, 2]。
b. 按照二分法的原理,取中间值x,计算函数或方程组的值f(x)。
c. 根据函数或方程组的值与0的关系,确定下一个区间,继续迭代。
d. 重复步骤b和c,直到找到近似解。
2. 绝对值法:绝对值法是一种通过将不定方程转化为绝对值方程来求解的方法。
该方法常用于涉及到绝对值的方程问题。
它的基本思想是将绝对值方程拆分为条件方程,然后求解条件方程,最后检查解是否满足原方程。
绝对值法的具体步骤如下:a. 将绝对值方程拆分为条件方程。
b. 分别求解条件方程,得到两组解。
c. 检查解是否满足原方程,找到满足条件的解。
3. 齐次方程法:齐次方程法是一种通过将不定方程转化为齐次方程来求解的方法。
该方法常用于线性方程组或关于两个未知数的方程问题。
它的基本思想是将原方程中的零次项消去,然后将方程转化为齐次方程,从而简化求解。
齐次方程法的具体步骤如下:a. 消去原方程中的零次项,得到齐次方程。
b. 令其中一个未知数为常数,求解另一个未知数的表达式。
c. 根据所得表达式,求解第一个未知数。
d. 检查求得的解是否满足原方程。
以上是三种常见的解决不定方程的方法:试位法、绝对值法和齐次方程法。
具体的解决方法根据不同的具体问题而定,这些方法在数学中具有广泛的应用,并且可以通过适当的转换和计算得到准确的解。
这些方法虽然没有直接给出解析解,但是它们为求解不定方程问题提供了有效的途径。
不定方程组求解技巧
不定方程组求解技巧不定方程组指的是未知量个数大于方程个数的方程组。
由于未知量个数大于方程个数,所以不定方程组在一般情况下存在无穷多解。
求解不定方程组需要采用一定的技巧和方法,下面介绍几种常见的求解技巧。
1. 参数法:参数法是求解不定方程组的常用方法之一。
首先,找出方程组中的一个方程,通过变量的代换,使得方程中的一个未知量等于一个参数(通常用字母表示),然后解出其他未知量。
最后,将参数取遍所有可能的值,得到方程组的全部解。
例如,考虑不定方程组:x + 2y = 32x + 3y = 5取方程组第一个方程中的x 作为参数t ,则可以将x 表示为 x = t,代入第二个方程中,得到:2t + 3y = 5解这个方程得到:y = (5 - 2t) / 3因此,不定方程组的解为:(x, y) = (t, (5 - 2t) / 3),其中 t 可以取任意实数。
2. 等式法:等式法是另一种常用的不定方程组求解方法。
在等式法中,通过将其中一个方程两边同时乘以某个常数,使得方程中的一个未知量的系数和另一个方程中该未知量的系数相等,然后将两个方程相加或相减,得到一个只含有一个未知量的方程,进而求解该未知量。
最后,将求得的未知量代入其中一个方程,解出其他未知量。
例如,考虑不定方程组:2x - 3y = 14x + 6y = 8将第一个方程两边同时乘以2,得到:4x - 6y = 2将该式与第二个方程相加,得到:8x + 0y = 10解得 x = 10 / 8 = 5 / 4将求得的 x 值代入第一个方程,解得 y = (2 - 2x) / -3 = (2 - 2 * 5 / 4) / -3 = -1 / 2因此,不定方程组的解为:(x, y) = (5 / 4, -1 / 2)3. 消元法:消元法也是求解不定方程组的一种常用方法。
通过对方程组进行加减运算,将其中一个未知量的系数化为零,从而得到一个新的方程组,可以继续消元,直到最后只剩下一个只含有一个未知量的方程,然后解此方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
国家公务员| 事业单位 | 村官 | 选调生 | 教师招聘 | 银行招聘 | 信用社 | 乡镇公务员| 各省公务员|
不定方程组的经典解题方法
———————————————海南华图数资老师,胡军亮
对于不定方程组很多同学都觉得摸不着头脑,未知数和方程数都较多,感觉自己好像会其实又不会。
那本文就来给大家讲解不定方程组的经典解法。
不定方程组常分为两种形式,一种是不定方程组求个体,另一种是不定方程组求整体的。
【例1】某公司的6名员工一起去用餐,他们各自购买了三种不同食品中的一种,且每人只购买了一份。
已知盖饭15元一份,水饺7元一份,面条9元一份,他们一共花费了60元。
问他们中最多有几人买了水饺?( )
A. 1
B. 2
C. 3
D. 4
解析:此题是典型的不定方程组求个体的题型,方法是消元变成不定方程用数字特性或者代入排除法。
列式为:
⎩⎨⎧=++=++6097156z y x z y x
因为求的是水饺,消掉未知数z 得到不定方程3x-y=3,变形得到方程y=3x-3,
根据数字特性知道y 应该是3的倍数,答案选C 。
代入排除,只有选项C 带入x 可以得到整体,满足题意,答案选C 。
【例2】甲买了3支签字笔、7支圆珠笔和1支铅笔,共花了32元,乙买了4支同样的签字笔、10支圆珠笔和1支铅笔,共花了43元。
如果同样的签字笔、圆珠笔、铅笔各买一支,共用多少钱?( )
A. 21元
B. 11元
C. 10元
D. 17元
解析:本题是求的是整体z y x ++整体的题型,方法是极值法。
列式为:
⎩⎨⎧=++=++431043273z y x z y x
极值法设y=0,得到方程:⎩
⎨⎧=+=+434323z x z x ,解得x=11,z=-1 所以10=++z y x ,本题答案C 。
希望同学们记住:不定方程组的问题在求个体的时候,先消元后用数字特性或者代入排除法来做;如果是不定方程组求整体,那我们用极值法来做。
国家公务员| 事业单位| 村官| 选调生| 教师招聘| 银行招聘| 信用社| 乡镇公务员| 各省公务员|。