第10章高频功率放大器

合集下载

高频功率放大器的工作原理

高频功率放大器的工作原理

高频功率放大器的工作原理高频功率放大器是一种电子器件,主要用于放大高频信号,并将其输出到负载上。

其工作原理基于电子管或晶体管的放大作用,在输入的高频信号上增加电压,从而实现信号放大的目的。

高频功率放大器广泛应用于无线电通信、雷达、卫星通信等领域。

最常用的高频功率放大器是基于晶体管的,其内部结构由多个不同功能的电路组成。

其中,收发信道通过变压器进行隔离,从而实现信号的单向传输。

在信号放大方面,晶体管的三个引脚分别为基极、集电极和发射极。

输入信号通过基极进入晶体管,集电极则是放大后的信号输出。

发射极则是提供功率的地方,通常在晶体管的大功率管中被找到。

高频功率放大器通常需要很高的驱动电压,它可以由直流电源提供。

晶体管的放大过程是通过电荷扩散和电场漂移来完成的。

在多数晶体管中,材料内部的电子浓度是不均匀的,因此电子在晶体中移动时会发生扩散。

此外,由于电场的存在,电子也会沿着电场方向移动,从而形成漂移的过程。

这两种运动将使得电子的浓度差异减小,最终导致电流被放大。

需要注意的是,在高频电路中,信号通常在不同的电阻、电容和电感之间进行传输,因此高频功率放大器要求不仅具有高放大倍数、低噪声等特点,还需要适应各种不同的阻抗,防止信号反射和损耗。

为了保证高频信号的传输质量,高频功率放大器通常采用多级级联的方式,以达到更高的放大倍数和更佳的工作效率。

总之,高频功率放大器是电子工程领域中极为重要的技术,其工作原理基于电子器件的放大作用。

通过不同级联和高数据速率的设计,高频功率放大器可以实现高精度的信号传输和处理,对无线电通讯、雷达、卫星通讯等领域具有举足轻重的作用。

高频功率放大器

高频功率放大器

1.原理说明利用选频网络作为负载回路的功率放大器称为谐振功率放大器。

它是无线电发射机中的重要组成部件。

根据放大器电流导通角θ的范围可以分为甲类、乙类、丙类等不同类型的功率放大器。

电流导通角θ愈小放大器的效率η愈高。

如甲类功放的θ=180o ,效率η最高也只能达50%,而丙类功放的θ<90o ,效率η可达到80%。

甲类功率放大器适合作为中间级或输出功率较小的末级功率放大器。

丙类功率放大器通常作为末级功放以获得较大的输出功率和较高的效率。

高频功率放大器按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。

高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出。

1.1高频功放的主要技术指标1.1.1 功率关系:功率放大器的作用原理是利用输入到基极的信号来控制集电极的直流电源所供给的直流功率O P ,使之一部分转变为交流信号功率1P 输出去,一部分功率以热能的形式消耗在集电极上,成为集电极耗散功率C P 。

根据能量守衡定理:1o C P P P =+直流功率: 输出交流功率:2211111222c c c c L L U P U I I R R =⋅== C U -----回路两端的基频电压 c1I ----- 基频电流 L R ----回路的负载阻抗。

1.1.2 放大器的集电极效率1101122c c o CC c U I P P U I ηξγ⋅===⋅ 其中集电极电压利用系数:1c c L CC CCU I RU U ξ== 0o c CCP I U =⋅波形系数:1100()()c c I I αθγαθ==为通角 θ 的函数;θ 越小γ越大。

1.1.3 谐振功率放大器临界状态的计算临界状态下,若已知电源电压Ucc ,BB U 三极管的参数C g ,'U BB ,设电压利用系数为 ξ,集电极的导通角为θ。

高频功率放大器的原理

高频功率放大器的原理

高频功率放大器的原理
高频功率放大器是一种电子器件,用于放大高频信号的功率。

它的工作原理基于晶体管的放大特性和放大原理。

晶体管是一种半导体器件,具有放大信号的能力。

高频功率放大器中通常采用的晶体管是场效应管(FET)或双极性晶体管(BJT)。

这些晶体管具有不同的构造和工作方式,但都可以用于高频功率放大器的设计。

在高频功率放大器中,输入信号被放大器的输入电路接收。

输入电路通常包括一个匹配网络,以确保输入信号能够有效传递到晶体管。

接下来,输入信号被传输到晶体管的控制电极,如场效应管的栅极或双极性晶体管的基极。

当输入信号到达控制电极时,晶体管的工作会受到控制,从而导致电流或电压的变化。

这个变化会在晶体管中产生一个放大的输出信号。

输出信号可以通过一个匹配网络传递到负载电阻或其他外部电路中。

为了实现高频功率放大,放大器中的晶体管需要满足一些特殊要求。

首先,晶体管需要具有高增益和宽带宽,以确保放大器在高频范围内能够有效工作。

其次,晶体管需要具有较低的噪声系数,以避免在放大过程中引入额外的噪声。

除了晶体管,高频功率放大器中还包括其他组件,如电容器、电感器和电阻器等。

这些组件用于构建输入和输出匹配网络、稳定电路工作和控制电流等。

总之,高频功率放大器通过晶体管的放大特性实现对高频信号的功率放大。

它在通信、雷达、无线电和广播等领域有着广泛的应用。

高频功率放大器的基本原理(一)

高频功率放大器的基本原理(一)

高频功率放大器的基本原理(一)高频功率放大器的基本原理1. 什么是高频功率放大器高频功率放大器是一种用于增强高频信号幅度的电子设备。

它通常用于无线通信、雷达、高频电视和天线系统等领域。

高频功率放大器可以将低功率的高频信号放大到足够大的功率,以便传输和处理。

2. 高频功率放大器的工作原理高频功率放大器的工作原理可以简单分为三个步骤:放大输入信号、增加信号的功率和输出放大后的信号。

2.1 放大输入信号高频功率放大器的第一个任务是放大输入信号。

它通常使用晶体三极管(BJT)或场效应晶体管(FET)作为放大器的关键元件。

这些元件根据输入信号的幅度和频率变化进行放大操作。

2.2 增加信号的功率放大后的信号仍然可能是低功率的,因此高频功率放大器的下一个任务是增加信号的功率。

这一步骤通常通过使用功率放大器级联来实现。

级联多个放大器可以将信号功率从较低级别逐步增加到所需的功率级别。

2.3 输出信号在增加信号的功率之后,高频功率放大器将输出放大后的信号。

这个信号可以被用于进一步的处理或传输。

输出信号的幅度将取决于放大器的设计和配置。

3. 高频功率放大器的关键考虑因素在设计高频功率放大器时,需要考虑一些关键因素来确保性能和稳定性。

3.1 频率响应高频功率放大器应该能够在指定的频率范围内提供稳定的放大。

对于不同的应用,频率范围和响应要求会有所不同。

3.2 功率输出高频功率放大器应该能够提供足够的功率输出,以满足特定应用的需求。

功率输出的大小通常由设备和系统的要求来确定。

3.3 效率高频功率放大器的效率是指输入功率与输出功率之间的比率。

高效率的放大器能够最大限度地利用输入能量,减少能量浪费。

3.4 线性度高频功率放大器的线性度是指输出信号与输入信号之间的线性关系。

较好的线性度可以保持输入信号的准确度和完整性。

3.5 稳定性高频功率放大器的稳定性是指在各种工作条件下保持良好的性能。

它应该能够在不出现振荡或失真的情况下工作。

高频功率放大器

高频功率放大器

iB

iC 均为余弦脉冲,用傅里叶级数展开为:
iB I B 0 I B1m cost I B 2 m cos 2t I B 3m cos 3t
iC I C 0 I C1m cost I C 2 m cos 2t I C 3 m cos 3t
1、直流功率
PD
由直流供电电源提供的功率 P E C I c 0 D 2、输出功率 P0 由电子器件送给谐振回路的基波信号产生的功率
1 1 1 U cm 2 P0 I c1mU cm I c1m Re 2 2 2 Re
3、集电极损耗功率消耗在集电结的功率
2
Pc PD P0
4、集电极效率
高频功率放大器的输出回路具有选频作用, 若调谐在基波频率上,则回路两端的电压可表 示为:
uC U cm cost I C1m Re cost uC E EC U cm cost
Re
为输出回路的有载谐振电阻
第三节
丙类高频放大器的分析
一、折线分析法 高频功率放大器属于大信号分析,和低频放大器一样,往往采用折线 法分析(图解法),其输入特性和输出特性如图2-5所示。
I c1m
i

c
co stdt
I c1m I c max 1 ( )
I cnm
1 2

i
c
cos ntdt
I cnm I c max n ( )
将电流分解系数制成曲线,可得图2-8。
1 ( ) g1 0 ( )
三、高频功率放大器的功率和效率
静态工作点 Q :
当输入信号 ,即静态时, u i U bm cost 0

高频功率放大器

高频功率放大器

第2章高频功率放大器第2章高频功率放大器2.1 谐振功率放大器基本工作原理2.2 丙类谐振功率放大器的工作状态分析2.3 谐振功率放大器的高频特性2.4 谐振功率放大器电路2.5 高效率高频功率放大器及功率合成技术第2章高频功率放大器一、工作状态分类A 类(甲类)、B 类(乙类)、C 类(丙类)等。

i i BEC tCu QA 类(甲类):工作点Q 较高(I CQ 大),信号360°内,管子均导通。

通角:θ=180 °U CCR LR L′N 1∶N 2RBVCBu i第2章高频功率放大器甲类功放电路及交、直流负载线i Ct 0I C Q I C QI C Qu CE i Cu CEt00U CE QU CU CCQ直流负载线交流负载线i B1R L′-I CR B 为偏置电阻,决定Q 点的I CQ 及I BQ 。

变压器是理想的,则直流工作点电压U CEQ =U CC ,直流负载线为一垂直线,而交流负载线通过Q 点,其斜率为(-1/R ′L )第2章高频功率放大器CQCC C CQ CC TE I U dt t I I U TP ⋅=+=∫)sin (10ω1.电源功率P E2. 交流输出功率P LLC C C C C TL R U I U tdt I t U TP ′=⋅=⋅=∫22121sin sin 1ωωCC Cm U U =CQCm I I =CQCC CC E L I U I U P P 21==ηA 类放大器无信号时,效率为零,信号最强时最大效率只有50%。

这是A 类放大器的致命弱点,也是晶体管功率放大器极少采用A 类放大器的原因。

%50max =η一般: 20%~30%第2章高频功率放大器i C t 0i Cu BEQπ2π0u iV 1V 2V 0VD1VD 2I COi C1i C2U CCu o-U EER Li C1i C2B 类(乙类):工作点Q 选在截止点,管子只有半周导通,另外半周截止。

课件高频功率放大器ppt

课件高频功率放大器ppt
放大器的基本组成
放大器由输入级、输出级和中间级 组成,其中输入级和输出级是关键 部分,直接影响放大器的性能。
高频放大器的特殊问题
01
02
03
频率响应
高频信号的频率较高,因 此高频放大器的频率响应 需要足够宽,以适应不同 频率的信号放大。
相位失真
由于高频信号的频率较高, 相位失真成为高频放大器 的一个重要问题,需要采 取措施进行补偿。
噪声系数是指放大器输出端的信噪比与输 入端的信噪比之比,是衡量放大器噪声性 能的重要指标。
动态范围是指放大器在保证一定信噪比的 前提下,能够放大的信号的最大幅度范围 ,是衡量放大器适应能力的重要指标。
03 电路分析
晶体管放大电路
01
晶体管放大电路的基本原理
晶体管放大电路利用晶体管的放大效应,将微弱的电信号放大成较强的
利用人工智能和机器学习技术 对高频功率放大器进行智能控 制和优化,提高其自适应能力 和稳定性。
多模多频段技术
研究多模多频段的高频功率放 大器,以满足不同通信标准和
频段的需求。
THANKS FOR WATCHING
感谢您的观看
高频功率放大器用于放大雷达发射的信号,提高雷达对目标的
探测能力。
距离测量
02
通过测量发射信号与接收回波的时间差,高频功率放大器有助
于提高雷达的距离测量精度。
速度测量
03
利用多普勒效应原理,高频功率放大器有助于提高雷达的速度
测量精度。ຫໍສະໝຸດ 音频处理系统中的应用1 2
音频放大
高频功率放大器用于放大音频信号,提供足够的 功率以驱动扬声器或其他音频输出设备。
应用场景
通信领域
高频功率放大器广泛应用于通信领域,如移动通信、卫星通信、光纤 通信等,用于信号的传输和放大。

高频功率放大器的基本原理

高频功率放大器的基本原理

高频功率放大器的基本原理高频功率放大器的基本原理什么是高频功率放大器?高频功率放大器是用于增强高频信号幅度的电子设备。

它主要用于通信系统、雷达系统和无线电频率发生器等领域,扮演着至关重要的角色。

高频功率放大器的工作原理高频功率放大器的工作原理需要涉及到以下几个基本概念:•放大器:它是一个电子设备,用于将输入信号增幅到所需的输出水平。

在高频功率放大器中,放大器用于放大输入信号的功率。

•功率:功率是指单位时间内能量转化或传输的速率。

在高频功率放大器中,功率是指输出信号的能量。

•频率:频率是指信号中的周期性变化的次数。

在高频功率放大器中,频率通常指电信号的高频部分。

•增益:增益是指输入信号放大倍数。

在高频功率放大器中,增益是指输出信号相对于输入信号的增强程度。

高频功率放大器的工作原理可以概括如下步骤:1.输入信号经过输入端进入放大器。

2.放大器对输入信号进行放大,提高其电压、电流或功率。

3.放大后的信号通过输出端输出到下一个电路或设备。

高频功率放大器的分类根据高频功率放大器的工作原理和结构,它可以分为以下几种主要类型:1.B类功率放大器:B类功率放大器是最常见且最常用的高频功率放大器类型之一。

它具有高效率和较低的失真,适用于大部分高频应用。

2.D类功率放大器:D类功率放大器是一种高效率的放大器,通过高速切换开关将输入信号转换为脉冲宽度调制(PWM)信号。

它具有较高的功率转换效率,适用于需要高功率输出的应用。

3.AB类功率放大器:AB类功率放大器综合了B类和A类功率放大器的优点,既具有高效率又具有较低的失真。

因此,AB类功率放大器是广泛应用于音频放大器的一种常见类型。

高频功率放大器的应用领域由于高频功率放大器具有增强信号功率的能力,因此它在许多领域中得到了广泛的应用,包括:•通信系统:高频功率放大器在无线通信系统中用于放大传输信号,以提高其覆盖范围和传输距离。

•雷达系统:高频功率放大器在雷达系统中用于放大雷达信号,以增强探测目标的能力。

高频功率放大器

高频功率放大器

高频功率放大器的调制特性
临 当 RP , U 界 bm 不变, 区 Ic1
临 界 区
ic PD
ic
IC1 , IC0 EC Ico 而改变U 与 PD , Po BB

• •


ubemax
之间的关系。 PO
PC
1. 集电极调制特性 E 过压区 欠压区 C过压区 欠压区
当 R P , U bm , U BB 不变,
谐振功放的外部特性
调谐功率放大器的外部特性是指放大器的性能随放 大器的外部参数变化的规律
1. 负载特性
Rc
当调谐功率放大器的电源电压Ec、偏置电压Eb 2. 调制特性 Ubm Eb , Ec 和 激励电压幅值 一定后,放大器的集电极电 流ic、槽路电压uc、输出功率Po、效率c随晶体 管等效负载电阻Rc的变化特性,被称做调谐功率 3. 振幅特性 Ubm 放大器的负载特性。
c c
c c
高频调谐功率放大器,选频的对象是: 2 sin n cos cos n sin 1 I ic cos ntd (t t )U ic max cos gU ) I g U cos cmn i cmax n 2 bm cos t cos 集电极电流中的不同频率成分。 c bm bm 2 nn 11 cos
ube ub Eb —— U j 转移特性曲线 U bm cos t Eb U j 1. 由晶体管内部特性 2) 起始导通点 三、RcB ,Ec,RbB , Ubm : [变化对放大器工 Ec U cm cos ,0] uce Ec uc Ec U cm cos t 2. 在放大器有载情况下(负载回路处于谐振状态), 输入、输出电压的表示式 ——晶体管外部特性

高频功率放大器设计

高频功率放大器设计

自激振荡的可能性。
高效率放大器设计
效率优化
高效率放大器设计的主要目标是减小能量损失和提高能源 利用效率。常用的效率优化技术包括采用晶体管并联、开 关电源、和漏极效率更高的放大器结构等。
热管理
高效率放大器通常会产生大量的热量,因此需要良好的热 管理系统来确保放大器的可靠性和稳定性。热管理系统可 以包括散热片、风扇、和液冷系统等。
大器、负反馈和源极跟随器等。
02
匹配网络设计
为了实现输入和输出阻抗的良好匹配,通常需要设计匹配网络。匹配网
络可以由电阻、电容和电感等无源元件构成,通过调整元件值,使输入
或输稳定性考虑
在宽带放大器设计中,需要考虑放大器的稳定性。稳定性问题通常通过
添加适当的负反馈来解决,以减小放大器在宽频范围内的非线性失真和
04
06
高频功率放大器的发展 趋势与展望
新型器件的研发与应用
新型晶体管
随着半导体技术的不断发展,新型晶 体管如GaN、SiC等在高频功率放大 器设计中得到广泛应用,具有高频率、 高效率、高功率等优点。
新型微波集成电路
微波集成电路是将多个器件集成在一 块衬底上,实现微波信号的放大、混 频、滤波等功能,具有小型化、高性 能、低成本等优势。
放大器的稳定性
频率稳定性
表示放大器在不同频率下的稳定性。
电源稳定性
表示放大器在不同电源电压下的稳定性。
温度稳定性
表示放大器在不同温度下的稳定性。
负载稳定性
表示放大器在不同负载下的稳定性。
03
高频功率放大器设计技 术
匹配网络设计
输入匹配网络
用于实现信号源与高频功率放大器之间的阻抗匹配,提高信号传输效率,减小 信号反射和能量损失。

第章高频功率放大器

第章高频功率放大器

第一章高频功率放大器概述高频功率放大器是一种专用放大器,主要用于放大高频信号以改善信号传输和处理的效果。

高频信号在传输过程中容易受到噪声和信号衰减等影响,因此需要使用高质量的放大器来解决这些问题。

高频功率放大器通常用于广播、通信、雷达和医学设备等领域。

在这些应用场合中,高频信号需要被放大到足够高的水平以保证其正常工作。

然而高频信号的放大并不是一件简单的事情,因为高频信号具有特别的特性,需要专门的技术和设备才能处理。

第二章高频功率放大器的原理高频功率放大器的工作原理类似于普通放大器,但它需要更多的细节和技巧。

以下是高频功率放大器的工作原理。

2.1 放大器基本原理放大器的基本原理是将输入信号增加到一个可控范围内的输出信号。

在高频功率放大器中,输入信号是原始高频信号,输出信号是经过放大和处理后的高频信号。

在放大器中,晶体管是主要的放大器元件,因为它们以高速工作,且具有稳定的放大特性。

2.2 高频功率放大器的原理高频功率放大器的原理类似于普通放大器的原理,主要包括功率放大和线性放大两种模式。

功率放大模式将输入信号的强度直接放大到最大,保证输出信号的功率尽可能大。

这种模式下的放大器通常用于发射机和雷达等应用场合。

线性放大模式将输入信号的强度放大到一个可以被处理的范围内,以保持输出信号的线性特性。

这种模式下的放大器通常用于接收机和信号处理器等领域。

第三章高频功率放大器的性能指标高频功率放大器的性能指标是衡量其性能和质量的标准,以下是几个常见的指标:3.1 频率响应频率响应表示放大器对于不同频率的输入信号的响应能力,它直接影响着信号的传输和处理效果。

3.2 增益增益表示输出信号与输入信号之间的增加比例,越高的增益意味着越大的信号输出。

3.3 噪声系数噪声系数是指输入信号和输出信号之间的信噪比,噪声越小,信噪比越高,放大器的效果就越好。

3.4 带宽带宽是指在特定的频率范围内,放大器能够保持其放大性能的能力,带宽越宽,放大器的应用范围就越广。

高频功率放大器原理

高频功率放大器原理

高频功率放大器原理
高频功率放大器是一种电子设备,用于将射频信号的功率放大到更高的水平。

其原理是通过增加输入信号的幅度,使其达到更高的功率输出。

高频功率放大器通常由多个级联的放大器组成,每个级别都能增加信号的幅度。

高频功率放大器的核心组件是晶体管或管子,它们具有高增益和较高的功率处理能力。

晶体管工作在饱和区,充分利用其线性增益特性。

信号经过输入阻抗匹配网络后进入晶体管的基极或栅极,然后通过晶体管的放大作用,输出到负载上。

高频放大器在输入和输出之间应用匹配网络,以确保最大功率传递。

这些匹配网络通常由L型或π型网络组成,通过调整电感和电容的参数来实现阻抗匹配。

匹配网络的设计要求与输入和输出负载的特性相匹配,以确保最大功率传输和信号衰减的最小化。

此外,高频功率放大器还需要提供稳定的偏置电路,以确保晶体管在稳定的工作条件下工作。

偏置电路通常由电阻和电容组成,它们用来提供适当的偏置电压和电流,以保持晶体管的工作在稳定的线性增益区。

总的来说,高频功率放大器通过级联的放大器和匹配网络,将输入信号的功率放大到更高的水平。

它在无线通信、雷达、卫星通信等高频应用中起着至关重要的作用。

高频功率放大器

高频功率放大器

1.调谐功率放大器知识简介在通信电路中,为了弥补信号在无线传输过程中的衰耗要求发射机具有较大的功率输出,通信距离越远,要求输出功率越大。

为了获得足够大的高频输出功率,必须采用高频功率放大器。

高频功率放大器是无线电发射没备的重要组成部分。

在无线电信号发射过程中,发射机的振荡器产生的高频振荡信号功率很小,因此在它后面要经过一系列的放大,如缓冲级、中间放大级、末级功率放大级等,获得足够的高频功率后,才能输送到天线上辐射出去。

这里提到的放大级都属于高频功率放大器的范畴。

实际上高频功率放大器不仅仅应用于各种类型的发射机中,而且高频加热装置、高频换流器、微波炉等许多电子设备中都得到了广泛的应用。

高频功率放大器和低频功率放大器的共同特点都是输出功率大和效率高,但二者的工作频率和相对频带宽度却相差很大,决定了他们之间有着本质的区别。

低频功率放大器的工作频率低,但相对频带宽度却很宽。

例如,自20 至20000 Hz,高低频率之比达1000 倍。

因此它们都是采用无调谐负载,如电阻、变压器等。

高频功率放大器的工作频率高(由几百kHz 一直到几百、几千甚至几万MHz),但相对频带很窄。

例如,调幅广播电台(535 -1605 kHz 的频段范围)的频带宽度为10 kHz,如中心频率取为1000 kHz,则相对频宽只相当于中心频率的百分之一。

中心频率越高,则相对频宽越小。

因此,高频功率放大器一般都采用选频网络作为负载回路。

由于这后一特点,使得这两种放大器所选用的工作状态不同:低频功率放大器可工作于甲类、甲乙类或乙类(限于推挽电路)状态;高频功率放大器则一般都工作于丙类(某些特殊情况可工作于乙类)。

高频功率放大器是通信系统中发送装置的重要组件。

按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。

(完整版)高频功率放大器毕业课程设计

(完整版)高频功率放大器毕业课程设计

高频电子线路课程设计高频功率放大器姓名:专业班级:学号:学院:指导教师:2010年6月2日摘要在通信电路中,为了弥补信号在无线传输过程中的衰耗要求发射机具有较大的功率输出,通信距离越远,要求输出功率越大。

为了获得足够大的高频输出功率,必须采用高频功率放大器。

高频功率放大器是无线电发射没备的重要组成部分,按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。

高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出。

目录摘要 (1)一选题意义 (3)二总体方案 (4)2.1方案论证 (4)2.2甲类谐振放大器 (4)2.3丙类高功放 (5)2.4总体电路设计 (6)三各部分设计及原理分析 (6)3.1电路工作原理 (6)3.2高功放性能分析 (9)3.2.1 谐振功率放大器的动态特性 (9)3.2.2 功率放大器的负载特性 (9)3.2.3 放大器工作状态的调整 (10)四参数选择 (12)4.1设计任务要求 (12)4.2参数计算 (12)4.2.1 甲类谐振放大器参数计算 (12)4.2.2丙类功放的参数计算 (14)五电路仿真与结果分析 (16)5.1输入信号波形 (16)5.2一级甲类放大波形 (16)5.3两级甲类放大波形 (17)5.4最终输出波形 (17)六结果分析 (18)七元件清单 (19)八心得体会 (20)九参考文献 (21)一选题意义现代通信的发展趋势之一是在宽波段工作范围内能采取自动调谐技术,以便于迅速转换工作频率。

由于在发射机里的振荡器所产生的高频振荡频率很小,因此在它后面要经过一系列的放大——缓冲级、中间放大级、末级功率放大器,获得足够的高频功率后,才能馈送到天线上辐射出去。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)基极调制特性:
基极调制特性是指在 Ubm,VCC和R保持不变 时,丙类谐振功放的性 能随VBB的变化特性, 如图所示。当VBB由小 增大时,放大器将历经 欠压、临界、过压三种 工作状态。VBB工作在 欠压状态的谐振功放的 变化可有效地控制集电 极回路电压振幅Ucm的 变化,这就是基极调幅 原理。
基极馈电电路 为了保证晶体管处于丙类工作状态,可在晶体管基极 加小于Uth的正偏压或直接加负偏压VBB
采用一个独立电源实现偏置,很不方便,因此在负偏置的丙类 谐振功放中,一般采用基极自给偏压电路,如图所示。
基极自给偏压电路
2. 集电极馈电电路
所谓串联馈电方式是指直流电源、匹配网络(谐振 回路)与功放管三者是串联连接的馈电方式,所谓并联 馈电,即上面三者是并联连接的馈电方式。
10.1.2 谐振功率放大器的特点
1.高频功放工作频率高,但相对频带却很窄 2.高频功放一般都采用选频网络作为负载回路, 3.高频功放要求有大的输出功率和高的效率。 4.高频功放则工作在丙类状态 5.高频功放利用选频网络来选出信号的基波分量,滤除 谐波成分。
10.2 谐振功率放大器的工作原理
10.2.1 丙类谐振功率放大器的工作原理
集电极馈电电路
10.3.2 匹配网络
在谐振功率放大器中,为了满足输出功率和效率的要求,并 有较高的功率增益,除正确选择放大器的工作状态外,还必 须正确设计输入和输出匹配网络。
谐振功放的输入、输出匹配网络
无论是输入匹配网络还是输出匹配网络,都具有传输有 用信号的作用,故又称为耦合电路。
1. 调制特性
调制特性有集电极调制特性和基极调制特性两种。 (1)集电极调制特性: 是指在Ubm、VBB和R保 持不变时,谐振功放性 能随VCC变化的特性,如 图所示。由图可见,当 VCC由小增大时,放大器 将历经过压、临界、欠 压三种工作状态。工作 在过压区的谐振功放VCC 的变化可有效地控制集 电极回路电压振幅Ucm 的变化,这就是集电极 集电极调制特性 调幅原理。
负载特性
10.3 谐振功率放大器电路
丙类谐振功放的管外电路包括输入端与输出端的直流馈 电电路和匹配网络(耦合电路等)。
10.3.1 直流馈电电路
直流馈电电路是指把直流电源馈送到晶体管各极的电路, 它包括集电极馈电电路和基极馈电电路两部分。无论是哪 一部分馈电电路都有串联馈电与并联馈电两种方式。
1. 基极馈电电路 所谓串联馈电方式,就是直流馈电电路与输入信号 源串联连接。所谓并联馈电方式,就是其直流馈电 电路与输入信号源并联连接。
基极调制特性
2. 放大特性
丙类谐振功放的放大 特性是指在VBB,VCC 和R保持不变时,放 大器的性能随Ubm变 化的特性。在VCC和R 为定值时,固定VBB、 增大Ubm与固定Ubm、 增大VBB的情况类似, 因此放大特性与基极 调制特性十分相似, 如图所示。 放大特性
3.负载特性
丙类谐振功放的负载特性是指在VBB,Ubm和VCC保持不变时, 放大器的性能随R的变化特性,如图所示。
丙类谐振功放的基级电压Ub和基极电流ib的波形
由于输出回路谐振于c, 则回路对基波分量的电流呈 现很大的纯电阻性阻抗R, 而回路对各高次谐波严重失 谐,呈现很小的阻抗,可视 为短路,回路对直流分量也 可视为短路,因此只有基波 分量Icm1cosct在输出回路两 端产生压降,即
uc=RIcm1cosct=Ucmcosct
第10章 高频功率放大器
10.1 概述 10.2 谐振功率放大器的工作原理 10.3 谐振功率放大器电路
10.1 概述
高频功率放大器的作用是 使高频信号获得足够大的输出 功率,以满足天线辐射功率的要求,所以高频功率放大器 又常称为射频功率放大器。
10.1.1 高频功率放大器的分类
根据相对工作频带的宽窄不同,高频功率放大器可分 为窄带型和宽带型两大类。 窄带型高频功率放大器常采用具有选频作用的谐振网络 作为负载,所以又称为谐振功率放大器。为了提高效率, 谐振功率放大器常工作于乙类或丙类状态。 宽带型高频功率放大器采用工作频带很宽的传输线变压 器作为负载,可以实现功率合成
甲、乙、丙三种工作状态时的集电极电压、电流波形
下面我们讨论调谐功率放大器的工作过程。
设输入激励电压ub=Ubmcosct,则加在晶体管发射结两端 的电压为
uBE=VBB+ub=VBB+Ubmcosct
只有当uBE大于Uth时,基极才出现电流iB。显然,iB为余弦脉 冲波,根据傅里叶级数的理论,电流iB可用式子表示如下。
iB=IB0+i1b+ib2+…=IB0+Ibm1cosct+Ibm2cos2ct+…
式中IB0为直流分量,Ibm1, Ibm2分别为基波、二次谐波的振幅。 晶体管导通时有集电极电流iC, iC与iB对应,也为余弦脉冲 波,也可用傅里叶级数分解为 iC=IC0+ic1+ic2+…=IC0+Icm1cosct+Icm2cos2ct+…
丙类谐振功放的原理电路
谐振回路的作用有三个:一是传输功率,当回路工 作于调谐频率时,可把基波功率从输入端传送到晶体管, 再由晶体管放大后传送给负载,起选取基波分量的作用; 二是滤除各次谐波成分; 三是匹配作用,当输入匹配时,可从前级获取最大功率, 当输出匹配时,可保证放大器输出最大功率。 电源分两组,一组为基极电源VBB,它的作用是保证晶 体管工作在丙类状态;另一组是集电极电源VCC,它是 功率放大器的能源。丙类谐振功放的电压 Nhomakorabea电流波形
10.2.2 丙类谐振功率放大器的性能分析
在基极输入余弦电压ub的作用下,丙类功放中的放大管 将经历不同的工作区域,因此,放大器将工作在不同的 状态。
1.当基极输入电压的瞬时值ub不太大时,uBE≤Uth,管子 将截止; 2.当ub变大使uBE>Uth时,管子将导通。若ub的振幅Ubm不 太大,则管子导通时将一直处于放大区,这时称丙类功 放处于欠压状态;如果Ubm的大小恰好使管子导通时从 放大区进入临界饱和,则称丙类功放工作于临界状态。 3.如果Ubm很大,则管子导通时将从放大区进入饱和区, 于是称丙类放大器工作在过压状态。
相关文档
最新文档