2020高一数学新教材数学教案新版必修1教案导学案0
高中数学新教材必修一第一章导学案
集合与常用逻辑用语第1课时集合的含义学习目标核心素养1.通过实例了解集合的含义.(难点)2.掌握集合中元素的三个特性.(重点) 3.体会元素与集合的“属于”关系,记住常用数集的表示符号并会应用.(重点、易混点)1.通过集合概念的学习,逐步形成数学抽象素养.2.借助集合中元素的互异性的应用,培养逻辑推理素养.自主预习1.元素与集合的相关概念(1)元素:一般地,把研究对象统称为元素,常用小写的拉丁字母a,b,c,…表示.(2)集合:一些元素组成的总体叫做集合(简称为集),常用大写拉丁字母A,B,C,…表示.(3)集合相等:指构成两个集合的元素是一样的.(4)集合中元素的特性:确定性、互异性和无序性.思考:(1)某班所有的“帅哥”能否构成一个集合?(2)某班身高高于175厘米的男生能否构成一个集合?提示:(1)某班所有的“帅哥”不能构成集合,因为“帅哥”没有明确的标准.(2)某班身高高于175厘米的男生能构成一个集合,因为标准确定.2.元素与集合的关系(1)属于:如果a是集合A的元素,就说a属于集合A,记作a∈A.(2)不属于:如果a不是集合A中的元素,就说a不属于集合A,记作a∉A.3.常见的数集及表示符号数集非负整数集(自然数集) 正整数集整数集有理数集实数集符号N N*或N+Z Q R1.下列给出的对象中,能构成集合的是( )A .一切很大的数B .好心人C .漂亮的小女孩D .清华大学2019年入学的全体学生2.用“book ”中的字母构成的集合中元素个数为( )A .1B .2C .3D .43.用“∈”或“∉”填空: 21_______N ;-3________Z ;________Q ;0________N *;________R . 4.已知集合M 有两个元素3和a +1,且4∈M ,则实数a =________.集合的基本概念【例1】 考察下列每组对象,能构成集合的是( )①中国各地最美的乡村;②直角坐标系中横、纵坐标相等的点;③不小于3的自然数; ④2018年第23届冬季奥运会金牌获得者.A .③④B .②③④C .②③D .②④判断一组对象能否组成集合的标准判断一组对象能否组成集合,关键看该组对象是否满足确定性,如果此组对象满足确定性,就可以组成集合;否则,不能组成集合.同时还要注意集合中元素的互异性、无序性.1.判断下列说法是否正确,并说明理由.(1)大于3小于5的所有自然数构成一个集合;(2)直角坐标平面内第一象限的一些点组成一个集合;(3)方程(x -1)2(x +2)=0所有解组成的集合有3个元素.元素与集合的关系【例2】 (1)下列所给关系正确的个数是( )①π∈R ;②∉Q ;③0∈N *;④|-5|∉N *.A .1B .2C .3D .4(2)已知集合A 含有三个元素2,4,6,且当a ∈A ,有6-a ∈A ,那么a 为( )A .2B .2或4C .4D .0判断元素与集合关系的2种方法(1)直接法:如果集合中的元素是直接给出,只要判断该元素在已知集合中是否出现即可.(2)推理法:对于一些没有直接表示的集合,只要判断该元素是否满足集合中元素所具有的特征即可,此时应首先明确已知集合中的元素具有什么特征.2.集合A 中的元素x 满足x -36∈N ,x ∈N ,则集合A 中的元素为________. 集合中元素的特性及应用[探究问题]1.若集合A 中含有两个元素a ,b ,则a ,b 满足什么关系?2.若1∈A ,则元素1与集合A 中的元素a ,b 存在怎样的关系?【例3】 已知集合A 含有两个元素1和a 2,若a ∈A ,求实数a 的值.1.(变条件)本例若去掉条件“a ∈A ”,其他条件不变,求实数a 的取值范围.2.(变条件)已知集合A 含有两个元素a 和a 2,若1∈A ,求实数a 的值.1.解决含有字母的问题,常用到分类讨论的思想,在进行分类讨论时,务必明确分类标准.2.本题在解方程求得a 的值后,常因忘记验证集合中元素的互异性,而造成过程性失分.提醒:解答此类问题易忽视互异性而产生增根的情形.1.判断一组对象的全体能否构成集合的依据是元素的确定性,若考查的对象是确定的,就能组成集合,否则不能组成集合.2.集合中的元素具有三个特性,求解与集合有关的字母参数值(范围)时,需借助集合中元素的互异性来检验所求参数是否符合要求.3.解答含有字母的元素与集合之间关系的问题时,要有分类讨论的意识.1.思考辨析(1)接近于0的数可以组成集合.()(2)分别由元素0,1,2和2,0,1组成的两个集合是相等的.()(3)一个集合中可以找到两个相同的元素.()2.已知集合A由x<1的数构成,则有()A.3∈A B.1∈A C.0∈A D.-1∉A3.下列各组对象不能构成一个集合的是()A.不超过20的非负实数B.方程x2-9=0在实数范围内的解C.的近似值的全体D.某校身高超过170厘米的同学的全体4.已知集合A含有两个元素a-3和2a-1,若-3∈A,试求实数a的值.第2课时集合的表示学习目标核心素养1.初步掌握集合的两种表示方法——列举法、描述法,感受集合语言的意义和作用.(重点)2.会用集合的两种表示方法表示一些简单集合.(重点、难点)1.通过学习描述法表示集合的方法,培养数学抽象的素养.2.借助描述法转化为列举法时的运算,培养数学运算的素养.自主预习1.列举法把集合的所有元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.2.描述法一般地,设A是一个集合,把集合A中所有具有共同特征P(x)的元素x所组成的集合表示为{x∈A|P(x)},这种表示集合的方法称为描述法.思考:(1)不等式x-2<3的解集中的元素有什么共同特征?(2)如何用描述法表示不等式x-2<3的解集?提示:(1)元素的共同特征为x∈R,且x<5.(2){x|x<5,x∈R}.1.方程x2=4的解集用列举法表示为()A.{(-2,2)} B.{-2,2} C.{-2} D.{2}2.用描述法表示函数y=3x+1图象上的所有点的是()A.{x|y=3x+1} B.{y|y=3x+1} C.{(x,y)|y=3x+1} D.{y=3x+1} 3.用描述法表示不等式4x-5<7的解集为________.用列举法表示集合【例1】用列举法表示下列给定的集合:(1)不大于10的非负偶数组成的集合A;(2)小于8的质数组成的集合B;(3)方程2x2-x-3=0的实数根组成的集合C;(4)一次函数y=x+3与y=-2x+6的图象的交点组成的集合D.用列举法表示集合的3个步骤(1)求出集合的元素;(2)把元素一一列举出来,且相同元素只能列举一次;(3)用花括号括起来.提醒:二元方程组的解集,函数图象上的点构成的集合都是点的集合,一定要写成实数对的形式,元素与元素之间用“,”隔开.如{(2,3),(5,-1)}.1.用列举法表示下列集合:(1)满足-2≤x ≤2且x ∈Z 的元素组成的集合A ;(2)方程(x -2)2(x -3)=0的解组成的集合M ;(3)方程组x -y =12x +y =8,的解组成的集合B ;(4)15的正约数组成的集合N .用描述法表示集合【例2】 用描述法表示下列集合:(1)比1大又比10小的实数组成的集合;(2)平面直角坐标系中第二象限内的点组成的集合;(3)被3除余数等于1的正整数组成的集合.描述法表示集合的2个步骤2.用描述法表示下列集合:(1)函数y =-2x 2+x 图象上的所有点组成的集合;(2)不等式2x -3<5的解组成的集合;(3)如图中阴影部分的点(含边界)的集合;(4)3和4的所有正的公倍数构成的集合.集合表示方法的综合应用[探究问题]下面三个集合:①{x|y=x2+1};②{y|y=x2+1};③{(x,y)|y=x2+1}.(1)它们各自的含义是什么?(2)它们是不是相同的集合?【例3】集合A={x|kx2-8x+16=0},若集合A中只有一个元素,求实数k的值组成的集合.1.(变条件)本例若将条件“只有一个元素”改为“有两个元素”,其他条件不变,求实数k的值组成的集合.2.(变条件)本例若将条件“只有一个元素”改为“至少有一个元素”,其他条件不变,求实数k的取值集合.1.若已知集合是用描述法给出的,读懂集合的代表元素及其属性是解题的关键,如例3中集合A中的元素就是所给方程的根,由此便把集合的元素个数问题转化为方程的根的个数问题.2.在学习过程中要注意数学素养的培养,如本例中用到了等价转化思想和分类讨论的思想.1.表示一个集合可以用列举法,也可以用描述法,一般地,若集合元素为有限个,常用列举法,集合元素为无限个,多用描述法.2.处理描述法给出的集合问题时,首先要明确集合的代表元素,特别要分清数集和点集;其次要确定元素满足的条件是什么.1.思考辨析(1){1}=1.() (2){(1,2)}={x=1,y=2}.()(3){x∈R|x>1}={y∈R|y>1}.() (4){x|x2=1}={-1,1}.()2.由大于-3且小于11的偶数所组成的集合是()A.{x|-3<x<11,x∈Z} B.{x|-3<x<11}C.{x|-3<x<11,x=2k} D.{x|-3<x<11,x=2k,k∈Z}3.一次函数y=x-3与y=-2x的图象的交点组成的集合是()A.{1,-2}B.{x=1,y=-2} C.{(-2,1)} D.{(1,-2)} 4.设集合A={x|x2-3x+a=0},若4∈A,试用列举法表示集合A .1.2集合间的基本关系学习目标核心素养1.理解集合之间的包含与相等的含义.(重点) 2.能识别给定集合的子集、真子集,会判断集合间的关系.(难点、易混点)3.在具体情境中,了解空集的含义.(难点)1.通过对集合之间包含与相等的含义以及子集、真子集概念的理解,培养数学抽象素养.2.借助子集和真子集的求解,培养数学运算素养.自主预习1.Venn图的优点及其表示(1)优点:形象直观.(2)表示:通常用封闭曲线的内部代表集合.2.子集、真子集、集合相等的相关概念思考1:(1)任何两个集合之间是否有包含关系?(2)符号“∈”与“⊆”有何不同?提示:(1)不一定.如集合A={0,1,2},B={-1,0,1},这两个集合就没有包含关系.(2)符号“∈”表示元素与集合间的关系;而“⊆”表示集合与集合之间的关系.3.空集(1)定义:不含任何元素的集合叫做空集,记为∅.(2)规定:空集是任何集合的子集.思考2:{0}与∅相同吗?提示:不同.{0}表示一个集合,且集合中有且仅有一个元素0;而∅表示空集,其不含有任何元素,故{0}≠∅.4.集合间关系的性质(1)任何一个集合都是它本身的子集,即A⊆A.(2)对于集合A,B,C,①若A⊆B,且B⊆C,则A⊆C;②若A B,B C,则A C.(3)若A⊆B,A≠B,则A B.1.设集合M={1,2,3},N={1},则下列关系正确的是()A.N∈M B.N∉M C.N⊇M D.N⊆M2.下列四个集合中,是空集的为()A.{0} B.{x|x>8,且x<5} C.{x∈N|x2-1=0} D.{x|x>4}3.集合{0,1}的子集有________个.4.已知集合A={x|x2-3x+2=0},B={1,2},C={x|x<8,x∈N},用适当的符号填空:(1)A________B;(2)A________C;(3){2}________C;(4)2________C.集合间关系的判断【例1】判断下列各组中集合之间的关系:(1)A={x|x是12的约数},B={x|x是36的约数};(2)A={x|x是平行四边形},B={x|x是菱形},C={x|x是四边形},D={x|x 是正方形};(3)A={x|-1<x<4},B={x|x<5}.判断集合关系的方法.(1)观察法:一一列举观察.(2)元素特征法:首先确定集合的元素是什么,弄清集合元素的特征,再利用集合元素的特征判断关系.(3)数形结合法:利用数轴或Venn图.提醒:若A⊆B和A B同时成立,则A B更能准确表达集合A,B之间的关系.1.能正确表示集合M={x∈R|0≤x≤2}和集合N={x∈R|x2-x=0}关系的Venn图是()子集、真子集的个数问题【例2】已知集合M满足:{1,2}M⊆{1,2,3,4,5},写出集合M所有的可能情况.1.求集合子集、真子集个数的3个步骤2.与子集、真子集个数有关的4个结论假设集合A中含有n个元素,则有(1)A的子集的个数有2n个.(2)A的非空子集的个数有2n-1个.(3)A的真子集的个数有2n-1个.(4)A的非空真子集的个数有2n-2个.2.已知集合A={(x,y)|x+y=2,x,y∈N},试写出A的所有子集及真子集.由集合间的关系求参数[探究问题]集合A={x|1<x<b}中一定含有元素吗?当A中含有元素时,试用数轴表示其所包含的元素.【例3】已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若B A,求实数m的取值范围.1.若本例条件“A={x|-2≤x≤5}”改为“A={x|-2<x<5}”,其他条件不变,求m的取值范围.2.若本例条件“B A”改为“A⊆B”,其他条件不变,求m的取值范围.1.利用集合的关系求参数问题(1)利用集合的关系求参数的范围问题,常涉及两个集合,其中一个为动集合(含参数),另一个为静集合(具体的),解答时常借助数轴来建立变量间的关系,需特别注意端点问题.(2)空集是任何集合的子集,因此在解A⊆B(B≠∅)的含参数的问题时,要注意讨论A=∅和A≠∅两种情况,前者常被忽视,造成思考问题不全面.2.数学素养的建立通过本例尝试建立数形结合的思想意识,以及在动态变化中学会用分类讨论的思想解决问题.1.A⊆B隐含着A=B和A B两种关系.2.求集合的子集时,可按照子集元素个数分类,再依次写出符合要求的子集.3.由集合间的关系求参数问题的注意点及常用方法(1)注意点:①不能忽视集合为∅的情形;②当集合中含有字母参数时,一般需要分类讨论.(2)常用方法:对于用不等式给出的集合,已知集合的包含关系求相关参数的范围(值)时,常采用数形结合的思想,借助数轴解答.1.思考辨析(1)空集中只有元素0,而无其余元素.() (2)任何一个集合都有子集.()(3)若A=B,则A⊆B或B⊆A.() (4)空集是任何集合的真子集.()2.集合A={x|0≤x<3,x∈N}的真子集的个数是()A.16B.8 C.7 D.43.已知集合A={-1,3,m},B={3,4},若B⊆A,则实数m=________.4.已知集合A={x|1≤x≤2},B={x|1≤x≤a,a≥1}.(1)若A B,求a的取值范围;(2)若B⊆A,求a的取值范围.1.3集合的基本运算第1课时并集与交集学习目标核心素养1.理解两个集合的并集与交集的含义,会求两个简单集合的并集和交集.(重点、难点)2.能使用Venn图表达集合的关系及运算,体会图1.借助Venn图培养直观想象素养.2.通过集合并集、交集的运示对理解抽象概念的作用.(难点)算提升数学运算素养.自主预习1.并集思考:(1)“x∈A或x∈B”包含哪几种情况?(2)集合A∪B的元素个数是否等于集合A与集合B的元素个数和?提示:(1)“x∈A或x∈B”这一条件包括下列三种情况:x∈A,但x∉B;x ∈B,但x∉A;x∈A,且x∈B.用Venn图表示如图所示.(2)不等于,A∪B的元素个数小于或等于集合A与集合B的元素个数和.2.交集3.并集与交集的运算性质并集的运算性质交集的运算性质A∪B=B∪A A∩B=B∩AA∪A=A A∩A=AA∪∅=A A∩∅=∅1.设集合M={-1,0,1},N={0,1,2},则M∪N=________,M∩N=________.2.若集合A={x|-3<x<4},B={x|x>2},则A∪B=________.3.满足{1}∪B={1,2}的集合B可能等于________.并集概念及其应用【例1】(1)设集合M={x|x2+2x=0,x∈R},N={x|x2-2x=0,x∈R},则M∪N=()A.{0}B.{0,2} C.{-2,0} D.{-2,0,2}(2)已知集合M={x|-3<x≤5},N={x|x<-5或x>5},则M∪N=()A.{x|x<-5或x>-3} B.{x|-5<x<5}C.{x|-3<x<5} D.{x|x<-3或x>5}求集合并集的两种基本方法(1)定义法:若集合是用列举法表示的,可以直接利用并集的定义求解;(2)数形结合法:若集合是用描述法表示的由实数组成的数集,则可以借助数轴分析法求解.1.已知集合A={0,2,4},B={0,1,2,3,5} ,则A∪B=________.交集概念及其应用【例2】(1)设集合A={x|-1≤x≤2},B={x|0≤x≤4},则A∩B等于() A.{x|0≤x≤2}B.{x|1≤x≤2} C.{x|0≤x≤4} D.{x|1≤x≤4}(2)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5B.4 C.3D.21.求集合交集的运算类似于并集的运算,其方法为:(1)定义法,(2)数形结合法.2.若A,B是无限连续的数集,多利用数轴来求解.但要注意,利用数轴表示不等式时,含有端点的值用实点表示,不含有端点的值用空心点表示.2.(2018·全国卷Ⅰ)已知集合A={0,2},B={-2,-1,0,1,2},则A∩B=() A.{0,2}B.{1,2} C.{0} D.{-2,-1,0,1,2}3.设集合A={x|-1≤x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是()A.-1<a≤2 B.a>2 C.a≥-1 D.a>-1[探究问题]1.设A,B是两个集合,若A∩B=A,A∪B=B,则集合A与B具有什么关系?2.若A∩B=A∪B,则集合A,B间存在怎样的关系?【例3】已知集合A={x|-3<x≤4},集合B={x|k+1≤x≤2k-1},且A∪B=A,试求k的取值范围.1.把本例条件“A∪B=A”改为“A∩B=A”,试求k的取值范围.2.把本例条件“A∪B=A”改为“A∪B={x|-3<x≤5}”,求k的值.1.对并集、交集概念的理解(1)对于并集,要注意其中“或”的意义,“或”与通常所说的“非此即彼”有原则性的区别,它们是“相容”的.“x∈A,或x∈B”这一条件,包括下列三种情况:x∈A但x∉B;x∈B但x∉A;x∈A且x∈B.因此,A∪B是由所有至少属于A,B两者之一的元素组成的集合.(2)A∩B中的元素是“所有”属于集合A且属于集合B的元素,而不是部分.特别地,当集合A和集合B没有公共元素时,不能说A与B没有交集,而是A∩B =∅.2.集合的交、并运算中的注意事项(1)对于元素个数有限的集合,可直接根据集合的“交”“并”定义求解,但要注意集合元素的互异性.(2)对于元素个数无限的集合,进行交、并运算时,可借助数轴,利用数轴分析法求解,但要注意端点值能否取到.1.思考辨析(1)集合A∪B中的元素个数就是集合A和集合B中的所有元素的个数和.()(2)当集合A与集合B没有公共元素时,集合A与集合B就没有交集. ()(3)若A∪B=A∪C,则B=C.() (4)A∩B⊆A∪B.()2.已知集合M={-1,0,1},P={0,1,2,3},则图中阴影部分所表示的集合是()A.{0,1}B.{0} C.{-1,2,3} D.{-1,0,1,2,3} 3.已知集合A={1,2,3},B={x|(x+1)(x-2)=0,x∈Z},则A∩B=() A.{1} B.{2} C.{-1,2} D.{1,2,3}4.设A={x|x2+ax+12=0},B={x|x2+3x+2b=0},A∩B={2},C={2,-3}.(1)求a,b的值及A,B;(2)求(A∪B)∩C .第2课时补集学习目标核心素养1.了解全集的含义及其符号表示.(易混点) 2.理解给定集合中一个子集的补集的含义,并会求给定子集的补集.(重点、难点)3.会用Venn图、数轴进行集合的运算.(重点)1.通过补集的运算培养数学运算素养.2.借助集合思想对实际生活中的对象进行判断归类,培养数学抽象素养.自主预习1.全集(1)定义:如果一个集合含有所研究问题中涉及的所有元素,那么就称这个集合为全集.(2)记法:全集通常记作U.思考:全集一定是实数集R吗?提示:全集是一个相对概念,因研究问题的不同而变化,如在实数范围内解不等式,全集为实数集R,而在整数范围内解不等式,则全集为整数集Z.2.补集文字语言对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,记作∁U A符号语言∁U A={x|x∈U,且x∉A}图形语言1.已知全集U={0,1,2},且∁U A={2},则A=()A.{0}B.{1} C.∅D.{0,1}2.设全集为U,M={0,2,4},∁U M={6},则U等于()A.{0,2,4,6} B.{0,2,4} C.{6} D.∅3.若集合A={x|x>1},则∁R A=________.补集的运算【例1】(1)已知全集为U,集合A={1,3,5,7},∁U A={2,4,6},∁U B={1,4,6},则集合B=________;(2)已知全集U={x|x≤5},集合A={x|-3≤x<5},则∁U A=________.求集合的补集的方法(1)定义法:当集合中的元素较少时,可利用定义直接求解.(2)Venn图法:借助Venn图可直观地求出全集及补集.(3)数轴法:当集合中的元素连续且无限时,可借助数轴求解,此时需注意端点问题.1.(1)设集合A={x∈N*|x≤6},B={2,4},则∁A B等于()A.{2,4}B.{0,1,3,5} C.{1,3,5,6} D.{x∈N*|x≤6}(2)已知U={x|x>0},A={x|2≤x<6},则∁U A=______.集合交、并、补集的综合运算【例2】设全集为R,A={x|3≤x<7},B={x|2<x<10},求∁R B,∁R(A∪B)及(∁R A)∩B.解决集合交、并、补运算的技巧(1)如果所给集合是有限集,则先把集合中的元素一一列举出来,然后结合交集、并集、补集的定义来求解.在解答过程中常常借助于Venn图来求解.(2)如果所给集合是无限集,则常借助数轴,把已知集合及全集分别表示在数轴上,然后进行交、并、补集的运算.解答过程中要注意边界问题.2.全集U={x|x<10,x∈N*},A⊆U,B⊆U,(∁U B)∩A={1,9},A∩B={3},(∁U A)∩(∁U B)={4,6,7},求集合A,B.与补集有关的参数值的求解[探究问题]1.若A,B是全集U的子集,且(∁U A)∩B=∅,则集合A,B存在怎样的关系?2.若A,B是全集U的子集,且(∁U A)∪B=U,则集合A,B存在怎样的关系?【例3】设集合A={x|x+m≥0},B={x|-2<x<4},全集U=R,且(∁U A)∩B=∅,求实数m的取值范围.1.(变条件)将本例中条件“(∁U A)∩B=∅”改为“(∁U A)∩B=B”,其他条件不变,则m的取值范围又是什么?2.(变条件)将本例中条件“(∁U A)∩B=∅”改为“(∁U B)∪A=R”,其他条件不变,则m的取值范围又是什么?由集合的补集求解参数的方法(1)如果所给集合是有限集,由补集求参数问题时,可利用补集定义并结合知识求解.(2)如果所给集合是无限集,与集合交、并、补运算有关的求参数问题时,一般利用数轴分析法求解.1.求某一集合的补集的前提必须明确全集,同一集合在不同全集下的补集是不同的.2.补集作为一种思想方法,为我们研究问题开辟了新思路,在正向思维受阻时,改用逆向思维,如若直接求A困难,则使用“正难则反”策略,先求∁U A,再由∁U(∁U A)=A求A.1.思考辨析(1)全集一定含有任何元素.() (2)集合∁R A=∁Q A.()(3)一个集合的补集一定含有元素.()2.U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁U A)∪B为()A.{1,2,4}B.{2,3,4} C.{0,2,3,4} D.{0,2,4}3.设集合S={x|x>-2},T={x|-4≤x≤1},则(∁R S)∪T等于()A.{x|-2<x≤1} B.{x|x≤-4} C.{x|x≤1} D.{x|x≥1}4.已知全集U={2,0,3-a2},U的子集P={2,a2-a-2},∁U P={-1},求实数a的值.1.4充分条件与必要条件1.4.1充分条件与必要条件1.4.2 充要条件学习目标核心素养1.结合具体实例,理解充分条件、必要条件、充要条件的意义.(重点、难点)2.会求(判断)某些问题成立的充分条件、必要条件、充要条件.(重点)3.能够利用命题之间的关系判定充要关系或进行充要条件的证明.(难点)1.通过充要条件的判断,提升逻辑推理素养.2.借助充要条件的应用,培养数学运算素养.自主预习1.充分条件与必要条件命题真假“若p,则q”是真命题“若p,则q”是假命题推出关系p⇒q p q条件关系p是q的充分条件q是p的必要条件p不是q的充分条件q不是p的必要条件同?(2)以下五种表述形式:①p⇒q;②p是q的充分条件;③q的充分条件是p;④q是p的必要条件;⑤p的必要条件是q.这五种表述形式等价吗?提示:(1)相同,都是p⇒q.(2)等价.2.充要条件(1)一般地,如果既有p⇒q,又有q⇒p,就记作p⇔q.此时,我们说,p是q 的充分必要条件,简称充要条件.概括地说,如果p⇔q,那么p与q互为充要条件.(2)若p⇒q,但q p,则称p是q的充分不必要条件.(3)若q⇒p,但p q,则称p是q的必要不充分条件.(4)若p q,且q p,则称p是q的既不充分也不必要条件.思考2:(1)若p是q的充要条件,则命题p和q是两个相互等价的命题,这种说法对吗?(2)“p是q的充要条件”与“p的充要条件是q”的区别在哪里?提示:(1)正确.若p是q的充要条件,则p⇔q,即p等价于q.(2)①p是q的充要条件说明p是条件,q是结论.②p的充要条件是q说明q是条件,p是结论.1.下列语句是命题的是()A.梯形是四边形B.作直线AB C.x是整数D.今天会下雪吗2.“同位角相等”是“两直线平行”的()A.充分不必要条件B.必要不充分条件C.既是充分条件,也是必要条件D.既不充分也不必要条件3.使x>3成立的一个充分条件是()A.x>4 B.x>0 C.x>2 D.x<24.设x,y∈R,则“x≥2且y≥2”是“x2+y2≥4”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件充分条件、必要条件的判断【例1】指出下列各题中p是q的什么条件.(1)p:x-3=0,q:(x-2)(x-3)=0.(2)p:两个三角形相似,q:两个三角形全等.(3)p:a>b,q:ac>bc.定义法判断充分条件、必要条件(1)确定谁是条件,谁是结论(2)尝试从条件推结论,若条件能推出结论,则条件为充分条件,否则就不是充分条件(3)尝试从结论推条件,若结论能推出条件,则条件为必要条件,否则就不是必要条件.1.指出下列各组命题中,p是q的什么条件.(1)p:四边形的对角线相等,q:四边形是平行四边形.(2)p:(x-1)2+(y-2)2=0,q:(x-1)(y-2)=0.充分条件、必要条件、充要条件的应用[探究问题]1.记集合A={x|p(x)},B={x|q(x)},若p是q的充分不必要条件,则集合A,B的关系是什么?若p是q的必要不充分条件呢?2.记集合M={x|p(x)},N={x|q(x)},若M⊆N,则p是q的什么条件?若N⊆M,M=N呢?【例2】已知p:-2≤x≤10,q:1-m≤x≤1+m(m>0),若p是q的充分不必要条件,则实数m的取值范围为________.1.本例中“p是q的充分不必要条件”改为“p是q的必要不充分条件”,其他条件不变,试求m的取值范围.2.若本例题改为:已知P={x|a-4<x<a+4},Q={x|1<x<3},“x∈P”是“x ∈Q”的必要条件,求实数a的取值范围.利用充分、必要、充要条件的关系求参数范围(1)化简p,q两命题;(2)根据p与q的关系(充分、必要、充要条件)转化为集合间的关系;(3)利用集合间的关系建立不等式;(4)求解参数范围.充要条件的探求与证明【例3】试证:一元二次方程ax2+bx+c=0有一正根和一负根的充要条件是ac<0.充要条件的证明策略(1)要证明一个条件p是否是q的充要条件,需要从充分性和必要性两个方向进行,即证明两个命题“若p,则q”为真且“若q,则p”为真.(2)在证明的过程中也可以转化为集合的思想来证明,证明p与q的解集是相同的,证明前必须分清楚充分性和必要性,即搞清楚由哪些条件推证到哪些结论.提醒:证明时一定要注意,分清充分性与必要性的证明方向.2.求证:关于x的方程ax2+bx+c=0有一个根是1的充要条件是a+b+c =0.充分条件、必要条件的判断方法(1)定义法:直接利用定义进行判断.(2)等价法:“p⇔q”表示p等价于q,等价命题可以进行转换,当我们要证明p成立时,就可以去证明q成立.(3)利用集合间的包含关系进行判断:如果条件p和结论q相应的集合分别为A和B,那么若A⊆B,则p是q的充分条件;若A⊇B,则p是q的必要条件;若A=B,则p是q的充分必要条件.1.思考辨析(1)q是p的必要条件时,p是q的充分条件.()(2)q不是p的必要条件时,“p q”成立.()(3)若q是p的必要条件,则q成立,p也成立.()2.“x>0”是“x≠0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.函数f(x)=x2+mx+1的图象关于直线x=1对称的充要条件是________.4.已知p:实数x满足3a<x<a,其中a<0;q:实数x满足-2≤x≤3.若p 是q的充分条件,求实数a的取值范围.1.5全称量词与存在量词1.5.1全称量词与存在量词1.5.2全称量词命题和存在量词命题的否定学习目标核心素养1.通过生活和数学中的丰富实例,理解全称量词与存在量词的意义以及全称量词命题和存在量词命题的意义.2.掌握全称量词命题与存在量词命题真假性的判定.(重点、难点)3.能正确地对含有一个量词的命题进行否定.(重点、易混点) 1.通过含量词的命题的否定,培养逻辑推理素养.2.借助全称量词命题和存在量词命题的应用,提升数学运算素养.自主预习1.全称量词与全称量词命题(1)短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.(2)含有全称量词的命题叫做全称量词命题,通常将含有变量x的语句用p(x),q(x),r(x),…表示,变量x的取值范围用M表示,那么全称量词命题“对M中任意一个x,p(x)成立”可用符号简记为∀x∈M,p(x).2.存在量词与存在量词命题(1)短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.(2)含有存在量词的命题,叫做存在量词命题,存在量词命题“存在M中的元素x,使p(x)成立”,可用符号简记为“∃x∈M,p(x)”.思考:“一元二次方程ax2+2x+1=0有实数解”是存在量词命题还是全称量词命题?请改写成相应命题的形式.提示:是存在量词命题,可改写为“存在x∈R,使ax2+2x+1=0”.3.含有一个量词的命题的否定﹁一般地,对于含有一个量词的命题的否定,有下面的结论:全称量词命题p:∀x∈M,p(x),它的否定﹁p:∃x∈M,﹁p(x);存在量词命题p:∃x∈M,p(x),它的否定﹁p:∀x∈M,﹁p(x).全称量词命题的否定是存在量词命题,存在量词命题的否定是全称量词命题.1.下列命题中全称量词命题的个数是()①任意一个自然数都是正整数;②有的菱形是正方形;③三角形的内角和是180°.A.0B.1C.2D.32.下列全称量词命题为真命题的是()A.所有的质数是奇数B.∀x∈R,x2+1≥1C.对每一个无理数x,x2也是无理数D.所有的能被5整除的整数,其末位数字都是53.下列命题中的假命题是()A.∀x∈R,|x|≥0 B.∀x∈N*,(x-1)2>0C.∃x∈R,x+2019<1 D.∃x∈R,2x>24.已知命题p:∀x∈R,sin x≤1,则其否定是()。
2020高中数学A版新教材必修1学案导学案 第四章 4.2 4.2.1 4.2.2 第一课时 指数函数及其图象和性质
4.2 指数函数4.2.1 指数函数的概念4.2.2 指数函数的图象和性质第一课时 指数函数及其图象和性质课标要求素养要求1.了解指数函数的实际背景,理解指数函数的概念.2.掌握指数函数的图象及简单性质.3.初步学会运用指数函数来解决问题.1.通过理解指数函数的概念和意义,发展数学抽象素养.2.通过借助计算工具画出简单指数函数的图象,发展直观想象素养.3.通过指数函数的实际应用,发展数学建模素养.教材知识探究将一张报纸连续对折,折叠次数x与对应的层数y间存在什么关系?对折后的面积S(设原面积为1)与折叠的次数有怎样的关系?提示 (1)幂的形式;(2)幂的底数是一个大于0且不等于1的常数;(3)幂的指数是一个变量.1.指数函数的概念注意其特征:系数为1,指数为x,底数a>0且a≠1y=a x(a>0,且a≠1)一般地,函数叫做指数函数,其中指数x是自变量,定义域是R.2.指数函数的图象和性质结合函数的图象熟记指数函数的性质a>10<a<1图象R(0,+∞)(0,1)01y>1 0<y<10<y<1 y>1增函数减函数3.在实际问题中,经常遇到指数增长模型,形如y=ka x(k∈R,且k≠0;a>0,且a≠1)的函数是刻画指数增长或指数衰减变化规律的非常有用的函数模型.教材拓展补遗[微判断]1.函数y =-2x 是指数函数.()提示 因为指数幂2x 的系数为-1,所以函数y =-2x 不是指数函数.2.函数y =2x +1是指数函数.( )提示 因为指数不是x ,所以函数y =2x +1不是指数函数.3.函数y =(-5)x 是指数函数.( )提示 因为底数小于0,所以函数y =(-5)x 不是指数函数.×××[微训练]1.函数y=2-x的图象是( )答案 B2.若函数f(x)是指数函数,且f(2)=2,则f(x)=________.3.指数函数y=2x的定义域是________,值域是________.解析 由指数函数y=2x的图象和性质可知定义域为R,值域为(0,+∞).答案 R (0,+∞)[微思考]1.为什么规定指数函数的底数a>0且a≠1?提示 规定y=a x中a>0,且a≠1的理由:①当a≤0时,a x可能无意义;②当a>0时,x可以取任何实数;③当a=1时,a x=1(x∈R),无研究价值.因此规定y=a x 中a>0,且a≠1.2.在直角坐标系中指数函数图象不可能出现在第几象限?提示 指数函数的图象只能出现在第一、二象限,不可能出现在第三、四象限.函数f(x)是指数函数,解析 (1)①中,3x的系数是2,故①不是指数函数;②中,y=3x+1的指数是x+1,不是自变量x,故②不是指数函数;③中,3x的系数是1,幂的指数是自变量x,且只有3x一项,故③是指数函数;④中,y=x3的底为自变量,指数为常数,故④不是指数函数.⑤中,底数-2<0,不是指数函数.答案 (1)B (2)125规律方法 1.指数函数的解析式必须具有三个特征:(1)底数a为大于0且不等于1的常数;(2)指数位置是自变量x;(3)a x的系数是1.2.求指数函数的关键是求底数a,并注意a的限制条件.【训练1】 (1)若函数y=a2(2-a)x是指数函数,则( )A.a=1或-1B.a=1C.a=-1D.a>0且a≠1(2)已知指数函数f(x)的图象过点(3,π),则函数f(x)的解析式为________.题型二 指数函数的图象和性质【例2】 (1)函数f(x)=2a x+1-3(a>0,且a≠1)的图象恒过的定点是________.(2)若函数f(x)=2x+3,x∈[2,3],则函数f(x)的值域为________.(3)已知函数y=3x 的图象,怎样变换(1)解析 因为y=a x的图象过定点(0,1),所以令x+1=0,即x=-1,则f(x)=-1,故f(x)=2a x+1-3的图象过定点(-1,-1).答案 (-1,-1)(2)解析 由题意知函数f(x)=2x+3在R上是增函数,且x∈[2,3],所以2x∈[4,8],故f(x)的值域为[7,11].答案 [7,11]规律方法 处理函数图象问题的策略(1)抓住特殊点:指数函数的图象过定点(0,1),求指数型函数图象所过的定点时,只要令指数为0,求出对应的y的值,即可得函数图象所过的定点.(2)巧用图象变换:函数图象的平移变换(左右平移、上下平移).(3)利用函数的性质:奇偶性与单调性.【训练2】 (1)函数y=2|x|的图象是( )(2)函数f(x)=a x-b的图象如图所示,其中a,b为常数,则下列结论正确的是( )(2)从曲线的变化趋势,可以得到函数f(x)为减函数,从而有0<a<1;从曲线位置看,是由函数y=a x(0<a<1)的图象向左平移|-b|个单位长度得到,所以-b>0,即b<0.答案 (1)B (2)D (3)m<n…规律方法 指数函数在实际问题中的应用(1)与实际生活有关的问题,求解时应准确读懂题意,从实际问题中提取出模型转化为数学问题.(2)在实际问题中,经常会遇到指数增长模型:设基数为N,平均增长率为p,则对于经过时间x后的总量y可以用y=N(1+p)x来表示,这是非常有用的函数模型.【训练3】 春天来了,某池塘中的荷花枝繁叶茂,已知每一天新长出荷叶覆盖水面面积是前一天的2倍,若荷叶20天可以完全长满池塘水面,当荷叶刚好覆盖水面面积一半时,荷叶已生长了________天.解析 假设第一天荷叶覆盖水面面积为1,则荷叶覆盖水面面积y与生长时间x的函数关系为y=2x-1,当x=20时,长满水面,所以生长19天时,荷叶布满水面一半.答案 19一、素养落地1.通过指数函数的概念和意义的学习,培养数学抽象素养.通过画指数函数的图象找出图象上的特殊点,提升直观想象素养.通过指数函数的实际应用提升数学建模素养.2.判断一个函数是不是指数函数,关键是看解析式是否符合y=a x(a>0且a≠1)这一结构形式,即a x的系数是1,指数是x且系数为1.答案 D解析 由题意,设f(x)=a x(a>0且a≠1),则由f(2)=a2=4,得a=2,所以f(x)=2x.答案 B3.指数函数y=a x与y=b x的图象如图所示,则( )A.a<0,b<0B.a<0,b>0C.0<a<1,b>1D.0<a<1,0<b<1解析 结合指数函数图象的特点可知0<a<1,b>1.答案 C答案 A5.函数f(x)=2·a x-1+1的图象恒过定点________.解析 令x-1=0,得x=1,f(1)=2×1+1=3,所以f(x)的图象恒过定点(1,3).答案 (1,3)本节内容结束。
高一数学必修一教案(精选10篇)
高一数学必修一教案(精选10篇)第一篇:数学初识教学目标:•了解数学的起源和发展历程;•掌握数学基本概念和术语;•培养对数学的兴趣和好奇心。
教学内容:•数学的定义和分类;•数学的起源和发展;•数学的基本概念和术语。
教学重点和难点:•掌握数学的基本概念和术语;•了解数学的起源和发展历程。
教学方法:•课堂讲解结合小组讨论;•配合多媒体教学工具展示数学的发展历程;•指导学生进行实际例子分析。
教学过程:1.导入:通过提问引起学生的兴趣,如“你们对数学有什么认识吗?”2.课堂讲解:介绍数学的定义和分类,并与学生进行互动讨论。
3.小组活动:分成小组,让学生在小组内讨论并展示自己对数学起源和发展的了解。
4.多媒体展示:使用多媒体教学工具展示数学的发展历程,以图表和视频的形式呈现。
5.实例分析:指导学生通过实际例子来理解数学的基本概念和术语。
6.总结:通过课堂总结,巩固学生对数学的认识和理解。
第二篇:函数与方程教学目标:•掌握函数和方程的基本概念;•理解函数与方程之间的关系;•学会用函数解决实际问题。
教学内容:•函数的定义和性质;•方程的定义和性质;•函数与方程之间的关系;•使用函数解决实际问题。
教学重点和难点:•函数与方程之间的关系;•使用函数解决实际问题。
教学方法:•课堂讲解结合实例演练;•小组合作学习;•独立解决实际问题。
教学过程:1.导入:回顾上节课的内容,引出本节课的主题。
2.课堂讲解:介绍函数和方程的基本概念,并与学生进行互动讨论。
3.实例演练:通过具体的函数和方程实例,让学生理解函数与方程之间的关系。
4.小组合作学习:分成小组,让学生在小组内解决一系列与函数和方程相关的问题。
5.独立解决实际问题:指导学生通过函数解决实际问题,提高实际应用能力。
6.总结:通过课堂总结,巩固学生对函数和方程的理解。
第三篇:三角函数初步教学目标:•掌握三角函数的基本概念和性质;•学会计算三角函数的值;•熟练应用三角函数解决实际问题。
人教版高一数学必修一导学案(全册)
最新人教版高一数学必修一导学案(全册)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN§1.1 集合的含义及其表示(1)【教学目标】1.初步理解集合的概念,知道常用数集的概念及其记法.2.理解集合的三个特征,能判断集合与元素之间的关系,正确使用符号∈. 3.能根据集合中元素的特点,使用适当的方法和准确的语言将其表示出来,并从中体会到用数学抽象符号刻画客观事物的优越性.【考纲要求】1.知道常用数集的概念及其记法.2.理解集合的三个特征,能判断集合与元素之间的关系,正确使用符号∈.【课前导学】1.集合的含义:构成一个集合.(1)集合中的元素及其表示: .(2)集合中的元素的特性: .(3)元素与集合的关系:(i)如果a是集合A的元素,就记作__________读作“___________________”;(ii)如果a不是集合A的元素,就记作______或______读作“_______________”.【思考】构成集合的元素是不是只能是数或点?【答】2.常用数集及其记法:一般地,自然数集记作____________,正整数集记作__________或___________,整数集记作________,有理数记作_______,实数集记作________.3.集合的分类:按它的元素个数多少来分:(1)________________________叫做有限集;(2)___________________ _____叫做无限集;(3)______________ _叫做空集,记为_____________4.集合的表示方法:(1)______ __________________叫做列举法;(2)________________ ________叫做描述法.(3)______ _________叫做文氏图【例题讲解】例1、下列每组对象能否构成一个集合?(1)高一年级所有高个子的学生;(2)平面上到原点的距离等于2的点的全体;- 2 -- 3 -(3)所有正三角形的全体; (4)方程22x =的实数解;(5)不等式12x +≥的所有实数解.例2、用适当的方法表示下列集合①由所有大于10且小于20的整数组成的集合记作A ; ②直线y x =上点的集合记作B ; ③不等式453x -<的解组成的集合记作C ;④方程组20x y x y +=⎧⎨-=⎩的解组成的集合记作D ;⑤第一象限的点组成的集合记作E ;⑥坐标轴上的点的集合记作F .例3、已知集合{}2|210,A x ax x x R =-+=∈,若A 中至多只有一个元素,求实数a 的取值范围.【课堂检测】1.下列对象组成的集体:①不超过45的正整数;②鲜艳的颜色;③中国的大城市;④绝对值最小的实数;⑤高一(2)班中考500分以上的学生,其中为集合的是____________2.已知2a ∈A ,a 2-a ∈A ,若A 含2个元素,则下列说法中正确的是 ①a 取全体实数; ②a 取除去0以外的所有实数;③a 取除去3以外的所有实数;④a 取除去0和3以外的所有实数3.已知集合{0,1,2}A x =+,则满足条件的实数x 组成的集合B =- 4 -【教学反思】§1.1 集合的含义及其表示(2)【教学目标】1.进一步加深对集合的概念理解;2.认真理解集合中元素的特性;3. 熟练掌握集合的表示方法,逐渐培养使用数学符号的规范性.【考纲要求】3.知道常用数集的概念及其记法.4.理解集合的三个特征,能判断集合与元素之间的关系,正确使用符号∈.【课前导学】1.集合()(){}3,2,1,0=A ,则集合A 中的元素有 个.2.若集合{}|0,x ax x R =∈为无限集,则a = .3. 已知x 2∈{1,0,x },则实数x 的值 .4. 集合12|,6A x x N N x ⎧⎫=∈∈⎨⎬-⎩⎭,则集合A = . 【例题讲解】例1、 观察下面三个集合,它们表示的意义是否相同?(1){}2|1A x y x ==+(2){}2|1B y y x ==+(3){}2(,)|1C x y y x ==+- 5 -例2、含有三个实数的集合可表示为,,1b a a ⎧⎫⎨⎬⎩⎭,也可表示为{}2,,0a a b +,求20112011a b +.例3、已知集合{}222,(1),33A a a a a =++++,若1A ∈,求a 的值.【课堂检测】1. 用适当符号填空:(1){}2|,1_____A x x x A ==- (2){}2|60,3____B x x x B =+-=(){}C R x x x C ___52,,22|3∈≤=2.设,a b R ∈,集合{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,则b a -= . 3.将下列集合用列举法表示出来:(){};6|1N m N m m A ∈-∈=且 ()⎭⎬⎫⎩⎨⎧∈∈-=N x N x x B ,99|2- 6 -【教学反思】§1.2 子集·全集·补集(1)【教学目标】1.理解子集、真子集概念,会判断和证明两个集合包含关系,会判断简单集合的相等关系;2.通过概念教学,提高学生逻辑思维能力,渗透等价转化思想;渗透问题相对论观点.【考纲要求】1.能判断存在子集关系的两个集合谁是谁的子集,进一步确定其是否是真子集.2.清楚两个集合包含关系的确定,主要靠其元素与集合关系来说明.【课前导学】1.子集的概念及记法:如果集合A 的任意一个元素都是集合B 的元素( ),则称 集合 A 为集合B 的子集,记为_________或_________读作“_________”或“______________”用符号语言可表示为:________________ ,如右图所示:________________.2.子集的性质:① A A ② ____A ∅ ③ ,A B B C ⊆⊆,则___A C【思考】:A B ⊆与B A ⊆能否同时成立?【答】3.真子集的概念及记法:如果A B⊆,并且A B≠,这时集合A称为集合B的真子集,记为_________或_________读作“____________________”或“__________________”4.真子集的性质:①∅是任何的真子集符号表示为___________________②真子集具备传递性符号表示为___________________【例题讲解】例1、下列说法正确的是_________(1)若集合A是集合B的子集,则A中的元素都属于B;(2)若集合A不是集合B的子集,则A中的元素都不属于B;(3)若集合A是集合B的子集,则B中一定有不属于A的元素;(4)空集没有子集.例2.以下六个关系,其中正确的是_________(1){}∅≠(6)∅⊆(4)0∉∅(5){0}∅⊆∅;(2){}∅∈∅(3){0}∅=∅{}例3.(1)写出集合{a,b}的所有子集,并指出子集的个数;(2)写出集合{a,b,c}的所有子集,并指出子集的个数.- 7 -- 8 -【思考】含有n 个不同元素的集合有 个子集,有 个真子集,有 个非空真子集.例4.集合{|1}A x x =>,集合{|}B x x a =>.(1) 若A B ⊆,求a 的取值范围;(2)若A B ≠⊂,求a 的取值范围.【课堂检测】1.下列关系一定成立的是________(){}13|10x x ≠⊂≤ ()2{1,2}{2,1}⊆ ()(){}(){}3|,2,13=+∈y x y x 2.集合{},0)2)(1(|=--=x x x x A 则集合A 的非空子集有 个.3.若{}{}{},,16|,,23|,,13|Z n n c c C Z n n b b B Z n n a a A ∈+==∈-==∈+==则集合A,B,C 的包含关系为 .【教学反思】§1.2 子集·全集·补集(2)【教学目标】1.理解全集、补集概念,会进行简单集合的运算;2.通过概念教学,提高学生逻辑思维能力,渗透等价转化思想;渗透问题相对论观点.- 9 -【考纲要求】1. 理解全集、补集概念,会进行简单集合的运算;2. 通过概念教学,提高学生逻辑思维能力.【课前导学】1.全集的概念:如果集合U 包含我们所要研究的各个集合,这时U 可以看做一个全集.全集通常记作_____2.补集的概念:设____________,由U 中不属于A 的所有元素组成的集合称为U 的子集A 的补集, 记为_____读作“__________________________”即:U C A =_______________________U C A 可用右图阴影部分来表示:_______________________3.补集的性质:① U C ∅=__________________② U C U =__________________③ ()U U C C A =______________【例题讲解】例1已知全集2{2,3,23},{|21|,2},{5}U U a a A a C A =+-=-=,求实数a 的值.例2设,{|16},{|22}U R A x x B x a x a ==-≤≤=+≤≤,若U B C A ⊆,求实数a 的取值范围.- 10 - 例3若方程20x x a ++=至少有一个非负实数根,求a 的取值范围.【课堂检测】1.全集{}{}1,2,3,4,5,1,5,,U U A B C A ≠==⊂则集合B 有 个. 2.全集{},321,23|,-=>==a x x A R U 则下面正确的有()1U a C A ≠⊂ ()2U a C A ∈ (){}3a A ∈ (){}4U a C A ≠⊂ 3.(1)已知全集{},3|-≥=x x U 集合{},1|>=x x A 则U C A = .(2)设全集{},|31,,U Z A x x k k Z ===±∈则U C A 为 .【教学反思】§1.3 交集·并集(1)【教学目标】1.理解交集和并集的概念,会求两个集合的交集和并集;2.提高学生的逻辑思维能力,培养学生数形结合的能力;3.渗透由具体到抽象的过程;【考纲要求】交集和并集的概念、符号之间的区别与联系.【课前导学】1.交集: 叫做A 与B 的交集.记作 ,即: .2.并集: 叫做A 与B 的并集,记作 ,即: .3.设集合{}{},,3|,,2|N n n x x B N n n x x A ∈==∈==则________=⋂B A4.设{}{}{},3,3,1,13,2,12=⋂-=--=P M P m m M 则m 的值为 . 【例题讲解】例1.设{1,0,1},{0,1,2,3},A B =-=求A B 及A B .例2.设22{|20},{|6(2)50},A x x px q B x x p x q =-+==++++=若1{}2A B =,求A B .例3. 设集合{24},{}A x x B x x a =-≤≤=<.(1)若A B B =,求a 的取值范围;(2)若A B =∅,求a 的取值范围.【课堂检测】1.设集合{}{}{},4,3,2,3,2,1,2,1===C B A 则()__________.A B C = 2.若集合{}{}|23,|23,S x x x T x x =≤≥=≤≤或则_________S T =.3.设集合{}21,|0 2.5,|,32U R A x x B x x x ⎧⎫==<<=≥≤-⎨⎬⎩⎭或则()()U U C A C B = . 4.已知{}{},1,1,3,3,1,122+--=-+-=a a a B a a A 则{}2,______A B a =-=则.【教学反思】§1.3 交集·并集(2)【教学目标】、(1)掌握集合交集及并集有关性质;运用性质解决一些简单问题;(2)掌握集合的有关术语和符号;使学生树立创新意识.【考纲要求】集合的交、并运算及正确地表示一些简单集合.【课前导学】1.有关性质:A A = A ∅= AB B AA A = A ∅= AB B A2.区间:设,,,a b R a b ∈<且规定[,]a b = ,(,)a b = ,[,)a b = ,(,]a b = ,(,)a +∞= ,(,]b -∞= ,(,)-∞+∞= .3. {1,2,3,4,5,6},{2,3,5},{1,4},())(),U U U U A B C A B C A C B ===求与(并探求(),U C A B ,U U C A C B 三者之间的关系.4.求满足{1,2}P Q =的集合,P Q 共有多少组?【例题讲解】例1设{}{}{},7,1,4,4,2,1,1,22-=+-=+--=C x y B x x A 且C B A = ,求y x ,的值及B A .例2设22{|1|,3,5},{21,2,21},A a B a a a a a =+=+++-若{2,3}A B =,求A B .例3设222{|40},{|2(1)10}.A x x x B x x a x a =+==+++-=(1)若A B B =,求a 的值;(2)若A B B =,求a 的值.例4设全集3{(,)|,},{(,)|1},{(,)|1}2y U x y x R y R M x y P x y y x x -=∈∈===≠+-,求().U C M P【课堂检测】1.设集合{},,3|Z x x x I ∈<={},2,1=A {},2,1,2--=B 则()U A C B 等于 .2.若{}{},,非正整数非负整数==B A 则=B A , =B A .3.设R U =,{},,50|<≤=x x A {},1|≥=x x B 则()()=B C A C U U .4.已知集合C B A ,,满足C B B A =,则C A ____.【教学反思】§2.1.1 函数的概念与图像(1)【教学目标】1.通过现实生活中的实例体会函数是描述变量之间的依赖关系得重要模型,理解函数概念;2.了解构成函数的三要素:定义域、对应法则、值域,会求一些简单函数的定义域并能说出他们的值域 .【考纲要求】了解构成函数的三要素;【课前导学】1.函数的定义:设A ,B 是两个 数集,如果按照某种确定的 ,使对于集合A中的 一个数x ,在集合B 中 和它对应,那么这样的对应叫做从A 到 B 的一个函数,记为 ,其中x 叫 ,x 的取值范围叫做函数 的 ,与x 的值相对应的y 的值叫 ,y 的取值范围叫做函数的 ;2.在对应法则R y R x b x y y x f ∈∈+=→,,,:中,若52→,则→-2 ;3.下列图象中不能..作为函数()y f x =的图象的是:y y【例题讲解】例1(1)N x x x ∈→,; (2)R x x x ∈+→,11; (3),y x →其中+∈∈-=N y N x x y ,,1;(4)y x →,其中{}{}3,2,1,0,1,1,0,1,21-∈-∈-=y x x y以上4个对应中,为函数的有 .变式:下列各组函数中,为同一函数的是 ;(1)()3-=x x f 与()962+-=x x x g (2)()1-=x x f 与12)(2+-=t t t g(3)24)(2+-=x x x f 与2)(-=x x g (4)2)(x x f π=与圆面积y 是半径x 的函数例2 求下列函数的定义域:(1)x x f -=11)( (2)22y x =+*变式:若)(x f y =的定义域为[]4,1,)2(+x f 的定义域为 ;例3已知函数223y x x =--+,求1(0),(1),(),()(1)2f f f f n f n --.变式1:函数223,(32)y x x x =--+-≤≤的值域是 函数223y x x =--+,{}2,1,0,1,2--∈x 的值域是 .变式2:若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,那么函数2x y =,值域为{}4,1的“同族函数”共有 个;【课堂检测】1. 对于集合{|06}A x x =≤≤,{|03}B y y =≤≤,有下列从A 到B 的三个对应:①12x y x →= ;②13x y x →=;③x y x →=;其中是从A 到B 的函数的对应的序号为 ;2. 函数3()|1|2f x x =+-的定义域为 ____________3. 若2()(1)1,{1,0,1,2,3}f x x x =-+∈-,则((0))f f = ;【教学反思】§2.1.1 函数的概念与图像(2)【教学目标】通过现实生活中的实例体会函数是描述变量之间的依赖关系得重要模型,理解函数概念;了解构成函数的三要素:定义域、对应法则、值域,会求一些简单函数的定义域并能说出他们的值域 .【考纲要求】了解构成函数的三要素;【课前导学】1.求下列函数的定义域:(1)22-⋅+=x x y (2)322--=x x y2.函数)(x f y =的定义域为[]4,1-,则函数)2(x f y =的定义域为 ;3.求下列函数的值域:(1))20(1≤<-=x x y (2)2y x=(3))30(322≤≤+-=x x x y【例题讲解】例1.求下列函数的定义域:(1)()01x yx x +=- (2)1y x =+例2.求下列函数的值域:(1)32y x =- (2)[)246,1,5y x x x =-+∈(3)2845y x x =-+ (4)y x =例3(1)已知函数y =R ,求实数m 的取值范围;(2)设[]1,(1)A b b =>,函数21()(1)12f x x =-+,当x A ∈,()f x 的值域也是A ,求b 的值.【课堂检测】1.函数y =的定义域为 ,111y x=+的定义域为 .2.函数211y x =+的值域为 .3.函数y x =的值域为 .【教学反思】§2.1.1 函数的概念与图像(3)【教学目标】1.理解函数图象的意义;2.能正确画出一些常见函数的图象;3.会利用函数的图象求一些简单函数的值域、判断函数值的变化趋势;4.从“形”的角度加深对函数的理解. 【课前导学】1.函数的图象:将函数()f x 自变量的一个值0x 作为 坐标,相应的函数值作为 坐标,就得到坐标平面上的一个点00(,())x f x ,当自变量 ,所有这些点组成的图形就是函数()y f x =的图象.2.函数()y f x =的图象与其定义域、值域的对应关系:函数()y f x =的图象在x 轴上的射影构成的集合对应着函数的 ,在y 轴上的射影构成的集合对应着函数的 .3. 函数()f x x =与2()x g x x =的图象相同吗?并画出函数2()x g x x=的图像.4.画出下列函数的图象:(1)()1f x x =+; (2)2()(1)1,[1,3)f x x x =-+∈;(3)5y x =,{1,2,3,4}x ∈; (4)()f x =【例题讲解】例1. 画出函数2()1f x x =+的图象,并根据图象回答下列问题:(1)比较(2),(1),(3)f f f -的大小;(2)若120x x <<(或120x x <<,或12||||x x <)比较1()f x 与2()f x 的大小;(3)分别写出函数2()1f x x =+((1,2]x ∈-), 2()1f x x =+((1,2]x ∈)的值域.例2. 已知函数()f x =⎪⎩⎪⎨⎧>≤≤-<+)1(,)1(-1,)1(322x x x x x ,x(1)画出函数图象; (2)求(((2)))f f f -的值(3)求当()7f x =-时,求x 的值;例3作出下列函数的图像;(1) 234y x x =+- (2) 221y x x =--【课堂检测】1.函数()f x 的定义域为[]2,3-,则()y f x =的图像与直线2x =的交点个数为 .2. 函数)(x f y =的图象如图所示,填空: (1)=)0(f ______;(2)=)1(f ______;(3)=)2(f _________;(4)若1121<<<-x x ,则)()(21x f x f 与的大小关系是_______________. 3.画出函数()xf x x x=+的图像.【教学反思】§2.1.2函数的表示方法(1)【教学目标】1.掌握函数的三种表示方法(图象法、列表法、解析法),理解同一个函数可以用不同的方法来表示;2.了解分段函数,会作其图,并简单地应用; 3.会用待定系数法、换元法求函数的解析式. 【考纲要求】在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.【课前导学】1.一次函数一般形式为 .2.二次函数的形式:(1)一般式:;(2)交点式:;(3)顶点式: .3.已知()31f g x=,=+,则[()]=-,()23f x xg x xg f x= .[()]4.已知函数()f x.=+-=,求()f x是二次函数,且满足(0)1,(1)()2f f x f x x【例题讲解】例1.下表所示为x与y间的函数关系:那么它的解析式为 .例2. 函数()f x在闭区间[1,2]-上的图象如下图所示,则求此函数的解析式.1例3. (1)已知一次函数)(x f 满足[]34)(+=x x f f ,求)(x f .(2)已知2(1)2f x x x +=-,求()f x .【课堂检测】1.已知21,0()21,0x x f x x x ⎧+≥=⎨+<⎩,(2)f -= ;2(1)f a += .2.已知1)f x =+()f x = .3.若二次函数2223y x mx m =-+-+的图像对称轴为20x +=,则m = ,顶点坐标为 .【教学反思】§2.1.2函数的表示方法(2)【教学目标】掌握函数的三种表示方法(图象法、列表法、解析法),会根据不同的需要选择恰当的方法表示函数;会用待定系数法、换元法求函数的饿解析式;通过实际问题体会数学知识的广泛应用性,培养抽象概括能力和解决问题的能力.【考纲要求】在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.【课前导学】1.函数()01)(2≠+=x x xx f ,则)1(x f 是 ; 2.已知1)1(+=+x x f ,那么)(x f 的解析式为 ;3.一个面积为2100m 的等腰梯形,上底长为xm ,下底长为上底长的3倍,则高y 与x 的解析式为 ;4.某种笔记本每本5元,买x ({}4,3,2,1∈x )个笔记本的钱数记为y (元),则以x 为自变量的函数y 的解析式为 ;【例题讲解】例 1. 动点P 从边长为1的正方形ABCD 的顶点A 出发,顺次经过B 、C 、D 再回到A ,设x 表示点P 的行程,y 表示线段PA 的长,求y 关于x 的函数解析式.变式:如图所示,梯形ABCD 中,CD AB //,5==BC AD ,,10=AB 4=CD ,动 点P 自B 点出发沿DA CD BC →→路线运动,最后到达A 点,设点P 的运动路程为x ,ABP ∆的面积为y ,试求)(x f y =的解析式并作出图像.例2已知函数满足1()2()f x f ax x +=,(1)求(1),(2)f f 的值; (2)求()f x 的解析式.【课堂检测】1.周长为定值l的矩形,它的面积S是此矩形的长为x的函数,则该函数的解析式为;2.若函数()f x满足关系式1()2()3f x f xx+=,则(2)f= ;【教学反思】§2.1.3函数的单调性(1)【教学目标】1. 会运用函数图象判断函数是递增还是递减;2. 理解函数的单调性,能判别或证明一些简单函数的单调性;3. 注意必须在函数的定义域内或其子集内讨论函数的单调性.【考纲要求】通过已学过的函数特别是二次函数,理解函数的单调性,学会运用函数图象理解和研究函数的性质【课前导学】1.下列函数中,在区间()2,0上为增函数的是 ;(1)xy 1= (2)12-=x y (3)x y -=1 (4)2)12(-=x y 2.若b x k x f ++=)12()(在()+∞∞-,上是减函数,则k 的取值范围是 ;3.函数122-+=x x y 的单调递增区间为 ;4.画出函数12+=x y 的图象,并写出单调区间.【例题讲解】例1:画出下列函数图象,并写出单调区间.(1)22y x =-+; (2)1y x=;(3)21, 0()22, 0x x f x x x ⎧+≤=⎨-+>⎩.例2.求证函数1()1f x x=-在()0,+∞上是减函数.思考:在(),0-∞是 函数,在定义域内是减函数吗?例3.求证函数3()f x x x =+在(),-∞+∞上是增函数.【课堂检测】1.函数1062+-=x x y 在单调增区间是 ;2.函数11-=xy 的单调递减区间为 ; 3.函数⎩⎨⎧<≥=)0()0(2x xx x y 的单调递增区间为 ,单调递减区间为 ; 4.求证:函数x x x f +-=2)(在⎪⎭⎫ ⎝⎛∞-21,上是单调增函数.【教学反思】§2.1.3函数的单调性(2)【教学目标】1.理解函数的单调性、最大(小)值极其几何意义;2.会用配方法、函数的单调性求函数的最值;3.培养识图能力与数形语言转换的能力.【课前导学】1.函数12+-=x y 在[]2,1-上的最大值与最小值分别是 ;2.函数x x y +-=2在[]0,3-上的最大值与最小值分别是 ;3.函数12+-=xy 在[]3,1上最大值与最小值分别是 ; 4.设函数)0()(≠=a xa x f ,若)(x f 在()0,∞-上是减函数,则a 的取值范围为 .【例题讲解】例1. (1)若函数2()45f x x mx m =-+-在[2,)-+∞上是增函数,在(,2]-∞-上是减函数,则实数m 的值为 ;(2)若函数2()45f x x mx m =-+-在[2,)-+∞上是增函数,则实数m 的取值范围为 ;(3)若函数2()45f x x mx m =-+-的单调递增区间为[2,)-+∞,则实数m 的值为 .例2.已知函数)(x f y =的定义域是],[b a ,a c b <<.当],[c a x ∈时,)(x f 是单调增函数;当],[b c x ∈时,)(x f 是单调减函数,试证明)(x f 在c x =时取得最大值.例3.(1)求函数1()f x x x=+的单调区间; (2)求函数221()x x f x x -+=,1,44x ⎡⎤∈⎢⎥⎣⎦的值域.【课堂检测】1. 函数1)1()(--=x a x f 在()+∞∞-,上是减函数实数a 的取值范围是 .2. 函数2()4(0)f x x mx m =-+>在(,0]-∞上的最小值是 .3. 函数()f x =的最小值是 ,最大值是 .【教学反思】§2.1.3 函数的奇偶性(1)【教学目标】3.了解函数奇偶性的含义;4.掌握判断函数奇偶性的方法,能证明一些简单函数的奇偶性;5.初步学会运用函数图象理解和研究函数的性质。
2020高中数学A版新教材必修1学案导学案 第三章 3.2.2 奇偶性
-3 B.f(2)<f 2 <f(-1)
-3 C.f(2)<f(-1)<f 2
-3 D.f(-1)<f 2 <f(2) 解析 ∵f(-x)=f(x),∴f(x)为偶函数,
∴f(2)=f(-2).
又 f(x)在区间(-∞,-1]上是增函数,且-2<-3<-1. 2
-x2-x,x<0, 综上可知 f(x)=
x2-x,x≥0. (2)设 x<0,-x>0, 则 f(-x)=(-x)2+(-x)-1=x2-x-1, 又 f(x)在 R 上为偶函数,∴当 x∈(-∞,0)时,f(x)=f(-x)=x2-x-1. 题型四 函数单调性与奇偶性的应用 方向 1 比较大小问题 【例 4-1】 若对于任意实数 x 总有 f(-x)=f(x),且 f(x)在区间(-∞,-1]上是 增函数,则( )
-∞,-5 5,+∞
单调递减区间是
2和2
.
4.(1)中的函数在区间(-∞,-2]与[2,+∞)上单调性相反,(2)中的函数在区间
-5,0 0,5 2 与 2 上单调性相同.
1.函数的奇偶性 奇、偶函数的定义域关于原点对称
奇偶性
定义
图象特点
设函数 f(x)的定义域为 I,如果 x∈I,都有-x∈I,且
为________________________________________________________.
解析 因为函数 f(x)在区间[-3,-1]上是减函数,所以 f(-1)<f(-2)<f(-3).
又函数 f(x)是偶函数,则 f(-x)=f(x).即 f(-1)=f(1),f(-2)=f(2),
人教版高中数学必修1全册导学案讲课教案
1、用“ ”或“ ”符号填空 :
2 (1)3
7
2
.Q (2 )3
N ; (3 )
2
Q (4 ) 2
R ; ( 5) 9 Z (6 ) ( 5 )
N
2、集合 A :比 3 的倍数小 1 的所有的数
(1)5 A, (2 )7 A , (3 )-10 A.
(四)个人收获与问题
知识:
方法:
我的问题:
(五)预习内容
能力展示 5 分钟,教师作出总结性点评。
通过本节学习应达到如下目标 :
1.掌握集合的表示方法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的 具体问题
2.发展运用数学语言的能力,感受集合语言的意义和作用,学习从数学的角度认识世界. 3.通过合作学习培养合作精神. 学习重点: 集合的表示方法,即运用集合的列举法与描述法,正确表示一些简单的集合 学习难点: 难点是集合特征性质的概念,以及运用特征性质描述法表示集合
学习过程 (一)自主学习
阅读课本,完成下列问题
1. 集合的表示方法
(1) 列举法: 把
一一列举出来,写在
内,用逗号隔开。
( 2)描述法:把集合中的元素的公共属性描述出来,写在大括号内,具体方法在大括号内先写
上表示这个集合元素的
.及取值(或变化)范围,再画一条竖线,在竖线后写出
这个集合中元素所具有的
。
2、一般地,我们把研究对象称为
.,把一些元素组成的总体叫做
。
3、集合的元素必须是
不能确定的对象不能构成集合。
4、集合的元素一定是
的,相同的几个对象归于同一个集合时只能算作一个元素。
5、集合通常用大写的拉丁字母表示,如
2020高中数学A版新教材必修1学案导学案 第五章 5.1 5.1.1 任意角
第五章三角函数[数学文化]——了解数学文化的发展与应用早期对于三角函数的研究可以追溯到古代.古希腊三角术的奠基人是公元前2世纪的喜帕恰斯,他按照古巴比伦人的做法,将圆周分为360等份(即圆周的弧度为360度,与现代的弧度制不同).对于给定的弧度,他给出了对应的弦的长度数值,这个记法和现代的正弦函数是等价的.喜帕恰斯实际上给出了最早的三角函数数值表.然而古希腊的三角学基本是球面三角学,这与古希腊人研究的主体是天文学有关.梅涅劳斯在他的著作《球面学》中使用了正弦来描述球面的梅涅劳斯定理.古希腊三角学与其天文学的应用在埃及的托勒密时代达到了高峰,托勒密在《数学汇编》中计算了36度角和72度角的正弦值,还给出了计算和角公式和半角公式的方法.托勒密还给出了所有0度到180度的所有整数和半整数弧度对应的正弦值.喜帕恰斯[读图探新]——发现现象背后的知识伦敦眼伦敦眼(英文名:The London Eye),全称英国航空伦敦眼(The British Airways London Eye)又称千禧之轮,坐落在伦敦泰晤士河畔,是世界第四大摩天轮,是伦敦的地标之一,也是伦敦最吸引游人的观光点之一.伦敦眼于1999年年底开幕,总高度135米(443英尺).伦敦眼共有32个乘坐舱,因舱内外用钢化玻璃打造,所以设有空调系统.每个乘坐舱可载客约25名,回转速度约为每秒0.26米,即一圈需时30分钟.问题1:伦敦眼转一圈需用时30分钟,这就叫周期现象,那么周期为多少呢?问题2:当游客坐伦敦眼达到最高点时,伦敦美景尽收眼底,总高度135米对应于三角函数的哪些量?链接:(1)周期为30分钟;(2)游客达到最高点与最低点时,分别对应了三角函数的最大值与最小值.5.1任意角和弧度制5.1.1任意角课标要求素养要求1.结合实例,了解角的概念的推广及其实际意义.2.理解象限角的概念,并掌握终边相同角的含义及其表示.在角的概念推广过程中,经历由具体到抽象,重点提升学生的数学抽象、直观想象素养.教材知识探究周日早晨,小明起床后,发现自己的闹钟停在5:00这一刻,他立即更换了电池,调整到了正常时间6:30,并开始正常的学习.问题小明在调整闹钟时间时,时针与分针各转过了多少度?提示时针转了-45°,分针转了-540°.1.角的分类注意正角、负角的旋转方向类型定义图示正角按逆时针方向旋转形成的角负角按顺时针方向旋转形成的角零角一条射线没有作任何旋转,称它形成了一个零角2.角的加法(1)若两角的旋转方向相同且旋转量相等,那么就称α=β.(2)设α、β是任意两个角,把角α的终边旋转角β,这时终边所对应的角是α+β.(3)相反角:把射线OA 绕端点O 按不同方向旋转相同的量所成的两个角叫做互为相反角,角α的相反角记为-α,α-β=α+(-β).3.象限角如果角的顶点与坐标原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边(除端点外)在第几象限,就说这个角是第几象限角.如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.4.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z },即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.教材拓展补遗[微判断]1.经过1小时,时针转过30°.(×)提示因为是顺时针旋转,所以时针转过-30°.2.终边与始边重合的角是零角.(×)提示终边与始边重合的角是k ·360°(k ∈Z ).3.第一象限角都是锐角.(×)提示390°为第一象限角,但不是锐角.4.钝角是第二象限角.(√)5.第三象限的角一定比第一象限的角大.(×)提示例如-120°为第三象限角,60°为第一象限角,故错误.[微训练]1.-378°是第________象限角.解析-378°=-360°-18°,因为-18°是第四象限角,所以-378°是第四象限角.答案四2.与-457°角的终边相同的角的集合是()A.{α|α=457°+k·360°,k∈Z}B.{α|α=97°+k·360°,k∈Z}C.{α|α=263°+k·360°,k∈Z}D.{α|α=-263°+k·360°,k∈Z}解析由于-457°=-1×360°-97°=-2×360°+263°,故与-457°角的终边相同的角的集合是{α|α=-457°+k·360°,k∈Z}={α|α=263°+k·360°,k∈Z}.答案C[微思考]1.角的概念推广后角的范围有怎样的变化?提示角的概念推广后,角度的范围不限于0°~360°,而是任意的角,包括正角、负角与零角.2.终边相同的角相等吗?相等的角终边相同吗?提示当角的始边相同时,若角相等,则终边相同,但若角终边相同,则不一定相等.题型一与任意角有关的概念辨析【例1】(1)下列说法中,正确的是________(填序号).①终边落在第一象限的角为锐角;②锐角是第一象限的角;③第二象限的角为钝角;④小于90°的角一定为锐角;⑤角α与-α的终边关于x轴对称.解析终边落在第一象限的角不一定是锐角,如400°的角是第一象限的角,但不是锐角,故①的说法是错误的;同理第二象限的角也不一定是钝角,故③的说法也是错误的;小于90°的角不一定为锐角,比如负角,故④的说法是错误的.答案②⑤(2)如图,射线OA先绕端点O逆时针方向旋转60°到OB处,再按顺时针方向旋转820°至OC处,则β=________.解析∠AOC=60°+(-820°)=-760°,β=-760°+720°=-40°.答案-40°规律方法判断角的概念问题的关键与技巧(1)关键:正确理解象限角与锐角、直角、钝角、平角、周角等概念.(2)技巧:判断一种说法正确需要证明,而判断一种说法错误只要举出反例即可.【训练1】写出图(1),(2)中的角α,β,γ的度数.解题干图(1)中,α=360°-30°=330°;题干图(2)中,β=-360°+60°+150°=-150°;γ=360°+60°+(-β)=360°+60°+150°=570°.题型二终边相同的角的表示及应用在终边相同的角的表示中,k·360°可以理解为按一定方向转动的圈数,k取正整数时,按逆时针转,k取负整数时,按顺时针转,k=0时,没有转动.【例2】写出终边落在直线y=x上的角的集合S,并把S中适合不等式-360°≤β<720°的元素β写出来.解直线y=x与x轴的夹角是45°,在0°~360°范围内,终边在直线y=x上的角有两个:45°,225°.因此,终边在直线y=x上的角的集合:S={β|β=45°+k·360°,k∈Z}∪{β|β=225°+k·360°,k∈Z}={β|β=45°+2k·180°,k∈Z}∪{β|β=45°+(2k+1)·180°,k∈Z}={β|β=45°+n·180°,n∈Z}.∴S中适合-360°≤β<720°的元素是:45°-2×180°=-315°;45°-1×180°=-135°;45°+0×180°=45°;45°+1×180°=225°;45°+2×180°=405°;45°+3×180°=585°.规律方法解答本题关键是找到0°~360°范围内,终边落在直线y=x的角:45°,225°,再利用终边相同的角的关系写出符合条件的所有角的集合,如果集合能化简的还要化成最简.【训练2】写出终边落在x轴上的角的集合S.解S={α|α=k·360°,k∈Z}∪{α|α=k·360°+180°,k∈Z}={α|α=2k·180°,k∈Z}∪{α|α=(2k+1)·180°,k∈Z}={α|α=n·180°,n∈Z}.题型三象限角和区间(域)角的表示应先找到0°~360°范围内与其终边相同的角【例3】(1)-2019°是第________象限角.解析-2019°=-6×360°+141°,141°是第二象限角,所以-2019°为第二象限角.答案二(2)已知,如图所示.①分别写出终边落在OA,OB位置上的角的集合;②写出终边落在阴影部分(包括边界)的角的集合.包括边界用实线表示,不包括边界用虚线表示解①终边落在OA位置上的角的集合为{α|α=90°+45°+k·360°,k∈Z}={α|α=135°+k·360°,k∈Z},终边落在OB位置上的角的集合为{α|α=-30°+k·360°,k∈Z}.②由题干图可知,阴影部分(包括边界)的角的集合是由所有介于-30°到135°之间的与之终边相同的角组成的集合,故可表示为{α|-30°+k·360°≤α≤135°+k·360°,k∈Z}.【迁移1】若将例3(2)题改为如图所示的图形,那么阴影部分(包括边界)表示的终边相同的角的集合如何表示?解在0°~360°范围内、阴影部分(包括边界)表示的范围是:150°≤α≤225°,则满足条件的角α为{α|k·360°+150°≤α≤k·360°+225°,k∈Z}.【迁移2】若将例3(2)题改为如图所示的图形,那么终边落在阴影部分(包括边界)的角的集合如何表示?解由题干图可知满足题意的角的集合为{β|k·360°+60°≤β≤k·360°+105°,k∈Z}∪{k·360°+240°≤β≤k·360°+285°,k∈Z}={β|2k·180°+60°≤β≤2k·180°+105°,k∈Z}∪{β|(2k+1)·180°+60°≤β≤(2k+1)·180°+105°,k∈Z}={β|n·180°+60°≤β≤n·180°+105°,n∈Z},即所求的集合为{β|n·180°+60°≤β≤n·180°+105°,n∈Z}.规律方法表示区域角的三个步骤第一步:先按逆时针的方向找到区域的起始和终止边界.第二步:按由小到大分别标出起始和终止边界对应的-360°~360°范围内的角α和β,写出最简区间{x|α<x<β},其中β-α<360°.第三步:起始、终止边界对应角α,β再加上360°的整数倍,即得区域角集合.【训练3】(1)已知α是第二象限角,则180°-α是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角(2)已知α是锐角,那么2α是()A.第一象限角B.第二象限角C.小于180°的正角D.第一或第二象限角解析(1)由α是第二象限角可得,90°+k·360°<α<180°+k·360°,k∈Z.所以180°-(90°+k·360°)>180°-α>180°-(180°+k·360°),即90°-k·360°>180°-α>-k·360°(k∈Z),所以180°-α为第一象限角.(2)∵0°<α<90°,∴0°<2α<180°,∴2α是小于180°的正角.答案(1)A(2)C一、素养落地1.通过本节课的学习,学会利用图形描述建立形与数的联系,提升学生的数学抽象、直观想象素养.2.本节主要借助坐标系,加深对角的概念的理解.3.会写终边相同的角、区域角.二、素养训练1.在①160°;②480°;③-960°;④1530°这四个角中,属于第二象限角的是()A.①B.①②C.①②③D.①②③④解析②480°=120°+360°是第二象限角;③-960°=-3×360°+120°是第二象限角;④1530°=4×360°+90°不是第二象限角,故选C.答案C2.下列说法正确的是()A.三角形的内角一定是第一、二象限角B.钝角不一定是第二象限角C.相差180°整数倍的角为终边相同的角D.钟表的时针旋转而成的角是负角解析A错,如90°既不是第一象限角,也不是第二象限角;B错,钝角在90°到180°之间,是第二象限角;C错,终边相同的角之间相差360°的整数倍;D正确,钟表的时针是顺时针旋转,故是负角.答案D3.把-936°化为α+k·360°(0°≤α<360°,k∈Z)的形式为________.解析-936°=-3×360°+144°,故-936°化为α+k·360°(0°≤α<360°,k∈Z)的形式为144°+(-3)×360°.答案144°+(-3)×360°4.终边在直线y=-x上的角的集合S=________.解析由于直线y=-x是第二、四象限的角平分线,在0°~360°间所对应的两个角分别是135°和315°,从而S={α|α=k·360°+135°,k∈Z}∪{α|α=k·360°+315°,k∈Z}={α|α=2k·180°+135°,k∈Z}∪{α|α=(2k+1)·180°+135°,k∈Z}={α|α=n·180°+135°,n∈Z}.答案{α|α=n·180°+135°,n∈Z}5.已知,如图所示,(1)写出终边落在射线OA,OB上的角的集合;(2)写出终边落在阴影部分(包括边界)的角的集合.解(1)终边落在射线OA上的角的集合是{α|α=k·360°+210°,k∈Z}.终边落在射线OB上的角的集合是{α|α=k·360°+300°,k∈Z}.(2)终边落在阴影部分(含边界)角的集合是{α|k·360°+210°≤α≤k·360°+300°,k∈Z}.基础达标一、选择题1.下列说法中,正确的是()A.第二象限的角都是钝角B.第二象限角大于第一象限的角C.若角α与角β不相等,则α与β的终边不可能重合D.若角α与角β的终边在一条直线上,则α-β=k·180°(k∈Z)解析A错,495°=135°+360°是第二象限的角,但不是钝角;B错,α=135°是第二象限角,β=360°+45°是第一象限的角,但α<β;C错,α=360°,β=720°,则α≠β,但二者终边重合;D正确,α与β的终边在一条直线上,则二者的终边重合或相差180°的整数倍,故α-β=k·180°(k∈Z).答案D2.给出下列命题:①-75°是第四象限角;②225°是第三象限角;③475°是第二象限角;④-315°是第一象限角.其中正确的命题有()A.1个B.2个C.3个D.4个解析∵-90°<-75°<0°,∴-75°是第四象限角,①正确;∵180°<225°<270°,∴225°是第三象限角,②正确;∵360°+90°<475°<360°+180°,∴475°是第二象限角,③正确;∵-360°<-315°<-270°,∴-315°是第一象限角,④正确.故这4个命题都是正确的.答案D3.与-468°角的终边相同的角的集合是()A.{α|α=k ·360°+456°,k ∈Z }B.{α|α=k ·360°+252°,k ∈Z }C.{α|α=k ·360°+96°,k ∈Z }D.{α|α=k ·360°-252°,k ∈Z }解析因为-468°=-2×360°+252°,所以252°角与-468°角的终边相同,所以与-468°角的终边相同的角为k ·360°+252°,k ∈Z ,故选B.答案B4.角α与角β的终边关于y 轴对称,则α与β的关系为()A.α+β=k ·360°,k ∈ZB.α+β=k ·360°+180°,k ∈ZC.α-β=k ·360°+180°,k ∈ZD.α-β=k ·360°,k ∈Z解析法一(特值法):令α=30°,β=150°,则α+β=180°.法二(直接法):因为角α与角β的终边关于y 轴对称,所以β=180°-α+k ·360°,k ∈Z ,即α+β=k ·360°+180°,k ∈Z .答案B5.已知α为第三象限角,则α2所在的象限是()A.第一或第二象限B.第二或第三象限C.第一或第三象限D.第二或第四象限解析法一如图所示,将每个象限二等分,标号Ⅲ所在的区域即为α2所在的区域,故选D.法二∵180°+k ·360°<α<270°+k ·360°,k ∈Z ,∴90°+k ·180°<α2<135°+k ·180°,k ∈Z ,∴α2为第二或第四象限角,故选D.答案D二、填空题6.1112°角是第________象限角.解析∵1112°=360°×3+32°,∴1112°与32°的终边相同,均为第一象限角.答案一7.终边在坐标轴上的角的集合为________.解析终边在x 轴上的角的集合为α1=k ·180°=2k ·90°,终边在y 轴上的角的集合为α2=k ·180°+90°=(2k +1)90°,所以终边在坐标轴上的角的集合为{α|α=k ·90°,k ∈Z }.答案{α|α=k ·90°,k ∈Z }8.若角θ的终边与60°角的终边相同,则在0°~360°内终边与θ3角的终边相同的角为________.解析由题意设θ=60°+k ·360°(k ∈Z ),则θ3=20°+k ·120°(k ∈Z ),则当k =0,1,2时,θ3=20°,140°,260°.答案20°,140°,260°三、解答题9.已知角θ的7倍角的终边与角θ的终边重合,且0°<θ<360°,求满足条件的角θ的集合.解由题意知,7θ=θ+k ·360°,k ∈Z ,即6θ=k·360°,k∈Z,∴θ=k·60°,k∈Z,由0°<θ<360°,得0°<k·60°<360°,k∈Z,∴0<k<6,k∈Z,即k=1,2,3,4,5,∴θ的集合为{60°,120°,180°,240°,300°}.10.已知角α=2010°.(1)把α改写成k·360°+β(k∈Z,0°≤β<360°)的形式,并指出它是第几象限角;(2)求θ,使θ与α终边相同,且-360°≤θ<720°.解(1)由2010°除以360°,得商为5,余数为210°.∴取k=5,β=210°,α=5×360°+210°.又β=210°是第三象限角,∴α为第三象限角.(2)与2010°终边相同的角为k·360°+2010°(k∈Z).令-360°≤k·360°+2010°<720°(k∈Z),解得-6712≤k<-3712(k∈Z).所以k=-6,-5,-4.将k的值代入k·360°+2010°中,得角θ的值为-150°,210°,570°.能力提升11.写出如图所示阴影部分的角α的范围.解(1)因为与45°角终边相同的角可写成45°+k·360°,k∈Z的形式,与-180°+30°=-150°角终边相同的角可写成-150°+k·360°,k∈Z的形式.所以图(1)阴影部分的角α的范围可表示为{α|-150°+k·360°<α≤45°+k·360°,k∈Z}.(2)同理可表示图(2)中角α的范围为{α|45°+k·360°≤α≤300°+k·360°,k∈Z}. 12.在集合{α|α=k·90°+45°,k∈Z}中(1)有几种终边不相同的角?(2)有几个在区间(-360°,360°)内的角?(3)写出其中的第三象限角.解(1)由k=4n,4n+1,4n+2,4n+3(n∈Z),知在给定的角的集合中终边不相同的角共有四种.(2)由-360°<k·90°+45°<360°,得-92<k<72.又k∈Z,故k=-4,-3,-2,-1,0,1,2,3.所以在给定的角的集合中在区间(-360°,360°)内的角共有8个.(3)其中的第三象限角为k·360°+225°,k∈Z.。
高中数学必修1教案(2020年8月整理).pdf
第一章 集合与函数概念1.1 集合1.1.1 集合的含义与表示课标三维定向〖知识与技能〗1、了解集合的含义,体会元素与集合的“属于”关系。
2、掌握集合中元素的特性。
3、能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。
〖过程与方法〗通过实例,从集合中的元素入手,正确表示集合,结合集合中元素的特性,学会观察、比较、抽象、概括的思维方法,领悟分类讨论的数学思想。
〖情感、态度、价值观〗在运用集合语言解决问题的过程中,逐步养成实事求是、扎实严谨的科学态度,学会用数学思维方法解决问题。
〖重点〗集合的含义与表示方法。
〖难点〗集合表示方法的恰当选择及应用。
教学过程设计一、阅读课本:P2—6(10分钟)(学生课前预习)二、核心内容整合1、为什么要学习集合——现代数学的基础(数学分支)2、集合的含义:把研究对象称为元素,把一些元素组成的总体叫做集合。
3、集合的特性(1)确定性。
问题:“高个子”能不能构成集合?我国的小河流呢?〖知识链接〗模糊数学(“模糊数学简介”、“浅谈模糊数学”)(2)互异性:集合中的元素不重复出现。
如{1,1,2}不能构成集合(3)无序性——相等集合,如{1,2} = {2,1}4、元素与集合之间的“属于”关系:A a A a ∉∈,5、一些常用数集的记法:N (N *,N +),Z ,Q ,R 。
如:R +表示什么?6、集合的表示法:(1)列举法:把集合的元素一一列举出来,并用花括号“{}“括起来。
例1、用列举法表示下列集合:(1)小于10的所有自然数组成的集合;{0,1,2,3,4,5,6,7,8,9}(2)方程x x =2的所有实数根组成的集合;(0,1)(3)由1 ~ 20以内的所有质数组成的集合。
(难点:质数的概念){2,3,5,7,11,13,17,19}(2)描述法:用集合所含元素的共同特征表示。
{|}x x P ∈例2、试分别用列举法和描述法表示下列集合:(1)方程022=−x 的所有实数根组成的集合;列举法:;描述法:2{|20}x x −=。
关于高一数学必修一教案3篇(高一数学必修一详细教案)
关于高一数学必修一教案3篇(高一数学必修一详细教案)下面是分享的关于高一数学必修一教案3篇(高一数学必修一详细教案),欢迎参阅。
关于高一数学必修一教案1教学目的:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;(2)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
课型:新授课教学重点:集合的交集与并集的概念;教学难点:集合的交集与并集“是什么”,“为什么”,“怎样做”;教学过程:一、引入课题我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?思考(P9思考题),引入并集概念。
二、新课教学1、并集一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union)记作:A∪B 读作:“A并B”即:A∪B={x|x∈A,或x∈B}Venn图表示:说明:两个集合求并集,结果还是一个集合,是由集合A与B 的所有元素组成的集合(重复元素只看成一个元素)。
例题1求集合A与B的并集① A={6,8,10,12} B={3,6,9,12}② A={x|-1≤x≤2} B={x|0≤x≤3}(过度)问题:在上图中我们除了研究集合A与B的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合A 与B的交集。
2、交集一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集(intersection)。
记作:A∩B 读作:“A交B”即:A∩B={x|∈A,且x∈B}交集的Venn图表示说明:两个集合求交集,结果还是一个集合,是由集合A与B 的公共元素组成的集合。
例题2求集合A与B的交集③ A={6,8,10,12} B={3,6,9,12}④ A={x|-1≤x≤2} B={x|0≤x≤3}拓展:求下列各图中集合A与B的并集与交集(用彩笔图出)说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集3、例题讲解例3(P12例1):理解所给集合的含义,可借助venn图分析例4 P12例2):先“化简”所给集合,搞清楚各自所含元素后,再进行运算。
高中数学必修1教案 最新人教版高一数学必修一教案(大全(优秀11篇)
高中数学必修1教案最新人教版高一数学必修一教案(大全(优秀11篇)高中数学必修一教案全套篇一本节课力的合成,是在学生了解力的基本性质和常见几种力的基础上,通过等效替代思想,研究多个力的合成方法,是对前几节内容的深化。
本节重点介绍力的合成法则——平行四边形定则,但实际这是所有矢量运算的共同工具,为学习其他矢量的运算奠定了基础。
更重要的是,力的合成是解决力学问题的基础,对今后牛顿运动定律、平衡问题、动量与能量问题的理解和应用都会产生重要影响。
因此,这节课承前启后,在整个高中物理学习中占据着非常重要的地位。
二、教学目标定位为了让学生充分进行实验探究,体验获取知识的过程,本节内容分两课时来完成,今天我说课的内容为本节内容的第一课时。
根据上述教材分析,考虑到学生的实际情况,在本节课的教学过程中,我制定了如下教学目标:一、知识与技能.理解合力、分力、力的合成的概念。
理解力的合成本质上是从等效的角度进行力的替代。
.探究求合力的方法——力的平行四边形定则,会用平行四边形定则求合力。
二、过程与方法.通过学习合力和分力的概念,了解物理学常用的方法——等效替代法。
.通过实验探究方案的设计与实施,体验科学探究的过程。
三、情感态度与价值观.培养学生的合作精神,激发学生学习兴趣,形成良好的学习方法和习惯。
.培养认真细致、实事求是的实验态度。
根据以上分析确定本节课的重点与难点如下:一、重点.合力和分力的概念以及它们的关系。
.实验探究力的合成所遵循的法则。
二、难点平行四边形定则的理解和运用。
三、重、难点突破方法——教法简介本堂课的重、难点为实验探究力的合成所遵循的法则——平行四边形定则,为了实现重难点的突破,让学生真正理解平行四边形定则,就要让学生亲自体验规律获得的过程。
因此,本堂课在学法上采用学生自主探究的实验归纳法——通过重现获取知识和方法的思维过程,让学生亲自去体验、探究、归纳总结。
体现学生主体性。
实验归纳法的步骤如下。
高一数学必修一教案(5篇)
高一数学必修一教案(5篇)高一数学必修一优秀教案1一、教学目标1.学问与技能:把握画三视图的根本技能,丰富学生的空间想象力。
2.过程与方法:通过学生自己的亲身实践,动手作图,体会三视图的作用。
3.情感态度与价值观:提高学生空间想象力,体会三视图的作用。
二、教学重点:画出简洁几何体、简洁组合体的三视图;难点:识别三视图所表示的.空间几何体。
三、学法指导:观看、动手实践、争论、类比。
四、教学过程(一)创设情景,揭开课题展现庐山的风景图——“横看成岭侧看成峰,远近凹凸各不同”,这说明从不同的角度看同一物体视觉的效果可能不同,要比拟真实反映出物体,我们可从多角度观看物体。
(二)讲授新课1、中心投影与平行投影:中心投影:光由一点向外散射形成的投影;平行投影:在一束平行光线照耀下形成的投影。
正投影:在平行投影中,投影线正对着投影面。
2、三视图:正视图:光线从几何体的前面对后面正投影,得到的投影图;侧视图:光线从几何体的左面对右面正投影,得到的投影图;俯视图:光线从几何体的上面对下面正投影,得到的投影图。
三视图:几何体的正视图、侧视图和俯视图统称为几何体的三视图。
三视图的画法规章:长对正,高平齐,宽相等。
长对正:正视图与俯视图的长相等,且相互对正;高平齐:正视图与侧视图的高度相等,且相互对齐;宽相等:俯视图与侧视图的宽度相等。
3、画长方体的三视图:正视图、侧视图和俯视图分别是从几何体的正前方、正左方和正上方观看到有几何体的正投影图,它们都是平面图形。
长方体的三视图都是长方形,正视图和侧视图、侧视图和俯视图、俯视图和正视图都各有一条边长相等。
4、画圆柱、圆锥的三视图:5、探究:画出底面是正方形,侧面是全等的三角形的棱锥的三视图。
高一数学必修一优秀教案2【考点阐述】两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切.【考试要求】(3)把握两角和与两角差的正弦、余弦、正切公式;把握二倍角的正弦、余弦、正切公式.(4)能正确运用三角公式,进展简洁三角函数式的`化简、求值和恒等式证明.【考题分类】(一)选择题(共5题)1.(海南宁夏卷理7) =( )A. B. C. 2 D.解:,选C。
2020年人教版高中数学必修1精品教案(整套)
2020年人教版高中数学必修1精品教案(整套)课题:集合的含义与表示(1)课型:新授课教学目标:(1)了解集合、元素的概念,体会集合中元素的三个特征;(2)理解元素与集合的“属于”和“不属于”关系;(3)掌握常用数集及其记法;教学重点:掌握集合的基本概念;教学难点:元素与集合的关系;教学过程:一、引入课题军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
阅读课本P2-P3内容二、新课教学(一)集合的有关概念1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。
2.一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。
3.思考1:判断以下元素的全体是否组成集合,并说明理由:(1)大于3小于11的偶数;(2)我国的小河流;(3)非负奇数;(4)方程210x+=的解;(5)某校2007级新生;(6)血压很高的人;(7)著名的数学家;(8)平面直角坐标系内所有第三象限的点(9)全班成绩好的学生。
对学生的解答予以讨论、点评,进而讲解下面的问题。
4.关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)无序性:给定一个集合与集合里面元素的顺序无关。
(4)集合相等:构成两个集合的元素完全一样。
5.元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belong to)A,记作:a∈A(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作:a∉A例如,我们A表示“1~20以内的所有质数”组成的集合,则有3∈A4∉A,等等。
2020高中数学A版新教材必修1学案导学案 第一章 1.4 1.4.1 充分条件与必要条件
19
课前预习
课堂互动
核心素养
二、素养训练 1.若p:a∈M∪N,q:a∈M,则p是q的( )
A.充分条件但不是必要条件 B.必要条件但不是充分条件 C.既是充分条件,也是必要条件 D.既不是充分条件,也不是必要条件 解析 由a∈M∪Na∈M,但a∈Ma∈M∪N,即pq,但qp. 答案 B
@《创新设计》
故p是q的充分条件. (3)由x=1(x-1)(x-2)=0,
故p是q的充分条件.
故(1)(2)(3)命题中p是q的充分条件.
14
课前预习
课堂互动
核心素养
@《创新设计》
题型三 根据必要条件(充分条件)求参数的范围 【例3】 (1)已知P={x|a-4<x<a+4},Q={x|1<x<3},“x∈P”是“x∈Q”的必要条件,
核心素养
@《创新设计》
5.若“x>m”是“x>3或x<1”的充分条件但不是必要条件,求m的取值范围. 解 由已知条件,知{x|x>m}{x|x>3或x<1}.∴m≥3.
24
课前预习
课堂互动
核心素养
@《创新设计》
三、审题答题
示范(一) 利用充分条件(必要条件)求参数范围
【典型示例】 (12分)已知
18
课前预习
课堂互动
核心素养
@《创新设计》
1.通过学习充分条件与必要条件的概念提升数学抽象素养,通过判断充分条件与必 要条件及其应用培养逻辑推理素养.
2.充分条件、必要条件的判断方法 (1)定义法:直接利用定义进行判断. (2)利用集合间的包含关系进行判断.
3.根据充分条件、必要条件求参数的取值范围时,注意转化与化归思想的应用.
人教版高中数学必修①教案学案
人教版高中数学必修①教案-学案一、教学目标1. 理解有理数的概念,掌握有理数的运算方法。
2. 了解实数的概念,能够正确运用实数解决问题。
3. 理解绝对值的概念,掌握绝对值的运算方法。
二、教学内容1. 有理数:整数、分数的概念与运算。
2. 实数:实数的概念、实数的运算。
3. 绝对值:绝对值的概念、绝对值的运算。
三、教学重点与难点1. 重点:有理数的概念,实数的概念,绝对值的概念。
2. 难点:有理数的运算,实数的运算,绝对值的运算。
四、教学方法1. 采用问题导入法,引导学生思考和探索。
2. 通过例题讲解,让学生理解和掌握运算方法。
3. 利用练习题进行巩固,提高学生的解题能力。
五、教学过程1. 引入:讲解有理数的概念,引导学生理解有理数的定义和特点。
2. 讲解整数的运算方法,包括加法、减法、乘法、除法。
3. 讲解分数的运算方法,包括加法、减法、乘法、除法。
4. 引入实数的概念,讲解实数的运算方法,包括加法、减法、乘法、除法。
5. 引入绝对值的概念,讲解绝对值的运算方法,包括绝对值的定义和计算方法。
6. 通过例题讲解,让学生理解和掌握有理数、实数和绝对值的运算方法。
7. 布置练习题,让学生巩固所学内容,提高解题能力。
教学评价:通过课堂讲解、练习题和作业的完成情况,评价学生对有理数、实数和绝对值的概念和运算方法的掌握程度。
六、教学目标1. 掌握函数的概念,理解函数的性质。
2. 学会使用函数关系式,解决实际问题。
3. 理解一次函数和二次函数的概念,掌握它们的性质和图像。
七、教学内容1. 函数:函数的概念,函数的性质。
2. 一次函数:一次函数的定义,一次函数的性质,一次函数的图像。
3. 二次函数:二次函数的定义,二次函数的性质,二次函数的图像。
八、教学重点与难点1. 重点:函数的概念,一次函数和二次函数的性质和图像。
2. 难点:理解函数的性质,掌握一次函数和二次函数的图像分析。
九、教学方法1. 采用案例分析法,通过实际问题引入函数概念。
2020年新课标高中数学人教A版必修1全册导学案及答案(145页)
§1.1.1集合的含义及其表示[自学目标]1.认识并理解集合的含义,知道常用数集及其记法;2.了解属于关系和集合相等的意义,初步了解有限集、无限集、空集的意义; 3.初步掌握集合的两种表示方法—列举法和描述法,并能正确地表示一些简单的集合. [知识要点] 1. 集合和元素 (1)如果是集合A 的元素,就说属于集合A,记作;(2)如果不是集合A 的元素,就说不属于集合A,记作.2.集合中元素的特性:确定性;无序性;互异性.3.集合的表示方法:列举法;描述法;Venn 图.4.集合的分类:有限集;无限集;空集.5.常用数集及其记法:自然数集记作,正整数集记作或,整数集记作,有理数集记作,实数集记作. [预习自测]例1.下列的研究对象能否构成一个集合?如果能,采用适当的方式表示它. (1)小于5的自然数; (2)某班所有高个子的同学; (3)不等式的整数解; (4)所有大于0的负数;(5)平面直角坐标系内,第一、三象限的平分线上的所有点.分析:判断某些对象能否构成集合,主要是根据集合的含义,检查是否满足集合元素的确定性.例2.已知集合中的三个元素可构成某一个三角形的三边的长,那么此三角形 一定是 ( )A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形a a a A ∈a a a A ∉N *N N +Z Q R 217x +>{},,M a b c =例3.设若,求的值.分析: 某元素属于集合A,必具有集合A 中元素的性质,反过来,只要元素具有集合A 中元素的性质,就一定属于集合A.例4.已知,,且,求实数的值.[课内练习]1.下列说法正确的是( )(A )所有著名的作家可以形成一个集合 (B )0与 的意义相同 (C )集合 是有限集 (D )方程的解集只有一个元素 2.下列四个集合中,是空集的是( )A .B .C .D . 3.方程组的解构成的集合是( )A .B .C .(1,1)D ..4.已知,,则B =5.若,,用列举法表示B= . [归纳反思]1.本课时的重点内容是集合的含义及其表示方法,难点是元素与集合间的关系以及集合元素()()(){}22,,2,,5,a N b N a b A x y x a y a b ∈∈+==-+-=()3,2A ∈,a b p p {}2,,M a b ={}22,2,N a b =M N =,a b {}0⎭⎬⎫⎩⎨⎧∈==+N n n x x A ,10122=++x x }33|{=+x x },,|),{(22R y x x y y x ∈-=}0|{2≤x x }01|{2=+-x x x 20{=+=-y x y x )}1,1{(}1,1{}1{}1,0,1,2{--=A }|{A x x y y B ∈==}4,3,2,2{-=A },|{2A t t x xB ∈==的三个重要特性的正确使用;2.根据元素的特征进行分析,运用集合中元素的三个特性解决问题,叫做元素分析法。
2020高中数学A版新教材必修1学案导学案 第一章 1.4 1.4.1 充分条件与必要条件
∴m≤1. (2)由已知条件得{x|x>a}{x|x<-3 或 x>1},∴a≥1.
一、素养落地 1.通过学习充分条件与必要条件的概念提升数学抽象素养,通过判断充分条件与 必要条件及其应用培养逻辑推理素养. 2.充分条件、必要条件的判断方法 (1)定义法:直接利用定义进行判断. (2)利用集合间的包含关系进行判断. 3.根据充分条件、必要条件求参数的取值范围时,注意转化与化归思想的应用. 二、素养训练 1.若 p:a∈M∪N,q:a∈M,则 p 是 q 的( ) A.充分条件但不是必要条件 B.必要条件但不是充分条件
A.充分条件但不是必要条件
B.必要条件但不是充分条件
C.既是充分条件,也是必要条件
D.既不是充分条件,也不是必要条件
解析 x≥2 且 y≥2 可以推出 x2+y2≥4,但 x=1 且 y=3 满足 x2+y2≥4 但不满
足 x≥2 且 y≥2,故选 A.
答案 A
4.设 x,y 是两个实数,命题:“x,y 中至少有一个数大于 1”成立的充分条件但
(2)如果“若 p,则 q”为假命题,那么由条件 p 不能推出结论 q,记作 p / q, 此时,我们就说 p 不是 q 的充分条件,q 不是 p 的必要条件. 2.判定定理和性质定理与充分条件、必要条件的关系 (1)数学中的每一条判定定理都给出了相应数学结论成立的一个充分条件. (2)数学中的每一条性质定理都给出了相应数学结论成立的一个必要条件.
要使 p 是 q 的充分条件但不是必要条件,则 MN,应有
2或
2
1+a>1 1+a≥1,
解得 a≥1.10 分 2
令 a=1,则 M={x|x<0 或 x>2}N={x|x<1或 x>1}. 2
高一数学必修一教案6篇
高一数学必修一教案6篇(最新版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、报告大全、演讲致辞、条据书信、心得体会、党团资料、读后感、作文大全、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as work summary, report encyclopedia, speeches, articles and letters, experience and experience, party and group information, after reading, composition encyclopedia, teaching materials, other sample essays, etc. I want to know the difference Please pay attention to the format and writing of the sample essay!高一数学必修一教案6篇教案在制订的时候,你们肯定要考虑与时俱进,通过教案的写作我们是需要将教学目的表达好的,下面是本店铺为您分享的高一数学必修一教案6篇,感谢您的参阅。
(数学教案)新课标高中数学必修1教案
新课标高中数学必修1教案通过将含绝对值的不等式同解变形为不含绝对值的不等式,培养学生化归的思想和转化的能力;一起看看新课标高中数学必修1教案!欢送查阅!新课标高中数学必修1教案1教学目标(1)掌握与( )型的绝对值不等式的解法.(2)掌握与( )型的绝对值不等式的解法.(3)通过用数轴来表示含绝对值不等式的解集,培养学生数形结合的能力;(4)通过将含绝对值的不等式同解变形为不含绝对值的不等式,培养学生化归的思想和转化的能力;教学重点:型的不等式的解法;教学难点:利用绝对值的意义分析、解决问题.教学过程设计教师活动学生活动设计意图一、导入新课【提问】正数的绝对值什么负数的绝对值是什么零的绝对值是什么举例说明【概括】口答绝对值的概念是解与〔〕型绝对值不等值的概念,为解这种类型的绝对值不等式做好铺垫.二、新课【导入】2的绝对值等于几-2的绝对值等于几绝对值等于2的数是谁在数轴上表示出来.【讲述】求绝对值等于2的数可以用方程来表示,这样的方程叫做绝对值方程.显然,它的解有二个,一个是2,另一个是-2.【提问】如何解绝对值方程.【设问】解绝对值不等式,由绝对值的意义你能在数轴上画出它的解吗这个绝对值不等式的解集怎样表示【讲述】根据绝对值的意义,由右面的数轴可以看出,不等式的解集就是表示数轴上到原点的距离小于2的点的集合.【设问】解绝对值不等式,由绝对值的意义你能在数轴上画出它的解吗这个绝对值不等式的解集怎样表示【质疑】的解集有几局部为什么也是它的解集【讲述】这个集合中的数都比-2小,从数轴上可以明显看出它们的绝对值都比2大,所以是解集的一局部.在解时容易出现只求出这局部解集,而丢掉这部解集的错误.【练习】解以下不等式:〔1〕;〔2〕【设问】如果在中的,也就是怎样解【点拨】可以把看成一个整体,也就是把看成,按照的解法来解.所以,原不等式的解集是【设问】如果中的是,也就是怎样解【点拨】可以把看成一个整体,也就是把看成,按照的解法来解.,或,由得由得所以,原不等式的解集是口答.画出数轴后在数轴上表示绝对值等于2的数.画出数轴,思考答案不等式的解集表示为画出数轴思考答案不等式的解集为或表示为,或笔答〔1〕〔2〕,或笔答笔答根据绝对值的意义自然引出绝对值方程〔〕的解法.由浅入深,循序渐进,在〔〕型绝对值方程的根底上引出〔〕型绝对值方程的解法.针对解〔〕绝对值不等式学生常出现的情况,运用数轴质疑、解惑.落实会正确解出与〔〕绝对值不等式的教学目标.在将看成一个整体的关键处点拨、启发,使学生主动地进行练习.继续强化将看成一个整体继续强化解不等式时不要犯丢掉这局部解的错误.三、课堂练习解以下不等式:〔1〕;〔2〕笔答〔1〕;〔2〕检查教学目标落实情况.四、小结的解集是;的解集是解绝对值不等式注意不要丢掉这局部解集.或型的绝对值不等式,假设把看成一个整体一个字母,就可以归结为或型绝对值不等式的解法.五、作业1.阅读课本含绝对值不等式解法.2.习题2、3、4课堂教学设计说明1.抓住解型绝对值不等式的关键是绝对值的意义,为此首先通过复习让学生掌握好绝对值的意义,为解绝对值不等式打下牢固的根底.2.在解与绝对值不等式中的关键处设问、质疑、点拨,让学生融会贯穿的掌握它们解法之间的内在联系,以到达提高学生解题能力的目的.3.针对学生解( )绝对值不等式容易出现丢掉这局部解集的错误,在教学中应根据绝对值的意义从数轴进行突破,并在练习中纠正这个错误,以提高学生的运算能力.新课标高中数学必修1教案2教学目标:(1)理解子集、真子集、补集、两个集合相等概念;(2)了解全集、空集的意义,(3)掌握有关子集、全集、补集的符号及表示方法,会用它们正确表示一些简单的集合,培养学生的符号表示的能力;(4)会求集合的子集、真子集,会求全集中子集在全集中的补集;(5)能判断两集合间的包含、相等关系,并会用符号及图形(文氏图)准确地表示出来,培养学生的数学结合的数学思想;(6)培养学生用集合的观点分析问题、解决问题的能力.教学重点:子集、补集的概念教学难点:弄清元素与子集、属于与包含之间的区别教学用具:幻灯机教学过程设计(一)导入新课上节课我们学习了集合、元素、集合中元素的三性、元素与集合的关系等知识.【提出问题】(投影打出),,,问:1.哪些集合表示方法是列举法.2.哪些集合表示方法是描述法.3.将集M、集从集P用图示法表示.4.分别说出各集合中的元素.5.将每个集合中的元素与该集合的关系用符号表示出来.将集N中元素3与集M的关系用符号表示出来.6.集M中元素与集N有何关系.集M中元素与集P有何关系. 【找学生答复】1.集合M和集合N;(口答)2.集合P;(口答)3.(笔练结合板演)4.集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1.(口答)5. ,,,,,,,(笔练结合板演)6.集M中任何元素都是集N的元素.集M中任何元素都是集P的元素.(口答)【引入】在上面见到的集M与集N;集M与集P通过元素建立了某种关系,而具有这种关系的两个集合在今后学习中会经常出现,本节将研究有关两个集合间关系的问题.(二)新授知识1.子集(1)子集定义:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B 包含集合A。