数学模型之微分方程及其MATLAB求解
MATLAB微分方程几种求解方法及程序
第五章 控制系统仿真§5.2 微分方程求解方法以一个自由振动系统实例为例进行讨论。
如下图1所示弹簧-阻尼系统,参数如下: M=5 kg, b=1 N.s/m, k=2 N/m, F=1NF图1 弹簧-阻尼系统假设初始条件为:00=t 时,将m 拉向右方,忽略小车的摩擦阻力,m x 0)0(= s m x /0)0(=•求系统的响应。
)用常微分方程的数值求解函数求解包括ode45、ode23、ode113、ode15s 、ode23s 等。
wffc1.m myfun1.m一、常微分方程的数值求解函数ode45求解 解:系统方程为 F kx x b x m =++•••这是一个单变量二阶常微分方程。
将上式写成一个一阶方程组的形式,这是函数ode45调用规定的格式。
令: x x =)1( (位移))1()2(••==x x x (速度) 上式可表示成:⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡••)1(*20)2(*101)2()2()2()1(x x x x x x x 下面就可以进行程序的编制。
%写出函数文件myfun1.mfunction xdot=myfun1(t,x)xdot=[x(2);1-10*x(2)-20*x(1)];% 主程序wffc1.mt=[0 30];x0=[0;0];[tt,xx]=ode45(@myfun1,t,x0);plot(tt,yy(:,1),':b',tt,yy(:,2),'-r') legend('位移','速度')title('微分方程的解 x(t)')二、方法2:F kx x b x m =++•••251)()()(2++==s s s F s X s G%用传递函数编程求解ksys1.mnum=1;den=[5 1 2];%printsys(num,den)%t=0:0.1:10;sys=tf(num,den);figure(1)step(sys)figure(2)impulse(sys)figure(3)t=[0:0.1:10]';ramp=t;lsim(sys,ramp,t);figure(4)tt=size(t);noise=rand(tt,1);lsim(sys,noise,t)figure(5)yy=0.1*t.^2;lsim(num,den,yy,t)w=logspace(-1,1,100)';[m p]=bode(num,den,w);figure(6)subplot(211);semilogx(w,20*log10(m)); grid onsubplot(212);semilogx(w,p)grid on[gm,pm,wpc,wgc]=margin(sys)figure(7)margin(sys)figure(8)nyquist(sys)figure(9)nichols(sys)方法3:F kx x b x m =++•••125=++•••x x xx x x 4.02.02.0--=•••% 主程序wffc1.mt=[0 30];x0=[0;0];[tt,yy]=ode45(@myfun1,t,x0);figure(1)plot(tt,yy(:,1),':b',tt,yy(:,2),'-r') hold onplot(tt,0.2-0.2*yy(:,2)-0.4*yy(:,1),'-.k ')legend('位移','速度','加速度') title('微分方程的解')figure(2)plot(yy(:,1),yy(:,2))title('平面相轨迹')%写出函数文件myfun1.mfunction xdot=myfun1(t,x)xdot=[x(2);0.2-0.2*x(2)-0.4*x(1)];。
matlab差分法求解微分方程
一、概述微分方程是自然科学和工程技术中常见的数学模型,它描述了连续系统的变化规律。
在实际应用中,求解微分方程是一项重要且复杂的工作。
而matlab是一种常用的科学计算软件,它提供了丰富的数学函数和工具,能够辅助工程师和科学家在求解微分方程方面取得良好的效果。
二、matlab差分法求解微分方程的基本原理差分法是一种常见的数值求解微分方程的方法。
它基于微分的定义,将微分方程中的微分运算用差分逼近来进行计算。
在matlab中,可以利用内置的数学函数和工具,通过差分法求解微分方程,得到数值解或者近似解。
三、matlab中使用差分法求解常微分方程的步骤1. 确定微分方程的类型和边界条件需要明确所要求解的微分方程是什么类型的,以及其所对应的边界条件是什么。
这对于后续的数值求解过程非常重要。
在matlab中,可以利用符号变量和函数来表示微分方程和边界条件。
2. 将微分方程离散化接下来,需要将微分方程进行离散化处理,将微分方程中的微分运算用差分逼近来进行计算。
这一步需要根据微分方程的具体形式和求解精度选择合适的差分方法,常见的有前向差分、后向差分和中心差分等方法。
3. 构建代数方程组将离散化后的微分方程转化为代数方程组。
这一步需要根据微分方程的离散化表达式和边界条件,利用matlab的矩阵和向量运算功能,构建代数方程组。
4. 求解代数方程组利用matlab的求解函数,求解构建得到的代数方程组,得到微分方程的数值解或者近似解。
在求解过程中,需要注意数值稳定性和收敛性,以及选择合适的数值积分方法和迭代算法。
四、实例:使用matlab差分法求解一阶常微分方程为了更好地理解matlab中使用差分法求解微分方程的过程,以下将通过一个具体的实例来演示。
假设要求解如下的一阶常微分方程:dy/dx = -2x + 1, y(0) = 11. 确定微分方程的类型和边界条件根据给定的方程,可以确定它是一阶常微分方程,且给定了初始条件y(0) = 1。
数学建模实验二:微分方程模型Matlab求解与分析
实验二: 微分方程模型Matlab 求解与分析一、实验目的[1] 掌握解析、数值解法,并学会用图形观察解的形态和进行解的定性分析; [2] 熟悉MATLAB 软件关于微分方程求解的各种命令;[3] 通过范例学习建立微分方程方面的数学模型以及求解全过程; [4] 熟悉离散 Logistic 模型的求解与混沌的产生过程。
二、实验原理1. 微分方程模型与MATLAB 求解解析解用MATLAB 命令dsolve(‘eqn1’,’eqn2’, ...) 求常微分方程(组)的解析解。
其中‘eqni'表示第i 个微分方程,Dny 表示y 的n 阶导数,默认的自变量为t 。
(1) 微分方程 例1 求解一阶微分方程 21y dxdy+= (1) 求通解 输入:dsolve('Dy=1+y^2')输出:ans =tan(t+C1)(2)求特解 输入:dsolve('Dy=1+y^2','y(0)=1','x')指定初值为1,自变量为x 输出:ans =tan(x+1/4*pi)例2 求解二阶微分方程 221()04(/2)2(/2)2/x y xy x y y y πππ'''++-=='=-原方程两边都除以2x ,得211(1)04y y y x x'''++-= 输入:dsolve('D2y+(1/x)*Dy+(1-1/4/x^2)*y=0','y(pi/2)=2,Dy(pi/2)=-2/pi','x')ans =- (exp(x*i)*(pi/2)^(1/2)*i)/x^(1/2) +(exp(x*i)*exp(-x*2*i)*(pi/2)^(3/2)*2*i)/(pi*x^(1/2))试试能不用用simplify 函数化简 输入: simplify(ans)ans =2^(1/2)*pi^(1/2)/x^(1/2)*sin(x) (2)微分方程组例3 求解 d f /d x =3f +4g ; d g /d x =-4f +3g 。
MATLAB实验四_求微分方程的解
参数说明
[T,Y] = solver(odefun,tspan,y0)
odefun 为显式常微分方程,可以用命令 inline 定义,或 在函数文件中定义,然后通过函数句柄调用。
dy 2 2 y 2 x 2x 求初值问题 的数值解,求解范 例: dx 围为 [0,0.5] y( 0 ) 1
dsolve的输出个数只能为一个 或 与方程个数相等。
只有很少一部分微分方程(组)能求出解析解。 大部分微分方程(组)只能利用数值方法求数值解。
Matlab函数数值求解
[T,Y] = solver(odefun,tspan,y0)
其中 y0 为初值条件,tspan为求解区间;Matlab在数值求解 时自动对求解区间进行分割,T (列向量) 中返回的是分割点 的值(自变量),Y (数组) 中返回的是这些分割点上的近似解, 其列数等于因变量的个数。
数学实验
实验四
求微分方程的解
问题背景和实验目的
自牛顿发明微积分以来,微分方程在描述事物运 动规律上已发挥了重要的作用。实际应用问题通过 数学建模所得到的方程,绝大多数是微分方程。 由于实际应用的需要,人们必须求解微分方程。 然而能够求得解析解的微分方程十分有限,绝大多 数微分方程需要利用数值方法来近似求解。 本实验主要研究如何用 Matlab 来计算微分方程 (组)的数值解,并重点介绍一个求解微分方程的 基本数值解法--Euler折线法。
Runge-Kutta 方法
Euler 法与 R-K法误差比较
Matlab 解初值问题
用 Maltab自带函数 解初值问题 求解析解:dsolve 求数值解:
ode45、ode23、 ode113、ode23t、ode15s、 ode23s、ode23tb
微分方程的数值解法matlab(四阶龙格—库塔法)
解析解: x x x1 3 2(((ttt))) 0 .0 8 1 1 2 P k 8 0siw n t) (2 .6 3 0 3 3 P k 0siw n t) (0 .2 12 2 2 P k 0siw n t)(
第一个质量的位移响应时程
Y (t)A(Y t)P(t)
(2)
Y (t)A(Y t)P(t)
3. Matlab 程序(主程序:ZCX)
t0;Y0;h;N;P0,w; %输入初始值、步长、迭代次数、初始激励力;
for i = 1 : N
t1 = t0 + h
P=[P0*sin(w*t0);0.0;0.0]
%输入t0时刻的外部激励力
Van der Pol方程
% 子程序 (程序名: dYdt.m ) function Ydot = dYdt (t, Y) Ydot=[Y(2);-Y(2)*(Y(1)^2-1)-Y(1)];
或写为
function Ydot = dYdt (t, Y) Ydot=zeros(size(Y)); Ydot(1)=Y(2); Ydot(2)=-Y(2)*(Y(1).^2-1)-Y(1)];
Solver解算指令的使用格式
说明:
t0:初始时刻;tN:终点时刻 Y0:初值; tol:计算精度
[t, Y]=solver (‘ODE函数文件名’, t0, tN, Y0, tol);
ode45
输出宗量形式
y1 (t0 )
Y
y1
(t1
)
y
1
(t
2
)
y2 (t0 )
y
2
(
t1
)
y
2
(
t
matlab求解微分代数方程
文章主题:探索数学求解软件Matlab在微分代数方程求解中的应用1. 引言微分代数方程(DAE)是描述物理系统中的相互依赖性和复杂性的数学模型。
解决这类方程对于现代科学和工程领域至关重要。
Matlab作为一种强大的数学计算软件,在微分代数方程求解中具有独特的优势。
本文将从简单到复杂的方式,探讨Matlab在DAE求解中的应用,并共享个人见解。
2. DAE的基本概念微分代数方程是描述包含未知函数及其导数或导数与未知函数的组合的方程。
通常的形式为F(x, x', t) = 0,其中x为未知函数,x'为其导数,t为自变量。
在实际应用中,这些方程往往伴随着初始条件和边界条件。
3. Matlab在解常微分方程(ODE)中的应用Matlab拥有丰富的ODE求解函数,如ode45、ode23等,可用于求解各种常微分方程。
这些函数可以自动选择适当的数值积分方法,并提供了方便的接口和参数设置,极大地简化了求解过程。
4. DAE求解方法的挑战与ODE相比,DAE的求解更具挑战性。
由于包含了代数变量和微分变量,常规的数值积分方法难以直接应用。
而且,方程的初始条件和边界条件也增加了求解的复杂性。
5. Matlab在DAE求解中的工具Matlab提供了一系列专门用于DAE求解的函数和工具包,如dare和ddesd等。
这些工具在模型建立、数值解法选择、收敛性分析等方面都具有独特的优势。
6. 案例分析:用Matlab求解电路模型的DAE以电路模型的DAE为例,通过Matlab可以快速建立系统的数学模型,并进行数值求解。
通过对参数的调节和模型的分析,可以更好地理解电路的动态特性,帮助优化设计和故障诊断。
7. 总结与展望通过本文的探讨,我们更深入地了解了Matlab在微分代数方程求解中的重要性和应用。
在未来,随着科学技术的发展,Matlab在此领域的功能和性能将得到进一步的提升,为工程科学领域提供更强大的支持。
个人观点:Matlab作为一种综合性的科学计算软件,对微分代数方程的求解起着至关重要的作用。
matlab微分方程模型
matlab微分方程模型Matlab微分方程模型是一种基于Matlab软件的数学建模方法,用于解决微分方程相关的问题。
微分方程是描述物理、工程和数学问题的重要工具,通过建立微分方程模型,可以对各种现象进行定量分析和预测。
在Matlab中,可以使用ode45函数求解常微分方程(ODE)或者ode15s函数求解刚性ODE。
这些函数可以通过数值方法近似求解微分方程的解析解,从而得到问题的数值解。
具体来说,可以通过在Matlab中定义微分方程的右侧函数,然后使用相应的ode函数进行求解。
例如,考虑一个简单的一阶线性微分方程模型:dy/dx = -ky,其中k为常数。
我们可以通过在Matlab中定义这个微分方程的右侧函数,并使用ode45函数求解。
具体步骤如下:1. 在Matlab中定义微分方程的右侧函数:function dydx = myODE(x,y)k = 0.1; % 设定常数k的值dydx = -k*y;end2. 使用ode45函数求解微分方程:xspan = [0 10]; % 设定求解区间y0 = 1; % 设定初始条件[x,y] = ode45(@myODE, xspan, y0);3. 绘制得到的数值解:plot(x,y);xlabel('x');ylabel('y');title('Solution of dy/dx = -ky');通过以上步骤,我们可以得到微分方程dy/dx = -ky的数值解,并绘制出解的图像。
这个简单的例子展示了如何使用Matlab微分方程模型求解微分方程。
除了一阶线性微分方程,Matlab微分方程模型还可以用于解决更复杂的微分方程问题,包括高阶线性微分方程、非线性微分方程、偏微分方程等。
通过定义相应的微分方程函数和合适的求解方法,可以在Matlab中进行数值求解。
此外,Matlab还提供了丰富的绘图和分析工具,可以对微分方程的解进行可视化和进一步分析。
用Matlab求解微分方程
解微分⽅程有两种解,⼀种是解析解,⼀种是数值解,这两种分别对应不同的解法利⽤dsolve 函数进⾏求解syms x;s = dsolve('eq1,eq2,...', ’cond1,cond2,...', 'v');%eq :微分⽅程%cond :条件%v :独⽴变量%形如:⽅程:y'= f(t,y),初值:y(t0) = y0dsolve('Du = 1+ u^2','t')ans =tan(C2 + t)1i-1i求的解析解s = dsolve('D2y=3*y+2*x','x');% D2y ⽤以表⽰y 的⼆阶导数,默认是以t 为⾃变量的,所以最好指明⾃变量为x.syms y(x);s = dsolve([diff(y,x,2) == 3*y+2*x], [y(0) == 5])% diff 内依次是函数、⾃变量、微分阶数,⽅程⽤==表⽰相等⽽不是赋值求初值问题s = dsolve('Dy = y - 2*t / y','y(0) =1');求边界问题s = dsolve('x*D2y - 3*Dy =x^2','y(1)=0','y(5) = 0','x');求解⽅程s=dsolve('D2y =cos(2*x) - y','y(0) =1','Dy(0) = 0','x');simplify(s);(eqn,cond,‘IgnoreAnalyticConstraints’,false) %设置不化简结果求解⽅程组[f,g]= dsolve('Df = f + g','Dg = -f + g','f(0)=1','g(0) = 2','x');⽤Matlab 求解微分⽅程⽤Matlab 求解微分⽅程解析解1.求解析解2.初值问题3.边界问题4.⾼阶⽅程5.⽅程组问题⼀些例⼦dsolve('D2y+4*Dy+29*y = 0','y(0) = 0','Dy(0)= 15 ','x')ans =3*sin(5*x)*exp(-2*x)[x y z] = dsolve('Dx = 2*x-3*y+3*z','Dy = 4*x-5*y+3*z','Dz = 4*x-4*y+2*z')x =C7*exp(2*t) + C8*exp(-t)y =C7*exp(2*t) + C8*exp(-t) + C9*exp(-2*t)z =C7*exp(2*t) + C9*exp(-2*t)%可以对其进⾏简化操作x = simplify(x)x = C7*exp(2*t) + C8*exp(-t)y = simplify(y)y =exp(-2*t)*(C9 + C8*exp(t) + C7*exp(4*t))%龙格库塔法(Runge-Kutta 法)xfun=@(t,x)0.3.*x.*(1-x/8); %定义赋值函数r=0.3,k=8[tout,xout]=ode45(fun,[0,40],0.1) %⽅程数值解,四五阶RK 法[tout,xout]=ode23(xfun,[t0,tfinal],x0) %⼆三阶RK 法%%ode 系列数值求解形如 / = ( , )的微分⽅程组, 并绘图。
Matlab求解微分方程及偏微分方程
第四讲Matlab求解微分方程(组)理论介绍:Matlab求解微分方程(组)命令求解实例:Matlab求解微分方程(组)实例实际应用问题通过数学建模所归纳得到的方程,绝大多数都是微分方程,真正能得到代数方程的机会很少.另一方面,能够求解的微分方程也是十分有限的, 特别是高阶方程和偏微分方程(组).这就要求我们必须研究微分方程(组)的解法:解析解法和数值解法.一.相关函数、命令及简介1.在Matlab中,用大写字母D表示导数,Dy表示y关于自变量的一阶导数, D2y表示y关于自变量的二阶导数,依此类推.函数dsolve用来解决常微分方程(组)的求解问题,调用格式为:X=dsolve(<eqnl,,,eqn2函数dsolve用来解符号常微分方程、方程组,如果没有初始条件,则求出通解,如果有初始条件,则求出特解.注意,系统缺省的自变量为t2.函数dsolve求解的是常微分方程的精确解法,也称为常微分方程的符号解. 但是,有大量的常微分方程虽然从理论上讲,其解是存在的,但我们却无法求出其解析解,此时,我们需要寻求方程的数值解,在求常微分方程数值解方面,MATLAB具有丰富的函数,我们将其统称为solver,其一般格式为:[T,Y]=solver(odefun,tspan,yO)说明:(1 )solver 为命令ode45、ode23、odel 13、odel5s、ode23s、ode23t、ode23tb、odel5i 之一.(2)odefun是显示微分方程),=f (t,y)在积分区间tspan =[心心]上从心到“用初始条件儿求解.(3)如果要获得微分方程问题在其他指定时间点bG©…心上的解,则令(span = 『“,•••『/■](要单调的).(4)因为没有一种算法可以有效的解决所有的ODE问题,为此,Matlab提供T多种求解器solver,对于不同的ODE问题,采用不同的solver.程(组)的初值问题的解的Matlab常用程序,其中:ode23采用龙格-库塔2阶算法,用3阶公式作误差估计来调节步长,具有低等的精度.。
matlab求解微分方程sir模型
matlab求解微分方程sir模型摘要:一、微分方程SIR模型的简介1.SIR模型的基本概念2.SIR模型的数学表达式二、MATLAB求解SIR模型的方法1.MATLAB的ODE45函数2.MATLAB的ode23tb函数三、实例演示求解SIR模型1.初始条件的设定2.参数设置3.求解过程4.结果分析正文:一、微分方程SIR模型的简介SIR模型是描述传染病在人群中传播的一个数学模型,它由三个方程式组成,分别是S(t)表示易感者人数,I(t)表示感染者人数,R(t)表示康复者人数。
SIR模型的基本概念是易感者与感染者之间的接触会导致疾病传播,感染者康复后会获得免疫力。
SIR模型的数学表达式如下:dS/dt = -βSIdI/dt = βSI - γIdR/dt = γI其中,β表示每个感染者在单位时间内接触并传染给易感者的概率,γ表示感染者康复或死亡的概率。
二、MATLAB求解SIR模型的方法MATLAB提供了求解常微分方程的ODE45和ode23tb函数。
其中,ODE45是一种具有四阶和五阶龙格库塔法的数值积分方法,适用于求解非刚性问题;ode23tb是一种具有二阶和三阶龙格库塔法的数值积分方法,适用于求解刚性问题。
三、实例演示求解SIR模型下面我们通过一个实例来演示如何用MATLAB求解SIR模型。
1.初始条件的设定我们设定初始条件为:S(0)=1000, I(0)=1, R(0)=0。
2.参数设置我们设定参数为:β=0.4, γ=0.3。
3.求解过程我们使用MATLAB的ODE45函数来求解SIR模型,输入参数为:fun,即SIR模型的数学表达式,以及初始条件和参数。
[~, params] = ode45(@(t, S) [-0.4*S*I; 0.4*S*I - 0.3*I; 0.3*I], [0, 20], [1000, 1, 0]);4.结果分析我们可以通过params返回的结果来分析SIR模型的解。
用MATLAB求解微分方程
1. 微分方程的解析解
求微分方程(组)的解析解命令:
dsolve(‘方程1’, ‘方程2’,…‘方程n’, ‘初始条件’, ‘自变量’)
结 果:u = tan(t-c)
解 输入命令:dsolve('Du=1+u^2','t')
STEP2
STEP1
解 输入命令: y=dsolve('D2y+4*Dy+29*y=0','y(0)=0,Dy(0)=15','x')
导弹追踪问题
设位于坐标原点的甲舰向位于x轴上点A(1, 0)处的乙舰发射导弹,导弹头始终对准乙舰.如果乙舰以最大的速度v0(是常数)沿平行于y轴的直线行驶,导弹的速度是5v0,求导弹运行的曲线方程.又乙舰行驶多远时,导弹将它击中? 解法一(解析法)
由(1),(2)消去t整理得模型:
解法二(数值解)
结 果 为:x = (c1-c2+c3+c2e -3t-c3e-3t)e2t y = -c1e-4t+c2e-4t+c2e-3t-c3e-3t+c1-c2+c3)e2t z = (-c1e-4t+c2e-4t+c1-c2+c3)e2t
2、取t0=0,tf=12,输入命令: [T,Y]=ode45('rigid',[0 12],[0 1 1]); plot(T,Y(:,1),'-',T,Y(:,2),'*',T,Y(:,3),'+')
3、结果如图
图中,y1的图形为实线,y2的图形为“*”线,y3的图形为“+”线.
利用Matlab构建数学模型及求解方法详解
利用Matlab构建数学模型及求解方法详解引言数学模型在现代科学研究和实际应用中起着重要的作用。
利用数学模型,我们可以准确地描述问题,分析问题,并提供解决问题的方法。
而Matlab作为一种强大的数学软件,能够帮助我们构建数学模型并求解问题。
本文将详细介绍利用Matlab构建数学模型的方法和求解模型的技巧。
一、数学模型的基本概念数学模型是对真实世界问题的简化和抽象,以数学语言和符号进行表达。
一个好的数学模型应当能够准确地描述问题的本质,并能够提供解决问题的方法。
构建数学模型的基本步骤如下:1. 确定问题的目标和限制条件:首先,我们需要明确问题的目标是什么,以及有哪些限制条件需要考虑。
这些目标和限制条件将在后续的模型构建中起到重要的作用。
2. 建立假设:在构建数学模型时,我们通常需要做一些合理的假设。
这些假设可以简化问题,使得模型更易于建立和求解。
3. 确定数学表达式:根据问题的具体情况,我们需要选择适当的数学表达式来描述问题。
这些数学表达式可以是代数方程、微分方程、最优化问题等。
4. 参数估计:数学模型中通常会涉及到一些未知参数,我们需要通过实验数据或者其他手段来估计这些参数的值。
参数的准确估计对于模型的求解和结果的可靠性至关重要。
二、利用Matlab构建数学模型的方法在利用Matlab构建数学模型时,我们通常可以使用以下方法:1. 利用符号计算工具箱:Matlab中提供了丰富的符号计算工具箱,可以帮助我们处理复杂的代数方程和符号表达式。
通过符号计算工具箱,我们可以方便地推导出数学模型的方程式。
2. 利用数值计算工具箱:Matlab中提供了强大的数值计算工具箱,可以帮助我们求解各种数学问题。
例如,求解微分方程的常用方法有欧拉法、龙格-库塔法等,都可以在Matlab中轻松实现。
3. 利用优化工具箱:在一些优化问题中,我们需要求解最优解。
Matlab的优化工具箱提供了多种求解最优化问题的算法,如线性规划、非线性规划等。
matlab-微分方程-SS模型-TF模型-模型对比
matlab-微分方程-SS模型-TF模型-模型对比一、matlab微分方程、SS模型、TF模型、ZPK 模型的关系以最简单的单自由度振动模型为例:ÿ(t)+4y(t)=3u(t)微分方程左边为输出微分函数以系统特征参数为系数的线性组合,右边为输入微分函数的线性组合。
对微分方程进行拉普拉斯变换,得到传递函数G (s)= Y(s)/U(s)=3-------s^2 + 4用模型转换函数可以将TF模型转成SS模型:[A,B,C,D]=tf2ss([3],[1 0 4])Sys=ss(A,B,C,D);A =0 -41 0B =1z =0 - 0.7500i0 + 0.7500ip =0 + 2.0000i0 - 2.0000ik =[]二、对系统输出进行积分和微分计算对原系统:ÿ(t)+4y(t)=3u(t);G(s)=3------------s^2 + 41、设原系统输出为y1(t),怎么求其微分y1(t)?对微分方程右边进行微分,新的系统为:ÿ(t)+4y(t)=3u(t);G(s)=3s------------s^2 + 4ABD同,就C不同,因为输入由u(t)变成了u(t)。
A =0 -41 0B =1C =3 0D =所以,对原系统ÿ(t)+4y(t)=3u(t),输出函数y1(t)=CX+0D,只需改C=[0 3]为[3 0],或者取dy=3*X(:,1)就可得到ÿ(t)+4y(t)=3u(t)的输出函数y1(t)。
实际上,对原系统ÿ(t)+4y(t)=3u(t),A(1,:)*X+u还可得到u(t)输入的响应,再乘以3,就可得到ÿ(t)+4y(t)=3 u(t)的输出y1(t),但是u(t)更进一步的微分输入无法计算响应,所以对传递函数G(s),理论上分子num的次数应不大于分母den 的次数。
Matlab编程验证:[A,B,C,D]=tf2ss([3 0],[1 0 4])Sys=ss(A,B,C,D);G=tf(ss(A,B,C,D))X0=[0,0];%X0=zeros(2*n,1);%X0=[x1_0,...,dx1_0,...]t=0:0.05:pi;U=sin(4*t);[Y,t,X]=lsim(Sys,U,t,X0);subplot(4,1,1)plot(t,U)[A,B,C,D]=tf2ss([3],[1 0 4])Sys=ss(A,B,C,D);[Y2,t,X]=lsim(Sys,U,t,X0);dy=3*X(:,1);subplot(4,1,2)%plot(t,X(:,1:2))plot(t,Y2,t,Y,t,dy,'*',t,3*(A(1,2)*X(:,2)+U'))2、设原系统输出为y1(t),怎么求其积分y1_(t)?对原系统:ÿ(t)+4y(t)=3u(t);G(s)=3------------s^2 + 4方程左边微分,右边输入不变,微分方程变为:y(t)⃛+4y(t)=3u(t);G(s)=3------------s^3 + 4sA2 =0 -4 01 0 00 1 0B2 =1C2 =0 0 3D2 =所以状态参数增加了一个x3,[x1x2]x3X1,x2与原系统一样, x1=x2,x2=x3。
matlab 解微分方程
matlab 解微分方程Matlab是一种非常强大的数学软件,它不仅可以用于数值计算和数据分析,还可以用来解微分方程。
微分方程是数学中的一种重要方程类型,描述了变量之间的关系以及其随时间的变化规律。
在科学和工程领域中,微分方程的解析解往往很难求得,而数值解法则成为一种常用的求解手段。
在Matlab中,我们可以使用多种方法来求解微分方程,其中最常用的方法是数值解法。
数值解法通过将微分方程转化为差分方程,然后利用计算机进行迭代计算,逐步逼近方程的解。
常见的数值解法包括欧拉法、改进的欧拉法、龙格-库塔法等。
以一阶常微分方程为例,假设我们要求解如下的微分方程:dy/dx = f(x, y)其中,f(x, y)是已知的函数。
为了使用数值解法,我们首先需要将微分方程转化为差分方程,即将连续的求导操作转化为离散的差商操作。
我们可以选择合适的步长h,将自变量x划分成若干个小区间,然后在每个区间内进行近似计算。
在Matlab中,可以使用ode45函数来求解微分方程。
ode45函数利用了龙格-库塔法进行数值求解,它具有较高的精度和稳定性。
使用ode45函数时,我们需要提供微分方程的右侧函数f(x, y),以及初始条件y0。
ode45函数会自动进行迭代计算,得到微分方程的数值解。
下面是一个使用ode45函数求解微分方程的示例:```matlab% 定义微分方程的右侧函数function dydx = f(x, y)dydx = x + y;end% 求解微分方程xspan = [0 1]; % 自变量的范围y0 = 0; % 初始条件[x, y] = ode45(@f, xspan, y0);% 绘制解的图像plot(x, y);xlabel('x');ylabel('y');title('Solution of dy/dx = x + y');```在上面的代码中,我们首先定义了微分方程的右侧函数f(x, y),然后使用ode45函数进行求解。
Matlab常用微分方程模型(精品)
07 常用微分方程模型1 Matlab 求解微分方程1.1 求微分方程通解调用格式:y=dsolve(‘微分方程’,’x’)1.2 求满足初始条件的微分方程特解调用格式为:y=dsolve(‘微分方程’,’初始条件’,’x’)1.3 求解微分方程组通解,此时默认变量为t调用格式为:[x,y]=dsolve(‘微分方程1’,‘微分方程2’)1.4 求满足初始条件的微分方程组的解,此时默认变量为t调用格式为:[x,y]=dsolve(‘微分方程1’,‘微分方程2’,‘初始条件1’,‘初始条件2’) 例1 求二阶微分方程的解y' ' c os y, y(0) 0【matlab 命令】y=dsolve('D2y=cos(x)-y','y(0)=0','x');[y,how]=simple(y)【输出结果】y =1/2*sin(x)*(2*C2+x)how =simplify例2 求微分方程组的解f ' f gg' f gf (0)【matlab 命令】g(0)1【matlab 命令】[f,g]=dsolve('Df=f+g','Dg=f-g','f(0)=0','g(0)=1');[f,how]=simple(f)[g,how]=simple(g)【输出结果】f =1/4*2^(1/2)*(exp(2^(1/2)*t)-exp(-2^(1/2)*t))how =simplifyg =1/2*exp(2^(1/2)*t)+1/2/exp(2^(1/2)*t)-1/4*2^(1/2)*exp(2^(1/2)*t)+1/4*2^(1/2)/exp(2^(1/2)*t) how =expand例3 对于引例中的衰变模型,其微分方程模型是:dR dt k R,用matlab 求镭质量的变化规律.【matlab 命令】R=dsolve('DR=-k*R','R(t0)=R0','t'); R=simplify(R)【输出结果】R =R0*exp(-k*(-t0+t)) R |t t0R例4 对于引例中的冷却模型,其微分方程模型是:dT用matlab求解.【matlab 命令】【matlab 命令】dtk (T 20)T(0)100 ,T (20) 60(2)T=dsolve('DT=-k*(T-20)','T(0)=100','t')【输出结果】T =20+80*exp(-k*t)上述结果表示瓶内水温的变化规律:T 20 80e k t . 由条件T (20) 60 ,求出 k 的值. 【matlab 命令】syms kT=60;t=20;s=-T+20+80*exp(-k*t);k=solve(s)vpa(k,6)【输出结果】.346574e-12 习题1.解微分方程dy (1) xy 2 ydy dx xy 2 y dxy (0) 1y ' ' 3 y '2 y xdx dt 2 x 3y 3z (3)y (0)1y ' (0) 0 (4) dy 4 x 5y 3zdt dz 4 x 4y 2zdt。
利用matlab代码循环定步长求解微分方程
一、概述微分方程是描述自然界现象和工程问题最常用的数学模型之一。
在工程和科学领域中,求解微分方程是一项至关重要的工作,通常该过程可能比较繁琐。
本文将利用MATLAB代码对微分方程进行求解,通过循环定步长的方法,得到更精确的解析结果。
二、微分方程的求解微分方程在工程和科学领域中具有广泛的应用,例如在物理、化学、生物、经济学、电子工程等领域。
通常,微分方程可以表示为:dy/dx = f(x, y)其中,y是未知函数,x是自变量,f(x, y)是已知的函数。
为了求解微分方程,需要确定初始条件y(x0) = y0,其中x0和y0是已知的数值。
如果微分方程是线性的,通常可以通过解析方法求解。
但如果微分方程是非线性的,就必须借助数值计算工具来求解。
三、MATLAB代码的循环定步长方法MATLAB是一款功能强大的数学软件,具有丰富的数值计算函数和工具箱。
利用MATLAB编写代码求解微分方程,可以有效地提高计算的准确性和效率。
下面是利用MATLAB代码的循环定步长方法求解微分方程的一般步骤:1. 定义微分方程在MATLAB中定义微分方程的函数形式,例如:function dydx = myode(x, y)dydx = ...end2. 设定初始条件在MATLAB中设定微分方程的初始条件,例如:x0 = ...y0 = ...3. 设定步长和终止条件设定求解微分方程的步长和终止条件,例如:h = ...xfinal = ...4. 循环求解微分方程利用for循环或while循环,对微分方程进行迭代求解,直到达到终止条件。
在每一步中,将当前得到的结果保存下来,更新x和y的值。
5. 绘制结果利用MATLAB的绘图函数,绘制微分方程的解曲线。
可以通过绘制不同步长下的解曲线,分析步长对结果的影响。
四、案例分析以一阶非线性微分方程dy/dx = x^2 + y^2为例,使用MATLAB代码的循环定步长方法求解。
我们定义微分方程的函数形式:function dydx = myode(x, y)dydx = x^2 + y^2;end设定初始条件:x0 = 0;y0 = 1;设定步长和终止条件:h = 0.1;xfinal = 1;利用循环定步长方法求解微分方程:x = x0;y = y0;while x < xfinalk1 = h * myode(x, y);k2 = h * myode(x + h/2, y + k1/2);k3 = h * myode(x + h/2, y + k2/2);k4 = h * myode(x + h, y + k3);y = y + 1/6 * (k1 + 2*k2 + 2*k3 + k4);x = x + h;disp([x, y]);end绘制微分方程的解曲线:x = x0:h:xfinal;y = ...;plot(x, y);五、总结通过MATLAB代码的循环定步长方法,能够有效地求解微分方程并得到精确的解析结果。
Matlab求解微分方程(组)及偏微分方程(组)
第四讲 Matlab 求解微分方程(组)理论介绍:Matlab 求解微分方程(组)命令 求解实例:Matlab 求解微分方程(组)实例实际应用问题通过数学建模所归纳得到的方程,绝大多数都是微分方程,真正能得到代数方程的机会很少.另一方面,能够求解的微分方程也是十分有限的,特别是高阶方程和偏微分方程(组).这就要求我们必须研究微分方程(组)的解法:解析解法和数值解法. 一.相关函数、命令及简介1.在Matlab 中,用大写字母D 表示导数,Dy 表示y 关于自变量的一阶导数,D2y 表示y 关于自变量的二阶导数,依此类推.函数dsolve 用来解决常微分方程(组)的求解问题,调用格式为:X=dsolve(‘eqn1’,’eqn2’,…)函数dsolve 用来解符号常微分方程、方程组,如果没有初始条件,则求出通解,如果有初始条件,则求出特解.注意,系统缺省的自变量为t2.函数dsolve 求解的是常微分方程的精确解法,也称为常微分方程的符号解.但是,有大量的常微分方程虽然从理论上讲,其解是存在的,但我们却无法求出其解析解,此时,我们需要寻求方程的数值解,在求常微分方程数值解方面,MATLAB 具有丰富的函数,我们将其统称为solver ,其一般格式为:[T,Y]=solver(odefun,tspan,y0)说明:(1)solver 为命令ode45、ode23、ode113、ode15s 、ode23s 、ode23t 、ode23tb 、ode15i 之一.(2)odefun 是显示微分方程'(,)y f t y =在积分区间tspan 0[,]f t t =上从0t 到f t 用初始条件0y 求解.(3)如果要获得微分方程问题在其他指定时间点012,,,,f t t t t 上的解,则令tspan 012[,,,]f t t t t =(要求是单调的).(4)因为没有一种算法可以有效的解决所有的ODE 问题,为此,Matlab 提供了多种求解器solver ,对于不同的ODE 问题,采用不同的solver.表1 Matlab中文本文件读写函数说明:ode23、ode45是极其常用的用来求解非刚性的标准形式的一阶微分方程(组)的初值问题的解的Matlab常用程序,其中:ode23采用龙格-库塔2阶算法,用3阶公式作误差估计来调节步长,具有低等的精度.ode45则采用龙格-库塔4阶算法,用5阶公式作误差估计来调节步长,具有中等的精度.3.在matlab命令窗口、程序或函数中创建局部函数时,可用内联函数inline,inline函数形式相当于编写M函数文件,但不需编写M-文件就可以描述出某种数学关系.调用inline函数,只能由一个matlab表达式组成,并且只能返回一个变量,不允许[u,v]这种向量形式.因而,任何要求逻辑运算或乘法运算以求得最终结果的场合,都不能应用inline函数,inline函数的一般形式为:FunctionName=inline(‘函数内容’, ‘所有自变量列表’)例如:(求解F(x)=x^2*cos(a*x)-b ,a,b是标量;x是向量)在命令窗口输入:Fofx=inline(‘x .^2*cos(a*x)-b’ , ‘x’,’a’,’b’); g= Fofx([pi/3 pi/3.5],4,1) 系统输出为:g=-1.5483 -1.7259注意:由于使用内联对象函数inline 不需要另外建立m 文件,所有使用比较方便,另外在使用ode45函数的时候,定义函数往往需要编辑一个m 文件来单独定义,这样不便于管理文件,这里可以使用inline 来定义函数. 二.实例介绍1.几个可以直接用Matlab 求微分方程精确解的实例 例1 求解微分方程2'2x y xy xe -+=程序:syms x y; y=dsolve(‘Dy+2*x*y=x*exp(-x^2)’,’x ’)例 2 求微分方程'0x xy y e +-=在初始条件(1)2y e =下的特解并画出解函数的图形.程序:syms x y; y=dsolve(‘x*Dy+y-exp(1)=0’,’y(1)=2*exp(1)’,’x ’);ezplot(y)例 3 求解微分方程组530tdx x y e dtdy x y dt⎧++=⎪⎪⎨⎪--=⎪⎩在初始条件00|1,|0t t x y ====下的特解并画出解函数的图形.程序:syms x y t[x,y]=dsolve('Dx+5*x+y=exp(t)','Dy-x-3*y=0','x(0)=1','y(0)=0','t') simple(x); simple(y)ezplot(x,y,[0,1.3]);axis auto2.用ode23、ode45等求解非刚性标准形式的一阶微分方程(组)的初值问题的数值解(近似解)例 4 求解微分方程初值问题2222(0)1dy y x xdx y ⎧=-++⎪⎨⎪=⎩的数值解,求解范围为区间[0,0.5].程序:fun=inline('-2*y+2*x^2+2*x','x','y');[x,y]=ode23(fun,[0,0.5],1); plot(x,y,'o-')例 5 求解微分方程22'2(1)0,(0)1,(0)0d y dyy y y y dt dtμ--+===的解,并画出解的图形.分析:这是一个二阶非线性方程,我们可以通过变换,将二阶方程化为一阶方程组求解.令12,,7dyx y x dtμ===,则 121221212,(0)17(1),(0)0dx x x dtdx x x x x dt⎧==⎪⎪⎨⎪=--=⎪⎩ 编写M-文件vdp.m function fy=vdp(t,x)fy=[x(2);7*(1-x(1)^2)*x(2)-x(1)]; end在Matlab 命令窗口编写程序 y0=[1;0][t,x]=ode45(@vdp,[0,40],y0);或[t,x]=ode45('vdp',[0,40],y0); y=x(:,1);dy=x(:,2); plot(t,y,t,dy)练习与思考:M-文件vdp.m 改写成inline 函数程序? 3.用Euler 折线法求解Euler 折线法求解的基本思想是将微分方程初值问题00(,)()dyf x y dxy x y ⎧=⎪⎨⎪=⎩ 化成一个代数(差分)方程,主要步骤是用差商()()y x h y x h +-替代微商dydx,于是00()()(,())()k k k k y x h y x f x y x h y y x +-⎧=⎪⎨⎪=⎩记1,(),k k k k x x h y y x +=+=从而1(),k k y y x h +=+于是0011(),,0,1,2,,1(,).k k k k k k y y x x x h k n y y hf x y ++=⎧⎪=+=-⎨⎪=+⎩例 6 用Euler 折线法求解微分方程初值问题22(0)1dyx y dxy y ⎧=+⎪⎨⎪=⎩的数值解(步长h 取0.4),求解范围为区间[0,2].分析:本问题的差分方程为00110,1,0.4,0,1,2,,1(,).k k k k k k x y h x x h k n y y hf x y ++===⎧⎪=+=-⎨⎪=+⎩程序:>> clear >> f=sym('y+2*x/y^2'); >> a=0; >> b=2; >> h=0.4; >> n=(b-a)/h+1; >> x=0; >> y=1;>> szj=[x,y];%数值解 >> for i=1:n-1y=y+h*subs(f,{'x','y'},{x,y});%subs ,替换函数 x=x+h; szj=[szj;x,y]; end >>szj>> plot(szj(:,1),szj(:,2))说明:替换函数subs 例如:输入subs(a+b,a,4) 意思就是把a 用4替换掉,返回 4+b ,也可以替换多个变量,例如:subs(cos(a)+sin(b),{a,b},[sym('alpha'),2])分别用字符alpha 替换a 和2替换b ,返回 cos(alpha)+sin(2)特别说明:本问题可进一步利用四阶Runge-Kutta 法求解,Euler 折线法实际上就是一阶Runge-Kutta 法,Runge-Kutta 法的迭代公式为001112341213243(),,(22),6(,),0,1,2,,1(,),22(,),22(,).k k k k k k k k k k k k y y x x x h h y y L L L L L f x y k n h h L f x y L h h L f x y L L f x h y hL ++=⎧⎪=+⎪⎪=++++⎪⎪=⎪=-⎨⎪=++⎪⎪⎪=++⎪⎪=++⎩相应的Matlab 程序为:>> clear >> f=sym('y+2*x/y^2'); >> a=0; >> b=2; >> h=0.4; >> n=(b-a)/h+1; >> x=0; >> y=1;>> szj=[x,y];%数值解 >> for i=1:n-1l1=subs(f, {'x','y'},{x,y});替换函数 l2=subs(f, {'x','y'},{x+h/2,y+l1*h/2}); l3=subs(f, {'x','y'},{x+h/2,y+l2*h/2}); l4=subs(f, {'x','y'},{x+h,y+l3*h}); y=y+h*(l1+2*l2+2*l3+l4)/6; x=x+h; szj=[szj;x,y]; end>>szj>> plot(szj(:,1),szj(:,2))练习与思考:(1)ode45求解问题并比较差异. (2)利用Matlab 求微分方程(4)(3)''20y y y -+=的解.(3)求解微分方程''2',2(1)0,030,(0)1,(0)0y y y y x y y --+=≤≤==的特解. (4)利用Matlab 求微分方程初值问题2''''00(1)2,|1,|3x x x y xy y y ==+===的解. 提醒:尽可能多的考虑解法 三.微分方程转换为一阶显式微分方程组Matlab 微分方程解算器只能求解标准形式的一阶显式微分方程(组)问题,因此在使用ODE 解算器之前,我们需要做的第一步,也是最重要的一步就是借助状态变量将微分方程(组)化成Matlab 可接受的标准形式.当然,如果ODEs 由一个或多个高阶微分方程给出,则我们应先将它变换成一阶显式常微分方程组.下面我们以两个高阶微分方程组构成的ODEs 为例介绍如何将它变换成一个一阶显式微分方程组.Step 1 将微分方程的最高阶变量移到等式左边,其它移到右边,并按阶次从低到高排列.形式为:()'''(1)'''(1)()'''(1)'''(1)(,,,,,,,,,,)(,,,,,,,,,,)m m n n m n x f t x x x x y y y y y g t x x x x y y y y ----⎧=⎨=⎩Step 2 为每一阶微分式选择状态变量,最高阶除外'''(1)123'''(1)123,,,,,,,,,m m n m m m m n x x x x x x x x x y x y x y x y--++++========注意:ODEs 中所有是因变量的最高阶次之和就是需要的状态变量的个数,最高阶的微分式不需要给它状态变量.Step 3 根据选用的状态变量,写出所有状态变量的一阶微分表达式''''122334123''12123,,,,(,,,,,),,(,,,,,)m m n m m m nm n x x x x x x x f t x x x x xx xg t x x x x +++++======练习与思考:(1)求解微分方程组**'''3312*'''3312()()22x x x y x r r y y y x y r r μμμμμμ⎧+-=+--⎪⎪⎨⎪=+--⎪⎩其中2r =1r =*1,μμ=-1/82.45,μ=(0) 1.2,x =(0)0,y ='(0)0,x ='(0) 1.049355751y =-(2)求解隐式微分方程组''''''''''''2235x y x y x y x y xy y ⎧+=⎨++-=⎩ 提示:使用符号计算函数solve 求'''',x y ,然后利用求解微分方程的方法 四.偏微分方程解法Matlab 提供了两种方法解决PDE 问题,一是使用pdepe 函数,它可以求解一般的PDEs,具有较大的通用性,但只支持命令形式调用;二是使用PDE 工具箱,可以求解特殊PDE 问题,PDEtoll 有较大的局限性,比如只能求解二阶PDE 问题,并且不能解决片微分方程组,但是它提供了GUI 界面,从复杂的编程中解脱出来,同时还可以通过File —>Save As 直接生成M 代码.1.一般偏微分方程(组)的求解(1)Matlab 提供的pdepe 函数,可以直接求解一般偏微分方程(组),它的调用格式为:sol=pdepe(m,@pdefun,@pdeic,@pdebc,x,t)@pdefun 是PDE 的问题描述函数,它必须换成标准形式:(,,)[(,,,)](,,,)m m u u u uc x t x x f x t u s x t u x t x x x-∂∂∂∂∂=+∂∂∂∂∂ 这样,PDE 就可以编写入口函数:[c,f,s]=pdefun(x,t,u,du),m,x,t 对应于式中相关参数,du 是u 的一阶导数,由给定的输入变量可表示出c,f,s 这三个函数.@pdebc 是PDE 的边界条件描述函数,它必须化为形式:(,,)(,,).*(,,,)0up x t u q x t u f x t u x∂==∂ 于是边值条件可以编写函数描述为:[pa,qa,pb,qb]=pdebc(x,t,u,du),其中a 表示下边界,b 表示上边界.@pdeic 是PDE 的初值条件,必须化为形式:00(,)u x t u =,故可以使用函数描述为:u0=pdeic(x)sol 是一个三维数组,sol(:,:,i)表示i u 的解,换句话说,k u 对应x(i)和t(j)时的解为sol(i,j,k),通过sol ,我们可以使用pdeval 函数直接计算某个点的函数值.(2)实例说明 求解偏微分2111222221220.024()0.17()u u F u u t xu u F u u tx ⎧∂∂=--⎪⎪∂∂⎨∂∂⎪=+-⎪∂∂⎩ 其中, 5.7311.46()x x F x e e -=-且满足初始条件12(,0)1,(,0)0u x u x ==及边界条件1(0,)0,u t x ∂=∂221(0,)0,(1,)1,(1,)0uu t u t t x∂===∂ 解:(1)对照给出的偏微分方程和pdepe 函数求解的标准形式,原方程改写为111221220.024()1.*()10.17u u F u u x u F u u u t x x ∂⎡⎤⎢⎥--⎡⎤⎡⎤⎡⎤∂∂∂=+⎢⎥⎢⎥⎢⎥⎢⎥-∂∂∂⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥∂⎣⎦可见1121220.024()10,,,()10.17u F u u x m c f s F u u u x ∂⎡⎤⎢⎥--⎡⎤⎡⎤∂====⎢⎥⎢⎥⎢⎥-∂⎣⎦⎣⎦⎢⎥⎢⎥∂⎣⎦ %目标PDE 函数function [c,f,s]=pdefun(x,t,u,du) c=[1;1];f=[0.024*du(1);0.17*du(2)]; temp=u(1)-u(2);s=[-1;1].*(exp(5.73*temp)-exp(-11.46*temp)) end(2)边界条件改写为:下边界2010.*00f u ⎡⎤⎡⎤⎡⎤+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦上边界1110.*000u f -⎡⎤⎡⎤⎡⎤+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦%边界条件函数function [pa,qa,pb,qb]=pdebc(xa,ua,xb,ub,t) pa=[0;ua(2)]; qa=[1;0]; pb=[ub(1)-1;0]; qb=[0;1]; end(3)初值条件改写为:1210u u ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦%初值条件函数 function u0=pdeic(x) u0=[1;0]; end(4)编写主调函数 clc x=0:0.05:1; t=0:0.05:2; m=0;sol=pdepe(m,@pdefun,@pdeic,@pdebc,x,t); subplot(2,1,1) surf(x,t,sol(:,:,1)) subplot(2,1,2) surf(x,t,sol(:,:,2))练习与思考: This example illustrates the straightforward formulation, computation, and plotting of the solution of a single PDE.2()u u t x xπ∂∂∂=∂∂∂ This equation holds on an interval 01x ≤≤ for times 0t ≥. The PDE satisfies the initial condition (,0)sin u x x π= and boundary conditions(0,)0;(1,)0t uu t e t xπ-∂=+=∂ 2.PDEtool 求解偏微分方程(1)PDEtool (GUI )求解偏微分方程的一般步骤在Matlab 命令窗口输入pdetool ,回车,PDE 工具箱的图形用户界面(GUI)系统就启动了.从定义一个偏微分方程问题到完成解偏微分方程的定解,整个过程大致可以分为六个阶段Step 1 “Draw 模式”绘制平面有界区域Ω,通过公式把Matlab 系统提供的实体模型:矩形、圆、椭圆和多边形,组合起来,生成需要的平面区域.Step 2 “Boundary 模式”定义边界,声明不同边界段的边界条件.Step 3 “PDE 模式”定义偏微分方程,确定方程类型和方程系数c,a,f,d ,根据具体情况,还可以在不同子区域声明不同系数.Step 4 “Mesh 模式”网格化区域Ω,可以控制自动生成网格的参数,对生成的网格进行多次细化,使网格分割更细更合理.Step 5 “Solve 模式”解偏微分方程,对于椭圆型方程可以激活并控制非线性自适应解题器来处理非线性方程;对于抛物线型方程和双曲型方程,设置初始边界条件后可以求出给定时刻t 的解;对于特征值问题,可以求出给定区间上的特征值.求解完成后,可以返回到Step 4,对网格进一步细化,进行再次求解.Step 6 “View 模式”计算结果的可视化,可以通过设置系统提供的对话框,显示所求的解的表面图、网格图、等高线图和箭头梯形图.对于抛物线型和双曲线型问题的解还可以进行动画演示.(2)实例说明用法求解一个正方形区域上的特征值问题:12|0u u u u λ∂Ω⎧-∆-=⎪⎨⎪=⎩ 正方形区域为:11,1 1.x x -≤≤-≤≤(1)使用PDE 工具箱打开GUI 求解方程(2)进入Draw 模式,绘制一个矩形,然后双击矩形,在弹出的对话框中设置Left=-1,Bottom=-1,Width=2,Height=2,确认并关闭对话框(3)进入Boundary 模式,边界条件采用Dirichlet 条件的默认值(4)进入PDE 模式,单击工具栏PDE 按钮,在弹出的对话框中方程类型选择Eigenmodes,参数设置c=1,a=-1/2,d=1,确认后关闭对话框(5)单击工具栏的 按钮,对正方形区域进行初始网格剖分,然后再对网格进一步细化剖分一次(6)点开solve菜单,单击Parameters选项,在弹出的对话框中设置特征值区域为[-20,20](7)单击Plot菜单的Parameters项,在弹出的对话框中选中Color、Height(3-D plot)和show mesh项,然后单击Done确认(8)单击工具栏的“=”按钮,开始求解。
matlab算法-求解微分方程数值解和解析解
MATLAB是一种用于数学计算、工程和科学应用程序开发的高级技术计算语言和交互式环境。
它被广泛应用于各种领域,尤其在工程和科学领域中被用于解决复杂的数学问题。
微分方程是许多工程和科学问题的基本数学描述,求解微分方程的数值解和解析解是MATLAB算法的一个重要应用。
1. 求解微分方程数值解在MATLAB中,可以使用各种数值方法来求解微分方程的数值解。
其中,常见的方法包括欧拉法、改进的欧拉法、四阶龙格-库塔法等。
这些数值方法可以通过编写MATLAB脚本来实现,从而得到微分方程的近似数值解。
以常微分方程为例,可以使用ode45函数来求解微分方程的数值解。
该函数是MATLAB中用于求解常微分方程初值问题的快速、鲁棒的数值方法,可以有效地得到微分方程的数值解。
2. 求解微分方程解析解除了求解微分方程的数值解外,MATLAB还可以用于求解微分方程的解析解。
对于一些特定类型的微分方程,可以使用符号计算工具箱中的函数来求解微分方程的解析解。
通过符号计算工具箱,可以对微分方程进行符号化处理,从而得到微分方程的解析解。
这对于研究微分方程的性质和特点非常有帮助,也有助于理论分析和验证数值解的准确性。
3. MATLAB算法应用举例在实际工程和科学应用中,MATLAB算法求解微分方程问题非常常见。
在控制系统设计中,经常需要对系统的动态特性进行分析和设计,这通常涉及到微分方程的建模和求解。
通过MATLAB算法,可以对系统的微分方程进行数值求解,从而得到系统的响应曲线和动态特性。
另外,在物理学、生物学、经济学等领域的建模和仿真中,也经常需要用到MATLAB算法来求解微分方程问题。
4. MATLAB算法优势相比于其他数学软件和编程语言,MATLAB在求解微分方程问题上具有明显的优势。
MATLAB提供了丰富的数值方法和工具,能够方便地对各种微分方程进行数值求解。
MATLAB具有直观的交互式界面和强大的绘图功能,能够直观地展示微分方程的数值解和解析解,有利于分析和理解问题。