2008年重庆中考数学试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C
B
O A 重庆市2008年初中毕业生学业暨高中招生考试
数 学 试 卷
(本卷共四个大题 满分150分 考试时间120分钟)
参考公式:抛物线)0(2
≠++=a c bx ax y 的顶点坐标为)44,2(2
a
b a
c a b --,对称轴公式为a
b
x 2-=
一、选择题(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中.
1、2的倒数是( )
A 、
21 B 、21- C 、21
± D 、2 2、计算2
3x x ⋅的结果是( )
A 、6x
B 、5x
C 、2
x D 、x
3、不等式042≥-x 的解集在数轴上表示正确的是( )
A B C
D
4、数据2,1,0,3,4的平均数是( )
A 、0
B 、1
C 、2
D 、3
5、如图,AB 是⊙O 的直径,点C 在⊙O 上,则∠ACB 的度数为( )
A 、30°
B 、45°
C 、60°
D 、90°
6、如图是由4个大小相同的正方体搭成的几何体,其主视图是( )
7、计算28-的结果是()
A 、6
B 、6
C 、2
D 、2
8、若△ABC ∽△DEF ,△ABC 与△DEF 的相似比为2︰3,则S △ABC ︰S △DEF 为()
A 、2∶3
B 、4∶9
C 、2∶3
D 、3∶2
2
-220正面
6题图
5题图
l
2
l 1l 3
2
1A
D
B
C
9、今年5月12日,四川汶川发生强烈地震后,我市立即抽调骨干医生组成医疗队赶赴灾区进行抗震救灾.某医院要从包括张医生在内的4名外科骨干医生中,随机地抽调2名医生参加抗震救灾医疗队,那么抽调到张医生的概率是( )
A 、
21 B 、31 C 、41 D 、6
1
10、如图,在直角梯形ABCD 中,DC ∥AB ,∠A=90°,
AB=28cm ,DC=24cm ,AD=4cm ,点M 从点D
出发,以1cm/s 的速度向点C 运动,点N 从点B 同时出发,以2cm/s 的速度向点A 运动,当其中一个动点到达端点停止运动时,另一个动点也
随之停止运动.则四边形AMND 的面积y (cm 2)与两动点运动的时间t (s )的函数图象大致是( )
二、填空题:(本大题10个小题,每小题3分,共30分)在每小题中,请将答案直接填在题后的横线上.
11、方程062=-x 的解为 . 12、分解因式:=-ay ax .
13、截止2008年5月28日12时,全国共接受国内外社会各界为地震灾区人民捐赠款物约为3480000万元.那么3480000万元用科学记数法表示为 万元. 14、在平面内,⊙O 的半径为5cm ,点P 到圆心O 的距离为3cm ,则点P 与⊙O 的位置关系是 .
15、如图,直线21l l 、被直线3l 所截,且1l ∥2l ,若∠1=60°,则∠2
的度数为 . 16、如图,在□ABCD 中,AB=5cm ,BC=4cm ,则□ABCD 的周长为 cm.
17、分式方程
1
21+=x x 的解为 . 18、光明中学七年级甲、乙、丙三个班中,每班的学生人数都为40名,某次数学考试的成绩统计如下:(每组分数喊最小值,不含最大值)
B C
M N
A D 10题图 14
28
56
y
O
t
28
56
y
O
t
28
56
y O
t 14
28
56
y O
t
A B C D 15题图
16题图
l
A
B C
D
O G
F
B
D
A
C
E
丙班数学成绩频数统计表
分数 50~60 60~70 70~80 80~90 90~100 人数
1
4
15
11
9
根据以上图、表提供的信息,则80~90分这一组人数最多的班是 . 19、如图①是一块瓷砖的图案,用这种瓷砖来铺设地面,如果铺成一个2×2的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个3×3的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个4×4的正方形图案(如图④),其中完整的圆共有25个,若这样铺成一个10×10的正方形图案,则其中完整的圆共有 个.
20、如图,在正方形纸片ABCD 中,对角线AC 、BD 交于点O ,
折叠正方形纸片ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合.展开后,折痕DE 分别交AB 、AC 于点E 、G.连接GF.
下列结论:①∠AGD=112.5°;②tan ∠AED=2;③S △AGD=S △OGD ;④四边形AEFG 是菱形;⑤BE=2OG .其中正确结论的序号是 .
三、解答题(本大题6个小题,每小题10分,共60分)解答时每小题必须给出必要的演算过程或推理步骤. 21、(每小题5分,共10分) (1)计算:)1()32(3)2
1(01
-+-+-+-
(2)解方程:0132
=++x x
22、(10分)作图题:(不要求写作法) 如图,在10×10的方格纸中,有一个格点四边形ABCD (即四边形的顶点都在格点上) (1)在给出的方格纸中,画出四边形ABCD 向下平移5格后的四边形A 1B 1C 1D 1;
(2)在给出的方格纸中,画出四边形ABCD 关于直线l 对称的四边形A 2B 2C 2D 2.
19题图
20题图
23、(10分)先化简,再求值:324
44
)1225(
222+=++-÷+++-a a a a a a a ,其中
24、(10分)已知:如图,反比例函数的图象经过点A 、
B ,点A 的坐标为(1,3),点B 的纵坐标为1,点
C 的坐标为(2,0).
(1)求该反比例函数的解析式;
(2)求直线BC 的解析式.
25、将背面完全相同,正面上分别写有数字1、2、3、
4的四张卡片混合后,小明从中随机地抽取一张,把卡片上的数字做为被减数,将形状、大小完全相同,分别标有数字1、2、3的三个小球混合后,小华从中随机地抽取一个,把小球上的数字做为减数,然后计算出这两个数的差.
(1)请你用画树状图或列表的方法,求这两数差为0的概率;
(2)小明与小华做游戏,规则是:若这两数的差为非负数,则小明赢;否则,小华赢.你认为该游戏公平吗?请说明理由.如果不公平,请你修改游戏规则,使游戏公平. 26、(10分)已知:如图,在梯形ABCD 中,AD ∥BC ,BC=DC ,CF 平分∠BCD ,DF ∥AB ,BF 的延长线交DC 于点E 。
求证:(1)△BFC ≌△DFC ;(2)AD=DE
26题图
四、解答题(本大题2个小题,每小题10分,共20分)解答时每小题必须给出必要的演算过程或推理步骤。
27(10分)
为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨,、100吨、80吨,需要全部运往四川重灾地区的D、E两县。
根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨。
(1)求这批赈灾物资运往D、E两县的数量各是多少?
(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍。
其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨。
则A、B两地的赈灾物资运往D、E两县的方案有几种?请你写出具体的运送方案;
为即使将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?
28、(10分)已知:如图,抛物线)0(22
≠+-=a c ax ax y 与y 轴交于点C (0,4),与x 轴交于点A 、B ,点A 的坐标为(4,0)。
(1)求该抛物线的解析式;
(2)点Q 是线段AB 上的动点,过点Q 作QE ∥AC ,交BC 于点E ,连接CQ 。
当△CQE 的面积最大时,求点Q 的坐标; (3)若平行于x 轴的动直线l 与该抛物线交于点P ,与直线AC 交于点F ,点D 的坐标为(2,0)。
问:是否存在这样的直线l ,使得△ODF 是等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由。
参考答案
一、填空题 1.3;1
2.(1)a a -
;412
a -
3.1k >;1;2x =
4.6π 5
.
二、单项选择题 6.C 7.A 8.B 9.C 三、多项选择题 10.BD 11.BCD 12.ABD 四、解答题 13.(本题满分6分) 解:由(1)得5x <. ·············································································· (2分) 由(2)得3x ≥. ··················································································· (4分) ∴不等式组的解集为:35x <≤.······························································ (6分) 14.(本题满分7分) 证明:四边形ABCD 是正方形,AD CD =Q ,A DCF ∠=∠=90ADC ∠=o
, ·· (2分) DF DE ⊥Q ,90EDF ∴∠=o . ·
······························································· (3分) ADC EDF ∴∠=∠.即1323∠+∠=∠+∠.
12∴∠=∠. ·
················································(5分) 在ADE △与CDF △中12AD CD A DCF ∠=∠⎧⎪
=⎨⎪∠=∠⎩
,
,,
ADE CDF ∴△≌△. ·
············································································· (6分) DE DF ∴=. ·
······················································································· (7分) 15.(本题满分7分) 解:(1)平均数为87.5. ··········································································· (2分) 众数为90. ····························································································· (3分) 中位数为90. ·························································································· (4分) (2)小颖获得由学校免费护送到武汉观看奥运圣火的概率是:
51
5010
=. ··········· (7分) 16.(本题满分8分)
证明:连结OD ,则OD OB =,1B ∴∠=∠. ·············································· (1分)
AB AC =Q ,B C ∴∠=∠. ·
···································································· (2分) 1C ∴∠=∠.·························································································· (3分) OD AC ∴∥. ·
······················································································· (4分) ODE DEC ∴∠=∠. ·
············································································· (5分) DE AC ⊥Q ,90DEC ∴∠=o
. ·
······················(6分) 90ODE ∴∠=o ,即DE OD ⊥. ·······················(7分)
A
E B
C
F D 1
2
3
C
DE ∴是O e 的切线. ·
·····································(8分) 17.(本题满分8分)
解:如图,连接AC .作AC 的中垂线交AC 于G ,交BD 于N ,交圆的另一点为M .由垂径定理可知:MN 为圆的直径,N 点即为圆弧形所在的圆与地面的切点. 取MN 的中点O ,则O 为圆心.
连接OA OC ,. ·
············································(3分) 又AB BD ⊥,CD BD ⊥.
AB CD ∴∥,又AB CD =Q ,
∴四边形ABDC 为矩形,
200cm AC BD ∴==,20cm GN AB CD ===.
1
100cm 2
AG GC AC ∴==
=.设O e 的半径为R . 由勾股定理,得2
2
2
OA OG AG =+. ·························································· (5分) 即2
2
2
(20)100R R =-+. ········································································· (6分) 解得260cm R =.2520cm MN R ∴==. ··················································· (7分) 答:这个圆弧形门的最高点离地面的高度是520cm . ······································· (8分) 只要步骤合理,答案正确,可酌情给分. 18.(本题满分8分)
解:楼房全部售完总销售额为:
300080024226008001832100750163⨯⨯⨯+⨯⨯⨯+⨯⨯⨯. ·
······················· (2分) 成本总价为:
4800800242700800183600750163(801009900)10⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯+⨯ (4分)
总赢利=总销售额-成本总价 ······································································· (5分)
(300080024226008001832100750163)=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯
4(800800242700800183600750163)(801009900)10-⨯⨯⨯+⨯⨯⨯+⨯⨯⨯-⨯+⨯ 344810(1760919107515)1790010=⨯⨯+⨯⨯+⨯-⨯
34481045951790010=⨯⨯-⨯ 4422056101790010=⨯-⨯
4156=(万元)
(或41560000元). ···························································· (7分) 答:房地产开发商的赢利预计是4156万元. ·················································· (8分) 说明:列式正确的可给4分,计算正确的可给4分. 19.(本题满分8分) 解:(1)220(112)y x x =+≤≤. ···························································· (3分) (2)当15x ≤≤时,(1200800)(220)8008000W x x =-⨯+=+. ··············· (4分)
A C B
D
O G M
N
此时W 随x 的增大而增大,∴当5x =时,12000W =最大值. ··························· (5分) 当512x <≤时,[]120080020(22030)(220)W x x =--⨯+-⨯+
280(5150)x x =---
2
580125002x ⎛
⎫=--+ ⎪⎝
⎭. ·
········································································ (6分) 此时函数图象开口向下,在对称轴右侧,W 随x 的增大而减小,
∴当6x =时,11520W =最大值. ································································ (7分)
1200011520>Q ,∴当5x =时,W 最大,且最大值12000=.
综上所述,2
8008000(15)58012500(512).
2x x W x x +⎧⎪=⎨⎛
⎫--+< ⎪⎪⎝⎭⎩
≤≤,
≤ ∴该车间捐献给灾区12000元. ·································································· (8分)
20.(本题满分14分)
解:(1)设直线BC 的解析式为y kx b =+.依题意得:
40108.
k b k b =+⎧⎨
=+⎩g
, ··························································································· (2分) 解得344
k b ⎧
=
⎪⎨⎪=⎩ ∴直线BC 的解析式为344y x =+. ·
······································· (4分) (2)如图,过点D 作DE OA ⊥于E .则易知DE 为梯形OABC 的中位线.
4OC =Q ,10AB =,1
(104)72DE ∴=⨯+=.
又8OA =Q ,
1
(410)8562
OABC S ∴=⨯+⨯=梯形. ·
························· (6分)
如图,P 点在OA 上,且四边形OPDC 的面积为2
56167
⨯
=时, 11
44822
COD S CO OE ==⨯⨯=Q g △,1688PCD S ∴=-=△.
182OP DE ∴=g g .即1
782t =g g ·
······························· (7分) 16
7
t ∴=. ··························································· (8分) (3)7
(08)(9)2442(818)(10)8184(1823).(11)
5
5t t S t t t t ⎧<<⎪⎪
=-<⎨⎪⎪-+<⎩分分分,
…………………………………≤,…………………………≤……………………
(4)在OA 上不能找到一点Q ,使四边形CQPD 为矩形.
理由如下: ···························································································· (12分)
如图,过C 作CM AB ⊥于M ,则易知8CM OA ==, 4AM OC ==.6BM ∴=.
在Rt BCM △
中,10BC ==.
1
52
CD BD BC ∴==
=. 假设四边形CQPD 为矩形,则5PQ CD ==,且PQ CD ∥.
1B ∴∠=∠.又90BDP PAQ ∠=∠=o Q ,
Rt Rt PAQ BDP ∴△∽△.
PB PQ
BD PA
∴
=
. ······················································································ (13分) 设BP x =,则10PA x =-.5510x x
∴=-,化简得2
10250x x -+=,
解得5x =.即5PB =.
PB BD ∴=.∴这与PBD △是直角三角形相矛盾,∴假设不成立.
∴在OA 上不存在点Q ,使四边形CQPD 为矩形. ······································· (14分)。