普通遗传学2第二章 遗传的细胞学基础

合集下载

遗传学-第2章_遗传的细胞学基础

遗传学-第2章_遗传的细胞学基础

内膜系统 细胞质
细胞壁成分 细胞增殖
真核生物的细胞由细胞膜、细胞质、细胞核三部分 组成 (一)细胞膜(质膜) 细胞膜是细胞外围的一层薄膜,主要由蛋白质和类 脂构成。 功能:能够有选择地通过某些物质。 在植物细胞的细胞膜外面,还有一层由纤维素和果 胶质组成的细胞壁(支持和保护作用)。
(二)细胞质(胞质) 细胞质是细胞膜内环绕着细胞核外围的原生质,呈胶体状 态。里面有许多蛋白质、脂肪等物质,细胞质中包含着各种 细胞器:线粒体、质体(植)、核糖体、内质网、高尔基体、 中心体(动)、溶酶体和液泡(植)。 其中,质体和液泡只有植物才具有,中心体只是动物细胞才具 有。 线粒体是动植物细胞中普遍存在的细胞器,是细胞内呼吸作用和 氧化作用的中心,是贮藏能量的场所。 质体包括叶绿体、有色体和白色体,其中最重要的是叶绿体, 是植物光合作用的场所。 核糖体是极其微小的细胞器,由RNA和蛋白质组成,是细胞中合 成蛋白质的主要场所。 内质网是运输蛋白质的合成原料和合成产物的通道。
线粒体
线粒体DNA
叶绿体
叶绿体DNA
电镜下内质网
电镜下粗面内质网
(三)细胞核(胞核)

除细菌和蓝藻(原核生物)之外,各种生物的 细胞内都有细胞核,细胞核由核膜、核液、核 仁和染色质(染色体)组成。

细胞核是遗传物质聚集的主要场所,对细胞发 育和性状遗传起着指导作用。
植物细胞和动物细胞的区别
上各个微小的区段。这些区段长度各不相同,各有不同的分子结
构,规定着不同性状的遗传。 提问:染色体、DNA、基因有何不同?
第三节 细胞分裂

细胞分裂是生物进行生长和繁殖的基础,亲代 的遗传物质就是通过细胞分裂向子代传递的。 19世纪末,Flemming W(1882)和Boveri T(1891)分别发现了有丝分裂和减数分裂,为遗 传的染色体学说提供了理论基础。

普通遗传学第二章试题1

普通遗传学第二章试题1

普通遗传学第二章试题1第二章遗传的细胞学基础试题一、名词解释同源染色体非同源染色体染色体染色质染色单体联会核型分析姊妹染色单体无融合生殖二、判断题1.染色质是真核细胞分裂期遗传物质的组织形式,而染色体是细胞分裂间期遗传物质的组织形式。

(×)2.在减数分裂过程中,等位基因的分离发生在后期I或后期II。

(√)3.减数分裂过程中,交换发生在中期I。

(×)4.纯合体只产生一种类型的配子,所以不发生基因分离。

(×)5.同质结合的个体在减数分裂中,也存在着同对基因的分离和不同对基因间的自由组合。

(√)6.四分体是减数分裂末期Ⅱ形成的四个细胞。

(√)7.高等生物的染色体数目恢复作用发生于减数分裂,染色体减半作用发生于受精过程。

(×)8.外表相同的个体,有时会产生完全不同的后代,这主要是由于外界条件影响的结果。

(×)9.染色质和染色体都是有同样的物质构成的。

(√)10.二价体中的同一个染色体的两个染色单体互称姊妹染色单体,它们是间期同一染色体复制所得。

(√)11.在细胞减数分裂时,任意两条染色体都可能发生联会。

(×)12.在减数分裂后期I,染色体的两条染色单体分离分别进入细胞的两极,实现染色体数目减半。

(×)13.高等植物的大孢子母细胞经过减数分裂所产生的4个大孢子都可发育为胚囊。

(×)14.联会的每一对同源染色体的两个成员,在减数分裂的后期II时发生分离,各自移向一级,于是分裂结果就形成单染色体的大孢子或小孢子。

(×)15.有丝分裂后期和减数分裂后期I都发生染色体的两极移动,所以分裂结果相同。

(×)三、填空题1.细胞周期的四个主要阶段是G1 ,S, G2 ,M ,其中S期主要进行DNA的合成。

2.普通小麦的单倍体含有的染色体组是A、B、D ,将普通小麦和一粒小麦杂交,杂交F1代减数分裂I联会时将出现14 个单价体。

《遗传的细胞学基础》课件

《遗传的细胞学基础》课件

基因的定义和特点
1 定义
基因是遗传信息的功能单位,编码特定的蛋 白质或调控基因表达。
2 特点
基因具有遗传连续性、遗传可变性和表达调 控的特点。
核苷酸
核苷酸是DNA和RNA的组成单元,包括磷 酸、糖和碱基。
DNA的复制和修复
1 复制
DNA复制是细胞分裂前必须进行的过程,确保遗传信息的准确传递。
2 修复
DNA修复机制帮助维持遗传物质的完整性,减少突变的发生。
RNA的功能和类型
1 功能
2 类型
RNA在遗传信息的转录和翻译中起重要作用, 帮助合成蛋白质。
《遗传的细胞学基础》 PPT课件
遗传的细胞学基础PPT课件是一个详细介绍细胞学和遗传学基本概念的演示文 稿。通过这个课件,我们将一起探索细胞结构、染色体、遗传物质和基因等 重要主题。
细胞与遗传的基本概念
1 细胞
细胞是生物的基本单位,展现着多样的结构 和功能。
2 遗传
遗传是信息在代际间传递的过程,决定了生 物的遗传特征。
染色体
染色体是细胞中的遗传物质,在细胞分裂时起着重要的作用。
核小体
核小体是染色质的组成单位,参与基因的调控和表达。
遗传物质的发现和结构
1
沃森和克里克的DNA双螺旋结构
2
沃森和克里克提出了DNA的双螺旋结构模
型,揭示了遗传信息的存储方式。
3
格里菲斯实验
格里菲斯实验发现了DNA作为遗传物质的 重要性。
常见的RNA类型包括信使RNA、核糖体RNA和 转运RNA。
蛋白质的合成和遗传密码
核糖体
核糖体是合成蛋白质的场所,根 据遗传密码将mRNA翻译成蛋白 质。
氨基酸
氨基酸是蛋白质的组成单元,根 据遗传密码的指导,通过RNA的 翻译合成蛋白质。

遗传的细胞学基础

遗传的细胞学基础

(1)Spermatogenesis and Oogenesis in an animal cell
2.4生活周期
有机体的生活周期是从合子形成到个体死亡 的过程中所发生的一系列事件的总和。真核生 物中,减数分裂产生单倍体细胞,在此过程中, 亲代的遗传物质通过染色体分离和交换产生新 的组合。单倍体细胞的融合产生几乎无穷的新 的遗传重组,因此,有机体的生活周期为遗传 物质的重组创造了机会。
2.2.4遗传的染色体学说
Sutton以及Boveri于1902—1903年间首先提出了 遗传的染色体学说(chromosome theory of inheritance) 推测:“父本和母本染色体的联会配对以及随后通过减数 分裂的分离构成了孟德尔遗传定律的物质基础。” 1903年,Sutton提出孟德尔的遗传因子是由染色体携带的, 因为: ①每一个细胞包含每一染色体的两份拷贝以及每一基因的两份 拷贝。 ②全套染色体,如同孟德尔的全套基因一样,在从亲代传递给 后代时并没有改变。 ③减数分裂时,同源染色体配对,然后分配到不同的配子中, 就如同一对等位基因分离到不同的配子中。
减数分裂的遗传学意义在于:
①只有一个细胞周期,却有两次连续的核分裂 。染色体及其DNA只复制一次(间期S期),细 胞分裂却有两次(减数分裂Ⅰ、Ⅱ)。 ②“减数”并不是随机的。所谓“减数”,实 质上是配对的同源染色体的分开。这是使有性 生殖的生物保持种族遗传物质(染色体数目) 恒定性的机制;同源染色体的分离决定了等位 基因的准确分离,为非同源染色体随机重组提 供了条件。
(2)染色体的结构
每个核小体包括一个组蛋白 八聚体(H2A、H2B、H3和H4各两 个分子)及缠绕在该核心表面的 200个碱基对左右的DNA。 DNA双螺旋在组蛋白八聚体分 子的表面盘绕1.75圈,其长度 约为146bp,负超螺旋,这种组 蛋白的核心颗粒大小约为5.5 nm×11 nm的扁球形。 相邻的两个核小体之间一般 由约55 bp的DNA连接,称为连 接区 DNA,在连接区部位结合 有一个组蛋白分子H1。

医学遗传学课件第二章遗传的细胞学基础

医学遗传学课件第二章遗传的细胞学基础
内10nm 组蛋白
外30nm
螺旋管是在组蛋白H1协助下,6个核小体 缠绕一圈形成的中空性管.
solenoid
3 .三级结构:超螺旋管 它是由螺旋管进一步盘曲而形成。将螺
旋管长度压缩了40倍。
4. 四级结构:染色单体, 超螺旋管进一步 折叠又被压缩了5倍。
(二) 染色体支架-放射环模型
前期I(双线期)
diplotene
前期I(终变期)
diakinesis
(2)中期I Metaphase I
equatorial plate
中期I
(3)后期I Anaphase I
1.同源染色体分离,四分体二分体 2.非同源染色体随机组合。
(4)末期 I Telophase I
metaphase I
(二) Y染色质
正常男性在间期细胞,用荧光染料 染色后,在核内出现一强荧光小体,直 径0.3um,称y染色质。
Y染色质
y染色体长臂远端部分为异染色质,被荧 光染料染色后发出荧光,女性中不存在, 细胞中y染色质数目与y染色体数目相同。
核性别:间期细胞核中染色质的性别差异。
第三节 人类性别决定的染 色体机制
anaphase I
telophase I interphase
2 . 第二次减数分裂 Meiosis II
1. 二分体单分体 2.非姐妹染色单体随机组合。
前期 II
中期 II
后期 II
末期 II
(一)、减数分裂 I
1.同源染色体配对 1.二价体四分体 1.联会复合体消失
联会
2.非姐妹染色单 2.同源染色体某
结构异染色质:在所有细胞 类型及各发育阶段中均处于 凝集状态。 兼性异染色质:是在某些类 型或阶段,原有的常染色质 凝聚并丧失转录活性后转变 而成的异染色质,可转化为 常染色质。

普通遗传学重点内容

普通遗传学重点内容

普通遗传学重点内容第一章绪论1. 生物进化和新品种选育的三大因素是遗传,变异和选择2. 遗传学研究的任务是什么?阐明生物遗传和变异的现象及其表现的规律;深入探索遗传和变异的原因及其物质基础,揭露其内在的规律;从而进一步指导动物,植物和微生物的育种实践,提高医学水平,为人民谋福利。

名词解释1.遗传学:是研究生物遗传和变异的科学2.遗传:亲代与子代之间相似的现象3.变异:亲代与子代之间,子代与子代之间,总是存在不同程度差异的现象第二章遗传的细胞学基础1当染色体组型为aa的植物给染色体组型为AA的植物授粉时,其种子有什么样染色体组型的胚和胚乳?胚 Aa 胚乳AAa2有丝分裂分裂过程分为哪几步?试述各部分特征?(16-17页)书本上概括主要要点即可3试述双受精过程?两个精核与花粉管的内含物一同进入胚囊,这时1个精核与卵细胞受精结合为合子,将来发育为胚。

同时另1精核与两个极核受精结合为胚乳核,将来发育成胚乳。

名词解释1.同源染色体:形态和结构相同的一对染色体2.非同源染色体:一对染色体与另一对形态结构不同的染色体,互称为非同源染色体3.姊妹染色单体:在二价体中一个染色体的两条染色单体,互成为姊妹染色单体4.非姊妹染色单体:不同染色体的染色单体,互成为非姊妹染色单体5.无性生殖:通过亲本营养体的分割而产生许多后代个体,这一方式也称营养体生殖6.有性生殖:通过亲本的雌配子和雄配子受精而形成合子,随后进一步分裂,分化和发育而产生后代。

7.自花授粉:同一朵花内或同株上花朵间的授粉叫自花授粉8.异花授粉:不同株的花朵间授粉叫异花授粉9.胚乳直感:如果在3x胚乳的性状上由于精核的影响而直接表现父本的某些性状,这种想象称为胚乳直感10.果实直感:如果种皮或果皮组织在发育过程中由于花粉影响而表现父本的某些性状,则称为果实直感11.孤雌生殖:凡由卵细胞未经受精而发育成有机体的生殖方式,称孤雌生殖12单性结实:它是在卵细胞没有受精,但在花粉的刺激下,果实也能正常发育的现象第三章遗传物质的分子基础名词解释1.异染色质:是染色质线中染色很深的区段常染色质:是染色质线中染色很浅的区段2简答:DNA作为遗传物质的间接证据和直接证据间接证据四个1)含量:DNA含量恒定。

2第2章-遗传的细胞学基础-201231211

2第2章-遗传的细胞学基础-201231211

正 中 中 部 近 中 近 端 端 部 端 部
正 中 着 丝 点 染 色 体 中 着 丝 点 区 染 色 体 近 中 着 丝 点 区 染 色 体 近 端 着 丝 点 区 染 色 体 端 着 丝 点 区 染 色 体 端 着 丝 点 染 色 体
3.大小: 大小:
(1).各物种差异很大,染色体大小主要指长度, (1).各物种差异很大,染色体大小主要指长度, 各物种差异很大 同一物种染色体宽度大致相同。 同一物种染色体宽度大致相同。 植物: 植物: 长约0.20-50µm、 0.20宽约0.20-2.00µm。 0.20-
1.形态: 形态:
(1).组成:着丝粒、长臂和短臂; (1).组成:着丝粒、长臂和短臂; 组成 (2).着丝点: 细胞分裂时, (2).着丝点: 细胞分裂时,纺 着丝点 丝附着在着丝粒区域。 锺 丝附着在着丝粒区域。 着丝粒在特定的染色体中其 位置是恒定的。 位置是恒定的。 (3).次缢痕、随体是识别特定 (3).次缢痕、随体是识别特定 次缢痕 染色体的重要标志; 染色体的重要标志; (4).某些次缢痕具有组成核仁 (4).某些次缢痕具有组成核仁的 某些次缢痕具有组成核仁的 特殊功能。 特殊功能。

叶绿体(chloroplast) 叶绿体(chloroplast)
质体有叶绿体(chloroplast), 质体有叶绿体(chloroplast),有色体 (chloroplast) (chromoplast)和白色体(leukoplast), 和白色体(leukoplast) (chromoplast)和白色体(leukoplast),其 中最主要是叶绿体, 中最主要是叶绿体,这是绿色植物细胞中 所特有的一种细胞器。 所特有的一种细胞器。
三、各类型细胞之间的比较

02遗传学 课后练习 复习题 总结 第二章 遗传的细胞学基础

02遗传学 课后练习 复习题 总结 第二章 遗传的细胞学基础

第二章遗传的细胞学基础本章习题1.解释下列名词:原核细胞、真核细胞、染色体、染色单体、着丝点、细胞周期、同源染色体、异源染色体、无丝分裂、有丝分裂、单倍体、二倍体、联会、胚乳直感、果实直感。

答:原核细胞:一般较小,约为1~10mm。

细胞壁是由蛋白聚糖(原核生物所特有的化学物质)构成,起保护作用。

细胞壁内为细胞膜。

内为DNA、RNA、蛋白质及其它小分子物质构成的细胞质。

细胞器只有核糖体,而且没有分隔,是个有机体的整体;也没有任何内部支持结构,主要靠其坚韧的外壁,来维持其形状。

其DNA 存在的区域称拟核,但其外面并无外膜包裹。

各种细菌、蓝藻等低等生物由原核细胞构成,统称为原核生物。

真核细胞:比原核细胞大,其结构和功能也比原核细胞复杂。

真核细胞含有核物质和核结构,细胞核是遗传物质集聚的主要场所,对控制细胞发育和性状遗传起主导作用。

另外真核细胞还含有线粒体、叶绿体、内质网等各种膜包被的细胞器。

真核细胞都由细胞膜与外界隔离,细胞内有起支持作用的细胞骨架。

染色体:含有许多基因的自主复制核酸分子。

细菌的全部基因包容在一个双股环形DNA构成的染色体内。

真核生物染色体是与组蛋白结合在一起的线状DNA双价体;整个基因组分散为一定数目的染色体,每个染色体都有特定的形态结构,染色体的数目是物种的一个特征。

染色单体:由染色体复制后并彼此靠在一起,由一个着丝点连接在一起的姐妹染色体。

着丝点:在细胞分裂时染色体被纺锤丝所附着的位置。

一般每个染色体只有一个着丝点,少数物种中染色体有多个着丝点,着丝点在染色体的位置决定了染色体的形态。

细胞周期:包括细胞有丝分裂过程和两次分裂之间的间期。

其中有丝分裂过程分为:(1)DNA合成前期(G1期);(2)DNA合成期(S期);(3)DNA合成后期(G2期);(4)有丝分裂期(M期)。

同源染色体:生物体中,形态和结构相同的一对染色体。

异源染色体:生物体中,形态和结构不相同的各对染色体互称为异源染色体。

朱军遗传学答案

朱军遗传学答案

遗传学参考答案第二章遗传的细胞学基础(参考答案)一、解释下列名词:染色体:细胞分裂时出现的,易被碱性染料染色的丝状或棒状小体,由核酸和蛋白质组成,是生物遗传物质的主要载体,各种生物的染色体有一定数目、形态和大小。

染色单体:染色体通过复制形成,由同一着丝粒连接在一起的两条遗传内容完全一样的子染色体。

着丝点:即着丝粒。

染色体的特定部位,细胞分裂时出现的纺锤丝所附着的位置,此部位不染色。

细胞周期:一次细胞分裂结束后到下一次细胞分裂结束所经历的过程称为细胞周期(cell cycle)。

同源染色体:体细胞中形态结构相同、遗传功能相似的一对染色体称为同源染色体(homologous chromosome)。

两条同源染色体分别来自生物双亲,在减数分裂时,两两配对的染色体,形状、大小和结构都相同。

异源染色体:形态结构上有所不同的染色体间互称为非同源染色体,在减数分裂时,一般不能两两配对,形状、大小和结构都不相同。

无丝分裂:又称直接分裂,是一种无纺锤丝参与的细胞分裂方式。

有丝分裂:又称体细胞分裂。

整个细胞分裂包含两个紧密相连的过程,先是细胞核分裂,后是细胞质分裂,核分裂过程分为四个时期;前期、中期、后期、末期。

最后形成的两个子细胞在染色体数目和性质上与母细胞相同。

单倍体:指具有配子染色体数(n)的个体。

联会:减数分裂中同源染色体的配对。

联会复合体——减数分裂偶线期和粗线期在配对的两个同源染色体之间形成的结构,包括两个侧体和一个中体。

胚乳直感:又称花粉直感。

在3n胚乳的性状上由于精核的影响而直接表现父本的某些性状。

果实直感:种皮或果皮组织在发育过程中由于花粉影响而表现父本的某些性状二、可以形成:40个花粉粒,80个精核,40个管核;10个卵母细胞可以形成:10个胚囊,10个卵细胞,20个极核,20个助细胞,30个反足细胞。

三、(1)叶(2)根 (3)胚乳 (4)胚囊母细胞 (5)胚(6)卵细胞(7)反足细胞(8)花药壁(9)花粉管核(1)叶:20条;(2)根:20条;(3)胚乳:30条;(4)胚囊母细胞:20条;(5)胚:20条;(6)卵细胞:10条;(7)反足细胞:10条;(8)花药壁:20条;(9)花粉管核:10条四、如果形成的是雌配子,那么只形成一种配子ABC或A’B’C’或A’ BC或A B’C’或A B’ C 或A’ B C’ 或AB C’ 或A’B’ C ;如果形成的是雄配子,那么可以形成两种配子ABC和A’B’C’或A B’ C 和A’ B C’ 或A’ BC和A B’C’ 或AB C’ 或和A’B’ C 。

普通遗传学复习重点

普通遗传学复习重点

第一章绪论1.什么是遗传,变异?遗传、变异与环境的关系?(1).遗传(heredity):生物亲子代间相似的现象。

(2).变异(variation):生物亲子代之间以及子代不同个体之间存在差异的现象。

遗传和变异的表现与环境不可分割,研究生物的遗传和变异,必须密切联系其所处的环境。

生物与环境的统一,这是生物科学中公认的基本原则。

因为任何生物都必须具有必要的环境,并从环境中摄取营养,通过新陈代谢进行生长、发育和繁殖,从而表现出性状的遗传和变异。

2.遗传学诞生的时间,标志?1900年孟德尔遗传规律的重新发现 标志着遗传学的建立和开始发展)第二章遗传的细胞学基础1.同源染色体和非同源染色体的概念?答:同源染色体:形态和结构相同的一对染色体;异源染色体:这一对染色体与另一对形态结构不同的染色体,互称为非同源染色体。

2.染色体和姐妹染色单体的概念,关系?染色体:在细胞分裂过程中,染色质便卷缩而呈现为一定数目和形态的染色体姐妹染色单体:有丝分裂中,由于染色质的复制而形成的物质3.染色质和染色体的关系?染色体和染色质实际上是同一物质在细胞分裂周期过程中所表现的不同形态。

4.不同类型细胞的染色体/染色单体数目?(根尖、叶、性细胞,分裂不同时期(前期、中期)的染色体数目的动态变化?)答:有丝分裂:间期前期中期后期末期染色体数目:2n 2n 2n 4n 2nDNA分子数:2n-4n 4n 4n 4n 2n染色单体数目:0-4n 4n 4n 0 0减数分裂:*母细胞初级*母细胞次级*母细胞*细胞染色体数目:2n 2n n(2n) nDNA分子数:2n-4n 4n 2n n染色单体数目:0-4n 4n 2(0) 05.有丝分裂和减数分裂的特点?遗传学意义?在减数分裂过程中发生的重要遗传学事件(交换、交叉,同源染色体分离,姐妹染色单体分裂?基因分离?)特点:细胞进行有丝分裂具有周期性。

即连续分裂的细胞,从一次分裂完成时开始,到下一次分裂完成时为止,为一个细胞周期。

医学遗传学 第二章 遗传的细胞学基础 知识点

医学遗传学 第二章 遗传的细胞学基础 知识点

第二章遗传的细胞学基础染色质(chromatin):间期细胞核内能被碱性染料染色的物质。

由DNA,组蛋白,非组蛋白及少量rna组成,是间期细胞遗传物质存在的形式。

染色质有利于遗传信息的复制和表达。

染色体(chromosome):在有丝分裂或减数分裂过程中,由染色质聚缩而成的棒状结构,是DNA螺旋化的的最高形式。

染色体有利于遗传物质的平均分配。

染色质的类型:常染色质:细胞间期核内纤维折叠盘曲程度小,分散度大,染色较浅且具有转录活性。

异染色质:细胞间期核内纤维折叠盘曲程度紧密,分散度小,呈凝集状态,染色较深且不具有转录活性。

异染色质包括:结构异染色质:指各类细胞的全部发育过程中都处于凝缩状态。

大多数位于着丝粒区、端粒区、次缢痕及y染色体长臂远端三分之二区段,一般不具有转录活性。

兼性异染色质:只在某些特定细胞类型或一定发育阶段,细胞原来的常染色质凝缩并丧失基因转录活性变为异染色质。

性染色质:是x/y染色体某一区段的DNA形成的特殊染色结构。

一定是异染色质。

x染色质:也叫x小体或Barr小体。

Lyon假说:实质:失活的x染色体。

特点:随机,永久,完全失活。

x染色质的数目等于x染色体的数目-1。

x染色体失活的意义--剂量补偿作用。

女性x连锁基因杂合子表达异常。

女性嵌合体。

后世补充:失活的X染色体并非整条,结构异常的X染色体优先失活。

y染色质:由y染色体长臂远端三分之二区段在男性间期细胞核中所形成的异染色质。

y染色体的数目等于y染色质的数目。

人类染色体的形态结构:着丝粒(主缢痕),长臂q,短臂p,端粒,副缢痕,随体。

人类染色体的类型:中央着丝粒,亚中央着丝粒,近端着丝粒。

核型:一个体细胞中的全部染色体按其大小,形态特征顺序排列所构成的图像。

核型分析:将待测细胞的核型进行染色体数目,形态特征的分析。

确定其是否与正常核型完全一致。

核型的记录格式(非显带):染色体总数+(,)+性染色体构成。

例如46,xx。

丹佛体制分组:A-G(形态依次减小)。

遗传学第二章遗传的细胞学基础ppt课件

遗传学第二章遗传的细胞学基础ppt课件

质的RNA聚集而成,还可能存在
类脂和少量的DNA。

○功能:主要的遗传物质
所在地,所以承担主要的遗传功
能。
第二章 遗传的细胞学基础
细胞、动物与植物之比较
细胞壁 细胞膜 鞭毛 内质网 微丝 中心体 高尔基体 细胞核 线粒体 叶绿体 染色体 核糖体 溶酶体 过氧化物酶体 液泡
细菌 有(蛋白聚糖)
有 有的有
(4) 某些次缢痕具有组 成核仁的特殊功能。
第二章 遗传的细胞学基础
甘肃农业大学动物科技学院
• 蚕豆:有丝分裂中期染色体(排列于赤道面上)。箭头示 两条大染色体。
第二章 遗传的细胞学基础
二、染色体的组成及结构
(一)染色质的化学组成
➢染色质=蛋白质+DNA ➢组蛋白: H1 2H2A 2H2B 2H3 2H4
第二章 遗传的细胞学基础
5.类别 各生物的染色体不仅形态结构相对稳定,而且其数目
成对。 * 同源染色体:形态和结构相同的一对染色体; * 异源染色体:这一对染色体与另一对形态结构不同的
染色体,互称为异源染色体。
第二章 遗传的细胞学基础
6.染色体组型分析(核型分析) 根据染色体长度、着丝点位置、长短臂比、随体有无

细胞核拉长,缢裂成两部分,接着胞质分裂→2个子细胞,看不到
纺锺丝。细菌等原核生物、高等植物一些专化组织或病变组织中发生。

如:小麦茎节基部和蕃茄叶腋发生新枝处,以及一些肿瘤和愈伤
细胞发生无丝分裂;近年也观察到植物的正常组织也常发生无丝分裂,植物
薄壁组织细胞、木质部细胞、绒毡层细胞和胚乳细胞等,动物胚的胎膜、填
等特点进行分类和编号。这种对生物细胞核内全部染色体 的形态特征所进行的分析,称为染色体组型分析。

普通遗传学课后习题答案

普通遗传学课后习题答案

第一章绪论1.解释下列名词:遗传学、遗传、变异。

答:遗传学:是研究生物遗传和变异的科学,是生物学中一门十分重要的理论科学,直接探索生命起源和进化的机理。

同时它又是一门紧密联系生产实际的基础科学,是指导植物、动物和微生物育种工作的理论基础;并与医学和人民保健等方面有着密切的关系。

遗传:是指亲代与子代相似的现象。

如种瓜得瓜、种豆得豆。

变异:是指亲代与子代之间、子代个体之间存在着不同程度差异的现象。

如高秆植物品种可能产生矮杆植株:一卵双生的兄弟也不可能完全一模一样。

2.简述遗传学研究的对象和研究的任务。

答:遗传学研究的对象主要是微生物、植物、动物和人类等,是研究它们的遗传和变异。

遗传学研究的任务是阐明生物遗传变异的现象及表现的规律;深入探索遗传和变异的原因及物质基础,揭示其内在规律;从而进一步指导动物、植物和微生物的育种实践,提高医学水平,保障人民身体健康。

3.为什么说遗传、变异和选择是生物进化和新品种选育的三大因素?答:生物的遗传是相对的、保守的,而变异是绝对的、发展的。

没有遗传,不可能保持性状和物种的相对稳定性;没有变异就不会产生新的性状,也不可能有物种的进化和新品种的选育。

遗传和变异这对矛盾不断地运动,经过自然选择,才形成形形色色的物种。

同时经过人工选择,才育成适合人类需要的不同品种。

因此,遗传、变异和选择是生物进化和新品种选育的三大因素。

4. 为什么研究生物的遗传和变异必须联系环境?答:因为任何生物都必须从环境中摄取营养,通过新陈代谢进行生长、发育和繁殖,从而表现出性状的遗传和变异。

生物与环境的统一,是生物科学中公认的基本原则。

所以,研究生物的遗传和变异,必须密切联系其所处的环境。

5.遗传学建立和开始发展始于哪一年,是如何建立?答:孟德尔在前人植物杂交试验的基础上,于1856~1864年从事豌豆杂交试验,通过细致的后代记载和统计分析,在1866年发表了"植物杂交试验"论文。

医学遗传学 第二章 遗传的细胞学基础 知识点

医学遗传学 第二章 遗传的细胞学基础 知识点

第二章遗传的细胞学基础染色质(chromatin):间期细胞核内能被碱性染料染色的物质。

由DNA,组蛋白,非组蛋白及少量rna组成,是间期细胞遗传物质存在的形式。

染色质有利于遗传信息的复制和表达。

染色体(chromosome):在有丝分裂或减数分裂过程中,由染色质聚缩而成的棒状结构,是DNA螺旋化的的最高形式。

染色体有利于遗传物质的平均分配。

染色质的类型:常染色质:细胞间期核内纤维折叠盘曲程度小,分散度大,染色较浅且具有转录活性。

异染色质:细胞间期核内纤维折叠盘曲程度紧密,分散度小,呈凝集状态,染色较深且不具有转录活性。

异染色质包括:结构异染色质:指各类细胞的全部发育过程中都处于凝缩状态。

大多数位于着丝粒区、端粒区、次缢痕及y染色体长臂远端三分之二区段,一般不具有转录活性。

兼性异染色质:只在某些特定细胞类型或一定发育阶段,细胞原来的常染色质凝缩并丧失基因转录活性变为异染色质。

性染色质:是x/y染色体某一区段的DNA形成的特殊染色结构。

一定是异染色质。

x染色质:也叫x小体或Barr小体。

Lyon假说:实质:失活的x染色体。

特点:随机,永久,完全失活。

x染色质的数目等于x染色体的数目-1。

x染色体失活的意义--剂量补偿作用。

女性x连锁基因杂合子表达异常。

女性嵌合体。

后世补充:失活的X染色体并非整条,结构异常的X染色体优先失活。

y染色质:由y染色体长臂远端三分之二区段在男性间期细胞核中所形成的异染色质。

y染色体的数目等于y染色质的数目。

人类染色体的形态结构:着丝粒(主缢痕),长臂q,短臂p,端粒,副缢痕,随体。

人类染色体的类型:中央着丝粒,亚中央着丝粒,近端着丝粒。

核型:一个体细胞中的全部染色体按其大小,形态特征顺序排列所构成的图像。

核型分析:将待测细胞的核型进行染色体数目,形态特征的分析。

确定其是否与正常核型完全一致。

核型的记录格式(非显带):染色体总数+(,)+性染色体构成。

例如46,xx。

丹佛体制分组:A-G(形态依次减小)。

《遗传学》题库

《遗传学》题库

遗传学试题库第二章遗传的细胞学基础二、判断对错1.真核生物标准染色体组型以外的染色体都称为B染色体。

Y2.核仁总是出现在染色体次缢痕的地方。

Y3.单性结实也是一种无融合生殖。

Y4.常染色质是染色体中染色很深的区段。

Y5.形态结构和遗传内容一样的一对染色体是同源染色体。

X6.水稻根尖细胞分裂中期排列在赤道板处为12条染色体。

X7.普通小麦性母细胞分裂的中期II排列在赤道板上为21个二价体。

X8.减数分裂的前期I有联会过程,而前期Il则没有。

这种区别实际上是减数分裂与有丝分裂的区别。

Y9.染色体的复制是均等地进行,复制好的一条染色体由两条染色单体组成,但仍由共同的着丝粒连着。

X三、选择正确答案1. 减数分裂中染色单体的交换和细胞学上观察到的交叉现象是:Ba. 同时发生的;b.先交换后交叉;c.先交叉后交换。

2. 雌雄配子体不经正常受精而产生单倍体胚的生殖方式是(1):没有进行减数分裂的胚囊形成孢子体的生殖方式是(2);不经过配子直接由珠心或珠被的二倍体细胞产生胚的生殖方式是(3);没有受精的果实在花粉蒯激下而发育起来的现象是(4).(1)D (2)C(3)B(4)Aa.单性结实 b.不定胚 c.二倍配子体无融合生殖d.单性生殖 e.营养的无融合生殖。

3.由DNA、组蛋白、非组蛋白和少量RNA组成的真核细胞分裂间期核中的复合物叫做:Ca.染色体 c.染色质4. 一种植物的染色体数目2n=10.在减数第一次分裂中期,每个细胞含有的染色体是 Ca.10 b.5 c.20 d.40四、填空1. 小麦大孢子母细胞内的染色体数目是___42条___,一个大孢子母细胞能产生_1个_____有效大孢子,一个大孢子中的染色体为___21___条。

2.染色质线中染色很深的区段称__异染色质____.四分孢子。

4.一个正常的单子叶植物种子可以说是由胚( 2 n)、胚乳( 3 n)和母体组织( 2 n)三方面密切结合的嵌合体。

《遗传学》1-14章及练习卷名词解释整理

《遗传学》1-14章及练习卷名词解释整理

名词解释(核酸内切酶的识别序列要求掌握)第一章绪论变异:是指亲代与子代之间、子代个体之间存在着不同程度差异的现象。

如高秆植物品种可能产生矮杆植株,一卵双生的兄弟也不可能完全一样。

第二章遗传的细胞学基础同源染色体:生物体中,形态和结构相同的一对染色体,成为同源染色体。

异源染色体:生物体中,形态和结构不同的各对染色体互称为异源染色体。

二价体:是指减数分裂前期Ⅰ联会后的一对同源染色体;。

双价体:在减数分裂的偶线期,各同源染色体分别配对,出现联会现象。

原来是2n条染色体,经配对后可形成n组染色体,每一组含有两条同源染色体,这种配对的染色体叫双价体。

二分体:是指减数分裂末期Ⅰ所形成的两个子细胞。

四分体:是指减数分裂末期Ⅱ所形成的四个子细胞。

四价体:是指同源四倍体在减数分裂时所联会的四条同源染色体。

四合体:是指减数分裂前期Ⅰ所联会的二价体中所包括的四条染色单体。

超倍体:在非整倍体中,染色体数比正常二倍体(2n)多的个体。

兼性异染色质:存在于染色体任何部位,某类细胞内表达,某类不表达。

例如哺乳动物X染色体,雌性其中一条表现为异染色质,完全不表达功能,另一条则为功能活跃的常染色质。

【莱昂化作用:性染色体失活→巴氏小体】第三章孟德尔遗传性状:生物体所表现的形态特征和生理特性。

单位性状:个体表现的性状总体区分为各个单位之后的性状。

相对性状:指同一单位性状的相对差异。

质量性状:表现不连续变异的性状;它的杂种后代的分离群体中,对于各个所具有相对性状的差异,可以明确的分组,求出不同组之间的比例。

数量性状:表现连续变异的性状;杂交后的分离世代不能明确分组,只能用一定的度量单位进行测量,采用统计学方法加以分析;它一般易受环境条件的影响而发生变异,这种变异一般是不遗传的。

杂交:指通过不同个体之间的交配而产生后代的过程。

异交:亲缘关系较远的个体间随机相互交配。

近交:亲缘关系相近个体间杂交,亦称近亲交配。

自交:指同一植株上的自花授粉或同株上的异花授粉。

chap.2.遗传的细胞学基础复习思考题及答案

chap.2.遗传的细胞学基础复习思考题及答案

第二章遗传的细胞学基础《复习思考题》一、名词解释同源染色体:形态和结构相同的一对染色体。

非同源染色体(异源染色体):这一对染色体与另一对形态结构不同的染色体,互称为异源染色体。

姊妹染色单体与非姊妹染色单体有丝分裂和减数分裂(mitosis and meiosis):mitosis称有丝分裂:主要指体细胞的繁殖方式,DNA分子及相关的蛋白经过复制后平均的分配到两个子细胞中;meiosis:又称成熟分裂:是在性母细胞成熟时,配子形成过程中所发生的一种特殊的有丝分裂,因为它使体细胞染色体数目减半,所以称减数分裂。

(07A)交叉与联会:减数分裂的前期Ⅰ的偶线期同源染色体紧靠在一起,形成联会复合体,粗线期联会复合体分开,非姊妹染色单体之间出现交叉。

自花授粉(self-pollination):同一朵花内或同株上花朵间的授粉。

异花授粉(cross pollination):不同株的花朵间授粉。

受精(fertilization):雄配子(精子)与雌配子(卵细胞)融合为一个合子。

胚乳直感(xenia)或花粉直感:如果在3n胚乳上由于精核的影响而直接表现父本的某些性状。

一些单子叶植物的种子常出现这种胚乳直感现象。

例如:以玉米黄粒的植株花粉给白粒的植株授粉,当代所结种子即表现父本的黄粒性状。

果实直感(metaxenia):如果种皮或果皮组织在发育过程中由于花粉影响而表现父本的某些性状。

例如:棉花纤维是由种皮细胞延伸的。

在一些杂交试验中,当代棉籽的发育常因父本花粉的影响,而使纤维长度、纤维着生密度表现出一定的果实直感现象。

无融合生殖(apomixis):雌雄配子不发生核融合的一种无性生殖方式。

可分为两大类:营养的无融合生殖(vegetative apomixis):指能代替有性生殖的营养生殖类型。

例如:大蒜的总状花序上常形成近似种子的气生小鳞茎,可代替种子而生殖。

无融合结子(agamospermy):指能产生种子的无融合生殖。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

普通遗传学 2020/8/1
长江大学
19
• 6.染色体编号:
根据染色体长度、着丝点位置、长短臂比、 随体有无等特点进行编号。
普通遗传学 2020/8/1
长江大学
20
• 人类的23对染色体及其编号
普通遗传学 2020/8/1
长江大学
21
二、染色体数目
表2、一些生物的染色体数目
水稻24条(2n)
大豆40条(2n)
被子植物中的一种菊科植物n=2 有些植物n=400-600
普通遗传学 2020/8/1
长江大学
22
• 生物染色体的一般特点:
1.数目恒定; 2.体细胞(2n)是性细胞(n)的二倍;
3.与生物进化的关系:无关, 可用于物种间的分类;
4.染色体数目恒定也是相对的(如动物的肝、 单子叶植物的种子胚乳)。
普通遗传学 2020/8/1
长江大学
15
3.形态类型:
长臂/ 短臂 染色体
形态
1.00
V形
1.01~1.70 V 形
1 .71~3.00 L 形
3.01~7.00 L 形
>7.01
长短臂极其 粗短
棒形 粒形
着丝点 位置 正中 中部 近中 近端 端部 端部
普通遗传学 2020/8/1
染色体分类
正中着丝点染色体 中着丝点区染色体 近中着丝点区染色体 近端着丝点区染色体 端着丝点区染色体 端着丝点染色体
根据核分裂的变化特征,可以将有丝分裂分为 四个时期;间期前期中期后期末期。
普通遗传学 2020/8/1
长江大学
28
普通遗传学 2020/8/1
长江大学
29
分裂间期 普通遗传学 2020/8/1
前期
中期
有丝分裂
长江大学
30
中期
后期
末期 细胞质分裂
普通遗传学 2020/8/1 有丝分裂长江大学
31

和生理状态的不同而异。
哺乳动物离体培养细胞的有丝分裂周期,
G1为10小时,S为9小时,G2为4小时,间期共
长23小时。而细胞分裂期M 全长只有1小时。
普通遗传学 2020/8/1
长江大学
27
二、有丝分裂过程
在整个过程染色体会产生有规律的变化,包括 两个紧密过程:
核分裂为二 细胞质分裂, 二个子细胞中各含一个核。
& 3. 有丝分裂的特殊情况:
普通遗传学 2020/8/1
长江大学
11
三、各类型细胞之间的比较
普通遗传学 2020/8/1
长江大学
12
第二节 染色体的形态和数目
一、染色体的形态特征:
普通遗传学 2020/8/1
长江大学
13
• 1.重要性:
(1).几乎所有生物细胞中均存在染色体;
(2).各物种染色体均各有其特定的形态特征,在 细胞分裂的中期和早后期最为明显和典型;
普通小麦42条(2n) 蚕豆12条(2n)
大麦14条(2n)
豌豆14条(2n)
玉米20条(2n)
马铃薯48条(2n)
高粱20条(2n)
甘薯90条(2n)
动物中某些扁虫只有4条(n=2)
线虫类马蛔虫只有2条(n=1)
一种蝴蝶(lysanra)有382条(n=191)
烟草48条(2n) 陆地棉52条(2n) 茶树30条(2n) 人46条(2n)
单子叶植物中:
玉米、小麦、大麦和黑麦 > 水稻。 但, 双子叶植物中的牡丹属和鬼臼属也具有 较大的染色体。
普通遗传学 2020/8/1
长江大学
18
• 5.类别:
各生物的染色体不仅形态结构相对稳定, 而且其数目成对。
同源染色体:形态和结构相同的一对染色体, 含有相同的基因位点;
异源染色体:这一对染色体与另一对形态结构 不同的染色体,互称为异源染色体, 含有不同的基因位点。
普通遗传学2第二章 遗传的细胞学基础
普通遗传学
长江大学
普通遗传学
长江大学
普通遗传学
长江大学
二、真核细胞
细胞壁
内质网 线粒体
ቤተ መጻሕፍቲ ባይዱ
真核 生物
→细胞
质膜(细胞膜)
叶绿体 高尔基体
细胞质 液泡 溶酶体
膜相结构
原生质
核糖体 非膜相结构 中心体
核膜 — 膜相结构
染色质 细胞核 核仁
非膜相结构
核基质
普通遗传学 2020/8/1
普通遗传学 2020/8/1
长江大学
23
三、原核生物的染色体形态、结构和 数目
• 通常原核生物细胞里只有一个染色体,呈线状或环 状,且DNA含量低于真核生物。
例如:
•大肠杆菌 E.coli只有一个环状染色体:其DNA分子 含核苷酸对为3×106,长度1.1mm。
•蚕豆 配子中染色体(n=6)的核苷酸对为2×1010, 长度6000mm。
(3).中期染色体分散排列在赤道板上,故通常以 这个时期进行染色体形态的识别和研究。
普通遗传学 2020/8/1
长江大学
14
2.结构:
(1).组成: 着丝粒、长臂和短臂、随体;
(2).着丝点(主缢痕):细胞分裂时纺锤丝于着丝粒的区域,
对于染色体向两极牵引具有决定性作用;
(3).次缢痕、随体:是识别特定染色体的重要标志; (4).某些次缢痕具有组成核仁的特殊功能。
长江大学
4
普通遗传学 2020/8/1
长江大学
5
普通遗传学 2020/8/1
长江大学
6
线粒体结构
普通遗传学 2020/8/1
长江大学
7
叶绿体
普通遗传学 2020/8/1
长江大学
8
内质网结构
普通遗传学 2020/8/1
长江大学
9
溶酶体结构
普通遗传学 2020/8/1
长江大学
10
高尔基体结构
•豌豆 配子中染色体(n=7)的核苷酸对为3×1010,
长度10500mm。
普通遗传学 2020/8/1
长江大学
24
第三节 细胞的有丝分裂
• 一、细胞周期
包括细胞有丝分裂过程和两次分裂之间的 间期(interphase)
间期: G1期
S期
G2期
普通遗传学 2020/8/1
长江大学
25
G1期:第一个间隙,主要进行细胞
长江大学
缩写
M m sm St t T
16
• 4.大小:
(1).各物种差异很大,染色体大小主要指长度, 同一物种染色体宽度大致相同:
–植物:
长约0.20-50 m、 宽约0.20-2.00 m 。
普通遗传学 2020/8/1
长江大学
17
(2).高等植物中单子叶植物的染色体一般 比双子叶植物要大些
体积的增长,并为DNA 合成 作准备。不分裂细胞则停留在 G1 期, 也称为G0 期。
S 期:DNA 合成时期,染色体数目
在此期加倍。
G2期:DNA 合成后至细胞分裂开
始之前的第二个间隙,为 细胞分裂作准备。
M期:细胞分裂期。
普通遗传学 2020/8/1
长江大学
26
一般S 期时间较长,且较稳定;G1 和G2 的时间较短,变化也较大。因物种、细胞种
相关文档
最新文档