九年级上册数学 圆 几何综合易错题(Word版 含答案)

九年级上册数学 圆 几何综合易错题(Word版 含答案)
九年级上册数学 圆 几何综合易错题(Word版 含答案)

九年级上册数学圆几何综合易错题(Word版含答案)

一、初三数学圆易错题压轴题(难)

1.如图,在平面直角坐标系中,O为坐标原点,△ABC的边BC在y轴的正半轴上,点A在x轴的正半轴上,点C的坐标为(0,8),将△ABC沿直线AB折叠,点C落在x轴的负半轴D(?4,0)处.

(1)求直线AB的解析式;

(2)点P从点A出发以每秒45个单位长度的速度沿射线AB方向运动,过点P作PQ⊥AB,交x轴于点Q,PR∥AC交x轴于点R,设点P运动时间为t(秒),线段QR长为d,求d与t的函数关系式(不要求写出自变量t的取值范围);

(3)在(2)的条件下,点N是射线AB上一点,以点N为圆心,同时经过R、Q两点作⊙N,⊙N交y轴于点E,F.是否存在t,使得EF=RQ?若存在,求出t的值,并求出圆心N的坐标;若不存在,说明理由.

【答案】(1)

1

3

2

y x

=-+(2)d=5t (3)故当 t=

8

5

,或8

15

,时,QR=EF,N(-

6,6)或(2,2).

【解析】

试题分析:(1)由C(0,8),D(-4,0),可求得OC,OD的长,然后设OB=a,则BC=8-a,在Rt△BOD中,由勾股定理可得方程:(8-

a)2=a2+42,解此方程即可求得B的坐标,然后由三角函数的求得点A的坐标,再利用待定系数法求得直线AB的解析式;

(2)在Rt△AOB中,由勾股定理可求得AB的长,继而求得∠BAO的正切与余弦,由PR//AC 与折叠的性质,易证得RQ=AR,则可求得d与t的函数关系式;

(3)首先过点分别作NT⊥RQ于T,NS⊥EF于S,易证得四边形NTOS是正方形,然后分别从点N在第二象限与点N在第一象限去分析求解即可求解;

试题解析:

(1)∵C(0,8),D(-4,0),

∴OC=8,OD=4,

设OB=a,则BC=8-a,

由折叠的性质可得:BD=BC=8-a,

在Rt△BOD中,∠BOD=90°,DB2=OB2+OD2,

则(8-a)2=a2+42,

解得:a=3,

B (0,3), tan ∠ODB=

3

4

OB OD = , 在Rt △AOC 中,∠AOC=90°,tan ∠ACB=3

4

OA OC = , 则OA=6, 则A (6,0),

设直线AB 的解析式为:y=kx+b ,

则60{3

k b b +== ,解得:1

{23

k b =-= , 故直线AB 的解析式为:y=-1

2

x +3; (2)如图所示:

在Rt △AOB 中,∠AOB=90°,OB=3,OA=6, 则2

2

135,tan 2OB OB OA BAO OA +=∠=

= ,255OA

cos BAO AB

∠==, 在Rt △PQA 中,905APQ AP t ∠=?=,

则AQ=

10cos AP

t BAO =∠ ,

∵PR ∥AC ,

∴∠APR=∠CAB ,

由折叠的性质得:∠BAO=∠CAB , ∴∠BAO=∠APR , ∴PR=AR ,

∵∠RAP+∠PQA=∠APR+∠QPR=90°, ∴∠PQA=∠QPR , ∴RP=RQ , ∴RQ=AR , ∴QR=

1

2

AQ=5t,

(3)过点分别作NT ⊥RQ 于T ,NS ⊥EF 于S , ∵EF=QR , ∴NS=NT ,

∴四边形NTOS 是正方形,

则TQ=TR=

1522QR t = , ∴111515

1022224

NT AT AQ TQ t t t ==-=-=()

() , 分两种情况,

若点N 在第二象限,则设N (n ,-n ),

点N 在直线1

32

y x =-+ 上, 则1

32

n n -=-

+ , 解得:n=-6,

故N (-6,6),NT=6,

15

64

t = , 解得:8

5

t = ;

若点N 在第一象限,设N (N ,N ), 可得:1

32

n n =-+ , 解得:n=2, 故N (2,2),NT=2,

即15

24

t =, 解得:t=8

15

∴当 t =

85,或8

15

,时,QR =EF ,N (-6,6)或(2,2)。 点睛:此题考查了折叠的性质、待定系数法求一次函数的解析式、正方形的判定与性质、

等腰三角形的性质、平行线的性质以及三角函数等知识.此题难度较大,注意掌握辅助线的作法,注意数形结合思想与方程思想的应用。

2.四边形ABCD 的对角线交于点E ,有AE =EC ,BE =ED ,以AB 为直径的O 过点E .

(1)求证:四边形ABCD 是菱形.

(2)若CD 的延长线与圆相切于点F ,已知直径AB =4.求阴影部分的面积.

【答案】(1)证明见解析;(2)513

π- 【解析】

试题分析:(1)先由AE=EC 、BE=ED 可判定四边形为平行四边形,再根据∠AEB=90°可判定该平行四边形为菱形;

(2)连接OF ,过点D 作DP ,AB P E EQ AB ⊥⊥于过点作于Q ,分别求出扇形BOE 、△AOE、半圆O 的面积,即可得出答案. 试题解析:(1)

AE =EC ,BE =ED

∴ABCD 四边形为平行四边形 ∵90AB AEB ∠∴=?是直径 ∴ABCD 平行四边形是菱形

(2)连接OF ,过点D 作DP ,AB P E EQ AB ⊥⊥于过点作于Q

CF 切O 于点F

∴90OFC ∠=? ∵ABCD 四边形是菱形,

∴,90CD AB BOF OFD DPO ∠∠∠∴===? ∴FOPD DP OF ∴=四边形是矩形

ABCD 四边形是菱形,AB AD ∴=

∵11

,3022

OF AB DP AD DAB ∠=

∴=∴=?

∴ABCD 四边形是菱形

∴1

152

CAB DAB ∠=∠=? ∴180215150AOE ∠=?-??=? ∴3090EOB EQO ∠∠=?=?

∴1

12

EQ OE =

= 21502360

S 阴影

π?∴=

-1

521123π??=- 点睛:本题主要考查菱形的判定即矩形的判定与性质、切线的性质,熟练掌握其判定与性质并结合题意加以灵活运用是解题的关键.

3.如图,点A 在直线l 上,点Q 沿着直线l 以3厘米/秒的速度由点A 向右运动,以AQ 为边作Rt△ABQ,使∠BAQ=90°,tan∠ABQ=

3

4

,点C 在点Q 右侧,CQ=1厘米,过点C 作直线m⊥l,过△ABQ 的外接圆圆心O 作OD⊥m 于点D ,交AB 右侧的圆弧于点E .在射线CD 上取点F ,使DF=

1

3

CD ,以DE 、DF 为邻边作矩形DEGF .设运动时间为t 秒.

(1)直接用含t 的代数式表示BQ 、DF ; (2)当0<t <1时,求矩形DEGF 的最大面积;

(3)点Q 在整个运动过程中,当矩形DEGF 为正方形时,求t 的值. 【答案】(1)BQ=5t ,DF=23t;(2)16;(3)t 的值为3

5

或3. 【解析】

试题分析:(1)AB 与OD 交于点H ,根据题中的比例关系和勾股定理可表示出BQ 的长;根据垂直于同一条直线的两直线平行和三角形的中位线定理可求得AH 的长,再根据矩形的判定定理和矩形的性质可求CD 的长,即可表示出FD ;

(2)根据题意表示出矩形的长和宽,然后构造二次函数,通过二次函数的最值可求解; (3)当矩形为正方形时,分别让其长与宽相等,列方程求解即可. 试题解析:(1)5t BQ =,2

DF=

t 3

; (2)DE=OD-OE=32t+1-52t=1-t ,()2

2211

·t 13326

S DF DE t t ??==-=--+ ???,∴当t=

12

时,矩形DEGF 的最大面积为

16

; (3)当矩形DEGF 为正方形时,221133t t t t -=

-=或,解得3

35

t t ==或.

4.我们把“有两条边和其中一边的对角对应相等的两个三角形”叫做“同族三角形”,如图1,在△ABC 和△ABD 中,AB=AB ,AC=AD ,∠B=∠B ,则△ABC 和△ABD 是“同族三角形”.

(1)如图2,四边形ABCD 内接于圆,点C 是弧BD 的中点,求证:△ABC 和△ACD 是同族三角形;

(2)如图3,△ABC 内接于⊙O ,⊙O 的半径为32AB=6,∠BAC=30°,求AC 的长; (3)如图3,在(2)的条件下,若点D 在⊙O 上,△ADC 与△ABC 是非全等的同族三角形,AD >CD ,求

AD

CD

的值. 【答案】(1)详见解析;(2)3;(3)AD CD 62

+62

【解析】 【分析】

(1)由点C 是弧BD 的中点,根据弧与弦的关系,易得BC=CD ,∠BAC=∠DAC ,又由公共边AC ,可证得:△ABC 和△ACD 是同族三角形;

(2)首先连接0A ,OB ,作点B 作BE ⊥AC 于点E ,易得△AOB 是等腰直角三角形,继而求得答案;

(3)分别从当CD=CB 时与当CD=AB 时进行分析求解即可求得答案. 【详解】

(1)证明:∵点C 是弧BD 的中点,即BC CD =, ∴BC=CD ,∠BAC=∠DAC , ∵AC=AC ,

∴△ABC 和△ACD 是同族三角形.

(2)解:如图1,连接OA ,OB ,作点B 作BE ⊥AC 于点E ,

∵OA=OB=32,AB=6, ∴OA 2+OB 2=AB 2,

∴△AOB 是等腰直角三角形,且∠AOB=90°, ∴∠C=∠AOB=45°, ∵∠BAC=30°, ∴BE=AB=3, ∴AE=

22AB BE -=33,

∵CE=BE=3, ∴AC=AE+CE=33+3.

(3)解:∵∠B=180°﹣∠BAC ﹣∠ACB=180°﹣30°﹣45°=105°, ∴∠ADC=180°﹣∠B=75°,

如图2,当CD=CB 时,∠DAC=∠BAC=30°,

∴∠ACD=75°,

∴AD=AC=33+3,CD=BC=2BE=32, ∴

AD 333CD 32

+=

=62

2+; 如图3,当CD=AB 时,过点D 作DF ⊥AC ,交AC 于点F ,

则∠DAC=∠ACB=45°,

∴∠ACD=180°﹣∠DAC ﹣∠ADC=60°, ∴DF=CD?sin60°=6×

3

2

3

∴AD=2DF=36, ∴

AD 36CD =

=6. 综上所述:AD CD =62+或6

. 【点睛】

本题考查圆的综合应用问题,综合运用弧与弦的关系,等腰三角形的性质结合图形作辅助线进行分析证明以及求解,难度较大.

5.如图1,△ABC 内接于⊙O ,直径AD 交BC 于点E ,延长AD 至点F ,使DF =2OD ,连接FC 并延长交过点A 的切线于点G ,且满足AG ∥BC ,连接OC ,若cos ∠BAC =1

3

,BC =8. (1)求证:CF 是⊙O 的切线; (2)求⊙O 的半径OC ;

(3)如图2,⊙O 的弦AH 经过半径OC 的中点F ,连结BH 交弦CD 于点M ,连结FM ,试求出FM 的长和△AOF 的面积.

【答案】(1)见解析;(2)3233

22

32【解析】 【分析】

(1)由DF=2OD ,得到OF=3OD=3OC ,求得

1

3

OE OC OC OF ==,推出△COE ∽△FOE ,根据相似三角形的性质得到∠OCF=∠DEC=90°,于是得到CF 是⊙O 的切线;

(2)利用三角函数值,设OE=x ,OC=3x ,得到CE=3,根据勾股定理即可得到答案; (3)连接BD ,根据圆周角定理得到角相等,然后证明△AOF ∽△BDM ,由相似三角形的性质,得到FM 为中位线,即可求出FM 的长度,由相似三角形的性质,以及中线分三角形的面积为两半,即可求出面积. 【详解】

解:(1) ∵DF =2OD , ∴OF =3OD =3OC ,

1

3OE OC OC OF ==, ∵∠COE =∠FOC , ∴△COE ∽△FOE ,

∴∠OCF =∠DEC =90°, ∴CF 是⊙O 的切线; (2)∵∠COD =∠BAC , ∴cos ∠BAC =cos ∠COE =1

3

OE OC =, ∴设OE =x ,OC =3x , ∵BC =8, ∴CE =4, ∵CE ⊥AD , ∴OE 2+CE 2=OC 2, ∴x 2+42=9x 2,

∴x =2(负值已舍去), ∴OC =3x =32, ∴⊙O 的半径OC 为32; (3)如图,连结BD ,

由圆周角定理,则∠OAF=∠DBM ,2AOF ADC ∠=∠, ∵BC ⊥AD , ∴AC AB =, ∴∠ADC=∠ADB ,

∴2AOF ADC BDM ∠=∠=∠, ∴△AOF ∽△BDM ; ∵点F 是OC 的中点, ∴AO :OF=BD :DM=2, 又∵BD=DC , ∴DM=CM , ∴FM 为中位线,

∴FM=

3

22

, ∴S △AOF : S △BDM =(32:26)2 34

=; ∵11111

8(322)4222222BDM BCD S S BC DE ??=

=??=???-=; ∴S △AOF =3

424

?=32; 【点睛】

本题考查了圆的综合问题,圆周角定理,切线的判定和性质,相似三角形的判定和性质,利用勾股定理求边长,以及三角形中线的性质,解题的关键是熟练掌握所学的定理和性质,运用属性结合的思想进行解题.

6.如图,PA ,PB 分别与O 相切于点A 和点B ,点C 为弧AB 上一点,连接PC 并延

长交

O 于点F ,D 为弧AF 上的一点,连接BD 交FC 于点E ,连接AD ,且

2180APB PEB ∠+∠=?.

(1)如图1,求证://PF AD ;

(2)如图2,连接AE ,若90APB ∠=?,求证:PE 平分AEB ∠; (3)如图3,在(2)的条件下,连接AB 交PE 于点H ,连接OE ,8AD =,

4

sin 5

ABD ∠=

,求PH 的长. 【答案】(1)见解析;(2)见解析;(3)257

【解析】 【分析】

(1)连接OA 、OB ,由切线的性质可得90OAP OBP ∠=∠=?,由四边形内角和是

360?,得180∠+∠=?P AOB ,由同弧所对的圆心角是圆周角的一半,得到

2AOB ADB ∠=∠,等量代换得到ADB PEB ∠=∠,由同位角相等两直线平行,得到//PF AD ;

(2)过点P 做PK PF ⊥交EB 延长线于点K ,由90APB ∠=?得290PEB ∠=?,从而45PEB ∠=?,由切线的性质,得PA PB =,由PK PE ⊥,45PEK ∠=?,得

PE PK =,从而90APE EPB ?∠=-∠,进而APE BPK ∠=∠,即可证得

APE BPK ??≌由此45K AEP ∠=∠=?,得到AEP PEB ∠=∠,即可证得PE 平分AEB ∠;

(3)连接AO 并延长交圆O 于点M ,连接OB 、OH 、OP 、OD 、DM ,由

45ADE ∠=?,90AED ∠=?,可得DE AE =,由OA 、OD 为半径,可得OA OD =,即可证出DEO AEO ??≌,由直径所对的圆周角是直角,可得90ADM ∠=?,在

Rt ADM ?中,由正弦定义可得10AM =,由此5OA OB ==,由OAPB 为正方形,对

角线AB 垂直平分OP ,从而,OH PH =.在Rt OAP ?中,252OP OA =

=.延长EO

交AD 于K ,在Rt OEP ?中,由勾股定理得7PE =,在Rt OEH ?中,由勾股定理得

257

PH =

. 【详解】 (1)连接OA 、OB

∵PA 、PB 与圆O 相切于点A 、B ,且OA 、OB 为半径, ∴OA AP ⊥,OB BP ⊥, ∴90OAP OBP ∠=∠=?,

∴在四边形AOBP 中,360180180P AOB ∠+∠=?-?=?, ∵AB AB =, ∴2AOB ADB ∠=∠, ∴2180P ADB ∠+∠=?, ∵2180P PEB ∠+∠=?, ∴ADB PEB ∠=∠, ∴//PF AD

(2)过点P 做PK PF ⊥交EB 延长线于点K

∵90APB ∠=?,

∴21809090PEB ∠=?-?=?, ∴45PEB ∠=?,

∵PA 、PB 为圆O 的切线, ∴PA PB =,

∵PK PE ⊥,45PEK ∠=?,

∴PE PK = ,

∵9090APE EPB KPB EPB ??∠=-∠=∠=-∠, ∴APE BPK ∠=∠, ∴APE BPK ??≌, ∴45K AEP ∠=∠=?, ∴AEP PEB ∠=∠, ∴PE 平分AEB ∠;

(3)连接AO 并延长交圆O 于点M ,连接OB 、OH 、OP 、OD 、DM

∵45ADE ∠=?,90AED ∠=?, ∴DE AE =, ∵OA 、OD 为半径, ∴OA OD =, ∵OE OE =, ∴DEO AEO ??≌, ∴1

452

AEO OED AED ∠=∠=∠=?, ∴90OEP ∠=?, ∵AM 为圆O 的直径, ∴90ADM ∠=?, ∵弧AD =弧AD , ∴ABD AMD ∠=∠,

在Rt ADM ?中,8AD =,4

sin 5

AMD ∠=,则10AM =, ∴5OA OB ==,

由题易证四边形OAPB 为正方形, ∴对角线AB 垂直平分OP ,AB OP =, ∵H 在AB 上, ∴OH PH =, 在Rt OAP ?中,252OP OA ==

延长EO 交AD 于K ,

∵DE AE =,可证OK AD ⊥,DOK ABD ∠=∠, ∴4DK KE ==,3OK =,1OE =

∴在Rt OEP ?中,227PE OP OE =-= 在Rt OEH ?中,222OH OE EH =+ ∵OH PH =,7EH PE HP PH =-=- ∴()2

2217PH PH =+-

∴257

PH =

. 【点睛】

本题考查了圆的综合题,圆的性质,等腰三角形的性质,相交弦定理,正弦定理,勾股定理,灵活运用这些性质定理解决问题是本题的关键.

7.已知AB 是

O 的一条弦,点C 在O 上,联结CO 并延长,交弦AB 于点D ,且

CD CB =.

(1)如图1,如果BO 平分ABC ∠,求证:AB BC =; (2)如图2,如果AO OB ⊥,求:AD DB 的值;

(3)延长线段AO 交弦BC 于点E ,如果EOB ?是等腰三角形,且

O 的半径长等于

2,求弦BC 的长.

【答案】(1)证明见解析;(2)3

3

(351和22【解析】 【分析】

(1)由题意利用弦心距即可求证结果,

(2)此题关键先求出AO ,做辅助线构造特殊三角形,并求证出∠AOD ,再根据平行线分线段成比例求出比值即可,

(3)分情况讨论两种情况:OE=BE 时或OB=BE 时两种情况,利用三角形相似即△COE ~△CBO 找到相似比,利用相似比求解即可. 【详解】

(1)过点O作OP⊥AB,垂足为点P;OQ⊥BC,垂足为点Q,∵BO平分∠ABC,

∴OP=OQ,

∵OP,OQ分别是弦AB、BC 的弦心距,

∴AB= BC;

(2)∵OA=OB,

∴∠A=∠OBD,

∵CD=CB,

∴∠CDB =∠CBD,

∴∠A+∠AOD =∠CBO +∠OBD,

∴∠AOD =∠CBO,

∵OC=OB,

∴∠C =∠CBO,

∴∠DOB =∠C +∠CBO = 2∠CBO = 2∠AOD,

∵AO⊥OB,

∴∠ AOB =∠AOD +∠BOD =3∠AOD = 90°,

∴∠AOD=30°,

过点D作DH⊥AO,垂足为点H,

∴∠AHD=∠DHO=90°,

∴tan∠AOD =HD

OH

3

∵∠AHD=∠AOB=90°,∴HD‖OB,

D

A OB

H AH

O

=,

∵OA=OB,∴HD=AH,∵HD‖OB,

3

AH HD

OH O

AH

DB H

===;

(3)∵∠C=∠CBO,

∴∠OEB =∠C+∠COE >∠CBO,

∴OE≠OB;

若OB = EB =2时,

∵∠C=∠C,∠COE =∠AOD =∠CBO,∴△COE~△CBO,

∴CO CE BC CO

=,

22

2

BC

BC

=

-

∴2

BC-2BC -4=0,

∴BC =5

- +1 (舍去)或BC =5+1,

∴BC =5+1;

若OE = EB时,

∵∠EOB =∠CBO,

∵∠OEB =∠C+∠COE =2∠C =2∠CBO且∠OEB +∠CBO +∠EOB = 180°,∴4∠CBO=180°,∠CBO=45°,

∴∠OEB=90°,

∴cos∠CBO=

2 EB

OB

=,

∵OB=2,

∴EB =2,

∵OE过圆心,OE⊥BC,

∴BC =2EB =22.

【点睛】

此题考查圆的相关知识:圆心距及圆内三角形相似的相关知识,属于综合题型,难度较高.

8.如图,已知AB是⊙O的直径,C是⊙O上一点(不与A、B重合),D为的AC中点,过点D作弦DE⊥AB于F,P是BA延长线上一点,且∠PEA=∠B.

(1)求证:PE是⊙O的切线;

(2)连接CA与DE相交于点G,CA的延长线交PE于H,求证:HE=HG;

(3)若tan∠P=

5

12

,试求

AH

AG

的值.

【答案】(1)证明见解析;(2)证明见解析;(3)

13

10 AH

AG

=.

【解析】

【分析】

(1)连接OE,由圆周角定理证得∠EAB+∠B=90°,可得出∠OAE=∠AEO,则

∠PEA+∠AEO=90°,即∠PEO=90°,则结论得证;

(2)连接OD,证得∠AOD=∠AGF,∠B=∠AEF,可得出∠PEF=2∠B,∠AOD=2∠B,可证得∠PEF=∠AOD=∠AGF,则结论得证;

(3)可得出tan∠P=tan∠ODF=

5

12

OF

DF

=,设OF=5x,则DF=12x,求出AE,BE,得

2

3

AE

BE

=,证明△PEA∽△PBE,得出2

3

PA

PE

=,过点H作HK⊥PA于点K,证明∠P=

∠PAH,得出PH=AH,设HK=5a,PK=12a,得出PH=13a,可得出AH=13a,AG=10a,则可得出答案.

【详解】

解:(1)证明:如图1,连接OE,

∵AB是⊙O的直径,

∴∠AEB=90°,

∴∠EAB+∠B=90°,

∵OA=OE,

∴∠OAE=∠AEO,

∴∠B+∠AEO=90°,

∵∠PEA=∠B,

∴∠PEA+∠AEO=90°,

∴∠PEO=90°,

又∵OE为半径,

∴PE是⊙O的切线;

(2)如图2,连接OD,

∵D为AC的中点,

∴OD⊥AC,设垂足为M,

∴∠AMO=90°,

∵DE⊥AB,

∴∠AFD=90°,

∴∠AOD+∠OAM=∠OAM+∠AGF=90°,∴∠AOD=∠AGF,

∵∠AEB=∠EFB=90°,

∴∠B=∠AEF,

∵∠PEA=∠B,

∴∠PEF=2∠B,

∵DE⊥AB,

∴AE AD

=,

∴∠AOD=2∠B,

∴∠PEF=∠AOD=∠AGF,

∴HE=HG;

(3)解:如图3,

∵∠PEF=∠AOD,∠PFE=∠DFO,

∴∠P=∠ODF,

∴tan∠P=tan∠ODF=

5

12 OF

DF

=,

设OF=5x,则DF=12x,

∴OD22

OF DF

+13x,

∴BF=OF+OB=5x+13x=18x,AF=OA﹣OF=13x﹣5x=8x,∵DE⊥OA,

∴EF=DF=12x,

∴AE=22

AF EF

+=413x,BE=22

EF BF

+=613x,∵∠PEA=∠B,∠EPA=∠BPE,

∴△PEA∽△PBE,

4132

3

613

PA AE

PE BE

===,

∵∠P+∠PEF=∠FAG+∠AGF=90°,∴∠HEG=∠HGE,

∴∠P=∠FAG,

又∵∠FAG=∠PAH,

∴∠P=∠PAH,

∴PH=AH,

过点H作HK⊥PA于点K,

∴PK=AK,

1

3 PK

PE

=,

∵tan∠P=

5 12

设HK=5a,PK=12a,

∴PH=13a,

∴AH=13a,PE=36a,

∴HE=HG=36a﹣13a=23a,

∴AG=GH﹣AH=23a﹣13a=10a,

1313

1010 AH a

AG a

==.

【点睛】

本题是圆的综合题,考查了垂径定理,圆周角定理,相似三角形的判定和性质,切线的判定,解直角三角形,勾股定理,等腰三角形的性质等知识,掌握相似三角形的判定定和性质定理及方程思想是解题的关键.

9.如图,平行四边形ABCD中,AB=5,BC=8,cosB=4

5

,点E是BC边上的动点,以C为

圆心,CE长为半径作圆C,交AC于F,连接AE,EF.

(1)求AC的长;

(2)当AE与圆C相切时,求弦EF的长;

(3)圆C与线段AD没有公共点时,确定半径CE的取值范围.

【答案】(1)AC=5;(2)

410

5

EF=;(3)03

CE

≤<或58

CE

<≤.

【解析】【分析】

(1)过A作AG⊥BC于点G,由cos

4

5

B=,得到BG=4,AG=3,然后由勾股定理即可求出

AC的长度;

(2)当点E与点G重合时,AE与圆C相切,过点F作FH⊥CE,则CE=CF=4,则CH=3.2,FH=2.4,得到EH=0.8,由勾股定理,即可得到EF的长度;

(3)根据题意,可分情况进行讨论:①当圆C与AD相离时;②当CE>CA时;分别求出CE的取值范围,即可得到答案.

【详解】

解:(1)过A作AG⊥BC于点G,如图:

在Rt△ABG中,AB=5,

4 cos

5

BG

B

AB

==,

∴BG=4,

∴AG=3,

∴844

CG=-=,

∴点G是BC的中点,

在Rt△ACG中,22

345

AC=+=;

(2)当点E与点G重合时,AE与圆C相切,过点F作FH⊥CE,如图:

∴CE=CF=4,

∵AB=AC=5,

∴∠B=∠ACB,

∴4

cos cos 5

CH B ACB CF =∠==, ∴CH=3.2,

在Rt △CFH 中,由勾股定理,得 FH=2.4, ∴EH=0.8,

在Rt △EFH 中,由勾股定理,得

22410

0.8 2.45

EF =+=

; (3)根据题意,圆C 与线段AD 没有公共点时,可分为以下两种情况: ①当圆C 与AD 相离时,则CE

∴半径CE 的取值范围是:03CE ≤<; ②当CE>CA 时,点E 在线段BC 上,

∴半径CE 的取值范围是:58CE <≤;

综合上述,半径CE 的取值范围是:03CE ≤<或58CE <≤. 【点睛】

本题考查了解直角三角形,直线与圆的位置关系,平行四边形的性质,勾股定理,以及线段的动点问题,解题的关键是熟练掌握所学的知识,正确作出辅助线,正确确定动点的位置,从而进行解题.

10.在

O 中,AB 为直径,CD 与AB 相较于点H ,弧AC=弧AD

(1)如图1,求证:CD AB ⊥;

(2)如图2,弧BC 上有一点E ,若弧CD=弧CE ,求证:3EBA ABD ∠=∠;

(3)如图3,在(2)的条件下,点F 在上,连接,//FH FH DE ,延长FO 交DE 于点

相关文档
最新文档