岳阳市中考数学试卷及答案解析

合集下载

2021年湖南省岳阳市中考数学试卷(附答案详解)

2021年湖南省岳阳市中考数学试卷(附答案详解)

2021年湖南省岳阳市中考数学试卷一、选择题(本大题共8小题,共24.0分)1.(2021·湖南省岳阳市·历年真题)在实数√3,−1,0,2中,为负数的是()A. √3B. −1C. 0D. 22.(2021·湖南省岳阳市·历年真题)下列品牌的标识中,是轴对称图形的是()A. B. C. D.3.(2021·湖南省岳阳市·历年真题)下列运算结果正确的是()A. 3a−a=2B. a2⋅a4=a8C. (a+2)(a−2)=a2−4D. (−a)2=−a24.(2021·湖南省岳阳市·历年真题)已知不等式组{x−1<02x≥−4,其解集在数轴上表示正确的是()A. B. C. D.5.(2021·湖南省岳阳市·历年真题)将一副直角三角板按如图方式摆放,若直线a//b,则∠1的大小为()A. 45°B. 60°C. 75°D. 105°6.(2021·湖南省岳阳市·历年真题)下列命题是真命题的是()A. 五边形的内角和是720°B. 三角形的任意两边之和大于第三边C. 内错角相等D. 三角形的重心是这个三角形的三条角平分线的交点7.(2021·湖南省岳阳市·历年真题)在学校举行“庆祝百周年,赞歌献给党”的合唱比赛中,七位评委给某班的评分去掉一个最高分、一个最低分后得到五个有效评分,分别为:9.0,9.2,9.0,8.8,9.0(单位:分),这五个有效评分的平均数和众数分别是()A. 9.0,8.9B. 8.9,8.9C. 9.0,9.0D. 8.9,9.08.(2021·湖南省岳阳市·历年真题)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.如图,在正方形OABC中,点A(0,2),点C(2,0),则互异二次函数y=(x−m)2−m与正方形OABC有交点时m的最大值和最小值分别是()A. 4,−1B. 5−√172,−1C. 4,0D. 5+√172,−1二、填空题(本大题共8小题,共32.0分)9.(2021·湖南省岳阳市·历年真题)因式分解:x2+2x+1=______ .10.(2021·湖南省岳阳市·历年真题)2021年5月15日,“天问一号”探测器成功着陆火星,在火星上首次留下了中国印迹.据公开资料显示,地球到火星的最近距离约为55000000公里,数据55000000用科学记数法表示为______ .11.(2021·湖南省岳阳市·历年真题)一个不透明的袋子中装有5个小球,其中3个白球,2个黑球,这些小球除颜色外无其它差别,从袋子中随机摸出一个小球,则摸出的小球是白球的概率为______ .12.(2021·湖南省岳阳市·历年真题)已知关于x的一元二次方程x2+6x+k=0有两个相等的实数根,则实数k的值为______ .13.(2021·北京市·模拟题)要使分式5x−1有意义,则x的取值范围为______.14.(2021·湖南省岳阳市·历年真题)已知x+1x =√2,则代数式x+1x−√2=______ .15.(2021·湖南省岳阳市·历年真题)《九章算术》是我国古代数学名著,书中有下列问题:“今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何?”其意思为:今有一门,高比宽多6尺8寸,门对角线距离恰好为1丈.问门高、宽各是多少?(1丈=10尺,1尺=10寸)如图,设门高AB为x尺,根据题意,可列方程为______ .16.(2021·湖南省岳阳市·历年真题)如图,在Rt△ABC中,∠C=90°,AB的垂直平分线分别交AB、AC于点D、E,BE=8,⊙O为△BCE的外接圆,过点E作⊙O的切线EF交AB于点F,则下列结论正确的是______ .(写出所有正确结论的序号)①AE=BC;②∠AED=∠CBD;③若∠DBE=40°,则DE⏜的长为8π9;④DFEF =EFBF;⑤若EF=6,则CE=2.24.三、解答题(本大题共8小题,共64.0分)17.(2021·湖南省岳阳市·历年真题)计算:(−1)2021+|−2|+4sin30°−(√83−π)0.18.(2021·湖南省岳阳市·历年真题)如图,在四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为点E,F.(1)请你只添加一个条件(不另加辅助线),使得四边形AECF为平行四边形,你添加的条件是______ ;(2)添加了条件后,证明四边形AECF为平行四边形.19.(2021·湖南省岳阳市·历年真题)如图,已知反比例函数(k≠0)与正比例函数y=2x的图象交于A(1,m),y=kxB两点.(1)求该反比例函数的表达式;(2)若点C在x轴上,且△BOC的面积为3,求点C的坐标.20.(2021·湖南省岳阳市·历年真题)国务院教育督导委员会办公室印发的《关于组织责任督学进行“五项管理”督导的通知》指出,要加强中小学生作业、睡眠、手机、读物、体质管理.某校数学社团成员采用随机抽样的方法,抽取了八年级部分学生,对他们一周内平均每天的睡眠时间t(单位:ℎ)进行了调查,将数据整理后得到下列不完整的统计图表:组别睡眠时间分组频数频率A t<640.08B6≤t<780.16C7≤t<810aD8≤t<9210.42E t≥9b0.14请根据图表信息回答下列问题:(1)频数分布表中,a=______ ,b=______ ;(2)扇形统计图中,C组所在扇形的圆心角的度数是______ °;(3)请估算该校600名八年级学生中睡眠不足7小时的人数;(4)研究表明,初中生每天睡眠时长低于7小时,会严重影响学习效率.请你根据以上调查统计结果,向学校提出一条合理化的建议.21.(2021·湖南省岳阳市·历年真题)星期天,小明与妈妈到离家16km的洞庭湖博物馆参观.小明从家骑自行车先走,1h后妈妈开车从家出发,沿相同路线前往博物馆,结果他们同时到达.已知妈妈开车的平均速度是小明骑自行车平均速度的4倍,求妈妈开车的平均速度.22.(2021·湖南省岳阳市·历年真题)某镇为创建特色小镇,助力乡村振兴,决定在辖区的一条河上修建一座步行观光桥.如图,该河旁有一座小山,山高BC=80m,坡面AB的坡度i=1:0.7(注:坡度i是指坡面的铅直高度与水平宽度的比),点C、A 与河岸E、F在同一水平线上,从山顶B处测得河岸E和对岸F的俯角分别为∠DBE= 45°,∠DBF=31°.(1)求山脚A到河岸E的距离;(2)若在此处建桥,试求河宽EF的长度.(结果精确到0.1m)(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)23.(2021·湖南省岳阳市·历年真题)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,点D为AB的中点,连接CD,将线段CD绕点D顺时针旋转α(60°<α<120°)得到线段ED,且ED交线段BC于点G,∠CDE的平分线DM交BC于点H.=______ ;(1)如图1,若α=90°,则线段ED与BD的数量关系是______ ,GDCD(2)如图2,在(1)的条件下,过点C作CF//DE交DM于点F,连接EF,BE.①试判断四边形CDEF的形状,并说明理由;②求证:BEFH =√33;(3)如图3,若AC=2,tan(α−60°)=m,过点C作CF//DE交DM于点F,连接EF,BE,请直接写出BEFH的值(用含m的式子表示).24.(2021·湖南省岳阳市·历年真题)如图,抛物线y=ax2+bx+2经过A(−1,0),B(4,0)两点,与y轴交于点C,连接BC.(1)求该抛物线的函数表达式;(2)如图2,直线l:y=kx+3经过点A,点P为直线l上的一个动点,且位于x轴的上方,点Q为抛物线上的一个动点,当PQ//y轴时,作QM⊥PQ,交抛物线于点M(点M在点Q的右侧),以PQ,QM为邻边构造矩形PQMN,求该矩形周长的最小值;(3)如图3,设抛物线的顶点为D,在(2)的条件下,当矩形PQMN的周长取最小值时,抛物线上是否存在点F,使得∠CBF=∠DQM?若存在,请求出点F的坐标;若不存在,请说明理由.答案和解析1.【答案】B【知识点】实数的概念【解析】解:在√3,−1,0,2这四个数中,负数是−1,故选:B.根据负数的定义,可以判断题目中的哪个数是负数.本题考查正数和负数,解题的关键是明确负数的定义.2.【答案】A【知识点】轴对称图形【解析】解:A.是轴对称图形,故此选项符合题意;B.不是轴对称图形,故此选项不合题意;C.不是轴对称图形,故此选项不合题意;D.不是轴对称图形,故此选项不合题意;故选:A.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.此题主要考查了轴对称图形,关键是掌握轴对称图形的概念.3.【答案】C【知识点】同底数幂的乘法、平方差公式、合并同类项【解析】解:3a和a属于同类项,所以3a−a=2a,故A项不符合题意,根据同底数幂的乘法运算法则可得a2⋅a4=a6,故B项不符合题意,根据平方差公式(a+2)(a−2)=a2−4,故C项符合题意,(−a)2=a2,故D项不符合题意,故选:C.根据合并同类项原则、同底数幂的乘法运算法则、平方差公式以及幂的乘方运算法则正确计算即可求出正确答案.本题主要考查合并同类项原则、同底数幂的乘法运算法则、平方差公式以及幂的乘方运算法则,熟练运用运算法则是解题的关键.4.【答案】D【知识点】在数轴上表示不等式的解集、一元一次不等式组的解法【解析】解:解不等式x−1<0,得:x<1,解不等式2x≥−4,得:x≥−2,则不等式组的解集为−2≤x<1,故选:D.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.【答案】C【知识点】平行线的性质【解析】解:由题意知,∠ABC=45°+60°=105°,∵a//b,∴∠1+∠ABC=180°,∴∠1=180°−∠ABC=180°−105°=75°,故选:C.根据平行线的性质可得∠1+∠ABC=180°,进而可求出∠1.本题主要考查了平行线的性质,熟记两直线平行,同旁内角互补是解决问题的关键.6.【答案】B【知识点】证明与定理【解析】解:A、五边形的内角和为540°,故原命题错误,是假命题,不符合题意;B、三角形的任意两边之和大于第三边,正确,是真命题,符合题意;C、两直线平行,内错角相等,故原命题错误,是假命题,不符合题意;D、三角形的重心是这个三角形的三条边上的中线的交点,故原命题错误,是假命题,不符合题意,故选:B.利用多边形的内角和公式、三角形的三边关系、平行线的性质及三角形的重心的性质分别判断后即可确定正确的选项.考查了命题与定理的知识,解题的关键是了解多边形的内角和公式、三角形的三边关系、平行线的性质及三角形的重心的定义等知识,难度不大.7.【答案】C【知识点】算术平均数、众数【解析】解:x −=9.0+9.2+9.0+8.8+9.05=9.0,该组数众数为:9.0,∴这五个有效评分的平均数和众数分别为9.0,9.0,故选:C .根据平均数的计算方法对这组数先求和再除以5即可,众数即出现次数最多的数,便可选出正确答案.本题考查算术平均数以及众数,熟练掌握平均数的求法以及众数的求法是解题的关键. 8.【答案】D【知识点】二次函数的性质、正方形的性质【解析】解:如图,由题意可得,互异二次函数y =(x −m)2−m 的顶点(m,−m)在直线y =−x 上运动,在正方形OABC 中,点A(0,2),点C(2,0),∴B(2,2),从图象可以看出,当函数从左上向右下运动时,当跟正方形有交点时,先经过点A ,再逐渐经过点O ,点B ,点C ,最后再经过点B ,且在运动的过程中,两次经过点A ,两次经过点O ,点B 和点C ,∴只需算出当函数经过点A 及点B 时m 的值,即可求出m 的最大值及最小值. 当互异二次函数y =(x −m)2−m 经过点A(0,2)时,m =0,或m =−1;当互异二次函数y =(x −m)2−m 经过点B(2,2)时,m =5−√172或m =5+√172.∴互异二次函数y =(x −m)2−m 与正方形OABC 有交点时m 的最大值和最小值分别是5+√172,−1.故选:D .画出图象,从图象可以看出,当函数从左上向右下运动时,当跟正方形有交点时,先经过点A ,再逐渐经过点O ,点B ,点C ,最后再经过点B ,且在运动的过程中,两次经过点A ,两次经过点O ,点B 和点C ,只需算出当函数经过点A 及点B 时m 的值,即可求出m 的最大值及最小值.本题为二次函数综合题,考查了二次函数图象性质.解答关键是研究动点到达临界点时图形的变化,从而得到临界值.9.【答案】(x +1)2【知识点】因式分解-运用公式法【解析】解:x 2+2x +1=(x +1)2,故答案为:(x +1)2.本题运用完全平方公式进行因式分解即可.本题考查运用公式法进行因式分解,掌握公式法的基本形式并能熟练应用是解题的关键. 10.【答案】5.5×107【知识点】科学记数法-绝对值较大的数【解析】解:55000000=5.5×107,故答案为:5.5×107.根据科学记数法的方法对55000000进行科学记数即可.本题考查用科学记数法表示较大的数,掌握科学记数法的基本方法是解题的关键. 11.【答案】35【知识点】概率公式【解析】解:∵从袋子中随机摸出一个小球共有5种等可能结果,摸出的小球是白球的结果数为3,∴摸出的小球是红球的概率为35,故答案为:3.5用白球的个数除以球的总个数即可.本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.12.【答案】9【知识点】根的判别式【解析】解:根据题意,△=62−4k=0,解得k=9,故答案为9.利用判别式的意义得到△=62−4k=0,然后解关于k的方程即可.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根.13.【答案】x≠1【知识点】分式有意义的条件有意义,【解析】解:∵分式5x−1∴x−1≠0,解得x≠1.故答案为:x≠1.先根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.14.【答案】0【知识点】分式的化简求值、二次根式的化简求值、完全平方公式=√2,【解析】解:∵x+1x∴x+1−√2=√2−√2=0,x故答案为:0.把x+1的值代入计算即可.x本题考查的是二次根式的计算,掌握二次根式的减法法则是解题的关键.15.【答案】(x−6.8)2+x2=102【知识点】勾股定理的应用【解析】解:设门高AB为x尺,则门的宽为(x−6.8)尺,AC=1丈=10尺,依题意得:AB2+BC2=AC2,即(x−6.8)2+x2=102.故答案为:(x−6.8)2+x2=102.设门高AB为x尺,则门的宽为(x−6.8)尺,利用勾股定理,即可得出关于x的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程以及勾股定理的应用,找准等量关系,正确列出一元二次方程是解题的关键.16.【答案】②④⑤【知识点】弧长的计算、线段垂直平分线的概念及其性质、圆周角定理、切线的性质、相似三角形的判定与性质【解析】解:①∵DE垂直平分AB,∴AE=BE,又在Rt△ABC中,∠C=90°,∴BE>BC,∴AE>BC,故①错误;②由题可知,四边形DBCE是⊙O的内接四边形,∴∠AED=∠CBD,故②正确;③连接OD,若∠DBE=40°,则∠DOE=80°,∴DE⏜的长为80°⋅π⋅4180∘=16π9,故③错误;④∵EF是⊙O的切线,∴∠BEF=90°,又DE⊥AB,∴∠EDF=∠BEF=90°,∴△EDF∽△BEF,∴DFEF =EFBF,故④正确;⑤在Rt△BEF中,EF=6,BE=8,∴BF=10,由①AE=BE=8,∴∠A=∠ABE,又∠C=∠BEF=90°,∴△BEF∽△ACB,∴BE:AC=EF:BC=6:8,设BE=6m,则AC=8m,则CE=8m−8,在Rt△BCE中,由勾股定理可得,EC2+BC2=BE2,即(8m−8)2+(6m)2=82,解得m=1.28,∴CE=8m−8=2.24.故⑤正确.故答案为:②④⑤.①DE垂直平分AB,AE=BE,BE>BC,则AE>BC,故①错误;②由题可知,四边形DBCE是⊙O的内接四边形,则∠AED=∠CBD,故②正确;③连接OD,若∠DBE=40°,则∠DOE=80°,则DE⏜的长为80°⋅π⋅4180∘=16π9,故③错误;④易得△EDF∽△BEF,则DFEF =EFBF,故④正确;⑤在Rt△BEF中,EF=6,BE=8,BF=10,又△BEF∽△ACB,则BE:AC=EF:BC=6:8,设BE=6m,则AC=8m,则CE=8m−8,由勾股定理可得,EC2+BC2= BE2,即(8m−8)2+(6m)2=82,解得m=1.28,则CE=8m−8=2.24.故⑤正确.本题主要考查相似三角形的性质与判定,切线的性质,弧长的计算等内容,熟知相关性质及定理是解题关键.17.【答案】解:原式=−1+2+4×12−1=−1+2+2−1=2.【知识点】绝对值、特殊角的三角函数值、零指数幂、实数的运算【解析】按照实数的运算法则依次展开计算即可得出答案.本题考查实数的混合运算,涉及绝对值、零指数幂、正整数幂,特殊角的三角函数值等知识,熟练掌握其运算法则,细心运算是解题的关键.18.【答案】AE=CF【知识点】平行四边形的判定【解析】解:(1)添加条件为:AE=CF,故答案为:AE=CF;(2)证明:∵AE⊥BD,CF⊥BD,∴AE//CF,∵AE=CF,∴四边形AECF为平行四边形.(1)由题意添加条件即可;(2)证AE//CF,再由AE=CF,即可得出结论.本题考查了平行四边形的判定、平行线的判定等知识;熟练掌握平行四边形的判定是解题的关键.19.【答案】解:(1)把A(1,m)代入y=2x中,得m=2,∴点A的坐标为(1,2),把点A(1,2)代入y=kx中,得k=2,∴反比例函数得解析式为y=2x;(2)过点B作BD垂直与x轴,垂足为D,设点C的坐标为(a,0),∵点A与点B关于原点对称,∴点B的坐标为(−1,−2),∴BD=|−2|=2,OC=|a|,S△BOC=12BD⋅OC=12×2×|a|=3,解得:a=3或a=−3,∴点C的坐标为(3,0)或(−3,0).【知识点】一次函数与反比例函数综合【解析】(1)先把A(1,m)代入y=2x中,即可算出点A的坐标,再把点A的坐标代入反比例函数解析式中即可得出答案;(2)过点B作BD垂直与x轴,垂足为D,设点C的坐标为(a,0),根据反比例函数与正比例函数的性质可得点B的坐标,由题意可得BD=|−2|=2,OC=|a|,再根据三角形面积计算方法即可算出a的值,即可得出答案.本题主要考查了反比例函数与一次函数的交点问题,熟练掌握相关知识进行求解是解决本题的关键.20.【答案】0.27 72【知识点】扇形统计图、用样本估计总体、频数(率)分布表【解析】解:(1)本次调查的同学共有:8÷0.16=50(人),a=10÷50=0.2,b=50--8−10−21=7,故答案为:0.2,7;(2)扇形统计图中C组所在扇形的圆心角的大小是:360°×1050=72°,故答案为:72;(3)600×4+850=144(人),答:该校600名八年级学生中睡眠不足7小时的人数有144人;(4)按时入睡,保证睡眠时间.(1)根据B组人数和所占的百分比,可以求得本次调查的人数,再根据频数分布表中的数据,即可计算出a、b的值;(2)根据C组的频率可计算出扇形统计图中C组所在扇形的圆心角的大小;(3)根据每天睡眠时长低于7小时的人数所占比例可以计算出该校学生每天睡眠时长低于7小时的人数.(4)根据调查统计结果,向学校提出一条合理化的建议即可.本题考查扇形统计图、频数分布表、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.21.【答案】解:设小明骑自行车的平均速度为x km/ℎ,则妈妈开车的平均速度为4x km/ℎ,依题意得:16x −164x=1,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴4x=48.答:妈妈开车的平均速度为48km/ℎ.【知识点】分式方程的应用【解析】设小明骑自行车的平均速度为x km/ℎ,则妈妈开车的平均速度为4x km/ℎ,根据时间=路程÷速度,结合小明比妈妈多用1h,即可得出关于x的分式方程,解之经检验后即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.【答案】解:(1)在RtABC中,BC=80,∵AB的坡度i=1:0.7,∴BCAC =10.7,∴80AC =10.7,∴AC=56,在RtBCE中,BC=80,∠BEC=∠DBE=45°,∴∠CBE=90°−∠BEC=90°−45°=45°,∴∠BEC=∠CBE,∴CE=BC=80,∴AE=CE−AC=80−56=24(m),答:山脚A到河岸E的距离为24m;(2)在RtBCF中,BC=80,∠BFC=∠DBF=31°,tan∠BFC=BCCF,∴80CF≈0.6,∴CF≈133.33,∴EF=CF−CE=133.33−80=53.33≈53.3(m),答:河宽EF的长度约53.3m.【知识点】解直角三角形的应用【解析】(1)在RtABC中,根据AB的坡度求出AC,在RtBCE中,根据等腰直角三角形的性质可得CE=BC,由线段的和差即可求得AE;(2)在RtBCF中,由三角函数的定义求出,根据线段的和差即可求出.本题考查了解直角三角形的应用,涉及仰角俯角及坡度坡角的知识,构造直角三角形是23.【答案】ED=BD√33【知识点】四边形综合【解析】解:(1)在Rt△ABC中,∠ACB=90°,点D为AB的中点,∴AD=CD=BD,∵∠A=60°,∴∠B=30°,△ABD是等边三角形,∴∠DCB=30°,∵∠CDE=α=90°,∴tan∠CGD=tan60°=CDDG=√3,∴GDCD =√33.∵线段CD绕点D顺时针旋转α(60°<α<120°)得到线段ED,∴ED=CD=BD,故答案为:ED=BD;√33.(2)①四边形CDEF是正方形,理由如下,∵DM平分∠CDE,∠CDE=90°,∴∠CDM=∠EDM=45°,∵CF//DE,∴∠CFD=∠EDM=45°,∴∠CFD=∠EDM=∠CDM,∴CF=CD=ED,∴四边形CDEF是菱形,∵∠CDE=90°,∴菱形CDEF是正方形.②由(1)可知,∠ADC=60°,∠CGD=60°,BD=DE,∴∠BDE=30°,∠EGB=60°,∴∠DBE=∠DEB=75°,∴∠EBG=45°,∵∠GDB=90°−∠ADE=30°,∠ABC=30°,∴∠GDB=∠ABC,由①知∠CFD=∠CDF=45°,∠DCF=90°,∴∠FCH=60°,∴∠EGB=∠FCH,∠EBG=∠CFD,∴△BEG∽△FHC,∴BEFH =BGFC,∵DG=BG,CD=CF,∴BEFH =BGFC=GDCD=√33.(3)如图3,过点D作DN⊥BC于点N,∴AC//DN,∴∠ACD=∠CDN,∵△ACD是等边三角形,AC=2,∴CD=AC=2,∠CDN=∠ACD=60°,∴∠NDG=α−60°,DN=1,∴tan∠NDG=tan(α−60°)=NGDN=m,∴NG=m,∴DG=√DN2+NG2=√1+m2,∵∠ADC=60°,∠ADG=α,∴∠BDE=120°−α,∴∠BEG=∠EBG=30°+α2,∴∠EBG=α2,∴∠BGE=150°−α,∵DM平分∠CDE,∠CDE=α,∴∠CDM=∠EDM=α2,∵CF//DE,∴∠CFD=∠EDM=α2,∠DCF+∠CDE=180°,∴∠DCF=180°−α,∴∠FCG=150°−α,∴∠EGB=∠FCG,∠EBG=∠CFD,∴△BEG∽△FHC,∴BEFH =BGFC,∵DG=BG,CD=CF,∴BEFH =BGFC=GDCD=√m2+12.(1)根据直角三角形斜边中线等于斜边的一半可以得到AC=CD=BD,根据旋转的性质可以得到CD=DE,则DE=BD;又在Rt△CGD中,含30°的直角三角形边之间的关系可得结论;(2)①由∠CFD=∠EDM=∠CDM,得CF=CD=ED,又CF//DE,则四边形CDEF是菱形,又∠CDE=90°,可得结论:菱形CDEF是正方形.②由题意可得,∠EGB=∠FCH,∠EBG=∠CFD,则△BEG∽△FHC,又DG=BG,CD=CF,所以BEFH =BGFC=GDCD=√33.(3)过点D作DN⊥BC于点N,由tan∠NDG=tan(α−60°)=NGDN=m,得NG=m,所以DG=√DN2+NG2=√1+m2,又△BEG∽△FHC,DG=BG,CD=CF,所以BEFH=BG FC =GDCD=√m2+12.本题主要考查相似三角形的性质与判定,等腰三角形的性质与判定,含30°的直角三角形的边角关系,正方形的性质与判定,旋转的性质,三角形内角和等内容,得到△BEG∽△FHC是解题关键.24.【答案】解:(1)设抛物线的表达式为y=a(x−x1)(x−x2),即y=a(x+1)(x−4)=a(x2−3x−4)=ax2−3ax−4a,即−4a=2,解得a=−12,故抛物线的表达式为y=−12x2+32x+2;(2)将点A的坐标代入直线l的表达式得:0=−k+3,解得k=3,故直线l 的表达式为y =3x +3,设点Q 的坐标为(x,−12x 2+32x +2),则点P 的坐标为(x,3x +3),由题意得,点Q 、M 关于抛物线对称轴对称,而抛物线的对称轴为直线x =32, 故点M 的横坐标为3−x ,则QM =3−x −x =3−2x ,设矩形周长为C ,则C =2(PQ +QM)=2[3−2x +3x +3−(−12x 2+32x +2)]=x 2−x +8,∵1<0,故C 有最小值, 当x =12时,矩形周长最小值为314;(3)当x =12时,y =−12x 2+32x +2=218,即点Q 的坐标为(12,218), 由抛物线的表达式知,点D 的坐标为(32,258),过点D 作DK ⊥QM 于点K , 则DK =y D −y Q =258−218=12,同理可得,QK =1, 则tan∠DQM =DKQK =12, ∵∠CBF =∠DQM ,故tan∠CBF =tan∠DQM =12, 在△BOC 中,tan∠CBO =COOB =24=12, 故BF 和BO 重合, 故点F 和点A 重合, 即点F 的坐标为(−1,0).【知识点】二次函数综合【解析】(1)用待定系数法即可求解;(2)设点Q的坐标为(x,−12x2+32x+2),则点P的坐标为(x,3x+3),设矩形周长为C,则C=2(PQ+QM)=2[3−2x+3x+3−(−12x2+32x+2)]=x2−x+8,即可求解;(3)过点D作DK⊥QM于点K,则DK=y D−y Q=258−218=12,同理可得,QK=1,则tan∠DQM=DKQK =12,在△BOC中,tan∠CBO=COOB=24=12,即可求解.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。

2023年湖南省岳阳市中考数学真题+答案解析

2023年湖南省岳阳市中考数学真题+答案解析

2023年湖南省岳阳市中考数学真题+答案解析(真题部分)一、选择题(本大题共8小题,每小题3分,满分24分.在每小题给出的四个选项中,选出符合要求的一项)1.(3分)2023的相反数是()A.B.﹣2023 C.2023 D.2.(3分)下列运算结果正确的是()A.a2•a=a3B.a6÷a2=a3C.3a﹣a=3 D.(a﹣b)2=a2﹣b23.(3分)下列几何体的主视图是圆的是()A.B.C.D.4.(3分)已知AB∥CD,点E在直线AB上,点F,G在直线CD上,EG⊥EF于点E,∠AEF=40°,则∠EGF的度数是()A.40°B.45°C.50°D.60°5.(3分)在5月份跳绳训练中,妍妍同学一周成绩记录如下:176,178,178,180,182,185,189(单位:次/分钟),这组数据的众数和中位数分别是()A.180,182 B.178,182 C.180,180 D.178,1806.(3分)下列命题是真命题的是()A.同位角相等B.菱形的四条边相等C.正五边形是中心对称图形D.单项式5ab2的次数是47.(3分)我国古代数学名著《九章算术》中有这样一道题:“今有圆材,径二尺五寸.欲为方版,令厚七寸,问广几何?”结合如图,其大意是:今有圆形材质,直径BD为25寸,要做成方形板材,使其厚度CD达到7寸.则BC的长是()A.寸B.25寸C.24寸D.7寸8.(3分)若一个点的坐标满足(k,2k),我们将这样的点定义为“倍值点”.若关于x的二次函数y =(t+1)x2+(t+2)x+s(s,t为常数,t≠﹣1)总有两个不同的倍值点,则s的取值范围是()A.s<﹣1 B.s<0 C.0<s<1 D.﹣1<s<0二、填空题(本大题共8小题,每小题4分,满分32分)9.(4分)函数y=中,自变量x的取值范围是.10.(4分)近年来,岳阳扛牢“守护好一江碧水”责任,水在变清,岸在变绿,洞庭湖真正成为鸟类的天堂.2022年冬季,洞庭湖区越冬水鸟数量达37.83万只,数据378300用科学记数法表示为.11.(4分)有两个女生小合唱队,各由6名队员组成,甲队与乙队的平均身高均为=160mm,甲队身高方差s甲2=1.2,乙队身高方差s乙2=2.0,两队身高比较整齐的是队.(填“甲”或“乙”)12.(4分)如图,①在OA,OB上分别截取线段OD,OE,使OD=OE;②分别以D,E为圆心,以大于DE的长为半径画弧,在∠AOB内两弧交于点C;③作射线OC.若∠AOB=60°,则∠AOC =°.13.(4分)观察下列式子:12﹣1=1×0;22﹣2=2×1;32﹣3=3×2;42﹣4=4×3;52﹣5=5×4;…依此规律,则第n(n为正整数)个等式是.14.(4分)已知关于x的一元二次方程x2+2mx+m2﹣m+2=0有两个不相等的实数根,且x1+x2+x1•x2=2,则实数m=.15.(4分)2023年岳阳举办以“跃马江湖”为主题的马拉松赛事.如图,某校数学兴趣小组在A处用仪器测得赛场一宣传气球顶部E处的仰角为21.8°,仪器与气球的水平距离BC为20米,且距地面高度AB为 1.5米,则气球顶部离地面的高度EC是米(结果精确到0.1米,sin21.8°≈0.3714,cos21.8°≈0.9285,tan21.8°≈0.4000).16.(4分)如图,在⊙O中,AB为直径,BD为弦,点C为的中点,以点C为切点的切线与AB 的延长线交于点E.(1)若∠A=30°,AB=6,则的长是(结果保留π);(2)若=,则=.三、解答题(本大题共8小题,满分64分.解答应写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:22﹣tan60°+|﹣1|﹣(3﹣π)0.18.(6分)解不等式组:.19.(8分)如图,反比例函数y=(k为常数,k≠0)与正比例函数y=mx(m为常数,m≠0)的图象交于A(1,2),B两点.(1)求反比例函数和正比例函数的表达式;(2)若y轴上有一点C(0,n),△ABC的面积为4,求点C的坐标.20.(8分)为落实中共中央办公厅、国务院办公厅印发的《关于实施中华优秀传统文化传承发展工程意见》,深入开展“我们的节日”主题活动,某校七年级在端午节来临之际,成立了四个社团:A 包粽子,B腌咸蛋,C酿甜酒,D摘艾叶,每人只参加一个社团的情况下,随机调查了部分学生,根据调查结果绘制了两幅不完整的统计图:(1)本次共调查了名学生;(2)请补全条形统计图;(3)学校计划从四个社团中任选两个社团进行成果展示,请用列表或画树状图的方法,求同时选中A和C两个社团的概率.21.(8分)如图,点M在▱ABCD的边AD上,BM=CM,请从以下三个选项中①∠1=∠2;②AM =DM;③∠3=∠4,选择一个合适的选项作为已知条件,使▱ABCD为矩形.(1)你添加的条件是(填序号);(2)添加条件后,请证明▱ABCD为矩形.22.(8分)水碧万物生,岳阳龙虾好.小龙虾产业已经成为岳阳乡村振兴的“闪亮名片”.已知翠翠家去年龙虾的总产量是4800kg,今年龙虾的总产量是6000kg,且去年与今年的养殖面积相同,平均亩产量去年比今年少60kg,求今年龙虾的平均亩产量.23.(10分)如图1,在△ABC中,AB=AC,点M,N分别为边AB,BC的中点,连接MN.初步尝试:(1)MN与AC的数量关系是,MN与AC的位置关系是.特例研讨:(2)如图2,若∠BAC=90°,BC=4,先将△BMN绕点B顺时针旋转α(α为锐角),得到△BEF,当点A,E,F在同一直线上时,AE与BC相交于点D,连接CF.①求∠BCF的度数;②求CD的长.深入探究:(3)若∠BAC<90°,将△BMN绕点B顺时针旋转α,得到△BEF,连接AE,CF.当旋转角α满足0°<α<360°,点C,E,F在同一直线上时,利用所提供的备用图探究∠BAE与∠ABF的数量关系,并说明理由.24.(10分)已知抛物线Q1:y=﹣x2+bx+c与x轴交于A(﹣3,0),B两点,交y轴于点C(0,3).(1)请求出抛物线Q1的表达式.(2)如图1,在y轴上有一点D(0,﹣1),点E在抛物线Q1上,点F为坐标平面内一点,是否存在点E,F使得四边形DAEF为正方形?若存在,请求出点E,F的坐标;若不存在,请说明理由.(3)如图2,将抛物线Q1向右平移2个单位,得到抛物线Q2,抛物线Q2的顶点为K,与x轴正半轴交于点H,抛物线Q1上是否存在点P,使得∠CPK=∠CHK?若存在,请求出点P的坐标;若不存在,请说明理由.2023年湖南省岳阳市中考数学真题+答案解析(答案部分)一、选择题(本大题共8小题,每小题3分,满分24分.在每小题给出的四个选项中,选出符合要求的一项)1.(3分)2023的相反数是()A.B.﹣2023 C.2023 D.【分析】利用相反数的定义判断即可.【解析】解:2023的相反数是﹣2023.故选:B.【点评】此题考查了相反数,熟练掌握相反数的定义是解本题的关键.2.(3分)下列运算结果正确的是()A.a2•a=a3B.a6÷a2=a3C.3a﹣a=3 D.(a﹣b)2=a2﹣b2【分析】先根据同底数幂的乘法,同底数幂的除法,合并同类项法则和完全平方公式进行计算,再根据求出的结果进行判断即可.【解析】解:A.a2•a=a3,故本选项符合题意;B.a6÷a2=a4,故本选项不符合题意;C.3a﹣a=2a,故本选项不符合题意;D.(a﹣b)2=a2﹣2ab+b2,故本选项不符合题意;故选:A.【点评】本题考查了同底数幂的乘法,同底数幂的除法,合并同类项法则和完全平方公式等知识点,能熟记同底数幂的乘法、同底数幂的除法、合并同类项法则和完全平方公式是解此题的关键.3.(3分)下列几何体的主视图是圆的是()A.B.C.D.【分析】根据球体、正方体、四棱锥、三棱柱的主视图的形状进行判断即可.【解析】解:球体的主视图是圆,正方体的主视图是正方形,四棱锥的主视图是三角形,三棱柱的主视图是矩形.故选:A.【点评】本题考查简单几何体的三视图,解题的关键是能够理解主视图的概念以及对常见的几何体的主视图有一定的空间想象能力.4.(3分)已知AB∥CD,点E在直线AB上,点F,G在直线CD上,EG⊥EF于点E,∠AEF=40°,则∠EGF的度数是()A.40°B.45°C.50°D.60°【分析】由平角的定义可求得∠BEG=50°,再由平行线的性质即可求解.【解析】解:∵EG⊥EF,∴∠FEG=90°,∵∠AEF+∠FEG+∠BEG=180°,∠AEF=40°,∴∠BEF=180°﹣∠AEF﹣∠FEG=50°,∵AB∥CD,∴∠EGF=∠BEG=50°.故选:C.【点评】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,内错角相等.5.(3分)在5月份跳绳训练中,妍妍同学一周成绩记录如下:176,178,178,180,182,185,189(单位:次/分钟),这组数据的众数和中位数分别是()A.180,182 B.178,182 C.180,180 D.178,180【分析】根据众数和中位数的定义求解即可.【解析】解:这组数据178出现2次,次数最多,所以这组数据的众数为178,这组数据的中位数为180,故选:D.【点评】本题主要考查众数和中位数,解题的关键是掌握众数和中位数的定义.6.(3分)下列命题是真命题的是()A.同位角相等B.菱形的四条边相等C.正五边形是中心对称图形D.单项式5ab2的次数是4【分析】利用平行线的性质、菱形的性质、正多边形的对称性及单项式的有关定义分别判断后即可确定正确的选项.【解析】解:A、两直线平行,同位角相等,故原命题错误,是假命题,不符合题意;B、菱形的四条边相等,正确,是真命题,符合题意;C、正五边形不是中心对称图形,故原命题错误,是假命题,不符合题意;D、单项式5ab2的次数是3,故原命题错误,是假命题,不符合题意.故选:B.【点评】本题考查了命题与定理的知识,解题的关键是了解有关的定义及定理,难度不大.7.(3分)我国古代数学名著《九章算术》中有这样一道题:“今有圆材,径二尺五寸.欲为方版,令厚七寸,问广几何?”结合如图,其大意是:今有圆形材质,直径BD为25寸,要做成方形板材,使其厚度CD达到7寸.则BC的长是()A.寸B.25寸C.24寸D.7寸【分析】首先根据直径所对的圆周角是直角得∠BCD=90°,然后再Rt△BCD中利用勾股定理即可求出BC的长.【解析】解:依题意得:BD为⊙O的直径,∴∠BCD=90°,在Rt△BCD中,BD=25寸,CD=7寸,由勾股定理得:.∴CD的长为24寸.故选:C.【点评】此题主要考查了圆周角定理,勾股定理的应用,解答此题的关键是理解直径所对的圆周角是直角.8.(3分)若一个点的坐标满足(k,2k),我们将这样的点定义为“倍值点”.若关于x的二次函数y =(t+1)x2+(t+2)x+s(s,t为常数,t≠﹣1)总有两个不同的倍值点,则s的取值范围是()A.s<﹣1 B.s<0 C.0<s<1 D.﹣1<s<0【分析】根据根与系数的关系解答即可.【解析】解:将(k,2k)代入二次函数,得2k=(t+1)k2+(t+2)k+s,整理得(t+1)k2+tk+s=0.∵(t+1)k2+tk+s=0是关于k的二次方程,总有两个不同的实根,∴Δ=t2﹣4s(t+1)>0.令f(t)=t2﹣4s(t+1)=t2﹣4st﹣4s∵f(t)>0,∴Δ=(4s)2+16s=16s2+16s<0,即Δ=s(s+1)<0,解得0>s>﹣1.故选:D.【点评】本题主要考查二次函数图象上点的坐标特征.根与系数的关系是二次函数部分非常重要的关系式,这里进行了反复运用,一定要牢牢掌握并灵活运用.二、填空题(本大题共8小题,每小题4分,满分32分)9.(4分)函数y=中,自变量x的取值范围是x≠2.【分析】根据分母不为0可得:x﹣2≠0,然后进行计算即可解答.【解析】解:由题意得:x﹣2≠0,解得:x≠2,故答案为:x≠2.【点评】本题考查了函数自变量的取值范围,熟练掌握分母不为0是解题的关键.10.(4分)近年来,岳阳扛牢“守护好一江碧水”责任,水在变清,岸在变绿,洞庭湖真正成为鸟类的天堂.2022年冬季,洞庭湖区越冬水鸟数量达37.83万只,数据378300用科学记数法表示为3.783×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解析】解:将378300用科学记数法表示为3.783×105.故答案为:3.783×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(4分)有两个女生小合唱队,各由6名队员组成,甲队与乙队的平均身高均为=160mm,甲队身高方差s甲2=1.2,乙队身高方差s乙2=2.0,两队身高比较整齐的是甲队.(填“甲”或“乙”)【分析】根据方差的意义求解即可.【解析】解:∵S甲2=1.2,S乙2=2.0,∴S甲2<S乙2,∴两队身高比较整齐的是甲队.故答案为:甲.【点评】本题主要考查方差,解题的关键是掌握方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.12.(4分)如图,①在OA,OB上分别截取线段OD,OE,使OD=OE;②分别以D,E为圆心,以大于DE的长为半径画弧,在∠AOB内两弧交于点C;③作射线OC.若∠AOB=60°,则∠AOC =30°.【分析】直接根据角平分线的作法即可得出结论.【解析】解:∵由作法可知,OC是∠AOB的平分线,∴∠AOC=∠AOB==30°.故答案为:30.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.13.(4分)观察下列式子:12﹣1=1×0;22﹣2=2×1;32﹣3=3×2;42﹣4=4×3;52﹣5=5×4;…依此规律,则第n(n为正整数)个等式是n2﹣n=n(n﹣1).【分析】观察等式左边的特点,即第n个式子就是n的平方减去n;右边的特点是n与(n﹣1)的积.【解析】解:12﹣1=1×0;22﹣2=2×1;32﹣3=3×2;42﹣4=4×3;52﹣5=5×4;…;依此规律,则第n(n为正整数)个等式是:n2﹣n=n(n﹣1).故答案为:n2﹣n=n(n﹣1).【点评】此题考查数字的变化规律,通过观察,分析、归纳发现其中的规律是解本题的关键.14.(4分)已知关于x的一元二次方程x2+2mx+m2﹣m+2=0有两个不相等的实数根,且x1+x2+x1•x2=2,则实数m=3.【分析】根据方程的系数结合根的判别式Δ>0,可得出关于m的一元一次不等式,解之可得出m 的取值范围,由根与系数的关系,可得出x1+x2=﹣2m,x1•x2=m2﹣m+2,结合x1+x2+x1•x2=2,可得出关于m的一元二次方程,解之取其符合题意的值,即可得出结论.【解析】解:∵原方程有两个不相等的实数根,∴Δ=(2m)2﹣4×1×(m2﹣m+2)>0,∴m>2.∵x1,x2是关于x的一元二次方程x2+2mx+m2﹣m+2=0的两个实数根,∴x1+x2=﹣2m,x1•x2=m2﹣m+2,∵x1+x2+x1•x2=2,∴﹣2m+m2﹣m+2=2,解得:m1=0(不符合题意,舍去),m2=3,∴实数m的值为3.故答案为:3.【点评】本题考查了根的判别式以及根与系数的关系,由根与系数的关系结合x1+x2+x1•x2=2,找出关于m的一元二次方程是解题的关键.15.(4分)2023年岳阳举办以“跃马江湖”为主题的马拉松赛事.如图,某校数学兴趣小组在A处用仪器测得赛场一宣传气球顶部E处的仰角为21.8°,仪器与气球的水平距离BC为20米,且距地面高度AB为1.5米,则气球顶部离地面的高度EC是9.5米(结果精确到0.1米,sin21.8°≈0.3714,cos21.8°≈0.9285,tan21.8°≈0.4000).【分析】由题意得,四边形ABCD是矩形,根据矩形的性质得到AB=CD=1.5m,AD=BC=20m,解直角三角形即可得到结论.【解析】解:由题意得,四边形ABCD是矩形,∴AB=CD=1.5m,AD=BC=20m,在Rt△ADE中,∵AD=BC=20m,∠EAD=21.8°,∴DE=AD•tan21.8°≈20×0.4000=8(m),∴CE=CD+DE=1.5+8=9.5(m),答:气球顶部离地面的高度EC是9.5m.故答案为:9.5.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,矩形的性质,正确地仰角的定义是解题的关键.16.(4分)如图,在⊙O中,AB为直径,BD为弦,点C为的中点,以点C为切点的切线与AB 的延长线交于点E.(1)若∠A=30°,AB=6,则的长是π(结果保留π);(2)若=,则=.【分析】(1)连接OC,根据圆周角定理可得∠BOC=60°,利用弧长公式即可求出的长;(2)连接OC,根据垂径定理得到OC⊥BD,再由切线得到EC∥BD,利用平行线分线段成比例得出,再根据勾股求出EC=2x,代入比例式即可解决问题.【解析】解:(1)如图,连接OC,∵∠A=30°,AB=6,∴∠BOC=60°,OB=3,∴的长==π;故答案为:π;(2)如图,连接OC,∵点C为的中点,∴=,∴OC⊥BD,又∵EC是⊙O的切线,∴OC⊥EC,∴EC∥BD,∵=,∴,设EB=x,则AB=3x,BO=OC=x,EO=x,AE=4x,∴EC===2x,∴==.故答案为:.【点评】本题考查的是平行线分线段成比例定理、圆周角定理、切线的判定与性质,勾股定理,弧长的计算,掌握圆周角定理、切线的判定与性质是关键.三、解答题(本大题共8小题,满分64分.解答应写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:22﹣tan60°+|﹣1|﹣(3﹣π)0.【分析】先化简特殊角的三角函数值,绝对值,零指数幂,再根据实数的运算法则计算即可.【解析】解:22﹣tan60°+|﹣1|﹣(3﹣π)0.=4﹣+﹣1﹣1=2.【点评】本题考查了实数的混合运算,掌握运算法则是解题的关键.18.(6分)解不等式组:.【分析】利用解一元一次不等式组的方法进行求解即可.【解析】解:,解不等式①得:x>2,解不等式②得:x<4,故不等式组的解集为:2<x<4.【点评】本题主要考查解一元一次不等式组,解答的关键是熟练掌握解一元一次不等式组的方法.19.(8分)如图,反比例函数y=(k为常数,k≠0)与正比例函数y=mx(m为常数,m≠0)的图象交于A(1,2),B两点.(1)求反比例函数和正比例函数的表达式;(2)若y轴上有一点C(0,n),△ABC的面积为4,求点C的坐标.【分析】(1)分别将点A(1,2)反比例函数和正比例函数的解析式即可得出答案;(2)先求出点B的坐标,过点A,B分别作y轴的垂线,垂足分别为E,F,然后根据点A、B、C 的坐标表示出AE,BF,OC,最后再根据S△ABC=S△AOC+S△BOC=4即可求出点C的坐标.【解析】解:(1)将点A(1,2)代入,得:k=2,∴反比例函数的解析式为:,将点A(1,2)代入y=mx,得:m=2,∴正比例函数的解析式为:y=2x.(2)解方程组,得:,,∴点B的坐标为(﹣1,﹣2),过点A,B分别作y轴的垂线,垂足分别为E,F,∵A(1,2),B(﹣1,﹣2),C(0,n),∴AE=BF=1,OC=|n|,∵S△ABC =S△AOC+S△BOC=4,∴,即:|n|×1+|n×1=8,∴|n|=4,∴n=±4,∴点C的坐标为(0,4)或(0,﹣4).【点评】此题主要考查了反比例函数与一次函数的图象,解答此题的关键是熟练掌握待定系数法求函数的解析式,难点是在解答(2)时,过点A,B向y轴作垂线,把△ABC的面积转化为△AOC 和△BOC的面积之和,漏解是解答此题的易错点.20.(8分)为落实中共中央办公厅、国务院办公厅印发的《关于实施中华优秀传统文化传承发展工程意见》,深入开展“我们的节日”主题活动,某校七年级在端午节来临之际,成立了四个社团:A 包粽子,B腌咸蛋,C酿甜酒,D摘艾叶,每人只参加一个社团的情况下,随机调查了部分学生,根据调查结果绘制了两幅不完整的统计图:(1)本次共调查了100名学生;(2)请补全条形统计图;(3)学校计划从四个社团中任选两个社团进行成果展示,请用列表或画树状图的方法,求同时选中A和C两个社团的概率.【分析】(1)根据C组人数和所占的百分比,可以计算出本次调查的学生人数;(2)根据(1)中的结果和条形统计图中的数据,可以计算出B组的人数,然后即可将条形统计图补充完整;(3)根据题意,可以画出相应的树状图,然后即可计算出同时选中A和C两个社团的概率.【解析】解:(1)25÷25%=100(名),即本次共调查了100名学生,故答案为:100;(2)选择B的学生有:100﹣40﹣25﹣15=20(名),补全的条形统计图如右图所示;(3)树状图如下所示,由上可得,一共有12种等可能性,其中同时选中A和C两个社团的可能性有2种,∴同时选中A和C两个社团的概率为=.【点评】本题考查列表法与树状图法、扇形统计图、条形统计图,解答本题的关键是明确题意,画出相应的树状图,求出相应的概率.21.(8分)如图,点M在▱ABCD的边AD上,BM=CM,请从以下三个选项中①∠1=∠2;②AM =DM;③∠3=∠4,选择一个合适的选项作为已知条件,使▱ABCD为矩形.(1)你添加的条件是①(填序号);(2)添加条件后,请证明▱ABCD为矩形.【分析】(1)根据矩形的判定定理选择条件即可;(2)根据平行四边形的性质得到AB∥DC,AB=DC,求得∠A+∠D=180°,根据全等三角形的性质得到∠A=∠D,根据矩形的判定定理即可得到结论.【解析】(1)解:当∠1=∠2时,▱ABCD为矩形.故答案为:①;(2)证明:∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,∴∠A+∠D=180°,在△ABM和DCM中,,∴△ABM≌DCM(SAS),∴∠A=∠D,∴∠A=∠D=90°,∴▱ABCD为矩形.【点评】本题主要考查了平行四边形的性质,全等三角形的判定和性质,矩形的判定,由矩形的性质和全等三角形的判定证得△ABM≌DCM,并熟练掌握矩形的判定方法是解决问题的关键.22.(8分)水碧万物生,岳阳龙虾好.小龙虾产业已经成为岳阳乡村振兴的“闪亮名片”.已知翠翠家去年龙虾的总产量是4800kg,今年龙虾的总产量是6000kg,且去年与今年的养殖面积相同,平均亩产量去年比今年少60kg,求今年龙虾的平均亩产量.【分析】设今年龙虾的平均亩产量为xkg,则去年龙虾的平均亩产量为(x﹣60)kg,利用养殖面积=总产量÷平均亩产量,结合去年与今年的养殖面积相同,可得出关于x的分式方程,解之经检验后,即可得出结论.【解析】解:设今年龙虾的平均亩产量为xkg,则去年龙虾的平均亩产量为(x﹣60)kg,根据题意得:=,解得:x=300,经检验,x=300是所列方程的解,且符合题意.答:今年龙虾的平均亩产量为300kg.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.23.(10分)如图1,在△ABC中,AB=AC,点M,N分别为边AB,BC的中点,连接MN.初步尝试:(1)MN与AC的数量关系是MN=AC,MN与AC的位置关系是MN∥AC.特例研讨:(2)如图2,若∠BAC=90°,BC=4,先将△BMN绕点B顺时针旋转α(α为锐角),得到△BEF,当点A,E,F在同一直线上时,AE与BC相交于点D,连接CF.①求∠BCF的度数;②求CD的长.深入探究:(3)若∠BAC<90°,将△BMN绕点B顺时针旋转α,得到△BEF,连接AE,CF.当旋转角α满足0°<α<360°,点C,E,F在同一直线上时,利用所提供的备用图探究∠BAE与∠ABF的数量关系,并说明理由.【分析】(1)AB=AC,点M,N分别为边AB,BC的中点,则MN是△ABC的中位线,即可得出结论;(2)特例研讨:①连接EM,MN,NF,证明△BME是等边三角形,△BNF是等边三角形,得出∠FCB=30°;②连接AN,证明△ADN∽△BDE,则,设DE=x,则,在Rt△ABE 中,BE=2,,则,在Rt△ADN中,AD2=DN2+AN2,勾股定理求得,则;(3)当点C,E,F在同一直线上时,且点E在FC上时,设∠ABC=∠ACB=θ,则∠BAC=180°﹣2θ,得出∠BEC+∠BAC=180°,则A.B,E,C在同一个圆上,进而根据圆周角定理得出∠EAC =∠EBC=α﹣θ,表示∠BAE与∠ABF,即可求解;当F在EC上时,可得A,B,E,C在同一个圆上,设∠ABC=∠ACB=θ,则∠BAC=∠BEF=180°﹣2θ,设∠NBF=β,则∠EBM=β,则α+β=360°,表示∠BAE与∠ABF,即可求解.【解析】解:(1)∵AB=AC,点M,N分别为边AB,BC的中点,∴MN是△ABC的中位线,∴,MN∥AC;故答案是:MN=AC,MN∥AC;(2)特例研讨:①如图所示,连接EM,MN,NF,∵MN是△BAC的中位线,∴MN∥AC,∴∠BMN=∠BAC=90°,∵将△BMN绕点B顺时针旋转α(α为锐角),得到△BEF,∴BE=BM,BF=BN;∠BEF=∠BMN=90°,∵点A,E,F在同一直线上,∴∠AEB=∠BEF=90°,在Rt△ABE中,M是斜边AB的中点,∴,∴BM=ME=BE,∴△BME是等边三角形,∴∠ABE=60°,即旋转角α=60°,∴∠NBF=60°,BN=BF,∴△BNF是等边三角形,又∵BN=NC,BN=NF,∴NF=NC,∴∠NCF=∠NFC,∴∠BNF=∠NCF+∠NFC=2∠NFC=60°,∴∠FCB=30°;(2)如图所示,连接AN,∵AB=AC,∠BAC=90°,∴,∠ACB=∠ABC=45°,∵∠ADN=∠BDE,∠ANB=∠BED=90°,∴△ADN∽△BDE,∴,设DE=x,则,在Rt△ABE中,,则,在Rt△ADN中,AD2=DN2+AN2,∴,解得:或(舍去),∴;(3)如图所示,当点C,E,F在同一直线上时,且点E在FC上时,∵AB=AC,∴∠ABC=∠ACB,设∠ABC=∠ACB=θ,则∠BAC=180°﹣2θ,∵MN是△ABC的中位线,∴MN∥AC,∴∠MNB=∠MBN=θ,∵将△BMN绕点B顺时针旋转α,得到△BEF,∴△EBF≌△MBN,∠MBE=∠NBF=α,∴∠EBF=∠EFB=θ,∴∠BEF=180°﹣2θ,∵点C,E,F在同一直线上,∴∠BEC=2θ,∴∠BEC+∠BAC=180°,∴A,B,E,C在同一个圆上,∴∠EAC=∠EBC=α﹣θ,∴∠BAE=∠BAC﹣∠EAC=(180°﹣2θ)﹣(α﹣θ)=180°﹣α﹣θ,∵∠ABF=α+θ,∴∠BAE+∠ABF=180°,如图所示,当F在EC上时,∵∠BEF=∠BAC,BC=BC,∴A,B,E,C在同一个圆上,设∠ABC=∠ACB=θ,则∠BAC=∠BEF=180°﹣2θ,将△BMN绕点B顺时针旋转α,得到△BEF,设∠NBF=β,则∠EBM=β,则α+β=360°,∴∠ABF=θ﹣β,∵∠BFE=∠EBF=θ,∠EFB=∠FBC+∠FCB,∴∠ECB=∠FCB=∠EFB﹣∠FBC=θ﹣β,∵,∴∠EAB=∠ECB=θ﹣β,∴∠BAE=∠ABF,综上所述,∠BAE=∠ABF或∠BAE+∠ABF=180°.【点评】本题属于几何变换综合题,考查了圆周角定理,圆内接四边形对角互补,相似三角形的性质与判定,旋转的性质,中位线的性质与判定,等腰三角形的性质与判定,三角形内角和定理,三角形外角的性质,勾股定理,熟练掌以上知识是解题的关键.24.(10分)已知抛物线Q1:y=﹣x2+bx+c与x轴交于A(﹣3,0),B两点,交y轴于点C(0,3).(1)请求出抛物线Q1的表达式.(2)如图1,在y轴上有一点D(0,﹣1),点E在抛物线Q1上,点F为坐标平面内一点,是否存在点E,F使得四边形DAEF为正方形?若存在,请求出点E,F的坐标;若不存在,请说明理由.(3)如图2,将抛物线Q1向右平移2个单位,得到抛物线Q2,抛物线Q2的顶点为K,与x轴正半轴交于点H,抛物线Q1上是否存在点P,使得∠CPK=∠CHK?若存在,请求出点P的坐标;若不存在,请说明理由.【分析】(1)运用待定系数法即可求得抛物线的解析式;(2)过点E作EG⊥x轴于点G,则∠AGE=90°=∠AOD,由正方形性质可得AE=AD=DF,∠DAE=∠ADF=90°,进而可证得△EAG≌△ADO(AAS),得出AG=OD=1,EG=OA=3,即E (﹣2,3),再证明点E在抛物线上,过点F作FL⊥y轴于点L,同理,△DFL≌△ADO(AAS),即可求得F(1,2).(3)先求得抛物线Q2的解析式为y=﹣(x+1﹣2)2+4=﹣(x﹣1)2+4,得出K(1,4),H(3,0),运用待定系数法可得直线BC的解析式为y=﹣x+3,过点K作KT⊥y轴于点T,连接BC,设KP交直线BC于M或N,如图2,过点C作PS⊥y轴交BK于点S,交抛物线Q1于点P,连接PK,利用等腰直角三角形性质和三角函数定义可得tan∠CHK===,进而可求得点P的坐标.【解析】解:(1)∵抛物线Q1:y=﹣x2+bx+c经过A(﹣3,0),C(0,3)两点,∴,解得:,∴抛物线Q1的表达式为y=﹣x2﹣2x+3.(2)存在点E,F使得四边形DAEF为正方形.理由:如图1,过点E作EG⊥x轴于点G,则∠AGE=90°=∠AOD,∵A(﹣3,0),D(0,﹣1),∴OA=3,OD=1,∵四边形DAEF是正方形,∴AE=AD=DF,∠DAE=∠ADF=90°,∵∠EAG+∠DAO=90°,∠DAO+∠ADO=90°,∴∠EAG=∠ADO,∴△EAG≌△ADO(AAS),∴AG=OD=1,EG=OA=3,∴E(﹣2,3),当x=﹣2时,y=﹣x2﹣2x+3=﹣(﹣2)2﹣2×(﹣2)+3=3,∴点E在抛物线上,过点F作FL⊥y轴于点L,同理,△DFL≌△ADO(AAS),∴FL=OD=1,DL=OA=3,∴OL=DL﹣OD=3﹣1=2,F(1,2).(3)抛物线Q1上存在点P,使得∠CPK=∠CHK.∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴抛物线Q1的顶点坐标为(﹣1,4),∵将抛物线Q1向右平移2个单位,得到抛物线Q2,∴抛物线Q2的解析式为y=﹣(x+1﹣2)2+4=﹣(x﹣1)2+4,∵抛物线Q2的顶点为K,与x轴正半轴交于点H,∴K(1,4),H(3,0),设直线BC的解析式为y=kx+n,把C(0,3),H(3,0)代入得,解得:,∴直线BC的解析式为y=﹣x+3,过点K作KT⊥y轴于点T,连接BC,设KP交直线BC于M或N,如图2,过点C作PS⊥y轴交BK于点S,交抛物线Q1于点P,连接PK,则T(0,4),M(m,﹣m+3),N(t,﹣t+3),∴KT=TC=1,∠KTC=90°,∴△CKT是等腰直角三角形,∴∠KCT=45°,CK=KT=,∵OH=OC=3,∠COH=90°,∴△COH是等腰直角三角形,∴∠HCO=45°,CH=OC=3,∴∠KCH=180°﹣∠KCT﹣∠HCO=90°,∴tan∠CHK===,∵∠CPK=∠CHK,∴tan∠CPK=tan∠CHK=,∵tan∠BCO==,∴∠BCO=∠CHK,∵BK∥OC,∴∠CBK=∠BCO,∴∠CBK=∠CHK,即点P与点B重合时,∠CPK=∠CHK,∴P1(1,0);∵SK=1,PS=3,∴tan∠CPK==,∴∠CPK=∠CHK,∵点P与点C关于直线x=﹣1对称,∴P(﹣2,3);综上所述,抛物线Q1上存在点P,使得∠CPK=∠CHK,点P的坐标为(1,0)或(﹣2,3).【点评】本题是二次函数综合题,考查了待定系数法,正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,三角函数定义,抛物线的平移变换等,解题的关键是添加辅助线构造全等三角形.。

湖南省岳阳市2021年中考[数学]考试真题与答案解析

湖南省岳阳市2021年中考[数学]考试真题与答案解析

湖南省岳阳市2021年中考[数学]考试真题与答案解析一、选择题本大题共8小题,每小题3分,满分24分,在每道小题给出的四个选项中,选出符合要求的一项。

1.在实数,﹣1,0,2中,为负数的是( )A.B.﹣1C.0 D.2答案解析:在,﹣1,0,2这四个数中,负数是﹣1,故选:B.2.下列品牌的标识中,是轴对称图形的是( )A.B.C.D.答案解析:A.是轴对称图形,故此选项符合题意;B.不是轴对称图形,故此选项不合题意;C.不是轴对称图形,故此选项不合题意;D.不是轴对称图形,故此选项不合题意;故选:A.3.下列运算结果正确的是( )A.3a﹣a=2 B.a2•a4=a8C.(a+2)(a﹣2)=a2﹣4 D.(﹣a)2=﹣a2答案解析:3a和a属于同类项,所以3a﹣a=2a,故A项不符合题意,根据同底数幂的乘法运算法则可得a2•a4=a6,故B项不符合题意,根据平方差公式(a+2)(a﹣2)=a2﹣4,故C项符合题意,(﹣a)2=a2,故D项不符合题意,故选:C.4.已知不等式组,其解集在数轴上表示正确的是( )A.B.C.D.答案解析:解不等式x﹣1<0,得:x<1,解不等式2x≥﹣4,得:x≥﹣2,则不等式组的解集为﹣2≤x<1,故选:D.5.将一副直角三角板按如图方式摆放,若直线a∥b,则∠1的大小为( )A.45° B.60°C.75° D.105°答案解析:由题意知,∠ABC=45°+60°=105°,∵a∥b,∴∠1+∠ABC=180°,∴∠1=180°﹣∠ABC=180°﹣105°=75°,故选:C.6.下列命题是真命题的是( )A.五边形的内角和是720°B.三角形的任意两边之和大于第三边C.内错角相等D.三角形的重心是这个三角形的三条角平分线的交点答案解析:A、五边形的内角和为540°,故原命题错误,是假命题,不符合题意;B、三角形的任意两边之和大于第三边,正确,是真命题,符合题意;C、两直线平行,内错角相等,故原命题错误,是假命题,不符合题意;D、三角形的重心是这个三角形的三条边上的中线的交点,故原命题错误,是假命题,不符合题意,故选:B.7.在学校举行“庆祝百周年,赞歌献给党”的合唱比赛中,七位评委给某班的评分去掉一个最高分、一个最低分后得到五个有效评分,分别为:9.0,9.2,9.0,8.8,9.0(单位:分),这五个有效评分的平均数和众数分别是( ) A.9.0,8.9 B.8.9,8.9C.9.0,9.0 D.8.9,9.0答案解析:==9.0,该组数众数为:9.0,∴这五个有效评分的平均数和众数分别为9.0,9.0,故选:C.8.定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.如图,在正方形OABC中,点A(0,2),点C(2,0),则互异二次函数y =(x﹣m)2﹣m与正方形OABC有交点时m的最大值和最小值分别是( ) A.4,﹣1B.,﹣1C.4,0D.,﹣1答案解析:如图,由题意可得,互异二次函数y=(x﹣m)2﹣m的顶点(m,﹣m)在直线y=﹣x上运动,在正方形OABC中,点A(0,2),点C(2,0),∴B(2,2),从图象可以看出,当函数从左上向右下运动时,若抛物线与正方形有交点,先经过点A,再逐渐经过点O,点B,点C,最后再经过点B,且在运动的过程中,两次经过点A,两次经过点O,点B和点C,∴只需算出当函数经过点A及点B时m的值,即可求出m的最大值及最小值.当互异二次函数y=(x﹣m)2﹣m经过点A(0,2)时,m=2,或m=﹣1;当互异二次函数y=(x﹣m)2﹣m经过点B(2,2)时,m=或m=.∴互异二次函数y=(x﹣m)2﹣m与正方形OABC有交点时m的最大值和最小值分别是,﹣1.故选:D.二、填空题9.因式分解:x2+2x+1= .答案解析:x2+2x+1=(x+1)2,故答案为:(x+1)2.10.2021年5月15日,“天问一号”探测器成功着陆火星,在火星上首次留下了中国印迹.据公开资料显示,地球到火星的最近距离约为55000000公里,数据55000000用科学记数法表示为 .答案解析:55000000=5.5×107,故答案为:5.5×107.11.一个不透明的袋子中装有5个小球,其中3个白球,2个黑球,这些小球除颜色外无其它差别,从袋子中随机摸出一个小球,则摸出的小球是白球的概率为 .答案解析:∵从袋子中随机摸出一个小球共有5种等可能结果,摸出的小球是白球的结果数为3,∴摸出的小球是红球的概率为,故答案为:.12.已知关于x的一元二次方程x2+6x+k=0有两个相等的实数根,则实数k的值为 .答案解析:根据题意,△=62﹣4k=0,解得k=9,故答案为9.13.要使分式有意义,则x的取值范围为 .答案解析:∵分式有意义,∴x﹣1≠0,解得x≠1.故答案为:x≠1.14.已知x+=,则代数式x+﹣= .答案解析:∵x+=,∴x+﹣=﹣=0,故答案为:0.15.《九章算术》是我国古代数学名著,书中有下列问题:“今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何?”其意思为:今有一门,高比宽多6尺8寸,门对角线距离恰好为1丈.问门高、宽各是多少?(1丈=10尺,1尺=10寸)如图,设门高AB为x尺,根据题意,可列方程为 .答案解析:设门高AB为x尺,则门的宽为(x﹣6.8)尺,AC=1丈=10尺,依题意得:AB2+BC2=AC2,即(x﹣6.8)2+x2=102.故答案为:(x﹣6.8)2+x2=102.16.如图,在Rt△ABC中,∠C=90°,AB的垂直平分线分别交AB、AC于点D、E,BE=8,⊙O为△BCE的外接圆,过点E作⊙O的切线EF交AB于点F,则下列结论正确的是 .(写出所有正确结论的序号)①AE=BC;②∠AED=∠CBD;③若∠DBE=40°,则的长为;④=;⑤若EF=6,则CE=2.24.答案解析:①∵DE垂直平分AB,∴AE=BE,又在Rt△ABC中,∠C=90°,∴BE>BC,∴AE>BC,故①错误;②由题可知,四边形DBCE是⊙O的内接四边形,∴∠AED=∠CBD,故②正确;③连接OD,若∠DBE=40°,则∠DOE=80°,∴的长为=,故③错误;④∵EF是⊙O的切线,∴∠BEF=90°,又DE⊥AB,∴∠EDF=∠BEF=90°,∴△EDF∽△BEF,∴=,故④正确;⑤在Rt△BEF中,EF=6,BE=8,∴BF=10,由①AE=BE=8,∴∠A=∠ABE,又∠C=∠BEF=90°,∴△BEF∽△ACB,∴EF:BE=BC:AC=6:8,设BC=6m,则AC=8m,则CE=8m﹣8,在Rt△BCE中,由勾股定理可得,EC2+BC2=BE2,即(8m﹣8)2+(6m)2=82,解得m=1.28,∴CE=8m﹣8=2.24.故⑤正确.故答案为:②④⑤.三、解答题本大题共8小题,满分64分.解答应写出必要的文字说明、证明过程或演算步骤。

2022年湖南省岳阳市中考数学试卷含答案

2022年湖南省岳阳市中考数学试卷含答案

2022年湖南省岳阳市中考数学试卷含答案一、选择题(本大题共8小题,共24分)1.8的相反数是()A.18 B.18 C.8 D.8【答案】D【解析】【分析】根据只有符号不同的两个数叫做互为相反数解答.【详解】解:8的相反数是-8.故选:D .【点睛】本题考查了相反数的定义,熟记概念是解题的关键.2.某个立体图形的侧面展开图如图所示,它的底面是正三角形,那么这个立体图形是()A.圆柱B.圆锥C.三棱柱D.四棱柱【答案】C【解析】【分析】根据常见立体图形的底面和侧面即可得出答案.【详解】解:A 选项,圆柱的底面是圆,故该选项不符合题意;B 选项,圆锥的底面是圆,故该选项不符合题意;C 选项,三棱柱的底面是三角形,侧面是三个长方形,故该选项符合题意;D 选项,四棱柱的底面是四边形,故该选项不符合题意;故选:C .【点睛】本题考查了几何体的展开图,掌握n 棱柱的底面是n 边形是解题的关键.3.下列运算结果正确的是()A.23a a a B.55a a a C.236a a a D.437()a a 【答案】A【解析】【分析】根据合并同类项判断A 选项;根据同底数幂的除法判断B 选项;根据同底数幂的乘法判断C 选项;根据幂的乘方判断D 选项.【详解】解:A 选项,原式3 a ,故该选项符合题意;B 选项,原式4a ,故该选项不符合题意;C 选项,原式5a ,故该选项不符合题意;D 选项,原式12a ,故该选项不符合题意;故选:A .【点睛】本题考查了合并同类项,同底数幂的乘除法,幂的乘方与积的乘方,掌握()m n mn a a 是解题的关键.4.某村通过直播带货对产出的稻虾米进行线上销售,连续7天的销量(单位:袋)分别为:105,103,105,110,108,105,108,这组数据的众数和中位数分别是()A.105,108B.105,105C.108,105D.108,108【答案】B【解析】【分析】根据众数和中位数的定义求解即可.【详解】解:将这组数据重新排列为103,105,105,105,108,108,110,这组数据出现次数最多的是105,所以众数为105,最中间的数据是105,所以中位数是105,故选:B .【点睛】本题主要考查众数和中位数,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.如图,已知l AB ∥,CD l 于点D ,若40C ,则1 的度数是()A.30°B.40C.50D.60【答案】C【解析】【分析】根据直角三角形的性质求出CED ,再根据平行线的性质解答即可.【详解】解:在Rt CDE △中,90CDE ,40DCE ,则904050CED ,∵l AB ∥,∴150CED ,故选:C .【点睛】本题考查的是直角三角形的性质、平行线的性质,掌握直角三角形的两锐角互余是解题的关键.6.下列命题是真命题的是()A.对顶角相等B.平行四边形的对角线互相垂直C.三角形的内心是它的三条边的垂直平分线的交点D.三角分别相等的两个三角形是全等三角形【答案】A【解析】【分析】根据对顶角性质判断A ,根据平行四边形的性质判断B ,根据三角形的内心定义判断C ,根据全等三角形的判定定理判断D .【详解】A.对顶角相等是一个正确的命题,是真命题,故A 符合题意;B.菱形的对角线互相垂直,非菱形的平行四边形的对角线不垂直,所以平行四边形的对角线互相垂直是一个假命题,故B 不符合题意;C.三角形的内心是三角形内角平分线的交点,不一定是三边的垂直平分线的交点,则三角形的内心是它的三条边的垂直平分线的交点是一个假命题,故C 不符合题意;D.三角分别相等的两个三角形不一定全等,故D 不符合题意;故选:A .【点睛】本题考查了真命题与假命题的判断,对顶角的性质,平行四边形的性质,三角形的内心定义,全等三角形的判定,熟练掌握这些性质、定义、定理是解决问题的关键.7.我国古代数学著作《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?在这个问题中,城中人家的户数为()A.25B.75C.81D.90【答案】B【解析】【分析】设城中有x 户人家,利用鹿的数量 城中人均户数13 城中人均户数,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:设城中有x 户人家,依题意得:11003x x ,解得:75x ,∴城中有75户人家.故选:B .【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.8.已知二次函数2243y mx m x (m 为常数,0m ),点,p p P x y 是该函数图象上一点,当04p x 时,3p y ,则m 的取值范围是()A.m 1 或0m B.m 1 C.1m 或0m D.1m 【答案】A【解析】【分析】先求出抛物线的对称轴及抛物线与y 轴的交点坐标,再分两种情况:0m 或0m ,根据二次函数的性质求得m 的不同取值范围便可.【详解】解:∵二次函数2243y mx m x ,∴对称轴为2x m ,抛物线与y 轴的交点为 0,3 ,∵点,p p P x y 是该函数图象上一点,当04p x 时,3p y ,∴①当0m 时,对称轴20x m ,此时,当4x 时,3y ,即2244433m m ,解得m 1 ;②当0m 时,对称轴20x m ,当04x 时,y 随x 增大而减小,则当04p x 时,3p y 恒成立;综上,m 的取值范围是:m 1 或0m .故选:A .【点睛】本题考查了二次函数的性质,关键是分情况讨论.二、填空题(本大题共8小题,共32分)9.x 的取值范围是_______.【答案】1x 【解析】【分析】根据二次根式的被开方数是非负数列出不等式10x ,解不等式即可求得x 的取值范围.【详解】解:根据题意得10x ,解得1x .故答案为:1x .【点睛】本题考查了二次根式有意义的条件,解题的关键是利用被开方数是非负数得出不等式.10.2022年5月14日,编号为B-001J 的919C 大飞机首飞成功.数据显示,919C 大飞机的单价约为65300000元,数据653000000用科学记数法表示为______.【答案】86.5310 【解析】【分析】利用科学记数法的定义解决.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:8653000000 6.5310 .故答案为:86.5310 .【点睛】考查科学记数法的定义,关键是理解运用科学记数法.11.如图,在ABC 中,AB AC ,AD BC 于点D ,若6BC ,则CD ______.【答案】3【解析】【分析】根据等腰三角形的性质可知D 是BC 的中点,即可求出CD 的长.【详解】解:∵AB AC ,AD BC ,∴CD BD ,∵6BC ,∴3CD ,故答案为:3.【点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形三线合一是解题的关键.12.分式方程321x x 的解为x ______.【答案】2【解析】【分析】去分母,移项、合并同类项,再对所求的根进行检验即可求解.【详解】解:321x x ,322 x x ,2x ,经检验2x 是方程的解.故答案为:2.【点睛】本题主要考查解分式方程,熟练掌握分式方程的解法,注意对所求的根进行检验是解题的关键.13.已知关于x 的一元二次方程220x x m 有两个不相等的实数根,则实数m 的取值范围是______.【答案】1m 【解析】【分析】根据判别式的意义得到22410m ,然后解不等式求出m 的取值即可.【详解】解:根据题意得22410m ,解得1m ,所以实数m 的取值范围是1m .故答案为:1m .【点睛】本题考查了根的判别式:一元二次方程 200 ax bx c a 的根与24b ac 有如下关系:当0 时,方程有两个不相等的实数根;当0 时,方程有两个相等的实数根;当 时,方程无实数根.14.聚焦“双减”政策落地,凸显寒假作业特色.某学校评选出的寒假优质特色作业共分为四类:A (节日文化篇),B (安全防疫篇),C (劳动实践篇),D (冬奥运动篇)下面是根据统计结果绘制的两幅不完整的统计图,则B 类作业有______份.【答案】20【解析】【分析】由条形统计图可得A ,C ,D 类作业分别有25份,30份,25份,由扇形统计图可得C 类作业份数占总份数的30%,可得总份数为100份,减去A ,C ,D 类作业的份数即可求解.【详解】解:∵C 类作业有30份,且C 类作业份数占总份数的30%,∴总份数为:3030%100 (份),∵A ,D 类作业分别有25份,25份,∴B 类作业的份数为:10025302520 (份).故答案为:20.【点睛】本题考查条形统计图,扇形统计图,解题的关键是能够根据统计图提取所需信息.15.喜迎二十大,“龙舟故里”赛龙舟.丹丹在汩罗江国际龙舟竞渡中心广场点P 处观看200米直道竞速赛.如图所示,赛道AB 为东西方向,赛道起点A 位于点P 的北偏西30°方向上,终点B 位于点P 的北偏东60 方向上,200AB 米,则点P 到赛道AB 的距离约为3 1.732 ).【答案】87【解析】【分析】过点P 作PC AB ,垂足为P ,设PC x 米,然后分别在Rt APC 和Rt CBP 中,利用锐角三角函数的定义求出AC ,BC 的长,再根据200AB 米,列出关于x 的方程,进行计算即可解答.【详解】解:过点P 作PC AB ,垂足为P ,设PC x 米,在Rt APC 中,30APC ,∴3303AC PC tan x (米),在Rt CBP 中,60CPB ,∴60BC CP tan(米),∵200AB 米,∴200AC BC ,∴2003x ,∴87x ,∴87PC 米,∴点P 到赛道AB 的距离约为87米,故答案为:87.【点睛】本题考查了解直角三角形的应用—方向角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.16.如图,在O 中,AB 为直径,8AB ,BD 为弦,过点A 的切线与BD 的延长线交于点C ,E 为线段BD 上一点(不与点B 重合),且OE DE .(1)若35B ,则 AD 的长为______(结果保留 );(2)若6AC ,则DE BE ______.【答案】①.149 ②.2539【解析】【分析】(1)根据圆周角定理求出∠AOD =70°,再利用弧长公式求解;(2)解直角三角形求出BC ,AD ,BD ,再利用相似三角形的性质求出DE ,BE ,可得结论.【详解】解:(1)∵270AOD ABD ,∴ AD 的长704141809;故答案为:149;(2)连接AD,∵AC 是切线,AB 是直径,∴AB AC ,∴10BC ,∵AB 是直径,∴90ADB ,∴AD CB ,∴1122AB AC BC AD ,∴245AD ,∴325BD,∵OB OD ,EO ED ,∴EDO EOD OBD ,∴DOE DBO △∽△,∴DO DE DB DO,∴43245DE ,∴52DE ,∴325395210BE BD DE ,∴5252393910DE BE .故答案为:2539.【点睛】本题主要考查圆的相关知识,相似三角形的判定和性质,解直角三角形等知识,熟练掌握各性质及判定定理,正确寻找相似三角形解决问题是解题的关键.三、解答题(本大题共8小题,共64分)17.计算:2022032tan 45(1)) .【答案】1【解析】【分析】根据特殊角的三角函数值,零指数幂,实数的运算,有理数的乘方,绝对值等计算法则求解即可.【详解】解:2022032tan 45(1)) 3211132111 .【点睛】本题考查了特殊角的三角函数值,零指数幂,实数的运算,有理数的乘方,绝对值,准确熟练地化简各式是解题的关键.18.已知2210a a ,求代数式 4111a a a a 的值.【答案】-2【解析】【分析】先化简所求的式子,再结合已知求解即可.【详解】解: 4111a a a a 22411a a a 224a a222a a ,∵2210a a ,∴221a a ,∴原式 212 .【点睛】本题考查代数式的运算,熟练掌握单项式乘多项式,平方差公式是解题的关键.19.如图,点E ,F 分别在ABCD 的边AB ,BC 上,AE CF ,连接DE ,DF .请从以下三个条件:①12 ;②DE DF ;③34 中,选择一个合适的作为已知条件,使ABCD为菱形.(1)你添加的条件是______(填序号);(2)添加了条件后,请证明ABCD 为菱形.【答案】(1)①(2)见解析【解析】【分析】(1)添加合适的条件即可;(2)证 ADE CDF AAS ≌△△,得AD CD ,再由菱形的判定即可得出结论.【小问1详解】解:添加的条件是12 .故答案为:①.【小问2详解】证明:∵四边形ABCD 是平行四边形,∴A C ,在ADE 和CDF 中,12A C AE CF,∴ ADE CDF AAS ≌△△,∴AD CD ,∴ABCD 为菱形.【点睛】本题考查了菱形的判定、平行四边形的性质、全等三角形的判定与性质等知识,熟练掌握菱形的判定,证明三角形全等是解题的关键.20.守护好一江碧水,打造长江最美岸线.江豚,麋鹿,天鹅已成为岳阳“吉祥三宝”的新名片.某校生物兴趣小组设计了3张环保宣传卡片,正面图案如图所示,它们除此之外完全相同.(1)将这3张卡片背面朝上,洗匀,从中随机抽取一张,则抽取的卡片正面图案恰好是“麋鹿”的概率为______;(2)将这3张卡片背面朝上,洗匀,从中随机抽取一张,不放回,再从剩余的两张卡片中随机抽取一张,请用列表或画树状图的方法,求抽取的卡片正面图案恰好是“江豚”和“天鹅”的概率.【答案】(1)1 3(2)1 3【解析】【分析】(1)直接利用概率公式求解即可;(2)将江豚,麋鹿,天鹅三张卡片分别记作①、②、③,列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【小问1详解】将这3张卡片背面朝上,洗匀,从中随机抽取一张,则抽取的卡片正面图案恰好是“麋鹿”的概率为1 3,故答案为:1 3;【小问2详解】将江豚,麋鹿,天鹅三张卡片分别记作①、②、③,列表如下:①②③①,②① ,③①②①,② ,③②③ ,①③ ,②③由表知,共有6种等可能结果,其中抽取的卡片正面图案恰好是“江豚”和“天鹅”的有2种结果,所以抽取的卡片正面图案恰好是“江豚”和“天鹅”的概率为2163.【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率 所求情况数与总情况数之比.21.如图,反比例函数 0k y k x与正比例函数 0y mx m 的图象交于点 1,2A 和点B ,点C 是点A 关于y 轴的对称点,连接AC ,BC .(1)求该反比例函数的解析式;(2)求ABC 的面积;(3)请结合函数图象,直接写出不等式k mx x 的解集.【答案】(1)2y x(2)4(3)1x 或01x 【解析】【分析】(1)把点 1,2A 代入 0k y k x可得k 的值,求得反比例函数的解析式;(2)根据对称性求得B 、C 的坐标然后利用三角形面积公式可求解.(3)根据图象得出不等式k mx x 的解集即可.【小问1详解】解:把点 1,2A 代入 0k y k x得:21k ,∴2k ,∴反比例函数的解析式为2y x;【小问2详解】∵反比例函数 0k y k x与正比例函数 0y mx m 的图象交于点 1,2A 和点B ,∴ 1,2B ,∵点C 是点A 关于y 轴的对称点,∴ 1,2C ,∴2CD ,∴ 122242ABC S △.【小问3详解】根据图象得:不等式k mx x 的解集为1x 或01x .【点睛】本题是反比例函数和一次函数的交点问题,考查了待定系数法求函数解析式,反比例函数的性质,三角形的面积,数形结合是解题的关键.22.为迎接湖南省第十四届运动会在岳阳举行,某班组织学生参加全民健身线上跳绳活动,需购买A ,B 两种跳绳若干.若购买3根A 种跳绳和1根B 种跳绳共需140元;若购买5根A 种跳绳和3根B 种跳绳共需300元.(1)求A ,B 两种跳绳的单价各是多少元?(2)若该班准备购买A ,B 两种跳绳共46根,总费用不超过1780元,那么至多可以购买B 种跳绳多少根?【答案】(1)A 种跳绳的单价为30元,B 种跳绳的单价为50元(2)至多可以购买B 种跳绳20根【解析】【分析】(1)设A 种跳绳的单价为x 元,B 种跳绳的单价为y 元.由题意:若购买3根A 种跳绳和1根B 种跳绳共需140元;若购买5根A 种跳绳和3根B 种跳绳共需300元.列出二元一次方程组,解方程组即可;(2)设购买B 种跳绳a 根,则购买A 种跳绳 46a 根,由题意:总费用不超过1780元,列出一元一次不等式,解不等式即可.【小问1详解】解:设A 种跳绳的单价为x 元,B 种跳绳的单价为y 元.根据题意得:314053300x y x y,解得:3050x y,答:A 种跳绳的单价为30元,B 种跳绳的单价为50元.【小问2详解】设购买B 种跳绳a 根,则购买A 种跳绳 46a 根,由题意得: 3046501780a a ,解得:20a ,答:至多可以购买B 种跳绳20根.【点睛】本题主要考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找出不等关系,正确列出一元一次不等式.23.如图,ABC 和DBE 的顶点B 重合,90ABC DBE ,30BAC BDE ,3BC ,2BE .(1)特例发现:如图1,当点D ,E 分别在AB ,BC 上时,可以得出结论:AD CE______,直线AD 与直线CE 的位置关系是______;(2)探究证明:如图2,将图1中的DBE 绕点B 顺时针旋转,使点D 恰好落在线段AC 上,连接EC ,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请说明理由;(3)拓展运用:如图3,将图1中的DBE 绕点B 顺时针旋转(1960) ,连接AD 、EC ,它们的延长线交于点F ,当DF BE 时,求 tan 60 的值.【答案】(1,垂直(2)成立,理由见解析(3)11【解析】【分析】(1)解直角三角形求出EC ,AD ,可得结论;(2)结论不变,证明ABD CBE ∽△△,推出AD AB EC BC ,ADB BEC ,可得结论;(3)如图3中,过点B 作BJ AC 于点J ,设BD 交AK 于点K ,过点K 作KT AC 于点.K 求出BJ ,JK ,可得结论.【小问1详解】解:在Rt ABC 中,90B ,3BC ,30A ,∴AB 在Rt BDE 中,30BDE ,2BE ,∴BD∴1EC ,AD,∴AD ECAD EC ,【小问2详解】结论成立.理由:∵90ABC DBE ,∴ABD CBE ,∵AB ,BD ,∴AC DB BC EB,∴ABD CBE ∽△△,∴AD AB EC BC ,ADB BEC ,∵180ADB CDB ,∴180CDB BEC ,∴180DBE DCE ,∵90DBE ,∴90DCE ,∴AD EC ;【小问3详解】如图3中,过点B 作BJ AC 于点J ,设BD 交AK 于点K ,过点K 作KT AC 于点K .∵90AJB ,30BAC ,∴60ABJ ,∴60KBJ .∵AB∴13322BJ AB ,92AJ ,当DF BE 时,四边形BEFD 是矩形,∴90ADB ,AD设KT m ,则AT ,2AK m ,∵90KTB ADB ,∴tan KT AD BT BD,∴m BT ,∴255BT m ,255m,∴4511m ,∴90211AK m,∴9908121122KJ AJ AK,∴ tan 6011KJ BJ .【点睛】本题属于三角形综合题,考查了解直角三角形,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.24.如图1,在平面直角坐标系xOy 中,抛物线1F :2y x bx c 经过点 30A ,和点 10B ,.(1)求抛物线1F 的解析式;(2)如图2,作抛物线2F ,使它与抛物线1F 关于原点O 成中心对称,请直接写出抛物线2F 的解析式;(3)如图3,将(2)中抛物线2F 向上平移2个单位,得到抛物线3F ,抛物线1F 与抛物线3F 相交于C ,D 两点(点C 在点D 的左侧).①求点C 和点D 的坐标;②若点M ,N 分别为抛物线1F 和抛物线3F 上C ,D 之间的动点(点M ,N 与点C ,D 不重合),试求四边形CMDN 面积的最大值.【答案】(1)223y x x (2)2y x 2x 3(3)① 2,3C 或 2,5D ;②12【解析】【分析】(1)将点 30A ,和点 10B ,代入2y x bx c ,即可求解;(2)利用对称性求出函数1F 顶点 1,4 关于原点的对称点为 1,4,即可求函数2F 的解析式;(3)①通过联立方程组222523y x x y x x ,求出C 点和D 点坐标即可;②求出直线CD 的解析式,过点M 作MF y ∥轴交CD 于点F ,过点N 作NE y ∥轴交于点E ,设 2,23M m m m ,2,23N n n n ,则 ,22F m m , ,21N n n ,可求24MF m ,22NE n ,由 2CDN CDM CMDN S S S MF NE △△四边形,分别求出MF 的最大值4,NE 的最大值2,即可求解.【小问1详解】解:将点 30A ,和点 10B ,代入2y x bx c ,∴93010b c b c ,解得23b c,∴223y x x .【小问2详解】∵2223(1)4y x x x ,∴抛物线的顶点 1,4 ,∵顶点 1,4 关于原点的对称点为 1,4,∴抛物线2F 的解析式为2(1)4y x ,∴2y x 2x 3 .【小问3详解】由题意可得,抛物线3F 的解析式为22(1)625y x x x ,①联立方程组222523y x x y x x ,解得2x 或2x ,∴ 2,3C 或 2,5D ;②设直线CD 的解析式为y kx b ,∴2325k b k b ,解得21k b,∴21y x ,过点M 作MF y ∥轴交CD 于点F ,过点N 作NE y ∥轴交于点E ,如图所示:设 2,23M m m m ,2,23N n n n ,则 ,21F m m , ,21N n n ,∴ 2221234MF m m m m ,2223212NE n n n n ,∵22m ,22n ,∴当0m 时,MF 有最大值4,当0n 时,NE 有最大值2,∵ 1422CDN CDM CMDN S S S MF NE MF NE △△四边形,∴当MF NE 最大时,四边形CMDN 面积的最大值为12.【点睛】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,图象平移和对称的性质是解题的关键.。

2021年湖南省岳阳市中考数学试卷(附答案详解)

2021年湖南省岳阳市中考数学试卷(附答案详解)

2021年湖南省岳阳市中考数学试卷一、选择题(本大题共8小题,共24.0分)1.(2021·湖南省岳阳市·历年真题)在实数√3,−1,0,2中,为负数的是()A. √3B. −1C. 0D. 22.(2021·湖南省岳阳市·历年真题)下列品牌的标识中,是轴对称图形的是()A. B. C. D.3.(2021·湖南省岳阳市·历年真题)下列运算结果正确的是()A. 3a−a=2B. a2⋅a4=a8C. (a+2)(a−2)=a2−4D. (−a)2=−a24.(2021·湖南省岳阳市·历年真题)已知不等式组{x−1<02x≥−4,其解集在数轴上表示正确的是()A. B. C. D.5.(2021·湖南省岳阳市·历年真题)将一副直角三角板按如图方式摆放,若直线a//b,则∠1的大小为()A. 45°B. 60°C. 75°D. 105°6.(2021·湖南省岳阳市·历年真题)下列命题是真命题的是()A. 五边形的内角和是720°B. 三角形的任意两边之和大于第三边C. 内错角相等D. 三角形的重心是这个三角形的三条角平分线的交点7.(2021·湖南省岳阳市·历年真题)在学校举行“庆祝百周年,赞歌献给党”的合唱比赛中,七位评委给某班的评分去掉一个最高分、一个最低分后得到五个有效评分,分别为:9.0,9.2,9.0,8.8,9.0(单位:分),这五个有效评分的平均数和众数分别是()A. 9.0,8.9B. 8.9,8.9C. 9.0,9.0D. 8.9,9.08.(2021·湖南省岳阳市·历年真题)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.如图,在正方形OABC中,点A(0,2),点C(2,0),则互异二次函数y=(x−m)2−m与正方形OABC有交点时m的最大值和最小值分别是()A. 4,−1B. 5−√172,−1C. 4,0D. 5+√172,−1二、填空题(本大题共8小题,共32.0分)9.(2021·湖南省岳阳市·历年真题)因式分解:x2+2x+1=______ .10.(2021·湖南省岳阳市·历年真题)2021年5月15日,“天问一号”探测器成功着陆火星,在火星上首次留下了中国印迹.据公开资料显示,地球到火星的最近距离约为55000000公里,数据55000000用科学记数法表示为______ .11.(2021·湖南省岳阳市·历年真题)一个不透明的袋子中装有5个小球,其中3个白球,2个黑球,这些小球除颜色外无其它差别,从袋子中随机摸出一个小球,则摸出的小球是白球的概率为______ .12.(2021·湖南省岳阳市·历年真题)已知关于x的一元二次方程x2+6x+k=0有两个相等的实数根,则实数k的值为______ .13.(2021·北京市·模拟题)要使分式5x−1有意义,则x的取值范围为______.14.(2021·湖南省岳阳市·历年真题)已知x+1x =√2,则代数式x+1x−√2=______ .15.(2021·湖南省岳阳市·历年真题)《九章算术》是我国古代数学名著,书中有下列问题:“今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何?”其意思为:今有一门,高比宽多6尺8寸,门对角线距离恰好为1丈.问门高、宽各是多少?(1丈=10尺,1尺=10寸)如图,设门高AB为x尺,根据题意,可列方程为______ .16.(2021·湖南省岳阳市·历年真题)如图,在Rt△ABC中,∠C=90°,AB的垂直平分线分别交AB、AC于点D、E,BE=8,⊙O为△BCE的外接圆,过点E作⊙O的切线EF交AB于点F,则下列结论正确的是______ .(写出所有正确结论的序号)①AE=BC;②∠AED=∠CBD;③若∠DBE=40°,则DE⏜的长为8π9;④DFEF =EFBF;⑤若EF=6,则CE=2.24.三、解答题(本大题共8小题,共64.0分)17.(2021·湖南省岳阳市·历年真题)计算:(−1)2021+|−2|+4sin30°−(√83−π)0.18.(2021·湖南省岳阳市·历年真题)如图,在四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为点E,F.(1)请你只添加一个条件(不另加辅助线),使得四边形AECF为平行四边形,你添加的条件是______ ;(2)添加了条件后,证明四边形AECF为平行四边形.19.(2021·湖南省岳阳市·历年真题)如图,已知反比例函数(k≠0)与正比例函数y=2x的图象交于A(1,m),y=kxB两点.(1)求该反比例函数的表达式;(2)若点C在x轴上,且△BOC的面积为3,求点C的坐标.20.(2021·湖南省岳阳市·历年真题)国务院教育督导委员会办公室印发的《关于组织责任督学进行“五项管理”督导的通知》指出,要加强中小学生作业、睡眠、手机、读物、体质管理.某校数学社团成员采用随机抽样的方法,抽取了八年级部分学生,对他们一周内平均每天的睡眠时间t(单位:ℎ)进行了调查,将数据整理后得到下列不完整的统计图表:组别睡眠时间分组频数频率A t<640.08B6≤t<780.16C7≤t<810aD8≤t<9210.42E t≥9b0.14请根据图表信息回答下列问题:(1)频数分布表中,a=______ ,b=______ ;(2)扇形统计图中,C组所在扇形的圆心角的度数是______ °;(3)请估算该校600名八年级学生中睡眠不足7小时的人数;(4)研究表明,初中生每天睡眠时长低于7小时,会严重影响学习效率.请你根据以上调查统计结果,向学校提出一条合理化的建议.21.(2021·湖南省岳阳市·历年真题)星期天,小明与妈妈到离家16km的洞庭湖博物馆参观.小明从家骑自行车先走,1h后妈妈开车从家出发,沿相同路线前往博物馆,结果他们同时到达.已知妈妈开车的平均速度是小明骑自行车平均速度的4倍,求妈妈开车的平均速度.22.(2021·湖南省岳阳市·历年真题)某镇为创建特色小镇,助力乡村振兴,决定在辖区的一条河上修建一座步行观光桥.如图,该河旁有一座小山,山高BC=80m,坡面AB的坡度i=1:0.7(注:坡度i是指坡面的铅直高度与水平宽度的比),点C、A 与河岸E、F在同一水平线上,从山顶B处测得河岸E和对岸F的俯角分别为∠DBE= 45°,∠DBF=31°.(1)求山脚A到河岸E的距离;(2)若在此处建桥,试求河宽EF的长度.(结果精确到0.1m)(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)23.(2021·湖南省岳阳市·历年真题)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,点D为AB的中点,连接CD,将线段CD绕点D顺时针旋转α(60°<α<120°)得到线段ED,且ED交线段BC于点G,∠CDE的平分线DM交BC于点H.=______ ;(1)如图1,若α=90°,则线段ED与BD的数量关系是______ ,GDCD(2)如图2,在(1)的条件下,过点C作CF//DE交DM于点F,连接EF,BE.①试判断四边形CDEF的形状,并说明理由;②求证:BEFH =√33;(3)如图3,若AC=2,tan(α−60°)=m,过点C作CF//DE交DM于点F,连接EF,BE,请直接写出BEFH的值(用含m的式子表示).24.(2021·湖南省岳阳市·历年真题)如图,抛物线y=ax2+bx+2经过A(−1,0),B(4,0)两点,与y轴交于点C,连接BC.(1)求该抛物线的函数表达式;(2)如图2,直线l:y=kx+3经过点A,点P为直线l上的一个动点,且位于x轴的上方,点Q为抛物线上的一个动点,当PQ//y轴时,作QM⊥PQ,交抛物线于点M(点M在点Q的右侧),以PQ,QM为邻边构造矩形PQMN,求该矩形周长的最小值;(3)如图3,设抛物线的顶点为D,在(2)的条件下,当矩形PQMN的周长取最小值时,抛物线上是否存在点F,使得∠CBF=∠DQM?若存在,请求出点F的坐标;若不存在,请说明理由.答案和解析1.【答案】B【知识点】实数的概念【解析】解:在√3,−1,0,2这四个数中,负数是−1,故选:B.根据负数的定义,可以判断题目中的哪个数是负数.本题考查正数和负数,解题的关键是明确负数的定义.2.【答案】A【知识点】轴对称图形【解析】解:A.是轴对称图形,故此选项符合题意;B.不是轴对称图形,故此选项不合题意;C.不是轴对称图形,故此选项不合题意;D.不是轴对称图形,故此选项不合题意;故选:A.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.此题主要考查了轴对称图形,关键是掌握轴对称图形的概念.3.【答案】C【知识点】同底数幂的乘法、平方差公式、合并同类项【解析】解:3a和a属于同类项,所以3a−a=2a,故A项不符合题意,根据同底数幂的乘法运算法则可得a2⋅a4=a6,故B项不符合题意,根据平方差公式(a+2)(a−2)=a2−4,故C项符合题意,(−a)2=a2,故D项不符合题意,故选:C.根据合并同类项原则、同底数幂的乘法运算法则、平方差公式以及幂的乘方运算法则正确计算即可求出正确答案.本题主要考查合并同类项原则、同底数幂的乘法运算法则、平方差公式以及幂的乘方运算法则,熟练运用运算法则是解题的关键.4.【答案】D【知识点】在数轴上表示不等式的解集、一元一次不等式组的解法【解析】解:解不等式x−1<0,得:x<1,解不等式2x≥−4,得:x≥−2,则不等式组的解集为−2≤x<1,故选:D.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.【答案】C【知识点】平行线的性质【解析】解:由题意知,∠ABC=45°+60°=105°,∵a//b,∴∠1+∠ABC=180°,∴∠1=180°−∠ABC=180°−105°=75°,故选:C.根据平行线的性质可得∠1+∠ABC=180°,进而可求出∠1.本题主要考查了平行线的性质,熟记两直线平行,同旁内角互补是解决问题的关键.6.【答案】B【知识点】证明与定理【解析】解:A、五边形的内角和为540°,故原命题错误,是假命题,不符合题意;B、三角形的任意两边之和大于第三边,正确,是真命题,符合题意;C、两直线平行,内错角相等,故原命题错误,是假命题,不符合题意;D、三角形的重心是这个三角形的三条边上的中线的交点,故原命题错误,是假命题,不符合题意,故选:B.利用多边形的内角和公式、三角形的三边关系、平行线的性质及三角形的重心的性质分别判断后即可确定正确的选项.考查了命题与定理的知识,解题的关键是了解多边形的内角和公式、三角形的三边关系、平行线的性质及三角形的重心的定义等知识,难度不大.7.【答案】C【知识点】算术平均数、众数【解析】解:x −=9.0+9.2+9.0+8.8+9.05=9.0,该组数众数为:9.0,∴这五个有效评分的平均数和众数分别为9.0,9.0,故选:C .根据平均数的计算方法对这组数先求和再除以5即可,众数即出现次数最多的数,便可选出正确答案.本题考查算术平均数以及众数,熟练掌握平均数的求法以及众数的求法是解题的关键. 8.【答案】D【知识点】二次函数的性质、正方形的性质【解析】解:如图,由题意可得,互异二次函数y =(x −m)2−m 的顶点(m,−m)在直线y =−x 上运动,在正方形OABC 中,点A(0,2),点C(2,0),∴B(2,2),从图象可以看出,当函数从左上向右下运动时,当跟正方形有交点时,先经过点A ,再逐渐经过点O ,点B ,点C ,最后再经过点B ,且在运动的过程中,两次经过点A ,两次经过点O ,点B 和点C ,∴只需算出当函数经过点A 及点B 时m 的值,即可求出m 的最大值及最小值. 当互异二次函数y =(x −m)2−m 经过点A(0,2)时,m =0,或m =−1;当互异二次函数y =(x −m)2−m 经过点B(2,2)时,m =5−√172或m =5+√172.∴互异二次函数y =(x −m)2−m 与正方形OABC 有交点时m 的最大值和最小值分别是5+√172,−1.故选:D .画出图象,从图象可以看出,当函数从左上向右下运动时,当跟正方形有交点时,先经过点A ,再逐渐经过点O ,点B ,点C ,最后再经过点B ,且在运动的过程中,两次经过点A ,两次经过点O ,点B 和点C ,只需算出当函数经过点A 及点B 时m 的值,即可求出m 的最大值及最小值.本题为二次函数综合题,考查了二次函数图象性质.解答关键是研究动点到达临界点时图形的变化,从而得到临界值.9.【答案】(x +1)2【知识点】因式分解-运用公式法【解析】解:x 2+2x +1=(x +1)2,故答案为:(x +1)2.本题运用完全平方公式进行因式分解即可.本题考查运用公式法进行因式分解,掌握公式法的基本形式并能熟练应用是解题的关键. 10.【答案】5.5×107【知识点】科学记数法-绝对值较大的数【解析】解:55000000=5.5×107,故答案为:5.5×107.根据科学记数法的方法对55000000进行科学记数即可.本题考查用科学记数法表示较大的数,掌握科学记数法的基本方法是解题的关键. 11.【答案】35【知识点】概率公式【解析】解:∵从袋子中随机摸出一个小球共有5种等可能结果,摸出的小球是白球的结果数为3,∴摸出的小球是红球的概率为35,故答案为:3.5用白球的个数除以球的总个数即可.本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.12.【答案】9【知识点】根的判别式【解析】解:根据题意,△=62−4k=0,解得k=9,故答案为9.利用判别式的意义得到△=62−4k=0,然后解关于k的方程即可.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根.13.【答案】x≠1【知识点】分式有意义的条件有意义,【解析】解:∵分式5x−1∴x−1≠0,解得x≠1.故答案为:x≠1.先根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.14.【答案】0【知识点】分式的化简求值、二次根式的化简求值、完全平方公式=√2,【解析】解:∵x+1x∴x+1−√2=√2−√2=0,x故答案为:0.把x+1的值代入计算即可.x本题考查的是二次根式的计算,掌握二次根式的减法法则是解题的关键.15.【答案】(x−6.8)2+x2=102【知识点】勾股定理的应用【解析】解:设门高AB为x尺,则门的宽为(x−6.8)尺,AC=1丈=10尺,依题意得:AB2+BC2=AC2,即(x−6.8)2+x2=102.故答案为:(x−6.8)2+x2=102.设门高AB为x尺,则门的宽为(x−6.8)尺,利用勾股定理,即可得出关于x的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程以及勾股定理的应用,找准等量关系,正确列出一元二次方程是解题的关键.16.【答案】②④⑤【知识点】弧长的计算、线段垂直平分线的概念及其性质、圆周角定理、切线的性质、相似三角形的判定与性质【解析】解:①∵DE垂直平分AB,∴AE=BE,又在Rt△ABC中,∠C=90°,∴BE>BC,∴AE>BC,故①错误;②由题可知,四边形DBCE是⊙O的内接四边形,∴∠AED=∠CBD,故②正确;③连接OD,若∠DBE=40°,则∠DOE=80°,∴DE⏜的长为80°⋅π⋅4180∘=16π9,故③错误;④∵EF是⊙O的切线,∴∠BEF=90°,又DE⊥AB,∴∠EDF=∠BEF=90°,∴△EDF∽△BEF,∴DFEF =EFBF,故④正确;⑤在Rt△BEF中,EF=6,BE=8,∴BF=10,由①AE=BE=8,∴∠A=∠ABE,又∠C=∠BEF=90°,∴△BEF∽△ACB,∴BE:AC=EF:BC=6:8,设BE=6m,则AC=8m,则CE=8m−8,在Rt△BCE中,由勾股定理可得,EC2+BC2=BE2,即(8m−8)2+(6m)2=82,解得m=1.28,∴CE=8m−8=2.24.故⑤正确.故答案为:②④⑤.①DE垂直平分AB,AE=BE,BE>BC,则AE>BC,故①错误;②由题可知,四边形DBCE是⊙O的内接四边形,则∠AED=∠CBD,故②正确;③连接OD,若∠DBE=40°,则∠DOE=80°,则DE⏜的长为80°⋅π⋅4180∘=16π9,故③错误;④易得△EDF∽△BEF,则DFEF =EFBF,故④正确;⑤在Rt△BEF中,EF=6,BE=8,BF=10,又△BEF∽△ACB,则BE:AC=EF:BC=6:8,设BE=6m,则AC=8m,则CE=8m−8,由勾股定理可得,EC2+BC2= BE2,即(8m−8)2+(6m)2=82,解得m=1.28,则CE=8m−8=2.24.故⑤正确.本题主要考查相似三角形的性质与判定,切线的性质,弧长的计算等内容,熟知相关性质及定理是解题关键.17.【答案】解:原式=−1+2+4×12−1=−1+2+2−1=2.【知识点】绝对值、特殊角的三角函数值、零指数幂、实数的运算【解析】按照实数的运算法则依次展开计算即可得出答案.本题考查实数的混合运算,涉及绝对值、零指数幂、正整数幂,特殊角的三角函数值等知识,熟练掌握其运算法则,细心运算是解题的关键.18.【答案】AE=CF【知识点】平行四边形的判定【解析】解:(1)添加条件为:AE=CF,故答案为:AE=CF;(2)证明:∵AE⊥BD,CF⊥BD,∴AE//CF,∵AE=CF,∴四边形AECF为平行四边形.(1)由题意添加条件即可;(2)证AE//CF,再由AE=CF,即可得出结论.本题考查了平行四边形的判定、平行线的判定等知识;熟练掌握平行四边形的判定是解题的关键.19.【答案】解:(1)把A(1,m)代入y=2x中,得m=2,∴点A的坐标为(1,2),把点A(1,2)代入y=kx中,得k=2,∴反比例函数得解析式为y=2x;(2)过点B作BD垂直与x轴,垂足为D,设点C的坐标为(a,0),∵点A与点B关于原点对称,∴点B的坐标为(−1,−2),∴BD=|−2|=2,OC=|a|,S△BOC=12BD⋅OC=12×2×|a|=3,解得:a=3或a=−3,∴点C的坐标为(3,0)或(−3,0).【知识点】一次函数与反比例函数综合【解析】(1)先把A(1,m)代入y=2x中,即可算出点A的坐标,再把点A的坐标代入反比例函数解析式中即可得出答案;(2)过点B作BD垂直与x轴,垂足为D,设点C的坐标为(a,0),根据反比例函数与正比例函数的性质可得点B的坐标,由题意可得BD=|−2|=2,OC=|a|,再根据三角形面积计算方法即可算出a的值,即可得出答案.本题主要考查了反比例函数与一次函数的交点问题,熟练掌握相关知识进行求解是解决本题的关键.20.【答案】0.27 72【知识点】扇形统计图、用样本估计总体、频数(率)分布表【解析】解:(1)本次调查的同学共有:8÷0.16=50(人),a=10÷50=0.2,b=50--8−10−21=7,故答案为:0.2,7;(2)扇形统计图中C组所在扇形的圆心角的大小是:360°×1050=72°,故答案为:72;(3)600×4+850=144(人),答:该校600名八年级学生中睡眠不足7小时的人数有144人;(4)按时入睡,保证睡眠时间.(1)根据B组人数和所占的百分比,可以求得本次调查的人数,再根据频数分布表中的数据,即可计算出a、b的值;(2)根据C组的频率可计算出扇形统计图中C组所在扇形的圆心角的大小;(3)根据每天睡眠时长低于7小时的人数所占比例可以计算出该校学生每天睡眠时长低于7小时的人数.(4)根据调查统计结果,向学校提出一条合理化的建议即可.本题考查扇形统计图、频数分布表、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.21.【答案】解:设小明骑自行车的平均速度为x km/ℎ,则妈妈开车的平均速度为4x km/ℎ,依题意得:16x −164x=1,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴4x=48.答:妈妈开车的平均速度为48km/ℎ.【知识点】分式方程的应用【解析】设小明骑自行车的平均速度为x km/ℎ,则妈妈开车的平均速度为4x km/ℎ,根据时间=路程÷速度,结合小明比妈妈多用1h,即可得出关于x的分式方程,解之经检验后即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.【答案】解:(1)在RtABC中,BC=80,∵AB的坡度i=1:0.7,∴BCAC =10.7,∴80AC =10.7,∴AC=56,在RtBCE中,BC=80,∠BEC=∠DBE=45°,∴∠CBE=90°−∠BEC=90°−45°=45°,∴∠BEC=∠CBE,∴CE=BC=80,∴AE=CE−AC=80−56=24(m),答:山脚A到河岸E的距离为24m;(2)在RtBCF中,BC=80,∠BFC=∠DBF=31°,tan∠BFC=BCCF,∴80CF≈0.6,∴CF≈133.33,∴EF=CF−CE=133.33−80=53.33≈53.3(m),答:河宽EF的长度约53.3m.【知识点】解直角三角形的应用【解析】(1)在RtABC中,根据AB的坡度求出AC,在RtBCE中,根据等腰直角三角形的性质可得CE=BC,由线段的和差即可求得AE;(2)在RtBCF中,由三角函数的定义求出,根据线段的和差即可求出.本题考查了解直角三角形的应用,涉及仰角俯角及坡度坡角的知识,构造直角三角形是23.【答案】ED=BD√33【知识点】四边形综合【解析】解:(1)在Rt△ABC中,∠ACB=90°,点D为AB的中点,∴AD=CD=BD,∵∠A=60°,∴∠B=30°,△ABD是等边三角形,∴∠DCB=30°,∵∠CDE=α=90°,∴tan∠CGD=tan60°=CDDG=√3,∴GDCD =√33.∵线段CD绕点D顺时针旋转α(60°<α<120°)得到线段ED,∴ED=CD=BD,故答案为:ED=BD;√33.(2)①四边形CDEF是正方形,理由如下,∵DM平分∠CDE,∠CDE=90°,∴∠CDM=∠EDM=45°,∵CF//DE,∴∠CFD=∠EDM=45°,∴∠CFD=∠EDM=∠CDM,∴CF=CD=ED,∴四边形CDEF是菱形,∵∠CDE=90°,∴菱形CDEF是正方形.②由(1)可知,∠ADC=60°,∠CGD=60°,BD=DE,∴∠BDE=30°,∠EGB=60°,∴∠DBE=∠DEB=75°,∴∠EBG=45°,∵∠GDB=90°−∠ADE=30°,∠ABC=30°,∴∠GDB=∠ABC,由①知∠CFD=∠CDF=45°,∠DCF=90°,∴∠FCH=60°,∴∠EGB=∠FCH,∠EBG=∠CFD,∴△BEG∽△FHC,∴BEFH =BGFC,∵DG=BG,CD=CF,∴BEFH =BGFC=GDCD=√33.(3)如图3,过点D作DN⊥BC于点N,∴AC//DN,∴∠ACD=∠CDN,∵△ACD是等边三角形,AC=2,∴CD=AC=2,∠CDN=∠ACD=60°,∴∠NDG=α−60°,DN=1,∴tan∠NDG=tan(α−60°)=NGDN=m,∴NG=m,∴DG=√DN2+NG2=√1+m2,∵∠ADC=60°,∠ADG=α,∴∠BDE=120°−α,∴∠BEG=∠EBG=30°+α2,∴∠EBG=α2,∴∠BGE=150°−α,∵DM平分∠CDE,∠CDE=α,∴∠CDM=∠EDM=α2,∵CF//DE,∴∠CFD=∠EDM=α2,∠DCF+∠CDE=180°,∴∠DCF=180°−α,∴∠FCG=150°−α,∴∠EGB=∠FCG,∠EBG=∠CFD,∴△BEG∽△FHC,∴BEFH =BGFC,∵DG=BG,CD=CF,∴BEFH =BGFC=GDCD=√m2+12.(1)根据直角三角形斜边中线等于斜边的一半可以得到AC=CD=BD,根据旋转的性质可以得到CD=DE,则DE=BD;又在Rt△CGD中,含30°的直角三角形边之间的关系可得结论;(2)①由∠CFD=∠EDM=∠CDM,得CF=CD=ED,又CF//DE,则四边形CDEF是菱形,又∠CDE=90°,可得结论:菱形CDEF是正方形.②由题意可得,∠EGB=∠FCH,∠EBG=∠CFD,则△BEG∽△FHC,又DG=BG,CD=CF,所以BEFH =BGFC=GDCD=√33.(3)过点D作DN⊥BC于点N,由tan∠NDG=tan(α−60°)=NGDN=m,得NG=m,所以DG=√DN2+NG2=√1+m2,又△BEG∽△FHC,DG=BG,CD=CF,所以BEFH=BG FC =GDCD=√m2+12.本题主要考查相似三角形的性质与判定,等腰三角形的性质与判定,含30°的直角三角形的边角关系,正方形的性质与判定,旋转的性质,三角形内角和等内容,得到△BEG∽△FHC是解题关键.24.【答案】解:(1)设抛物线的表达式为y=a(x−x1)(x−x2),即y=a(x+1)(x−4)=a(x2−3x−4)=ax2−3ax−4a,即−4a=2,解得a=−12,故抛物线的表达式为y=−12x2+32x+2;(2)将点A的坐标代入直线l的表达式得:0=−k+3,解得k=3,故直线l 的表达式为y =3x +3,设点Q 的坐标为(x,−12x 2+32x +2),则点P 的坐标为(x,3x +3),由题意得,点Q 、M 关于抛物线对称轴对称,而抛物线的对称轴为直线x =32, 故点M 的横坐标为3−x ,则QM =3−x −x =3−2x ,设矩形周长为C ,则C =2(PQ +QM)=2[3−2x +3x +3−(−12x 2+32x +2)]=x 2−x +8,∵1<0,故C 有最小值, 当x =12时,矩形周长最小值为314;(3)当x =12时,y =−12x 2+32x +2=218,即点Q 的坐标为(12,218), 由抛物线的表达式知,点D 的坐标为(32,258),过点D 作DK ⊥QM 于点K , 则DK =y D −y Q =258−218=12,同理可得,QK =1, 则tan∠DQM =DKQK =12, ∵∠CBF =∠DQM ,故tan∠CBF =tan∠DQM =12, 在△BOC 中,tan∠CBO =COOB =24=12, 故BF 和BO 重合, 故点F 和点A 重合, 即点F 的坐标为(−1,0).【知识点】二次函数综合【解析】(1)用待定系数法即可求解;(2)设点Q的坐标为(x,−12x2+32x+2),则点P的坐标为(x,3x+3),设矩形周长为C,则C=2(PQ+QM)=2[3−2x+3x+3−(−12x2+32x+2)]=x2−x+8,即可求解;(3)过点D作DK⊥QM于点K,则DK=y D−y Q=258−218=12,同理可得,QK=1,则tan∠DQM=DKQK =12,在△BOC中,tan∠CBO=COOB=24=12,即可求解.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。

岳阳市中考数学真题试题(含解析)

岳阳市中考数学真题试题(含解析)

湖南省岳阳市中考数学试卷一、选择题(本大题共8小题,每小题3分,满分24分.在每道小题给出的四个选项中,选出符合要求的一项)1.(3分)﹣2019的绝对值是()A.2019 B.﹣2019 C.D.﹣2.(3分)下列运算结果正确的是()A.3x﹣2x=1 B.x3÷x2=xC.x3•x2=x6D.x2+y2=(x+y)23.(3分)下列立体图形中,俯视图不是圆的是()A.B.C.D.4.(3分)如图,已知BE平分∠ABC,且BE∥DC,若∠ABC=50°,则∠C的度数是()A.20°B.25°C.30°D.50°5.(3分)函数y=中,自变量x的取值范围是()A.x≠0 B.x>﹣2 C.x>0 D.x≥﹣2且x≠0 6.(3分)甲、乙、丙、丁四人各进行了10次射击测试,他们的平均成绩相同,方差分别是S甲2=1.2,S乙2=1.1,S丙2=0.6,S丁2=0.9,则射击成绩最稳定的是()A.甲B.乙C.丙D.丁7.(3分)下列命题是假命题的是()A.平行四边形既是轴对称图形,又是中心对称图形B.同角(或等角)的余角相等C.线段垂直平分线上的点到线段两端的距离相等D.正方形的对角线相等,且互相垂直平分8.(3分)对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是()A.c<﹣3 B.c<﹣2 C.c<D.c<1二、填空题(本大题共8小题,每小题4分,满分32分)9.(4分)因式分解:ax﹣ay=.10.(4分)12月26日,岳阳三荷机场完成首航.至此,岳阳“水陆空铁”四位一体的交通格局全面形成.机场以2020年为目标年,计划旅客年吞吐量为600000人次.数据600000用科学记数法表示为.11.(4分)分别写有数字、、﹣1、0、π的五张大小和质地均相同的卡片,从中任意抽取一张,抽到无理数的概率是.12.(4分)若一个多边形的内角和等于它的外角和,则这个多边形的边数为.13.(4分)分式方程的解为x=.14.(4分)已知x﹣3=2,则代数式(x﹣3)2﹣2(x﹣3)+1的值为.15.(4分)我国古代的数学名著《九章算术》中有下列问题:“今有女子善织,日自倍,五日织五尺.问日织几何?”其意思为:今有一女子很会织布,每日加倍增长,5日共织布5尺.问每日各织多少布?根据此问题中的已知条件,可求得该女子第一天织布尺.16.(4分)如图,AB为⊙O的直径,点P为AB延长线上的一点,过点P作⊙O的切线PE,切点为M,过A、B两点分别作PE的垂线AC、BD,垂足分别为C、D,连接AM,则下列结论正确的是.(写出所有正确结论的序号)①AM平分∠CAB;②AM2=AC•AB;③若AB=4,∠APE=30°,则的长为;④若AC=3,BD=1,则有CM=DM=.三、解答题(本大题共8小题,满分64分解答应写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:(﹣1)0﹣2sin30°+()﹣1+(﹣1)201918.(6分)如图,在菱形ABCD中,点E、F分别为AD、CD边上的点,DE=DF,求证:∠1=∠2.19.(8分)如图,双曲线y=经过点P(2,1),且与直线y=kx﹣4(k<0)有两个不同的交点.(1)求m的值.(2)求k的取值范围.20.(8分)岳阳市整治农村“空心房”新模式,获评全国改革开放40年地方改革创新40案例.据了解,我市某地区对辖区内“空心房”进行整治,腾退土地1200亩用于复耕和改造,其中复耕土地面积比改造土地面积多600亩.(1)求复耕土地和改造土地面积各为多少亩?(2)该地区对需改造的土地进行合理规划,因地制宜建设若干花卉园和休闲小广场,要求休闲小广场总面积不超过花卉园总面积的,求休闲小广场总面积最多为多少亩?21.(8分)为了庆祝中华人民共和国成立70周年,某市决定开展“我和祖国共成长”主题演讲比赛,某中学将参加本校选拔赛的40名选手的成绩(满分为100分,得分为正整数且无满分,最低为75分)分成五组,并绘制了下列不完整的统计图表.(1)表中m=,n=;(2)请在图中补全频数直方图;(3)甲同学的比赛成绩是40位参赛选手成绩的中位数,据此推测他的成绩落在分数段内;(4)选拔赛中,成绩在94.5分以上的选手,男生和女生各占一半,学校从中随机确定2名选手参加全市决赛,请用列举法或树状图法求恰好是一名男生和一名女生的概率.22.(8分)慈氏塔位于岳阳市城西洞庭湖边,是湖南省保存最好的古塔建筑之一.如图,小亮的目高CD为1.7米,他站在D处测得塔顶的仰角∠ACG为45°,小琴的目高EF为1.5米,她站在距离塔底中心B点a米远的F处,测得塔顶的仰角∠AEH为62.3°.(点D、B、F在同一水平线上,参考数据:sin62.3°≈0.89,cos62.3°≈0.46,tan62.3°≈1.9)(1)求小亮与塔底中心的距离BD;(用含a的式子表示)(2)若小亮与小琴相距52米,求慈氏塔的高度AB.23.(10分)操作体验:如图,在矩形ABCD中,点E、F分别在边AD、BC上,将矩形ABCD 沿直线EF折叠,使点D恰好与点B重合,点C落在点C′处.点P为直线EF上一动点(不与E、F重合),过点P分别作直线BE、BF的垂线,垂足分别为点M和N,以PM、PN为邻边构造平行四边形PMQN.(1)如图1,求证:BE=BF;(2)特例感知:如图2,若DE=5,CF=2,当点P在线段EF上运动时,求平行四边形PMQN的周长;(3)类比探究:若DE=a,CF=b.①如图3,当点P在线段EF的延长线上运动时,试用含a、b的式子表示QM与QN之间的数量关系,并证明;②如图4,当点P在线段FE的延长线上运动时,请直接用含a、b的式子表示QM与QN之间的数量关系.(不要求写证明过程)24.(10分)如图1,△AOB的三个顶点A、O、B分别落在抛物线F1:y=x2+x的图象上,点A的横坐标为﹣4,点B的纵坐标为﹣2.(点A在点B的左侧)(1)求点A、B的坐标;(2)将△AOB绕点O逆时针旋转90°得到△A'OB',抛物线F2:y=ax2+bx+4经过A'、B'两点,已知点M为抛物线F2的对称轴上一定点,且点A'恰好在以OM为直径的圆上,连接OM、A'M,求△OA'M的面积;(3)如图2,延长OB'交抛物线F2于点C,连接A'C,在坐标轴上是否存在点D,使得以A、O、D为顶点的三角形与△OA'C相似.若存在,请求出点D的坐标;若不存在,请说明理由.湖南省岳阳市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,满分24分.在每道小题给出的四个选项中,选出符合要求的一项)1.【解答】解:﹣2019的绝对值是:2019.故选:A.2.【解答】解:A、3x﹣2x=x,故此选项错误;B、x3÷x2=x,正确;C、x3•x2=x5,故此选项错误;D、x2+2xy+y2=(x+y)2,故此选项错误;故选:B.3.【解答】解:A、圆柱的俯视图是圆;故本项不符合题意;B、圆锥的俯视图是圆;故本项不符合题意;C、立方体的俯视图是正方形;故本项符合题意;D、球的俯视图是圆;故本项不符合题意.故选:C.4.【解答】解:∵BE平分∠ABC,∠ABC=50°,∴∠ABE=∠EBC=25°,∵BE∥DC,∴∠EBC=∠C=25°.故选:B.5.【解答】解:根据题意得:,解得:x≥﹣2且x≠0.故选:D.6.【解答】解:∵S甲2=1.2,S乙2=1.1,S丙2=0.6,S丁2=0.9,∴S丙2<S丁2<S乙2<S甲2,∴射击成绩最稳定的是丙,故选:C.7.【解答】解:A.平行四边形既是轴对称图形,又是中心对称图形;假命题;B.同角(或等角)的余角相等;真命题;C.线段垂直平分线上的点到线段两端的距离相等;真命题;D.正方形的对角线相等,且互相垂直平分;真命题;故选:A.8.【解答】解:由题意知二次函数y=x2+2x+c有两个相异的不动点x1、x2是方程x2+2x+c=x的两个实数根,且x1<1<x2,整理,得:x2+x+c=0,则.解得c<﹣2,故选:B.二、填空题(本大题共8小题,每小题4分,满分32分)9.【解答】解:原式=a(x﹣y).故答案是:a(x﹣y).10.【解答】解:将600000用科学记数法表示为:6×105.故答案为:6×105.11.【解答】解:∵写有数字、、﹣1、0、π的五张大小和质地均相同的卡片,、π是无理数,∴从中任意抽取一张,抽到无理数的概率是:.故答案为:.12.【解答】解:设多边形的边数为n,则(n﹣2)×180°=360°,解得:n=4,故答案为:4.13.【解答】解:方程两边同乘x(x+1),得x+1=2x,解得x=1.将x=1代入x(x+1)=2≠0.所以x=1是原方程的解.14.【解答】解:∵x﹣3=2,∴代数式(x﹣3)2﹣2(x﹣3)+1=(x﹣3﹣1)2=(2﹣1)2=1.故答案为:1.15.【解答】解:设第一天织布x尺,则第二天织布2x尺,第三天织布4x尺,第四天织布8x尺,第五天织布16x尺,根据题意可得:x+2x+4x+8x+16x=5,解得:x=,即该女子第一天织布尺.故答案为:.16.【解答】解:连接OM,∵PE为⊙O的切线,∴OM⊥PC,∵AC⊥PC,∴OM∥AC,∴∠CAM=∠AMO,∵OA=OM,∠OAM=∠AMO,∴∠CAM=∠OAM,即AM平分∠CAB,故①正确;∵AB为⊙O的直径,∴∠AMB=90°,∵∠CAM=∠MAB,∠ACM=∠AMB,∴△ACM∽△AMB,∴,∴AM2=AC•AB,故②正确;∵∠APE=30°,∴∠MOP=∠OMP﹣∠APE=90°﹣30°=60°,∵AB=4,∴OB=2,∴的长为,故③错误;∵BD⊥PC,AC⊥PC,∴BD∥AC,∴,∴PB=,∴,BD=,∴PB=OB=OA,∴在Rt△OMP中,OM==2,∴∠OPM=30°,∴PM=2,∴CM=DM=DP=,故④正确.故答案为:①②④.三、解答题(本大题共8小题,满分64分解答应写出必要的文字说明、证明过程或演算步骤)17.【解答】解:原式=1﹣2×+3﹣1=1﹣1+3﹣1=2.18.【解答】证明:∵四边形ABCD是菱形,∴AD=CD,在△ADF和△CDE中,,∴△ADF≌△CDE(SAS),∴∠1=∠2.19.【解答】解:(1)∵双曲线y=经过点P(2,1),∴m=2×1=2;(2)∵双曲线y=与直线y=kx﹣4(k<0)有两个不同的交点,∴=kx﹣4,整理为:kx2﹣4x﹣2=0,∴△=(﹣4)2﹣4k•(﹣2)>0,∴k>﹣2,∴k的取值范围是﹣2<k<0.20.【解答】解:(1)设改造土地面积是x亩,则复耕土地面积是(600+x)亩,由题意,得x+(600+x)=1200解得x=300.则600+x=900.答:改造土地面积是300亩,则复耕土地面积是900亩;(2)设休闲小广场总面积是y亩,则花卉园总面积是(300﹣y)亩,由题意,得y≤(300﹣y).解得y≤75.故休闲小广场总面积最多为75亩.答:休闲小广场总面积最多为75亩.21.【解答】解:(1)m=40×0.2=8,n=14÷40=0.35,故答案为:8,0.35;(2)补全图形如下:(3)由于40个数据的中位数是第20、21个数据的平均数,而第20、21个数据均落在89.5~94.5,∴测他的成绩落在分数段89.5~94.5内,故答案为:89.5~94.5.(4)选手有4人,2名是男生,2名是女生.,恰好是一名男生和一名女生的概率为=.22.【解答】解:(1)由题意得,四边形CDBG、HBFE为矩形,∴GB=CD=1.7,HB=EF=1.5,∴GH=0.2,在Rt△AHE中,tan∠AEH=,则AH=HE•tan∠AEH≈1.9a,∴AG=AH﹣GH=1.9a﹣0.2,在Rt△ACG中,∠ACG=45°,∴CG=AG=1.9a﹣0.2,∴BD=1.9a﹣0.2,答:小亮与塔底中心的距离BD(1.9a﹣0.2)米;(2)由题意得,1.9a﹣0.2+a=52,解得,a=18,则AG=1.9a﹣0.2=34.4,∴AB=AG+GB=36.1,答:慈氏塔的高度AB为36.1米.23.【解答】(1)证明:如图1中,∵四边形ABCD是矩形,∴AD∥BC,∴∠DEF=∠EFB,由翻折可知:∠DEF=∠BEF,∴∠BEF=∠EFB,∴BE=BF.(2)解:如图2中,连接BP,作EH⊥BC于H,则四边形ABHE是矩形,EH=AB.∵DE=EB=BF=5,CF=2,∴AD=BC=7,AE=2,在Rt△ABE中,∵∠A=90°,BE=5,AE=2,∴AB==,∵S△BEF=S△PBE+S△PBF,PM⊥BE,PN⊥BF,∴•BF•EH=•BE•PM+•BF•PN,∵BE=BF,∴PM+PN=EH=,∵四边形PMQN是平行四边形,∴四边形PMQN的周长=2(PM+PN)=2.(3)①证明:如图3中,连接BP,作EH⊥BC于H.∵ED=EB=BF=a,CF=b,∴AD=BC=a+b,∴AE=AD﹣DE=b,∴EH=AB=,∵S△EBP﹣S△BFP=S△EBF,∴BE•PM﹣•BF•PN=•BF•EH,∵BE=BF,∴PM﹣PN=EH=,∵四边形PMQN是平行四边形,∴QN﹣QM=(PM﹣PN)=.②如图4,当点P在线段FE的延长线上运动时,同法可证:QM﹣QN=PN﹣PM=.24.【解答】解:(1)当x=﹣4时,y=×(﹣4)2+×(﹣4)=﹣4 ∴点A坐标为(﹣4,﹣4)当y=﹣2时,x2+x=﹣2解得:x1=﹣1,x2=﹣6∵点A在点B的左侧∴点B坐标为(﹣1,﹣2)(2)如图1,过点B作BE⊥x轴于点E,过点B'作B'G⊥x轴于点G ∴∠BEO=∠OGB'=90°,OE=1,BE=2∵将△AOB绕点O逆时针旋转90°得到△A'OB'∴OB=OB',∠BOB'=90°∴∠BOE+∠B'OG=∠BOE+∠OBE=90°∴∠B'OG=∠OBE在△B'OG与△OBE中∴△B'OG≌△OBE(AAS)∴OG=BE=2,B'G=OE=1∵点B'在第四象限∴B'(2,﹣1)同理可求得:A'(4,﹣4)∴OA=OA'=∵抛物线F2:y=ax2+bx+4经过点A'、B'∴解得:∴抛物线F2解析式为:y=x2﹣3x+4∴对称轴为直线:x=﹣=6∵点M在直线x=6上,设M(6,m)∴OM2=62+m2,A'M2=(6﹣4)2+(m+4)2=m2+8m+20∵点A'在以OM为直径的圆上∴∠OA'M=90°∴OA'2+A'M2=OM2∴(4)2+m2+8m+20=36+m2解得:m=﹣2∴A'M=∴S△OA'M=OA'•A'M==8(3)在坐标轴上存在点D,使得以A、O、D为顶点的三角形与△OA'C相似.∵B'(2,﹣1)∴直线OB'解析式为y=﹣x解得:(即为点B')∴C(8,﹣4)∵A'(4,﹣4)∴A'C∥x轴,A'C=4∴∠OA'C=135°∴∠A'OC<45°,∠A'CO<45°∵A(﹣4,﹣4),即直线OA与x轴夹角为45°∴当点D在x轴负半轴或y轴负半轴时,∠AOD=45°,此时△AOD不可能与△OA'C相似∴点D在x轴正半轴或y轴正半轴时,∠AOD=∠OA'C=135°(如图2、图3)①若△AOD∽△OA'C,则=1∴OD=A'C=4∴D(4,0)或(0,4)②若△DOA∽△OA'C,则∴OD=OA'=8∴D(8,0)或(0,8)综上所述,点D坐标为(4,0)、(8,0)、(0,4)或(0,8)时,以A、O、D为顶点的三角形与△OA'C相似.。

湖南省岳阳市2021年中考数学试卷 (Word版,含答案与解析)

湖南省岳阳市2021年中考数学试卷 (Word版,含答案与解析)

湖南省岳阳市2021年中考数学试卷一、单选题1.(2021·岳阳)在实数 √3 ,-1,0,2中,为负数的是( )A. √3B. -1C. 0D. 2 【答案】 B 【考点】正数和负数的认识及应用【解析】【解答】解:A 、 √3 是正数;B 、1是正数,在正数的前面加上“-”的数是负数,所以,-1是负数;C 、0既不是正数,也不是负数;D 、2是正数.故答案为:B【分析】负数小于0,据此判断即可.2.(2021·岳阳)下列品牌的标识中,是轴对称图形的是( )A. B. C. D.【答案】 A【考点】轴对称图形【解析】【解答】A. 是轴对称图形,符合题意;B. 不是轴对称图形,不符合题意;C. 不是轴对称图形,不符合题意;D. 不是轴对称图形,不符合题意;故答案为:A.【分析】轴对称图形:一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形;据此逐一判断即可.3.(2021·岳阳)下列运算结果正确的是( )A. 3a −a =2B. a 2⋅a 4=a 8C. (a +2)(a −2)=a 2−4D. (−a)2=−a 2【答案】 C【考点】同底数幂的乘法,平方差公式及应用,有理数的乘方,合并同类项法则及应用【解析】【解答】解:A 、3a −a =2a ,因此错误;B 、 a 2·a 4=a 6 ,因此错误;C 、 (a +2)(a −2)=a 2−4 ,因此正确;D 、 (−a)2=a 2 ,因此错误;故答案为:C.【分析】根据合并同类项、同底数幂的乘法、平方差公式及幂的乘方分别计算,然后判断即可.4.(2021·岳阳)已知不等式组 {x −1<02x ≥−4,其解集在数轴上表示正确的是( )A. B.C. D.【答案】 D【考点】在数轴上表示不等式组的解集,解一元一次不等式组【解析】【解答】解: {x −1<02x ≥−4①② ,解不等式①得: x <1 ,解不等式②得: x ≥−2 ,∴不等式组的解集为: −2≤x <1 ,在数轴上表示为:故答案为:D.【分析】先求出不等式组的解集,再在数轴上表示,然后判断即可.5.(2021·岳阳)将一副直角三角板按如图方式摆放,若直线 a//b ,则 ∠1 的大小为()A. 45°B. 60°C. 75°D. 105°【答案】 C【考点】平行线的性质【解析】【解答】∵a ∥b∴ ∠1+(45°+60°)=180° (两直线平行,同旁内角互补)∴ ∠1=75° .故答案为:C.【分析】根据两直线平行,同旁内角互补进行解答即可.6.(2021·岳阳)下列命题是真命题的是( )A. 五边形的内角和是 720°B. 三角形的任意两边之和大于第三边C. 内错角相等D. 三角形的重心是这个三角形的三条角平分线的交点【答案】 B【考点】平行线的性质,三角形三边关系,多边形内角与外角,三角形的重心及应用【解析】【解答】A 、五边形的内角和是 540° ,故原命题为假命题,不符合题意;B 、三角形的任意两边之和大于第三边,原命题是真命题,符合题意;C 、两直线平行,内错角相等,故原命题为假命题,不符合题意;D、三角形的重心是这个三角形的三条中线的交点,故原命题为假命题,不符合题意;故答案为:B.【分析】根据多边形的内角和公式、三角形三边关系、平行线的性质及三角形重心的性质分别进行判断即可.7.(2021·岳阳)在学校举行“庆祝百周年,赞歌献给党”的合唱比赛中,七位评委给某班的评分去掉一个最高分、一个最低分后得到五个有效评分,分别为:9.0,9.2,9.0,8.8,9.0(单位:分),这五个有效评分的平均数和众数分别是()A. 9.0,8.9B. 8.9,8.9C. 9.0,9.0D. 8.9,9.0【答案】C【考点】平均数及其计算,众数【解析】【解答】解:该班最后得分为(9.0+9.2+9.0+8.8+9.0)÷5=9.0(分).故最后平均得分为9.0分.在五个有效评分中,9.0出现的次数最多,因此众数为:9.0故答案为:C.【分析】根据平均数的定义、众数的定义分别求解即可判断.8.(2021·岳阳)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.如图,在正方形OABC中,点A(0,2),点C(2,0),则互异二次函数y=(x−m)2−m与正方形OABC有交点时m的最大值和最小值分别是()A. 4,-1B. 5−√172,-1 C. 4,0 D. 5+√172,-1【答案】 D【考点】二次函数图象上点的坐标特征,二次函数y=ax^2+bx+c的图象,二次函数y=ax^2+bx+c的性质【解析】【解答】解:由正方形的性质可知:B(2,2);若二次函数y=(x−m)2−m与正方形OABC有交点,则共有以下四种情况:当m≤0时,则当A点在抛物线上或上方时,它们有交点,此时有{m≤0m2−m≤2,解得:−1≤m<0;当0<m≤1时,则当C点在抛物线上或下方时,它们有交点,此时有{0<m≤1(2−m)2−m≥0,解得:0<m≤1;当1<m≤2时,则当O点位于抛物线上或下方时,它们有交点,此时有{1<m≤2m2−m>0,解得:1<m≤2;当m>2时,则当O点在抛物线上或下方且B点在抛物线上或上方时,它们才有交点,此时有{m>2m2−m≥0(2−m)2−m≤2,解得:2<m≤5+√172;综上可得:m的最大值和最小值分别是5+√172,−1.故答案为:D.【分析】先求出点B(2,2),分四种情况:①当m≤0时,则当A点在抛物线上或上方时,它们有交点;②当0<m≤1时,则当C点在抛物线上或下方时,它们有交点;③当1<m≤2时,则当O 点位于抛物线上或下方时,它们有交点;④当m>2时,则当O点在抛物线上或下方且B点在抛物线上或上方时,它们才有交点,据此分别列出不等式组,求解即可.二、填空题9.(2021·岳阳)因式分解:x2+2x+1=________.【答案】(x+1)2【考点】因式分解﹣运用公式法【解析】【解答】解:x2+2x+1=(x+1)2.故答案为:(x+1)2.【分析】利用完全平方公式分解即可.10.(2021·岳阳)2021年5月15日,“天问一号”探测器成功着陆火星,在火星上首次留下了中国印迹.据公开资料显示,地球到火星的最近距离约为55000000公里,数据55000000用科学记数法表示为________. 【答案】5.5×107【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:55000000=5.5×107.故答案为:5.5×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数,据此解答即可.11.(2021·岳阳)一个不透明的袋子中装有5个小球,其中3个白球,2个黑球,这些小球除颜色外无其它差别,从袋子中随机摸出一个小球,则摸出的小球是白球的概率为________.【答案】35【考点】概率公式【解析】【解答】解:袋子中一共有5个球,从袋子中随机摸出一个小球,总的结果数是5个,其中,摸出的小球是白球的结果数为3个,因此,摸出的小球是白球的概率为35;故答案为:35.【分析】利用概率公式计算即可.12.(2021·岳阳)已知关于x的一元二次方程x2+6x+k=0有两个相等的实数根,则实数k的值为________.【答案】9【考点】一元二次方程根的判别式及应用【解析】【解答】解:由题可知:“△=0”,即62−4k=0;∴k=9;故答案为:9.【分析】由关于x的一元二次方程x2+6x+k=0有两个相等的实数根,可得△=0,据此解答即可.13.(2021·燕山模拟)要使分式5x−1有意义,则x的取值范围为________.【答案】x≠1【考点】分式有意义的条件【解析】【解答】解:由题意得x-1≠0,∴x≠1.故答案为x≠1.【分析】先求出x-1≠0,再求取值范围即可。

2024届湖南省岳阳市重点中学中考联考数学试题含解析

2024届湖南省岳阳市重点中学中考联考数学试题含解析

2024届湖南省岳阳市重点中学中考联考数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(共10小题,每小题3分,共30分)1.运用图形变化的方法研究下列问题:如图,AB是⊙O的直径,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.则图中阴影部分的面积是()A.252πB.10πC.24+4πD.24+5π2.由一些大小相同的小正方体组成的几何体的俯视图如图所示,其中正方形中的数字表示在该位置上的小正方体的个数,那么,这个几何体的左视图是()A.B.C.D.3.计算25()77-+-的正确结果是()A.37B.-37C.1 D.﹣14.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足的函数关系p=at2+bt+c(a,b,c是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可得到最佳加工时间为()A .4.25分钟B .4.00分钟C .3.75分钟D .3.50分钟5.为了解某小区小孩暑期的学习情况,王老师随机调查了该小区8个小孩某天的学习时间,结果如下(单位:小时):1.5,1.5,3,4,2,5,2.5,4.5,关于这组数据,下列结论错误的是( ) A .极差是3.5B .众数是1.5C .中位数是3D .平均数是36.在海南建省办经济特区30周年之际,中央决定创建海南自贸区(港),引发全球高度关注.据统计,4月份互联网信息中提及“海南”一词的次数约48500000次,数据48500000科学记数法表示为( ) A .485×105 B .48.5×106 C .4.85×107 D .0.485×1087.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程( ) A .3(2)29x x -=+ B .3(2)29x x +=- C .9232x x -+= D .9232x x +-=8.计算4×(–9)的结果等于 A .32B .–32C .36D .–369.如图,已知直线AB 、CD 被直线AC 所截,AB ∥CD ,E 是平面内任意一点(点E 不在直线AB 、CD 、AC 上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC 的度数可能是( )A .①②③B .①②④C .①③④D .①②③④10.如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,垂足为D ,AB=c ,∠A=α,则CD 长为( )A.c•sin2αB.c•cos2αC.c•sinα•tanαD.c•sinα•cosα二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,在△ABC中,∠A=70°,∠B=50°,点D,E分别为AB,AC上的点,沿DE折叠,使点A落在BC边上点F 处,若△EFC为直角三角形,则∠BDF的度数为______.12.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,BE与CD相交于点G,且OE=OD,则AP的长为__________.13.已知x ay b=⎧⎨=⎩是方程组2325x yx y-=⎧⎨+=⎩的解,则3a﹣b的算术平方根是_____.14.两个反比例函数和在第一象限内的图象如图所示,点P在的图象上,PC⊥x轴于点C,交的图象于点A,PD⊥y轴于点D,交的图象于点B,当点P在的图象上运动时,以下结论:①△ODB与△OCA 的面积相等;②四边形PAOB的面积不会发生变化;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.其中一定正确的是__ .15.把一张长方形纸条按如图所示折叠后,若∠A OB′=70°,则∠B′OG=_____.16.如图,AG ∥BC ,如果AF :FB =3:5,BC :CD =3:2,那么AE :EC =_____.三、解答题(共8题,共72分)17.(8分)在ABC 中,ABC 90∠=,BD 为AC 边上的中线,过点C 作CE BD ⊥于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG BD =,连接BG ,DF .()1求证:BD DF =;()2求证:四边形BDFG 为菱形; ()3若AG 5=,CF 7=,求四边形BDFG 的周长.18.(8分)今年5月,某大型商业集团随机抽取所属的m 家商业连锁店进行评估,将各连锁店按照评估成绩分成了A 、B 、C 、D 四个等级,绘制了如图尚不完整的统计图表. 评估成绩n (分)评定等级 频数 90≤n≤100A 2 80≤n <90B70≤n <80 C 15 n <70D6根据以上信息解答下列问题: (1)求m 的值;(2)在扇形统计图中,求B 等级所在扇形的圆心角的大小;(结果用度、分、秒表示)(3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A 等级的概率.19.(8分)如图,已知二次函数2y x bx c =-++与x 轴交于A 、B 两点,A 在B 左侧,点C 是点A 下方,且AC ⊥x 轴. (1)已知A(-3,0),B(-1,0),AC=OA . ①求抛物线解析式和直线OC 的解析式;②点P 从O 出发,以每秒2个单位的速度沿x 轴负半轴方向运动,Q 从O 出发,以每秒2个单位的速度沿OC 方向运动,运动时间为t.直线PQ 与抛物线的一个交点记为M,当2PM=QM 时,求t 的值(直接写出结果,不需要写过程) (2)过C 作直线EF 与抛物线交于E 、F 两点(E 、F 在x 轴下方),过E 作EG ⊥x 轴于G ,连CG ,BF,求证:CG ∥BF20.(8分)如图1,将两个完全相同的三角形纸片ABC 和DEC 重合放置,其中∠C=90°,∠B=∠E=30°.操作发现如图1,固定△ABC,使△DEC绕点C旋转.当点D恰好落在BC边上时,填空:线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S1.则S1与S1的数量关系是.猜想论证当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S1的数量关系仍然成立,并尝试分别作出了△BDC 和△AEC中BC,CE边上的高,请你证明小明的猜想.拓展探究已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,OE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF=S△BDC,请直接写出相应的BF的长21.(8分)实践:如图△ABC是直角三角形,∠ACB=90°,利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)作∠BAC的平分线,交BC于点O.以O为圆心,OC为半径作圆.综合运用:在你所作的图中,AB与⊙O的位置关系是_____ .(直接写出答案)若AC=5,BC=12,求⊙O 的半径.22.(10分)某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2018年春节期间旅游情况统计图(如图),根据图中信息解答下列问题:(1)2018年春节期间,该市A、B、C、D、E这五个景点共接待游客人数为多少?(2)扇形统计图中E景点所对应的圆心角的度数是,并补全条形统计图.(3)甲,乙两个旅行团在A、B、D三个景点中随机选择一个,求这两个旅行团选中同一景点的概率.23.(12分)(1)计算:(1﹣3)0﹣|﹣2|+18;(2)如图,在等边三角形ABC中,点D,E分别是边BC,AC的中点,过点E作EF⊥DE,交BC的延长线于点F,求∠F的度数.24.如图,已知抛物线经过原点o和x轴上一点A(4,0),抛物线顶点为E,它的对称轴与x轴交于点D.直线y=﹣2x﹣1经过抛物线上一点B(﹣2,m)且与y轴交于点C,与抛物线的对称轴交于点F.(1)求m的值及该抛物线对应的解析式;(2)P(x,y)是抛物线上的一点,若S△ADP=S△ADC,求出所有符合条件的点P的坐标;(3)点Q是平面内任意一点,点M从点F出发,沿对称轴向上以每秒1个单位长度的速度匀速运动,设点M的运动时间为t秒,是否能使以Q、A、E、M四点为顶点的四边形是菱形.若能,请直接写出点M的运动时间t的值;若不能,请说明理由.参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解题分析】【分析】作直径CG,连接OD、OE、OF、DG,则根据圆周角定理求得DG的长,证明DG=EF,则S扇形ODG=S扇形OEF,然后根据三角形的面积公式证明S△OCD=S△ACD,S△OEF=S△AEF,则S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半,即可求解.圆【题目详解】作直径CG,连接OD、OE、OF、DG.∵CG是圆的直径,∴∠CDG=90°,则DG=2222106CG CD-=-=8,又∵EF=8,∴DG=EF,∴DG EF=,∴S扇形ODG=S扇形OEF,∵AB∥CD∥EF,∴S△OCD=S△ACD,S△OEF=S△AEF,∴S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆=12π×52=252π,故选A.【题目点拨】本题考查扇形面积的计算,圆周角定理.本题中找出两个阴影部分面积之间的联系是解题的关键.2、A【解题分析】从左面看,得到左边2个正方形,中间3个正方形,右边1个正方形.故选A.3、D【解题分析】根据有理数加法的运算方法,求出算式2577⎛⎫-+-⎪⎝⎭的正确结果是多少即可.【题目详解】原式251.77⎛⎫=-+=-⎪⎝⎭故选:D.【题目点拨】此题主要考查了有理数的加法的运算方法,要熟练掌握,解答此题的关键是要明确:①同号相加,取相同符号,并把绝对值相加.②绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得1.③一个数同1相加,仍得这个数.4、C【解题分析】根据题目数据求出函数解析式,根据二次函数的性质可得.【题目详解】根据题意,将(3,0.7)、(4,0.8)、(5,0.5)代入p=at2+bt+c,得:930.7 1640.8 2550.5a b ca b ca b c++=⎧⎪++=⎨⎪++=⎩解得:a=−0.2,b=1.5,c=−2,即p=−0.2t2+1.5t−2,当t=−1.5-0.22⨯=3.75时,p取得最大值,故选C.【题目点拨】本题考查了二次函数的应用,熟练掌握性质是解题的关键.5、C【解题分析】由极差、众数、中位数、平均数的定义对四个选项一一判断即可. 【题目详解】A.极差为5﹣1.5=3.5,此选项正确;B.1.5个数最多,为2个,众数是1.5,此选项正确;C.将式子由小到大排列为:1.5,1.5,2,2.5,3,4,4.5,5,中位数为12×(2.5+3)=2.75,此选项错误;D.平均数为:18×(1.5+1.5+2+2.5+3+4+4.5+5)=3,此选项正确.故选C.【题目点拨】本题主要考查平均数、众数、中位数、极差的概念,其中在求中位数的时候一定要将给出的数据按从大到小或者从小到大的顺序排列起来再进行求解.6、C【解题分析】依据科学记数法的含义即可判断.【题目详解】解:48511111=4.85×117,故本题选择C.【题目点拨】把一个数M记成a×11n(1≤|a|<11,n为整数)的形式,这种记数的方法叫做科学记数法.规律:(1)当|a|≥1时,n的值为a的整数位数减1;(2)当|a|<1时,n的值是第一个不是1的数字前1的个数,包括整数位上的1.7、A【解题分析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余1个人无车可乘,进而表示出总人数得出等式即可.【题目详解】设有x辆车,则可列方程:3(x-2)=2x+1.故选:A.【题目点拨】此题主要考查了由实际问题抽象出一元一次方程,正确表示总人数是解题关键.8、D【解题分析】根据有理数的乘法法则进行计算即可.【题目详解】()494936.⨯-=-⨯=-故选:D.【题目点拨】考查有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.9、D【解题分析】根据E点有4中情况,分四种情况讨论分别画出图形,根据平行线的性质与三角形外角定理求解.【题目详解】E点有4中情况,分四种情况讨论如下:由AB∥CD,可得∠AOC=∠DCE1=β∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β-α过点E2作AB的平行线,由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β∴∠AE2C=α+β由AB∥CD,可得∠BOE3=∠DCE3=β∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α-β由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°-α-β∴∠AEC的度数可能是①α+β,②α﹣β,③β-α,④360°﹣α﹣β,故选D.【题目点拨】此题主要考查平行线的性质与外角定理,解题的关键是根据题意分情况讨论.10、D【解题分析】根据锐角三角函数的定义可得结论.【题目详解】在Rt△ABC中,∠ACB=90°,AB=c,∠A=a,根据锐角三角函数的定义可得sinα=BC AB,∴BC=c•sinα,∵∠A+∠B=90°,∠DCB+∠B=90°,∴∠DCB=∠A=α在Rt△DCB中,∠CDB=90°,∴cos∠DCB= CD BC,∴CD=BC•cosα=c•sinα•cosα,故选D.二、填空题(本大题共6个小题,每小题3分,共18分)11、110°或50°.【解题分析】由内角和定理得出∠C=60°,根据翻折变换的性质知∠DFE=∠A=70°,再分∠EFC=90°和∠FEC=90°两种情况,先求出∠DFC度数,继而由∠BDF=∠DFC﹣∠B可得答案.【题目详解】∵△ABC中,∠A=70°、∠B=50°,∴∠C=180°﹣∠A﹣∠B=60°,由翻折性质知∠DFE=∠A=70°,分两种情况讨论:①当∠EFC=90°时,∠DFC=∠DFE+∠EFC=160°,则∠BDF=∠DFC﹣∠B=110°;②当∠FEC=90°时,∠EFC=180°﹣∠FEC﹣∠C=30°,∴∠DFC=∠DFE+∠EFC=100°,∠BDF=∠DFC﹣∠B=50°;综上:∠BDF的度数为110°或50°.故答案为110°或50°.【题目点拨】本题考查的是图形翻折变换的性质及三角形内角和定理,熟知折叠的性质、三角形的内角和定理、三角形外角性质是解答此题的关键.12、4.1【解题分析】解:如图所示:∵四边形ABCD是矩形,∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=1,根据题意得:△ABP≌△EBP,∴EP=AP,∠E=∠A=90°,BE=AB=1,在△ODP和△OEG中,,∴△ODP≌△OEG(ASA),∴OP=OG,PD=GE,∴DG=EP,设AP=EP=x,则PD=GE=6﹣x,DG=x,∴CG=1﹣x,BG=1﹣(6﹣x)=2+x,根据勾股定理得:BC2+CG2=BG2,即62+(1﹣x)2=(x+2)2,解得:x=4.1,∴AP=4.1;故答案为4.1.13、22.【解题分析】灵活运用方程的性质求解即可。

2023年岳阳市中考数学考试试卷及答案解析

2023年岳阳市中考数学考试试卷及答案解析

2023年岳阳市中考数学考试试卷及答案解析一、选择题(本大题共8小题,每小题3分,满分24分.在每小题给出的四个选项中,选出符合要求的一项)1.2023的相反数是()A.12023 B.2023- C.2023 D.12023-【答案】B【解析】【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:2023的相反数是2023-,故选:B .【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.2.下列运算结果正确的是()A.23a a a ⋅= B.623a a a ÷= C.33a a -= D.222()ab a b -=-【答案】A【解析】【分析】根据同底数幂的乘法,同底数幂的除法,合并同类项法则,完全平方公式,进行计算即可求解.【详解】解:A 、23a a a ⋅=,故该选项正确,符合题意;B 、624a a a ÷=,故该选项不正确,不符合题意;C 、32a a a -=,故该选项不正确,不符合题意;D 、222()2a b a ab b -=-+,故该选项不正确,不符合题意;故选:A .【点睛】本题考查了同底数幂的乘法,同底数幂的除法,合并同类项,完全平方公式,熟练掌握同底数幂的乘法,同底数幂的除法,合并同类项法则,完全平方公式是解题的关键.3.下列几何体的主视图是圆的是()A. B. C. D.【答案】A【解析】【分析】根据主视图的概念找出各种几何体的主视图即可.【详解】解:A 、主视图为圆,符合题意;B 、主视图为正方形,不符合题意;C 、主视图为三角形,不符合题意;D 、主视图为并排的两个长方形,不符合题意.故选:A .【点睛】本题考查简单几何体的三视图,解题的关键是能够理解主视图的概念以及对常见的几何体的主视图有一定的空间想象能力.4.已知AB CD ,点E 在直线AB 上,点,F G 在直线CD 上,EG EF ⊥于点,40E AEF ∠=︒,则EGF ∠的度数是()A.40︒B.45︒C.50︒D.60︒【答案】C【解析】【分析】根据平行线的性质和直角三角形两锐角互余分析计算求解.【详解】解:∵AB CD ,∴40AEF EFG ︒∠=∠=,∵EG EF ⊥,∴9050EGF EFG ∠=︒-∠=︒,故选:C .【点睛】本题考查平行线的性质和直角三角形两锐角互余,掌握两直线平行,内错角相等以及直角三角形两锐角互余是解题关键.5.在5月份跳绳训练中,妍妍同学一周成绩记录如下:176,178,178,180,182,185,189(单位:次/分钟),这组数据的众数和中位数分别是()A.180,182B.178,182C.180,180D.178,180【答案】D【解析】【分析】根据众数和中位数的定义即可得到答案.【详解】解:数据从小到大排列为176,178,178,180,182,185,189,出现次数最多的是178,共出现2次,众数是178,中位数为180.故选:D【点睛】此题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数,一组数据按照大小顺序排列后,处在中间位置或中间两个数的平均数叫做中位数,熟练掌握定义是解题的关键.6.下列命题是真命题的是()A.同位角相等B.菱形的四条边相等C.正五边形是中心对称图形D.单项式25ab 的次数是4【答案】B【解析】【分析】根据平行线的性质,菱形的性质,正五边形定义,中心对称图形的定义,单项式次数的定义求解.【详解】A.两平行线被第三条直线所截,同位角相等,故此命题为假命题;B.根据菱形的性质,菱形的四条边相等,故此命题为真命题;C.正五边形不符合中心对称图形的定义,不是中心对称图形,故此命题为假命题;5ab的次数是3,故此命题是假命题;D.单项式2故选:B.【点睛】本题考查平行线的性质,菱形的性质,正五边形定义,中心对称图形的定义,单项式次数的定义,熟练掌握上述知识是关键.7.我国古代数学名著《九章算术》中有这样一道题:“今有圆材,径二尺五寸.欲为方版,令厚七寸,问广几何?”结合右图,其大意是:今有圆形材质,直径BD为25寸,要做成方形板材,使其厚度CD达到7寸.则BC的长是()A.寸B.25寸C.24寸D.7寸【答案】C【解析】【分析】根据矩形的性质,勾股定理求解.【详解】由题意知,四边形ABCD是矩形,BC CD∴⊥∴在Rt BCDBC==中,24故选:C.【点睛】本题考查矩形的性质,勾股定理;由矩形的性质得出直角三角形是解题的关键.8.若一个点的坐标满足(),2k k ,我们将这样的点定义为“倍值点”.若关于x 的二次函数()()212y t x t x s =++++(,s t 为常数,1t ≠-)总有两个不同的倍值点,则s 的取值范围是()A.1s <- B.0s < C.01s << D.10s -<<【答案】D【解析】【分析】利用“倍值点”的定义得到方程()210t x tx s +++=,则方程的0∆>,可得2440t ts s -->,利用对于任意的实数s 总成立,可得不等式的判别式小于0,解不等式可得出s 的取值范围.【详解】解:由“倍值点”的定义可得:()()2212x t x t x s =++++,整理得,()210t x tx s +++=∵关于x 的二次函数()()212y t x t x s =++++(,s t 为常数,1t ≠-)总有两个不同的倍值点,∴()22=41440,t t s t ts s ∆-+=-->∵对于任意实数s 总成立,∴()()24440,s s --⨯-<整理得,216160,s s +<∴20,s s +<∴()10s s +<,∴010s s <⎧⎨+>⎩,或010s s >⎧⎨+<⎩,当010s s <⎧⎨+>⎩时,解得10s -<<,当010s s >⎧⎨+<⎩时,此不等式组无解,∴10s -<<,故选:D .【点睛】本题主要考查了二次函数图象上点的坐标特征,一元二次方程根的判别式以及二次函数与不等式的关系,理解新定义并能熟练运用是解答本题的关键.二、填空题(本大题共8小题,每小题4分,满分32分)9.函数1y=x 2-中,自变量x 的取值范围是____.【答案】x 2≠【解析】【详解】解:由题意知:x -2≠0,解得x ≠2;故答案为x ≠2.10.近年来,岳阳扛牢“守护好一江碧水”责任,水在变清,岸在变绿,洞庭湖真正成为鸟类的天堂.2022年冬季,洞庭湖区越冬水鸟数量达37.83万只,数据378300用科学记数法表示为_________.【答案】53.78310⨯【解析】【分析】用科学记数法表示绝对值较大的数时,一般形式为10n a ⨯,其中1||10a ≤<,n 为整数.【详解】解:53.78378300310=⨯.故答案为:53.78310⨯.【点睛】本题考查了科学记数法,科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原来的数,变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数,确定a 与n 的值是解题的关键.11.有两个女生小合唱队,各由6名队员组成,甲队与乙队的平均身高均为160cm x =,甲队身高方差2 1.2s =甲,乙队身高方差2 2.0s =乙,两队身高比较整齐的是_________队.(填“甲”或“乙”)【答案】甲【解析】【分析】根据方差越小,波动越小,越稳定判断即可.【详解】∵2 1.2s =甲,2 2.0s =乙,且22s s 甲乙<∴甲队稳定,故答案为:甲.【点睛】本题考查了方差的决策性,熟练掌握方差的意义是解题的关键.12.如图,①在,OA OB 上分别截取线段,OD OE ,使OD OE =;②分别以,D E 为圆心,以大于12DE 的长为半径画弧,在AOB ∠内两弧交于点C ;③作射线OC .若60AOB ∠=︒,则AOC ∠=_________︒.【答案】30【解析】【分析】由作图可知OC 是AOB ∠的角平分线,根据角平分线的定义即可得到答案.【详解】解:由题意可知,OC 是AOB ∠的角平分线,∴11603022AOC AOB ∠=∠=⨯︒=︒.故答案为:30【点睛】此题考查角平分线的作图、角平分线相关计算,熟练掌握角平分线的作图是解题的关键.13.观察下列式子:21110-=⨯;22221-=⨯;23332-=⨯;24443-=⨯;25554-=⨯;…依此规律,则第n (n 为正整数)个等式是_________.【答案】()21n n n n -=-【解析】【分析】根据等式的左边为正整数的平方减去这个数,等式的右边为这个数乘以这个数减1,即可求解.【详解】解:∵21110-=⨯;22221-=⨯;23332-=⨯;24443-=⨯;25554-=⨯;…∴第n (n 为正整数)个等式是()21n n n n -=-,故答案为:()21n n n n -=-.【点睛】本题考查了数字类规律,找到规律是解题的关键.14.已知关于x 的一元二次方程22220x mx m m ++-+=有两个不相等.....的实数根,且12122x x x x ++⋅=,则实数m =_________.【答案】3【解析】【分析】利用一元二次方程22220x mx m m ++-+=有两个不相等.....的实数根求出m 的取值范围,由根与系数关系得到212122,2x x m x x m m +=-=-+,代入12122x x x x ++⋅=,解得m 的值,根据求得的m 的取值范围,确定m 的值即可.【详解】解:∵关于x 的一元二次方程22220x mx m m ++-+=有两个不相等.....的实数根,∴()()22242480m m m m ∆=--+=->,解得m>2,∵212122,2x x m x x m m +=-=-+,12122x x x x ++⋅=,∴2222m m m -+-+=,解得123,0m m ==(不合题意,舍去),∴3m =故答案为:3【点睛】此题考查一元二次方程根的判别式和一元二次方程根与系数关系,熟练掌握根的判别式和根与系数关系的内容是解题的关键.15.2023年岳阳举办以“跃马江湖”为主题的马拉松赛事.如图,某校数学兴趣小组在A 处用仪器测得赛场一宣传气球顶部E 处的仰角为21.8︒,仪器与气球的水平距离BC 为20米,且距地面高度AB 为1.5米,则气球顶部离地面的高度EC 是_________米(结果精确到0.1米,sin 21.80.3714,cos21.80.9285,tan 21.80.4000︒≈︒≈︒≈).【答案】9.5【解析】【分析】通过解直角三角形ADE ,求出DE ,再根据EC ED DC =+求出结论即可.【详解】解:根据题意得,四边形ABCD 是矩形,∴20m, 1.5m,AD BC DC AB ====在Rt ADE △中,tan ,DE DAE AD∠=∴tan 200.4008.0m DE AD DAE =∠≈⨯=,∴8.0 1.59.5mEC ED DC =+=+=故答案为:9.5【点睛】此题考查了解直角三角形的应用-仰角俯角问题.此题难度适中,注意能借助仰角构造直角三角形并解直角三角形是解此题的关键.16.如图,在O 中,AB 为直径,BD 为弦,点C 为 BD的中点,以点C 为切点的切线与AB 的延长线交于点E .(1)若30,6A AB ∠=︒=,则 BD 的长是_________(结果保留π);(2)若13CF AF =,则CE AE =_________.【答案】①.2π②.12【解析】【分析】(1)连接,OC OD ,根据点C 为 BD的中点,根据已知条件得出120BOD ∠=︒,然后根据弧长公式即可求解;(2)连接OC ,根据垂径定理的推论得出OC BD ⊥,EC 是O 的切线,则OC EC ⊥,得出EC BD ∥,根据平行线分线段成比例得出13EB AB =,设2EB a =,则6AB a =,勾股定理求得EC ,J 进而即可求解.【详解】解:(1)如图,连接,OC OD ,∵点C 为 BD的中点,∴ BCCD =,又∵30A ∠=︒,∴260BOC COD A ∠=∠=∠=︒,∴120BOD ∠=︒,∵6AB =,∴132OB AB ==,∴ 120π32π180BD l =⨯⨯=,故答案为:2π.(2)解:如图,连接OC ,∵点C 为 BD的中点,∴ BCCD =,∴OC BD ⊥,∵EC 是O 的切线,∴OC EC ⊥,∴EC BD∥∴CF EB AF AB =,∵13CF AF =,∴13EB AB =,设2EB a =,则6AB a =,3,5BO a EO EB BO a ==+=,∴4EC a ===,268AE a a a =+=,∴4182CE a AE a ==.故答案为:12.【点睛】本题考查了垂径定理,圆周角定理,切线的性质,弧长公式,平行线分线段成比例定理等知识,综合性较强,熟练掌握和灵活运用相关知识是解题的关键.三、解答题(本大题共8小题,满分24分.解答应写出必要的文字说明、证明过程或演算步骤)17.计算:202tan 601(3)π-︒+---.【答案】2【解析】【分析】根据幂的运算,特殊角的函数值,零指数幂的运算,绝对值的化简计算即可.【详解】202tan 601(3)π-︒+---4112=-=.【点睛】本题考查了幂的运算,特殊角的函数值,零指数幂的运算,绝对值的化简,熟练掌握运算的法则是解题的关键.18.解不等式组:213,24.x x x x +>+⎧⎨-<⎩①②【答案】24x <<【解析】【分析】按照解不等式组的基本步骤求解即可.【详解】∵213,24.x x x x +>+⎧⎨-<⎩①②,解①的解集为2x >;解②的解集为4x <,∴原不等式组的解集为24x <<.【点睛】本题考查了不等式组的解法,熟练掌握解不等式组的基本步骤是解题的关键.19.如图,反比例函数k y x=(k 为常数,0k ≠)与正比例函数y mx =(m 为常数,0m ≠)的图像交于()1,2,A B 两点.(1)求反比例函数和正比例函数的表达式;(2)若y .轴.上有一点()0,,C n ABC △的面积为4,求点C 的坐标.【答案】(1)2y x =;2y x =(2)()0,4C 或()0,4C -【解析】【分析】(1)把()1,2A 分别代入函数的解析式,计算即可.(2)根据反比例函数的中对称性质,得到()1,2B --,设()0,C n ,根据()12ABC A B S n x x =- ,列式计算即可.【小问1详解】∵反比例函数k y x=(k 为常数,0k ≠)与正比例函数y mx =(m 为常数,0m ≠)的图像交于()1,2,A B 两点,∴2,211k m ==⨯,解得2,2k m ==,故反比例函数的表达式为2y x =,正比例函数的表达式2y x =.【小问2详解】∵反比例函数k y x=(k 为常数,0k ≠)与正比例函数y mx =(m 为常数,0m ≠)的图像交于()1,2,A B 两点,根据反比例函数图象的中心对称性质,∴()1,2B --,设()0,C n ,根据题意,得()12ABC A B S n x x =- ,∴1242n ⨯=,解得4n =或n =-4,故点C 的坐标为()0,4C 或()0,4C -.【点睛】本题考查了反比例函数与正比例函数的综合,反比例函数的中心对称性,三角形面积的特殊坐标表示法,熟练掌握反比例函数与正比例函数的综合,反比例函数的中心对称性是解题的关键.20.为落实中共中央办公厅、国务院办公厅印发的《关于实施中华优秀传统文化传承发展工程意见》,深入开展“我们的节日”主题活动,某校七年级在端午节来临之际,成立了四个社团:A 包粽子,B 腌咸蛋,C 酿甜酒,D 摘艾叶.每人只参加一个社团的情况下,随机调查了部分学生,根据调查结果绘制了两幅不完整的统计图:(1)本次共调查了_________名学生;(2)请补全条形统计图;(3)学校计划从四个社团中任选两个社团进行成果展示,请用列表或画树状图的方法,求同时选中A 和C 两个社团的概率.【答案】(1)100(2)见解析(3)16【解析】【分析】(1)根据样本容量=频数÷所占百分数,计算即可.(2)先计算B 的人数,再完善统计图即可.(3)利用画树状图计算即可.【小问1详解】∵2525%100÷=(人),故答案为:100.【小问2详解】B 的人数:10040251520---=(人),补全统计图如下:.【小问3详解】根据题意,画树状图如下:一共有12种等可能性,选中A ,C 的等可能性有2种,故同时选中A 和C 两个社团的概率为21126=.【点睛】本题考查了条形统计图、扇形统计图,画树状图求概率,熟练掌握统计图的意义,准确画树状图是解题的关键.21.如图,点M 在ABCD Y 的边AD 上,BM CM =,请从以下三个选项中①12∠=∠;②AM DM =;③34∠∠=,选择一个合适的选项作为已知条件,使ABCD Y为矩形.(1)你添加的条件是_________(填序号);(2)添加条件后,请证明ABCD Y 为矩形.【答案】(1)答案不唯一,①或②(2)见解析【解析】【分析】(1)根据有一个角是直角的平行四边形是矩形进行选取;(2)通过证明ABM DCM △≌△可得A D ∠=∠,然后结合平行线的性质求得90A ∠=︒,从而得出ABCD Y 为矩形.【小问1详解】解:①或②【小问2详解】添加条件①,ABCD Y 为矩形,理由如下:在ABCD Y 中AB CD =,AB CD ,在ABM 和DCM △中12AB CD BM CM =⎧⎪∠=∠⎨⎪=⎩,∴ABM DCM△≌△∴A D ∠=∠,又∵AB CD ,∴180A D ∠+∠=︒,∴90A D ∠=∠=︒,∴ABCD Y 为矩形;添加条件②,ABCD Y 为矩形,理由如下:在ABCD Y 中AB CD =,AB CD ,在ABM 和DCM △中AB CD AM DM BM CM =⎧⎪=⎨⎪=⎩,∴ABM DCM△≌△∴A D ∠=∠,又∵AB CD ,∴180A D ∠+∠=︒,∴90A D ∠=∠=︒,∴ABCD Y 为矩形【点睛】本题考查矩形的判定,全等三角形的判定和性质,掌握平行四边形的性质和矩形的判定方法(有一个角是直角的平行四边形是矩形)是解题关键.22.水碧万物生,岳阳龙虾好.小龙虾产业已经成为岳阳乡村振兴的“闪亮名片”.已知翠翠家去年龙虾的总产量是4800kg ,今年龙虾的总产量是6000kg ,且去年与今年的养殖面积相同,平均亩产量去年比今年少60kg ,求今年龙虾的平均亩产量.【答案】今年龙虾的平均亩产量300kg .【解析】【分析】设今年龙虾的平均亩产量是x kg ,则去年龙虾的平均亩产量是()60x -kg ,根据去年与今年的养殖面积相同列出分式方程,解方程并检验即可.【详解】解:设今年龙虾的平均亩产量是x kg ,则去年龙虾的平均亩产量是()60x -kg ,由题意得,6000480060x x =-,解得300x =,经检验,300x =是分式方程的解且符合题意,答:今年龙虾的平均亩产量300kg .【点睛】此题考查了分式方程的实际应用,读懂题意,正确列出方程是解题的关键.23.如图1,在ABC 中,AB AC =,点,M N 分别为边,AB BC 的中点,连接MN .初步尝试:(1)MN 与AC 的数量关系是_________,MN 与AC 的位置关系是_________.特例研讨:(2)如图2,若90,BAC BC ∠=︒=BMN 绕点B 顺时针旋转α(α为锐角),得到BEF △,当点,,A E F 在同一直线上时,AE 与BC 相交于点D ,连接CF .(1)求BCF ∠的度数;(2)求CD 的长.深入探究:(3)若90BAC ∠<︒,将BMN 绕点B 顺时针旋转α,得到BEF △,连接AE ,CF .当旋转角α满足0360α︒<<︒,点,,C E F 在同一直线上时,利用所提供的备用图探究BAE ∠与ABF ∠的数量关系,并说明理由.【答案】初步尝试:(1)12MN AC =;MN AC ∥;(2)特例研讨:(1)30BCF ∠=︒;(2)CD =;(3)BAE ABF ∠=∠或180BAE ABF ∠∠=+︒【解析】【分析】(1)AB AC =,点,M N 分别为边,AB BC 的中点,则MN 是ABC 的中位线,即可得出结论;(2)特例研讨:(1)连接EM ,,MN NF ,证明BME 是等边三角形,BNF 是等边三角形,得出30FCB ∠=︒;(2)连接AN ,证明ADN BDE ∽,则222DN AN DE BE ===,设DE x =,则DN =,在Rt ABE △中,2,BE AE ==,则AD x =,在Rt ADN △中,222AD DN AN =+,勾股定理求得4x =-,则CD DN CN =+=+;(3)当点,,C E F 在同一直线上时,且点E 在FC 上时,设ABC ACB θ∠=∠=,则1802BAC θ∠=︒-,得出180BEC BAC ∠+∠=︒,则,,,A B E C 在同一个圆上,进而根据圆周角定理得出EAC EBC αθ∠=∠=-,表示BAE ∠与ABF ∠,即可求解;当F 在EC 上时,可得,,,A B E C 在同一个圆上,设ABC ACB θ∠=∠=,则1802BAC BEF θ∠=∠=︒-,设NBF β∠=,则EBM β∠=,则360αβ+=︒,表示BAE ∠与ABF ∠,即可求解.【详解】初步尝试:(1)∵AB AC =,点,M N 分别为边,AB BC 的中点,∴MN 是ABC 的中位线,∴12MN AC =;MN AC ∥;故答案是:12MN AC MN AC = ;;(2)特例研讨:(1)如图所示,连接EM ,,MN NF ,∵MN 是BAC 的中位线,∴MN AC ∥,∴90BMN BAC ∠=∠=︒∵将BMN 绕点B 顺时针旋转α(α为锐角),得到BEF △,∴,BE BM BF BN ==;90BEF BMN ∠=∠=︒∵点,,A E F 在同一直线上时,∴90AEB BEF ∠=∠=︒又∵在Rt ABE △中,M 是斜边AB 的中点,∴12ME AB MB==∴BM ME BE==∴BME 是等边三角形,∴60ABE ∠=︒,即旋转角60α=︒∴60,NBF BN BF∠=︒=∴BNF 是等边三角形,又∵,BN NC BN NF ==,∴NF NC =,∴∠=∠NCF NFC ,∴260BNF NCF NFC NFC ∠=∠+∠=∠=︒,∴30FCB ∠=︒,(2)如图所示,连接AN ,∵AB AC =,90,BAC BC ∠=︒=,∴42AB BC ==,45ACB ABC ∠=∠=︒,∵,90ADN BDE ANB BED ∠=∠∠=∠=︒,∴ADN BDE ∽,∴2222DNANDE BE ===,设DE x =,则2DN =,在Rt ABE △中,2,23BE AE ==,则23AD x =,在Rt ADN △中,222AD DN AN =+,∴()()(22223222x -=+,解得:423x =-或34x =-(舍去)∴22226CD DN CN x =+=+,(3)如图所示,当点,,C E F 在同一直线上时,且点E 在FC 上时,∵AB AC =,∴A ABC CB =∠∠,设ABC ACB θ∠=∠=,则1802BAC θ∠=︒-,∵MN 是ABC 的中位线,∴MN AC∥∴MNB MBN θ∠=∠=,∵将BMN 绕点B 顺时针旋转α,得到BEF △,∴EBF MBN ≌,MBE NBF α∠=∠=,∴EBF EFB θ∠=∠=∴1802BEF θ∠=︒-,∵点,,C E F 在同一直线上,∴2BEC θ∠=∴180BEC BAC ∠+∠=︒,∴,,,A B E C 在同一个圆上,∴EAC EBC αθ∠=∠=-∴()()1802BAE BAC EAC θαθ∠=∠-∠=︒---180αθ=︒--∵ABF αθ∠=+,∴180BAE ABF ∠∠=+︒;如图所示,当F 在EC 上时,∵,BEF BAC BC BC∠=∠=∴,,,A B E C 在同一个圆上,设ABC ACB θ∠=∠=,则1802BAC BEF θ∠=∠=︒-,将BMN 绕点B 顺时针旋转α,得到BEF △,设NBF β∠=,则EBM β∠=,则360αβ+=︒,∴ABF θβ∠=-,∵BFE EBF θ∠=∠=,EFB FBC FCB∠=∠+∠∴ECB FCB EFB FBC θβ∠=∠=∠-∠=-,∵ EBEB =∴EAB ECB θβ∠=∠=-∴BAE ∠ABF=∠综上所述,BAE ABF ∠=∠或180BAE ABF ∠∠=+︒【点睛】本题考查了圆周角定理,圆内接四边形对角互补,相似三角形的性质与判定,旋转的性质,中位线的性质与判定,等腰三角形的性质与判定,三角形内角和定理,三角形外角的性质,勾股定理,熟练掌握以上知识是解题的关键.24.已知抛物线21:Q y x bx c =-++与x 轴交于()3,0,A B -两点,交y 轴于点()0,3C .(1)请求出抛物线1Q 的表达式.(2)如图1,在y 轴上有一点()0,1D -,点E 在抛物线1Q 上,点F 为坐标平面内一点,是否存在点,E F 使得四边形DAEF 为正方形?若存在,请求出点,E F 的坐标;若不存在,请说明理由.(3)如图2,将抛物线1Q 向右平移2个单位,得到抛物线2Q ,抛物线2Q 的顶点为K ,与x 轴正半轴交于点H ,抛物线1Q 上是否存在点P ,使得CPK CHK ∠=∠?若存在,请求出点P 的坐标;若不存在,请说明理由.【答案】(1)223y x x =--+(2)()2,3E -;()1,2F (3)点P 的坐标为(1,0)或(2,3)-【解析】【分析】(1)把()()300,3A C -,,代入21:Q y x bx c =-++,求出2,3b c =-=即可;(2)假设存在这样的正方形,过点E 作ER x ⊥于点R ,过点F 作FI y ⊥轴于点I ,证明,EAR AOD FID DOA ≅≅ ,可得3,1,1,2,ER AR FI IO ====故可得()2,3E -,()1,2F ;(3)先求得抛物线2Q 的解析式为22(12)4(1)4y x x =-+-+=--+,得出(1,4)K ,()3,0H ,运用待定系数法可得直线BC 的解析式为3y x =-+,过点K 作KT y ⊥轴于点T ,连接BC ,设KP 交直线BC 于M 或N ,如图2,过点C 作PS y ⊥轴交BK 于点S ,交抛物线1Q 于点P ,连接PK ,利用等腰直角三角形性质和三角函数定义可得21tan 332CK CHK CH ∠===,进而可求得点P 的坐标.【小问1详解】∵抛物线21:Q y x bx c =-++与x 轴交于()3,0,A -两点,交y 轴于点()0,3C ,∴把()()300,3A C -,,代入21:Q y x bx c =-++,得,930,3b c c --+=⎧⎨=⎩解得,2,3b c =-⎧⎨=⎩∴解析式为:223y x x =--+;【小问2详解】假设存在这样的正方形DAEF ,如图,过点E 作ER x ⊥于点R ,过点F 作FI y ⊥轴于点I ,∴90,AER EAR ∠+∠=︒∵四边形DAEF 是正方形,∴,90,AE AD EAD =∠=︒∴90,EAR DAR ∠+∠=︒∴,AER DAO ∠=∠又90,ERA AOD ∠=∠=︒∴AER DAO ≅ ,∴,,AR DO ER AO ==∵()()3,0,0,1,A D --∴3,1,OA OD ==1,3,AR ER ∴==∴312,OR OA AR =-=-=∴()2,3E -;同理可证明:FID DOA ≅ ,∴1,3,FI DO DI AO ====∴312,IO DI DO =-=-=∴()1,2F ;【小问3详解】解:抛物线1Q 上存在点P ,使得CPK CHK ∠=∠.2223(1)4y x x x =--+=-++ ,∴抛物线1Q 的顶点坐标为(1,4)-,将抛物线1Q 向右平移2个单位,得到抛物线2Q ,∴抛物线2Q 的解析式为22(12)4(1)4y x x =-+-+=--+,抛物线2Q 的顶点为K ,与x 轴正半轴交于点H ,(1,4)K ∴,()3,0H ,设直线BC 的解析式为y kx n =+,把(0,3)C ,()3,0H 代入得330n k n =⎧⎨+=⎩,解得:13k n =-⎧⎨=⎩,∴直线BC 的解析式为3y x =-+,过点K 作KT y ⊥轴于点T ,连接BC ,设KP 交直线BC 于M 或N ,如图2,过点C 作PS y ⊥轴交BK 于点S ,交抛物线1Q 于点P ,连接PK ,则(0,4)T ,(,3)M m m -+,(,3)N t t -+,1KT TC ∴==,90KTC ∠=︒,CKT ∴△是等腰直角三角形,45KCT ∴∠=︒,22CK ==,3OH OC == ,90COH ∠=︒,COH ∴△是等腰直角三角形,45HCO ∴∠=︒,232CH OC ==,18090KCH KCT HCO ∴∠=︒-∠-∠=︒,21tan 332CKCHK CH ∴∠===,CPK CHK ∠=∠ ,1tan tan 3CPK CHK ∴∠=∠=,1tan 3OBBCO OC ∠== ,BCO CHK ∴∠=∠,∵BK OC ∥,CBK BCO ∴∠=∠,CBK CHK ∴∠=∠,即点P 与点B 重合时,CPK CHK ∠=∠,1)0(1,P ∴;1SK = ,3PS =,1tan 3SK CPK PS ∴∠==,CPK CHK ∴∠=∠,点P 与点C 关于直线=1x -对称,(2,3)P ∴-;综上所述,抛物线1Q 上存在点P ,使得CPK CHK ∠=∠,点P 的坐标为(1,0)或(2,3)-.【点睛】本题是二次函数综合题,考查了待定系数法求解析式,二次函数的性质,全等三角形的判定与性质,正方形的性质等知识,运用数形结合思想解决问题是解题的关键.。

2020年湖南省岳阳市中考数学试卷(含解析)印刷版

2020年湖南省岳阳市中考数学试卷(含解析)印刷版

5.(3 分)如图,DA⊥AB,CD⊥DA,∠B=56°,则∠C 的度数是( )
A.154°
B.144°
C.134°
6
D.124°
【分析】根据平行线的判定和性质定理即可得到结论.
【解答】解:∵DA⊥AB,CD⊥DA,∴∠A=∠D=90°,
∴∠A+∠D=180°,∴AB∥CD,∴∠B+∠C=180°,
小时多搬运 20kg,且 A 型机器人搬运 1200kg 所用时间与 B 型机器人搬运 1000kg 所用时间相等,求这
3
两种机器人每小时分别搬运多少原料.
22.(8 分)共抓长江大保护,建设水墨丹青新岳阳,推进市中心城区污水系统综合治理项目,需要从如图 A,B 两地向 C 地新建 AC,BC 两条笔直的污水收集管道,现测得 C 地在 A 地北偏东 45°方向上,在 B 地北偏西 68°向上,AB 的距离为 7km,求新建管道的总长度.(结果精确到 0.1km,sin22°≈0.37,cos22° ≈0.93,tan22°≈0.40, ≈1.41)
一、选择题(本大题共 8 小题,每小题 3 分,满分 24 分,在每道小题给出的四个选项中,选出符合要求 的一项)
1.(3 分)﹣2020 的相反数是( )
A.﹣2020
B.2020
C.﹣
D.
【分析】直接利用相反数的定义得出答案.
【解答】解:﹣2020 的相反数是:2020.故选:B.
2.(3 分)2019 年以来,我国扶贫攻坚取得关键进展,农村贫困人口减少 11090000 人,数据 11090000 用
5.(3 分)如图,DA⊥AB,CD⊥DA,∠B=56°,则∠C 的度数是( )
A.154°

湖南省岳阳市中考数学试卷(含答案)

湖南省岳阳市中考数学试卷(含答案)

湖南省岳阳市中考数学试卷参考答案与试题解析一、选择题(本大题8道小题,每小题3分,满分24分)1.(3分)(2014•岳阳)实数2的倒数是()A.﹣B.±C.2D.考点:实数的性质.分析:根据乘积是1的两个数叫做互为倒数求解即可.解答:解:∵2×=1,∴实数2的倒数是.故选:D.点评:本题考查了实数的性质,主要利用了倒数的定义,熟记概念是解题的关键.2.(3分)(2014•岳阳)下列计算正确的是()A.2a+5a=7a B.2x﹣x=1 C.3+a=3a D.x2•x3=x6考点:同底数幂的乘法;合并同类项.分析:根据合并同类项、同底数幂的运算法则计算.解答:解:A、符合合并同类项法则,故本选项正确;B、2x﹣x=x≠1,故本选项错误;C、3和a不是同类项,故本选项错误;D、x2•x3≠x6=x5,故本选项错误.故选:A.点评:本题考查了同底数幂的乘法与合并同类项,熟悉合并同类项法则是解题的关键.3.(3分)(2014•岳阳)下列几何体中,主视图是三角形的是()A.B.C.D.考点:简单几何体的三视图.分析:找到从正面看所得到的图形即可.解答:解:A、主视图为圆,故选项错误;B、主视图为正方形,故选项错误;C、主视图为三角形,故选项正确;D、主视图为长方形,故选项错误.故选:C.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.(3分)(2014•岳阳)2014年“五一”小长假,岳阳楼、君山岛景区接待游客约120000人次,将120000用科学记数法表示为()A.12×104B.1.2×105C.1.2×106D.12万考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于120000有6位,所以可以确定n=6﹣1=5.解答:解:120 000=1.2×105.故选:B.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.5.(3分)(2014•岳阳)不等式组的解集是()A.x>2 B.x>1 C.1<x<2 D.无解考点:不等式的解集.分析:根据不等式组解集的四种情况,进行选择即可.解答:解:根据同大取较大的原则,不等式组的解集为x>2,故选:A.点评:本题考查了不等式的解集,是基础题比较简单.解答此题要根据不等式组解集的求法解答.求不等式组的解集,应注意:同大取较大,同小取较小,小大大小中间找,大大小小解不了.6.(3分)(2014•岳阳)已知扇形的圆心角为60°,半径为1,则扇形的弧长为()A.B.πC.D.考点:弧长的计算.分析:利用弧长公式l=即可直接求解.解答:解:弧长是:=.故选:D.点评:本题考查了弧长公式,正确记忆公式是关键.7.(3分)(2014•岳阳)下列因式分解正确的是()A.x2﹣y2=(x﹣y)2B.a2+a+1=(a+1)2C.x y﹣x=x(y﹣1)D.2x+y=2(x+y)考点:因式分解-运用公式法;因式分解-提公因式法.分析:分别利用公式法以及提取公因式法分解因式进而判断得出即可.解答:解:A、x2﹣y2=(x+y)(x﹣y),故此选项错误;B、a2+a+1无法因式分解,故此选项错误;C、xy﹣x=x(y﹣1),正确;D、2x+y无法因式分解,故此选项错误;故选:C.点评:此题主要考查了公式法以及提取公因式法分解因式,熟练掌握乘法公式是解题关键.8.(3分)(2014•岳阳)如图,已知点A是直线y=x与反比例函数y=(k>0,x>0)的交点,B是y=图象上的另一点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过点P作PM⊥x轴,PN⊥y轴,垂足分别为M,N.设四边形OMPN的面积为S,P点运动时间为t,则S关于t的函数图象大致为()A.B.C.D.考点:动点问题的函数图象.分析:根据点P的位置,分①点P在OA上时,四边形OMPN为正方形;②点P在反比例函数图象AB段时,根据反比例函数系数的几何意义,四边形OMPN的面积不变;③点P在BC段,设点P运动到点C的总路程为a,然后表示出四边形OMPN的面积,最后判断出函数图象即可得解.解答:解:设点P的运动速度为v,①由于点A在直线y=x上,故点P在OA上时,四边形OMPN为正方形,四边形OMPN的面积S=(vt)2,②点P在反比例函数图象AB时,由反比例函数系数几何意义,四边形OMPN的面积S=k;③点P在BC段时,设点P运动到点C的总路程为a,则四边形OMPN的面积=OC•(a﹣vt)=﹣t+,纵观各选项,只有B选项图形符合.故选:B.点评:本题考查了动点问题函数图象,读懂题目信息,根据点P的运动位置的不同,分三段表示出函数解析式是解题的关键.二、填空题(本大题8道小题,每小题4分,满分32分)9.(4分)(2014•岳阳)计算:﹣=﹣3.考点:算术平方根.分析:根据算术平方根的定义计算即可得解.解答:解:﹣=﹣3.故答案为:﹣3.点评:本题考查了算术平方根的定义,是基础题,熟记概念是解题的关键.10.(4分)(2014•岳阳)方程x2﹣3x+2=0的根是1或2.考点:解一元二次方程-因式分解法.专题:因式分解.分析:由题已知的方程进行因式分解,将原式化为两式相乘的形式,再根据两式相乘值为0,这两式中至少有一式值为0,求出方程的解.解答:解:因式分解得,(x﹣1)(x﹣2)=0,解得x1=1,x2=2.故答案为:1或2点评:本题考查了因式分解法解一元二次方程,当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根,因式分解法是解一元二次方程的一种简便方法,要会灵活运用.11.(4分)(2014•岳阳)体育测试中,某班某一小组1分钟跳绳成绩如下:176,176,168,150,190,185,180(单位:个),则这组数据的中位数是176.考点:中位数.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.解答:解:先对这组数据按从小到大的顺序重新排序:150,168,176,176,180,185,190.位于最中间的数是176,所以这组数据的中位数是176.故答案为:176.点评:本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.12.(4分)(2014•岳阳)从1,2,3,4,5,6,7,8,9这九个自然数中,任取一个数是奇数的概率是.考点:概率公式.分析:根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.解答:解:∵从1到9这九个自然数中一共有5个奇数,∴任取一个,是奇数的概率是:,故答案为:.点评:本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.(4分)(2014•岳阳)如图,在△ABC中,点E,F分别是AB,AC的中点且EF=1,则BC=2.考点:三角形中位线定理.分析:由E、F分别是AB、AC的中点,可得EF是△ABC的中位线,直接利用三角形中位线定理即可求BC.解答:解:∵△ABC中,E、F分别是AB、AC的中点,EF=1,∴EF是△ABC的中位线,∴BC=2EF=2×1=2,故答案为:2.点评:本题考查了三角形中位线的性质,三角形的中位线是指连接三角形两边中点的线段,中位线的特征是平行于第三边且等于第三边的一半.14.(4分)(2014•岳阳)如图,若AB∥CD∥EF,∠B=40°,∠F=30°,则∠BCF=70°.考点:平行线的性质.分析:由“两直线平行,内错角相等”、结合图形解题.解答:解:如图,∵AB∥CD∥EF,∴∠B=∠1,∠F=∠2.又∠B=40°,∠F=30°,∴∠BCF=∠1+∠2=70°.故答案是:70°.点评:本题考查了平行线的性质.平行线性质定理定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.定理2:两条平行线被地三条直线所截,同旁内角互补..简单说成:两直线平行,同旁内角互补.定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.15.(4分)(2014•岳阳)观察下列一组数:、1、、、…,它们是按一定规律排列的那么这组数的第n个数是.(n为正整数)考点:规律型:数字的变化类.分析:根据题中所给出的数据找出规律,根据此规律即可得出结论.解答:解:∵第一个数=;第一个数1=;第三个数=;第四个数=;第五个数=;…,∴第n个数为:.故答案为:.点评:本题考查的是数字的变化类,根据题意找出规律是解答此题的关键.16.(4分)(2014•岳阳)如图,AB是⊙O的直径,P为AB延长线上的一个动点,过点P 作⊙O的切线,切点为C,连接AC,BC,作∠APC的平分线交AC于点D.下列结论正确的是②③④(写出所有正确结论的序号)①△CPD∽△DPA;②若∠A=30°,则PC=BC;③若∠CPA=30°,则PB=OB;④无论点P在AB延长线上的位置如何变化,∠CDP为定值.考点:切线的性质;三角形的角平分线、中线和高;三角形的外角性质;相似三角形的判定与性质.分析:①只有一组对应边相等,所以错误;②根据切线的性质可得∠PCB=∠A=30°,在直角三角形ABC中∠ABC=60°得出OB=BC,∠BPC=30°,解直角三角形可得PB=OC=BC;③根据切线的性质和三角形的外角的性质即可求得∠A=∠PCB=30°,∠ABC=60°,进而求得PB=BC=OB;④连接OC,根据题意,可知OC⊥PC,∠CPD+∠DPA+∠A+∠ACO=90°,可推出∠DPA+∠A=45°,即∠CDP=45°.解答:解:①∵∠CPD=∠DPA,∠CDP=∠DAP+∠DPA≠∠DAP≠∠PDA,∴△CPD∽△DPA错误;②连接OC,∵AB是直径,∠A=30°∴∠ABC=60°,∴OB=OC=BC,∵PC是切线,∴∠PCB=∠A=30°,∠OGP=90°,∴∠APC=30°,∴在RT△POC中,cot∠APC=cot30°==,∴PC=BC,正确;③∵∠ABC=∠APC+∠PCB,∠PCB=∠A,∴∠ABC=∠APC+∠A,∵∠ABC+∠A=90°,∴∠APC+2∠A=90°,∵∠APC=30°,∴∠A=∠PCB=30°,∴PB=BC,∠ABC=60°,∴OB=BC=OC,∴PB=OB;正确;④解:如图,连接OC,∵OC=OA,PD平分∠APC,∴∠CPD=∠DPA,∠A=∠ACO,∵PC为⊙O的切线,∴OC⊥PC,∵∠CPO+∠COP=90°,∴(∠CPD+∠DPA)+(∠A+∠ACO)=90°,∴∠DPA+∠A=45°,即∠CDP=45°;正确;故答案为:②③④;点评:本题主要考查切线的性质、等边三角形的性质、角平分线的性质、外角的性质,解题的关键在于作好辅助线构建直角三角形和等腰三角形.三、解答题(本大题共8道小题,满分64分)17.(6分)(2014•岳阳)计算:|﹣|+×+3﹣1﹣22.考点:实数的运算;负整数指数幂.专题:计算题.分析:原式第一项利用绝对值的代数意义化简,第二项利用二次根式的乘法法则计算,第三项利用负指数幂法则计算,最后一项利用乘方的意义化简,计算即可得到结果.解答:解:原式=+4+﹣4=1.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)(2014•岳阳)解分式方程:=.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:5x=3x﹣6,解得:x=﹣3,经检验x=﹣3是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.(8分)(2014•岳阳)在一次蜡烛燃烧实验中,蜡烛燃烧时剩余部分的高度y(cm)与燃烧时间x(h)之间为一次函数关系.根据图象提供的信息,解答下列问题:(1)求出蜡烛燃烧时y与x之间的函数关系式;(2)求蜡烛从点燃到燃尽所用的时间.考点:一次函数的应用.分析:(1)根据图象知,该函数是一次函数,且该函数图象经过点(0,24),(2,12).所以利用待定系数法进行解答即可;(2)由(1)中的函数解析式,令y=0,求得x的值即可.解答:解:(1)由于蜡烛燃烧时剩余部分的高度y(cm)与燃烧时间x(h)之间为一次函数关系.故设y与x之间的函数关系式为y=kx+b(k≠0).由图示知,该函数图象经过点(0,24),(2,12),则,解得.故函数表达式是y=﹣6x+24.(2)当y=0时,﹣6x+24=0解得x=4,即蜡烛从点燃到燃尽所用的时间是4小时.点评:此题考查一次函数的实际运用,理解题意,结合图象,利用待定系数法求一次函数解析式是关键.20.(8分)(2014•岳阳)某项球类比赛,每场比赛必须分出胜负,其中胜1场得2分,负1场得1分.某队在全部16场比赛中得到25分,求这个队胜、负场数分别是多少?考点:二元一次方程的应用.分析:设该队胜x场,负y场,就有x+y=16,2x+y=25两个方程,由两个方程建立方程组求出其解就可以了.解答:解:设该队胜x场,负y场,则解得.答:这个队胜9场,负7场.点评:本题考查了列二元一次方程组解实际问题的运用及二元一次方程组的解法,在解答时找到反映整个题意的等量关系建立方程时关键.21.(8分)(2014•岳阳)为了响应岳阳市政府“低碳出行、绿色出行”的号召,某中学数学兴趣小组在全校2000名学生中就上学方式随机抽取了400名学生进行抽样调查,经统计整理绘制出图a、图b两幅不完整的统计图:A:步行;B:骑自行车;C:乘公共交通工具;D:乘私家车;E:其他.请根据统计图提供的信息解答下列问题:(1)图a中“B”所在扇形的圆心角为90°;(2)请在图b中把条形统计图补充完整;(3)请根据样本数据估计全校骑自行车上学的学生人数.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)先求出“B”所在扇形的百分比,再乘360°就是“B”所在扇形的圆心角.(2)先求出C的学生数,再绘图.(3)用全校人数乘骑自行车上学的学生人数的百分比即可.解答:解:(1)图a中“B”所在扇形的百分比为:1﹣45%﹣10%﹣5%﹣15%=25%,图a中“B”所在扇形的圆心角为:25%×360°=90°.故答案为:90°.(2)C的学生数为:400×45%=180(人)(3)根据样本数据估计全校骑自行车上学的学生人数为:2000×25%=500(人).点评:本题主要考查了条形统计图,扇形统计图和用样本估计总体,解题的关键是把条形统计图和扇形统计图的数据相结合求解.22.(8分)(2014•岳阳)如图,矩形ABCD为台球桌面,AD=260cm,AB=130cm,球目前在E点位置,AE=60cm.如果小丁瞄准BC边上的点F将球打过去,经过反弹后,球刚好弹到D点位置.(1)求证:△BEF∽△CDF;(2)求CF的长.考点:相似三角形的应用.分析:(1)利用“两角法”证得这两个三角形相似;(2)由(1)中相似三角形的对应边成比例来求线段CF的长度.解答:(1)证明:如图,在矩形ABCD中,由对称性可得出:∠DFC=∠EFB,∠EBF=∠FCD=90°,∴△BEF∽△CDF;(2)解:∵由(1)知,△BEF∽△CDF.∴=,即=,解得:CF=169.即:CF的长度是169cm.点评:本题考查了相似三角形的应用.此题利用了“相似三角形的对应边成比例”推知所求线段CF与已知线段间的数量关系的.23.(10分)(2014•岳阳)数学活动﹣求重叠部分的面积(1)问题情境:如图①,将顶角为120°的等腰三角形纸片(纸片足够大)的顶点P与等边△ABC的内心O重合,已知OA=2,则图中重叠部分△PAB的面积为.(2)探究1:在(1)的条件下,将纸片绕P点旋转至如图②所示位置,纸片两边分别与AC,AB交于点E,F,图②中重叠部分的面积与图①重叠部分的面积是否相等?如果相等,请给予证明;如果不相等,请说明理由.(3)探究2:如图③,若∠CAB=α(0°<α<90°),AD为∠CAB的角平分线,点P在射线AD上,且AP=2,以P为顶点的等腰三角形纸片(纸片足够大)与∠CAB的两边AC,AB分别交于点E、F,∠EPF=180°﹣α,求重叠部分的面积.(用α或的三角函数值表示)考点:几何变换综合题.专题:探究型.分析:(1)由点O是等边三角形ABC的内心可以得到∠OAB=∠OBA=30°,结合条件OA=2即可求出重叠部分的面积.(2)由旋转可得∠FOE=∠BOA,从而得到∠EOA=∠FOB,进而可以证到△EOA≌△FOB,因而重叠部分面积不变.(3)在射线AB上取一点G,使得PG=PA,过点P作PH⊥AF,垂足为H,方法同(2),可以证到重叠部分的面积等于△PAG的面积,只需求出△PAG的面积就可解决问题.解答:解:(1)过点O作ON⊥AB,垂足为N,如图①,∵△ABC为等边三角形,∴∠CAB=∠CBA=60°.∵点O为△ABC的内心∴∠OAB=∠CAB,∠OBA=∠CBA.∴∠OAB=∠OBA=30°.∴OB=OA=2.∵ON⊥AB,∴AN=NB,PN=1.∴AN=∴AB=2AN=2.∴S△OAB=AB•PN=.故答案为:.(2)图②中重叠部分的面积与图①重叠部分的面积相等.证明:连接AO、BO,如图②,由旋转可得:∠EOF=∠AOB,则∠EOA=∠FOB.在△EOA和△FOB中,∴△EOA≌△FOB.∴S四边形AEOF=S△OAB.∴图②中重叠部分的面积与图①重叠部分的面积相等.(3)在射线AB上取一点G,使得PG=PA,过点P作PH⊥AF,垂足为H,如图③,则有AH=GH=AG.∵∠CAB=α,AD为∠CAB的角平分线,∴∠PAE=∠PAF=∠CAB=.∵PG=PA,∴∠PGA=∠PAG=.∴∠APG=180°﹣α.∵∠EPF=180°﹣α,∴∠EPF=∠APG.同理可得:S四边形AEPF=S△PAG.∵AP=2,∴PH=2sin,AH=2cos.∴AG=2AH=4cos.∴S△PAG=AG•PH=4sin cos.∴重叠部分得面积为:S面积=4sin cos.点评:本题属于探究性试题,考查了旋转的性质、等边三角形的性质、等腰三角形的性质、三角函数的定义、全等三角形的判定与性质、三角形的内心、三角形的内角和定理、勾股定理等知识,有一定的综合性.另外,在解决问题的过程中,常常可以借鉴已证的结论和已有的解题经验来解决新的问题.24.(10分)(2014•岳阳)如图,抛物线经过点A(1,0),B(5,0),C(0,)三点,设点E(x,y)是抛物线上一动点,且在x轴下方,四边形OEBF是以OB为对角线的平行四边形.(1)求抛物线的解析式;(2)当点E(x,y)运动时,试求平行四边形OEBF的面积S与x之间的函数关系式,并求出面积S的最大值?(3)是否存在这样的点E,使平行四边形OEBF为正方形?若存在,求E点,F点的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)由抛物线经过点A(1,0),B(5,0),C(0,)三点,利用待定系数法求二次函数的解析式;(2)由点E(x,y)是抛物线上一动点,且位于第四象限,可得y<0,即﹣y>0,﹣y表示点E到OA的距离,又由S=2S△OBE=2××OB•|y|,即可求得平行四边形OEAF 的面积S与x之间的函数关系式,结合图象,求得自变量x的取值范围;(3)由当OB⊥EF,且OB=EF时,平行四边形OEBF是正方形,可得此时点E坐标只能(2.5,﹣2.5),而坐标为(2.5,﹣2.5)点在抛物线上,故可判定存在点E,使平行四边形OEBF为正方形.解答:解:(1)设所求抛物线的解析式为y=ax2+bx+c,∵抛物线经过点A(1,0),B(5,0),C(0,)三点,则由题意可得:,解得.∴所求抛物线的解析式为:y=x2﹣4x+.(2)∵点E(x,y)是抛物线上一动点,且在x轴下方,∴y<0,即﹣y>0,﹣y表示点E到OA的距离.∵OB是平行四边形OEBF的对角线,∴S=2S△OBE=2××OB•|y|=﹣5y=﹣5(x2﹣4x+)=﹣x2+20x﹣,∵S=﹣(x﹣3)2+∴S与x之间的函数关系式为:S=﹣x2+20x﹣(1<x<5),S的最大值为.(3)∵当OB⊥EF,且OB=EF时,平行四边形OEBF是正方形,∴此时点E坐标只能(,﹣),而坐标为(,﹣)点在抛物线上,∴存在点E(,﹣),使平行四边形OEBF为正方形,此时点F坐标为(,).点评:此题属于二次函数综合题,考查了待定系数法求二次函数的解析式、配方法、平行四边形的性质以及正方形的判定等知识.此题综合性很强,难度较大,注意数形结合思想、方程思想与函数思想的应用.。

湖南省岳阳市中考数学试卷解析版

湖南省岳阳市中考数学试卷解析版
13.【解答】 解:方程两边同乘 x( x+1), 得 x+1= 2x, 解得 x= 1.
将 x=1 代入 x(x+1)= 2≠ 0. 所以 x= 1 是原方程的解. 14.【解答】 解:∵ x﹣ 3= 2, ∴代数式( x﹣ 3) 2﹣2( x﹣ 3) +1=( x﹣3﹣ 1) 2 =( 2﹣ 1) 2 = 1. 故答案为: 1. 15.【解答】 解:设第一天织布 x 尺,则第二天织布 2x 尺,第三天织布 4x 尺,第四天织布 8x 尺,第五天织布 16x 尺,根据题意可得: x+2x+4x+8x+16x= 5, 解得: x= ,
F2:
y

2
ax
+bx+4
经过
A'

B' 两点,已知点 M为抛物线 F2 的对称轴上一定点,且点 A' 恰好在以 OM为直径的圆上, 连接 OM、 A' M,求△ OA' M的面积; ( 3)如图 2,延长 OB' 交抛物线 F2 于点 C,连接 A' C,在坐标轴上是否存在点 D,使得以 A、 O、 D为顶点的三角形与△ OA' C相似.若存在,请求出点 D的坐标;若不存在,请说 明理由.

A.甲
B.乙
C.丙
D.丁
7.( 3 分)下列命题是假命题的是(

A.平行四边形既是轴对称图形,又是中心对称图形
B.同角(或等角)的余角相等
C.线段垂直平分线上的点到线段两端的距离相等
D.正方形的对角线相等,且互相垂直平分
8.( 3 分)对于一个函数,自变量 x 取 a 时,函数值 y 也等于 a,我们称 a 为这个函数的不

湖南省岳阳市2020年中考数学试题(Word版,含答案与解析)

湖南省岳阳市2020年中考数学试题(Word版,含答案与解析)

湖南省岳阳市2020年中考数学试卷一、单选题(共8题;共16分)1.-2020的相反数是()A. 2020B. -2020C. 12020D. -12020【答案】A【考点】相反数及有理数的相反数【解析】【解答】-2020的相反数是2020,故答案为:A.【分析】根据相反数直接得出即可.2.2019年以来,我国扶贫攻坚取得关键进展,农村贫困人口减少11090000人,数据11090000用科学记数法表示为()A. 0.1109×108B. 11.09×106C. 1.109×108D. 1.109×107【答案】 D【考点】科学记数法—表示绝对值较大的数【解析】【解答】科学记数法:将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数的方法叫做科学记数法则11090000=1.109×107故答案为:D.【分析】根据科学记数法的定义即可得.3.如图,由4个相同正方体组成的几何体,它的左视图是()A. B.C. D.【答案】A【考点】简单组合体的三视图【解析】【解答】观察图形,从左边看得到两个叠在一起的正方形,如下图所示:故答案为:A.【分析】根据左视图是从左面看得到的图形,结合所给图形以及选项进行求解即可.4.下列运算结果正确的是()A. (−a)3=a3B. a9÷a3=a3C. a+2a=3aD. a⋅a2=a2【答案】C【考点】同底数幂的乘法,同底数幂的除法,合并同类项法则及应用,幂的乘方【解析】【解答】解:A、(−a)3=−a3,故不符合题意;B、a9÷a3=a6,故不符合题意;C、a+2a=3a,故符合题意;D、a⋅a2=a3故不符合题意;故答案为:C【分析】根据幂的乘方、同底数幂的乘法和除法及合并同类项的计算法则分别计算即可得解.5.如图,DA⊥AB,CD⊥DA,∠B=56°,则∠C的度数是()A. 154°B. 144°C. 134°D. 124°【答案】 D【考点】平行线的判定与性质【解析】【解答】解:∵DA⊥AB,CD⊥DA,∴AB//CD,∴∠C+∠B=180°,∵∠B=56°,∴∠C=124°;故答案为:D.【分析】先证出AB∥CD,再根据平行线的性质得出∠C+∠B=180°,即可求出∠C的度数.6.今年端午小长假复课第一天,学校根据疫情防控要求,对所有进入校园的师生进行体温检测,其中7名学生的体温(单位:℃)如下:36.5,36.3,36.8,36.3,36.5,36.7,36.5,这组数据的众数和中位数分别是()A. 36.3,36.5B. 36.5,36.5C. 36.5,36.3D. 36.3,36.7【答案】B【考点】中位数,众数【解析】【解答】解:将这7名学生的体温按从小到大的顺序排列如下:36.3,36.3,36.5,36.5,36.5,36.7,36.8则中位数就是第4个数:36.5;出现次数最多的数是36.5,则众数为:36.5;故答案为:B【分析】根据众数、中位数的概念求出众数和中位数即可判断.7.下列命题是真命题的是()A. 一个角的补角一定大于这个角B. 平行于同一条直线的两条直线平行C. 等边三角形是中心对称图形D. 旋转改变图形的形状和大小【答案】B【考点】真命题与假命题【解析】【解答】解:A、一个角的补角不一定大于这个角,故A不符合题意;B、平行于同一条直线的两条直线平行,故B符合题意;C、等边三角形是轴对称图形,不是中心对称图形,故C不符合题意;D、旋转不改变图形的形状和大小,故D不符合题意;故答案为:B.【分析】由补角的定义、平行线公理,中心对称图形的定义、旋转的性质分别进行判断,即可得到答案.8.对于一个函数,自变量x取c时,函数值y等于0,则称c为这个函数的零点.若关于x的二次函数y=−x2−10x+m(m≠0)有两个不相等的零点x1,x2(x1<x2),关于x的方程x2+10x−m−2=0有两个不相等的非零实数根x3,x4(x3<x4),则下列关系式一定正确的是()A. 0<x1x3<1 B. x1x3>1 C. 0<x2x4<1 D. x2x4>1【答案】B【考点】一元二次方程的根与系数的关系,二次函数图象与一元二次方程的综合应用【解析】【解答】解:∵x1,x2是y=−x2−10x+m(m≠0)的两个不相等的零点即x1,x2是−x2−10x+m=0的两个不相等的实数根∴{x1+x2=−5x1x2=−m∵x1<x2解得x1=−5−√25+4m2,x2=−5+√25+4m2∵方程x2+10x−m−2=0有两个不相等的非零实数根x3,x4∴{x3+x4=−5x3x4=−m−2∵x3<x4解得x3=−5−√13+4m2,x4=−5+√13+4m2∴x1−x3=−5−√25+4m−(−5−√13+4m)2=−√25+4m+√13+4m2<0∴x1<x3∵ x 1=−5−√25+4m 2<0 , x 3=−5−√13+4m 2<0 ∴ x1x 3>1 ∴ x 2−x 4=−5+√25+4m−(−5+√13+4m)2=√25+4m−√13+4m 2>0 ∴ x 2>x 4而由题意知 {100+4m >0100+4(m +2)>0解得 m >−25当 −25<m <0 时, x 2<0,x 4<0 , x2x 4>1 ; 当 0<m <3 时, x 2>0,x 4<0 , x 2x 4<0 ;当m=3时, x 2x 4 无意义;当 m >3 时, x2x 4>1 , ∴ x 2x 4 取值范围不确定, 故答案为:B .【分析】根据根与系数的关系可以求出 x 1,x 2 , x 3,x 4 的值,用作差法比较 x 1,x 3 的大小关系, x 2,x 4 的大小关系,根据 Δ 可求出m 的取值范围,结合 x 1,x 3 的大小关系, x 2,x 4 的大小关系从而得出选项.二、填空题(共8题;共11分)9.因式分解: a 2−9= ________.【答案】 (a +3)(a −3)【考点】因式分解﹣运用公式法【解析】【解答】a 2-9=(a+3)(a-3)。

岳阳市中考数学试卷及答案(Word解析版)

岳阳市中考数学试卷及答案(Word解析版)

20XX 年岳阳市中考数学试题一、选择题1.-2013的相反数是( )A .-2013B 、2013C 、12013D 、-12013答案:B解析:-2013的相反数是2013,简单题。

2.计算a 3·a 2的结果是( ) A 、a 5 B 、a 6 C 、a 3+a 2 D 、3a 2 答案:A解析:根据同底数幂相乘,底数不变,指数相加,得:32325a a a a +==,选A 。

3.一个正方体的平面展开图如图所示,将它折成正方体后,与汉字“岳”相对的面上的汉字是( )A 、建B 、设C 、和D 、谐 答案:C 解析:以“岳”作底面,则前后面分别为“阳、建”,左右面分别为“谐、设”,上面是“和”,所以,选C 。

4.不等式2x <10的解集在数轴上表示正确的是( )DCBA55505答案:D解析:解不等式,得x <5,没有等号,5这个点有空心表示,故选D 。

5.关于x 的分式方程7x-1+3=mx-1有增根,则增根为( )A 、x =1B 、x =-1C 、x =3D 、x =-3答案:A解析:当x =1时,分母为零,没有意义,所以是增根。

6.两圆半径分别为3cm 和7cm ,当圆心距d =10cm 时,两圆的位置关系为( ) A 、外离 B 、内切 C 、相交 D 、外切 答案:D解析:因为10=3+7,即,圆心距等于两圆的半径之和,此时,两圆外切。

7.某组7名同学在一学期里阅读课外书籍的册数分别是:14,12,13,12,17,18,16.则这组数据的众数和中位数分别是( )A 、12,13B 、12,14C 、13,14D 、13,16 答案:B解析:12出现两次,其它数据都只出现一次,故众数为12;数据由小到大排列为:12、12、13、14、16、17、18,所以,中位数为14。

阳岳谐和设建8.二次函数y =ax 2+bx +c 的图象如图所示,对于下列结论:①a <0;②b <0;③c >0;④b +2a =0;⑤a +b +c <0.其中正确的个数是( )A 、1个B 、2个C 、3个D 、4个答案:C解析:由图可知,抛物线开口向下,故a <0,①正确;对称轴为:2bx a=-=1>0,而a <0,故b >0,②错误; 抛物线与y 轴交点在正半轴,故c >0,③正确; 又2bx a=-=1,得b =-2a ,即b +2a =0,④正确;选C 。

2022湖南岳阳中考数学试卷+答案解析

2022湖南岳阳中考数学试卷+答案解析

2022年湖南岳阳中考数学一、选择题(本大题共8小题,每小题3分,满分24分。

在每小题给出的四个选项中,选出符合要求的一项)1. 8的相反数是()A.18B.8 C.-18D.-82.某个立体图形的侧面展开图如图所示,它的底面是正三角形,那么这个立体图形是()A.圆柱B.圆锥C.三棱柱D.四棱柱3.下列运算结果正确的是()A.a+2a=3aB.a5÷a=a5C.a2·a3=a6D.(a4)3=a74.某村通过直播带货对产出的稻虾米进行线上销售,连续7天的销量(单位:袋)分别为105,103,105,110,108,105,108,这组数据的众数和中位数分别是()A.105,108B.105,105C.108,105D.108,1085.如图,已知l∥AB,CD⊥l于点D,若∠C=40°,则∠1的度数是()A.30°B.40°C.50°D.60°6.下列命题是真命题的是()A.对顶角相等B.平行四边形的对角线互相垂直C.三角形的内心是它的三条边的垂直平分线的交点D.三角分别相等的两个三角形是全等三角形7.我国古代数学著作《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?在这个问题中,城中人家的户数为()A.25B.75C.81D.908.已知二次函数y=mx2-4m2x-3(m为常数,m≠0),点P(x P,y P)是该函数图象上一点,当0≤x P≤4时,y P≤-3,则m的取值范围是()A.m≥1或m<0B.m≥1C.m≤-1或m>0D.m≤-1二、填空题(本大题共8小题,每小题4分,满分32分)9.要使√x−1有意义,则x的取值范围是.10. 2022年5月14日,编号为B-001J的C919大飞机首飞成功。

2024年湖南省岳阳市中考数学适应性试卷+答案解析

2024年湖南省岳阳市中考数学适应性试卷+答案解析

2024年湖南省岳阳市中考数学适应性试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.随着科技的进步,各种移动支付方式改变着人们的生活.若晶晶的余额里转入了50元,记作“”元,则晶晶坐地铁花费了5元,应记作()A.“”元B.“”元C.“”元D.“”元2.先贤孔子曾说过“鼓之舞之“,这是“鼓舞“一词最早的起源,如图是喜庆集会时击鼓瞬间的情景及鼓的立体图形,该立体图形的主视图是()A.B.C.D.3.下列运算正确的是()A. B.C. D.4.代数式在实数范围内有意义,则实数x的取值范围在数轴上表示为()A. B.C. D.5.如图,直线,直角三角形BCD如图放置,,若,则的度数为()A.B.C.D.6.如图,在平面直角坐标系中,与关于x轴对称,其中点A,B,C的对应点分别为点,,,若点在的边上,则点P在上的对应点的坐标是()A.B.C.D.7.如图,在菱形ABCD中,对角线AC、BD交于点O,添加下列一个条件,能使菱形ABCD成为正方形的是()A. B. C. D.8.下列说法中正确的是()A.相等的圆心角所对的弧相等B.两条直线被第三条直线所截,同位角相等C.检查某种LED灯的使用寿命用全面调查D.“掷一次骰子,向上一面的点数是6”是随机事件9.如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:①作线段AB,分别以A,B为圆心,以AB长为半径作弧,两弧的交点为C;②以点C为圆心,仍以AB长为半径作弧交AC的延长线于点D;③连接BD、则下列说法不正确的是()A.B.是正三角形C.点C在BD的垂直平分线上D.与的面积相等10.若要在抛物线为常数,上找点,则能找到点M的个数是()A.3个B.2个C.1个D.0个二、填空题:本题共8小题,每小题3分,共24分。

11.分解因式:______.12.古代为便于纪元,乃在无穷延伸的时间中,取天地循环终始为一巡,称为元,以元作为计算时间的最大单位,1元年,其中129600用科学记数法表示为______.13.为进一步推进素质教育,不断丰富校园文化生活,陶冶艺术情操,展现中学生艺术素质教育成果.某校开展了“奏响时代主题,展现校园风采”为主题的器乐大赛.经过几轮筛选,校团委决定从甲、乙、丙、丁四名同学中选择一名同学代表学校参加区级器乐比赛,经过统计,四名同学成绩的平均数单位:分及方差如表所示:甲乙丙丁平均数96949694方差若要选一名成绩好且状态稳定的同学参赛,那么应该选择______.14.已知实数m,n满足,则以m,n的值为边长的等腰三角形的周长为______.15.已知,是一元二次方程的两个实数根,则的值是______.16.在中国历法中,甲、乙、丙、丁、戊、已、庚、辛、壬、癸被称为“十天干”,它们经常和其它汉字来搭配命名,如化学中的“甲烷、乙烷、丙烷”等,如图为有机物甲烷、乙烷、丙烷的分子结构图,请你依照规律,推测出壬烷中“H”的个数为______.17.如图,在铁路建设中,需要确定隧道两洞口A和B之间的距离.点D,点E分别位于测绘点C的正北和正西方向.已知测得两定位点E和D与隧道口A和B的距离分别为150m和100m,测绘点H,G分别为CD,CE的中点,测绘方在测绘点H测得点G在点H的南偏西的方向上,且,则隧道AB的长约为______米.参考数据:,,18.如图,将绕点C顺时针旋转得到,点恰好落在斜边AC的中点上,连接,若,则的长为______.三、解答题:本题共8小题,共66分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年湖南省岳阳市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.6的相反数是()A.﹣6 B.C.6 D.±6【分析】根据相反数的定义求解即可.【解答】解:6的相反数是﹣6,故选A.【点评】主要考查相反数的定义:只有符号相反的两个数互为相反数.2.下列运算正确的是()A.5=﹣x5C.x3x2=x6D.3x2+2x3=5x5【分析】根据幂的乘方,同底数幂的乘法以及合并同类项计算法则进行解答.【解答】解:A、原式=x6,故本选项错误;B、原式=﹣x5,故本选项正确;C、原式=x5,故本选项错误;D、3x2与2x3不是同类项,不能合并,故本选项错误;故选:B.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方,熟练掌握运算性质和法则是解题的关键.3.据国土资源部数据显示,我国是全球“可燃冰”资源储量最多的国家之一,海、陆总储量约为000吨油当量,将000用科学记数法表示为()A.×1010B.×109C.×1011D.39×109【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:000=×1010.故选:A.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.4.下列四个立体图形中,主视图、左视图、俯视图都相同的是()A.B.C.D.【分析】分别分析圆锥、圆柱、球体、三棱柱的主视图、左视图、俯视图,从而得出结论.【解答】解:∵球的主视图、左视图、俯视图都是圆,∴主视图、左视图、俯视图都相同的是B,故选B.【点评】本题考查三视图,熟练掌握常见几何体的三视图,是解决问题的关键.5.从,0,π,,6这5个数中随机抽取一个数,抽到有理数的概率是()A.B.C.D.【分析】根据有理数的定义可找出在,0,π,,6这5个数中只有0、和6为有理数,再根据概率公式即可求出抽到有理数的概率.【解答】解:∵在,0,π,,6这5个数中只有0、和6为有理数,∴从,0,π,,6这5个数中随机抽取一个数,抽到有理数的概率是.故选C.【点评】本题考查了概率公式以及有理数,根据有理数的定义找出五个数中的有理数的个数是解题的关键.6.解分式方程﹣=1,可知方程的解为()A.x=1 B.x=3 C.x= D.无解【分析】直接利用分式方程的解法,首先去分母,进而解方程得出答案.【解答】解:去分母得:2﹣2x=x﹣1,解得:x=1,检验:当x=1时,x﹣1=0,故此方程无解.故选:D.【点评】此题主要考查了解分式方程,正确掌握解题步骤是解题关键.7.观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,…,根据这个规律,则21+22+23+24+…+22017的末位数字是()A.0 B.2 C.4 D.6【分析】根据题目中的式子可以知道,末尾数字出现的2、4、8、6的顺序出现,从而可以求得21+22+23+24+…+22017的末位数字.本题得以解决.【解答】解:∵21=2,22=4,23=8,24=16,25=32,26=64,…,∴2017÷4=506…1,∵(2+4+8+6)×506+2=10122,∴21+22+23+24+…+22017的末位数字是2,故选B.【点评】本题考查尾数特征,解答本题的关键是发现题目中的尾数的变化规律,求出相应的式子的末位数字.8.已知点A在函数y1=﹣(x>0)的图象上,点B在直线y2=kx+1+k(k为常数,且k≥0)上.若A,B两点关于原点对称,则称点A,B为函数y1,y2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为()A.有1对或2对B.只有1对C.只有2对D.有2对或3对【分析】根据“友好点”的定义知,函数y1图象上点A(a,﹣)关于原点的对称点B(a,﹣)一定位于直线y2上,即方程ka2﹣(k+1)a+1=0 有解,整理方程得(a﹣1)(ka﹣1)=0,据此可得答案.【解答】解:设A(a,﹣),由题意知,点A关于原点的对称点B((a,﹣),)在直线y2=kx+1+k上,则=﹣ak+1+k,整理,得:ka2﹣(k+1)a+1=0 ①,即(a﹣1)(ka﹣1)=0,∴a﹣1=0或ka﹣1=0,则a=1或ka﹣1=0,若k=0,则a=1,此时方程①只有1个实数根,即两个函数图象上的“友好点”只有1对;若k≠0,则a=,此时方程①有2个实数根,即两个函数图象上的“友好点”有2对,综上,这两个函数图象上的“友好点”对数情况为1对或2对,故选:A.【点评】本题主要考查直线和双曲线上点的坐标特征及关于原点对称的点的坐标,将“友好点”的定义,根据关于原点对称的点的坐标特征转化为方程的问题求解是解题的关键.二、填空题(本大题共8小题,每小题4分,共32分)9.函数y=中自变量x的取值范围是x≠7 .【分析】根据分母不为零,即可解决问题.【解答】解:函数y=中自变量x的范围是x≠7.故答案为x≠7【点评】本题考查函数自变量的取值范围,知道分母不能为零是解题的关键.10.因式分解:x2﹣6x+9= (x﹣3)2.【分析】直接运用完全平方公式进行因式分解即可.【解答】解:x2﹣6x+9=(x﹣3)2.【点评】本题考查了公式法分解因式,熟记完全平方公式的结构特点是解题的关键.11.在环保整治行动中,某市环保局对辖区内的单位进行了抽样调查,他们的综合得分如下:95,85,83,95,92,90,96,则这组数据的中位数是92 ,众数是95 .【分析】环保整治行动中,某市环保局对辖区内的单位进行了抽样调查,他们的综合得分如下:95,85,83,95,92,90,96,则这组数据的中位数.【解答】解:这组数据从小到大排列为:83,85,90,92,95,95,96.则中位数是:92;众数是95.故答案是:92,95.【点评】本题考查了众数、中位数的定义,注意中位数是大小处于中间未知的数,首先把数从小到大排列.12.如图,点P是∠NOM的边OM上一点,PD⊥ON于点D,∠OPD=30°,PQ∥ON,则∠MPQ的度数是60°.【分析】根据直角三角形的内角和,求得∠O,再根据平行线的性质,即可得到∠MPQ.【解答】解:∵PD⊥ON于点D,∠OPD=30°,∴Rt△OPD中,∠O=60°,又∵PQ∥ON,∴∠MPQ=∠O=60°,故答案为:60°.【点评】本题主要考查了平行线的性质以及垂线的定义,解题时注意:两直线平行,同位角相等.13.不等式组的解集是x<﹣3 .【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x≤3,解不等式②得:x<﹣3,∴不等式组的解集为x<﹣3,故答案为:x<﹣3.【点评】本题考查了解一元一次不等式和解一元一次不等式组,能根据不等式的解集求出不等式组的解集是解此题的关键.14.在△ABC中BC=2,AB=2,AC=b,且关于x的方程x2﹣4x+b=0有两个相等的实数根,则AC边上的中线长为 2 .【分析】由根的判别式求出AC=b=4,由勾股定理的逆定理证出△ABC是直角三角形,再由直角三角形斜边上的中线性质即可得出结论.【解答】解:∵关于x的方程x2﹣4x+b=0有两个相等的实数根,∴△=16﹣4b=0,∴AC=b=4,∵BC=2,AB=2,∴BC2+AB2=AC2,∴△ABC是直角三角形,AC是斜边,∴AC边上的中线长=AC=2;故答案为:2.【点评】本题考查了根的判别式,勾股定理的逆定理,直角三角形斜边上的中线性质;证明△ABC是直角三角形是解决问题的关键.15.我国魏晋时期的数学家刘徽创立了“割圆术”,认为圆内接正多边形边数无限增加时,周长就越接近圆周长,由此求得了圆周率π的近似值,设半径为r 的圆内接正n边形的周长为L,圆的直径为d,如图所示,当n=6时,π≈==3,那么当n=12时,π≈= .(结果精确到,参考数据:sin15°=cos75°≈)【分析】圆的内接正十二边形被半径分成顶角为30°的十二个等腰三角形,作辅助线构造直角三角形,根据中心角的度数以及半径的大小,求得L=,d=2r,进而得到π≈=≈.【解答】解:如图,圆的内接正十二边形被半径分成如图所示的十二个等腰三角形,其顶角为30°,即∠O=30°,∠ABO=∠A=75°,作BC⊥AO于点C,则∠ABC=15°,∵AO=BO=r,∴BC=r,OC=r,∴AC=(1﹣)r,∵Rt△ABC中,cosA=,即=,∴AB≈,∴L=12×=,又∵d=2r,∴π≈=≈,故答案为:【点评】本题主要考查了正多边形和圆以及解直角三角形的运用,把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.16.如图,⊙O为等腰△ABC的外接圆,直径AB=12,P为弧上任意一点(不与B,C重合),直线CP交AB延长线于点Q,⊙O在点P处切线PD交BQ于点D,下列结论正确的是②③④.(写出所有正确结论的序号)①若∠PAB=30°,则弧的长为π;②若PD∥BC,则AP平分∠CAB;③若PB=BD,则PD=6;④无论点P在弧上的位置如何变化,CPCQ为定值.【分析】①根据∠POB=60°,OB=6,即可求得弧的长;②根据切线的性质以及垂,可得△BOP 径定理,即可得到=,据此可得AP平分∠CAB;③根据BP=BO=PO=6是等边三角形,据此即可得出PD=6;④判定△ACP∽△QCA,即可得到=,即2,据此可得CPCQ为定值.CPCQ=CA【解答】解:如图,连接OP,∵AO=OP,∠PAB=30°,∴∠POB=60°,∵AB=12,∴OB=6,∴弧的长为=2π,故①错误;∵PD是⊙O的切线,∴OP⊥PD,∵PD∥BC,∴OP⊥BC,∴=,∴∠PAC=∠PAB,∴AP平分∠CAB,故②正确;若PB=BD,则∠BPD=∠BDP,∵OP⊥PD,∴∠BPD+∠BPO=∠BDP+∠BOP,∴∠BOP=∠BPO,∴BP=BO=PO=6,即△BOP是等边三角形,∴PD=OP=6,故③正确;∵AC=BC,∴∠BAC=∠ABC,又∵∠ABC=∠APC,∴∠APC=BAC,又∵∠ACP=∠QCA,∴△ACP∽△QCA,∴=,即CPCQ=CA2(定值),故④正确;故答案为:②③④.【点评】本题主要考查了相似三角形的判定与性质,垂径定理,切线的性质以及弧长公式的综合应用,解决问题的关键是作辅助线,构造三角形,解题时注意:垂直弦的直径平分这条弦,并且平分弦所对的弧.三、解答题(本大题共8小题,共64分)17.计算:2sin60°+|3﹣|+(π﹣2)0﹣()﹣1.【分析】根据特殊角的三角函数值、零指数幂的运算法则、负整数指数幂的运算法则、绝对值的性质进行化简,计算即可.【解答】解:原式=2×+3﹣+1﹣2=2.【点评】本题考查的是实数的混合运算,掌握特殊角的三角函数值、零指数幂的运算法则、负整数指数幂的运算法则、绝对值的性质是解题的关键.18.求证:对角线互相垂直的平行四边形是菱形.小红同学根据题意画出了图形,并写出了已知和求证的一部分,请你补全已知和求证,并写出证明过程.已知:如图,在?ABCD中,对角线AC,BD交于点O,AC⊥BD .求证:四边形ABCD是菱形.【分析】由命题的题设和结论可填出答案,由平行四边形的性质可证得AC为线段BD的垂直平分线,可求得AB=AD,可得四边形ABCD是菱形.【解答】已知:如图,在?ABCD中,对角线AC,BD交于点O,AC⊥BD,求证:四边形ABCD是菱形.证明:∵四边形ABCD为平行四边形,∴BO=DO,∵AC⊥BD,∴AC垂直平分BD,∴AB=AD,∴四边形ABCD为菱形.故答案为:AC⊥BD;四边形ABCD是菱形.【点评】本题主要考查菱形的判定及平行四边形的性质,利用平行四边形的性质证得AB=AD是解题的关键.19.(8分)如图,直线y=x+b与双曲线y=(k为常数,k≠0)在第一象限内交于点A(1,2),且与x轴、y轴分别交于B,C两点.(1)求直线和双曲线的解析式;(2)点P在x轴上,且△BCP的面积等于2,求P点的坐标.【分析】(1)把A(1,2)代入双曲线以及直线y=x+b,分别可得k,b的值;(2)先根据直线解析式得到BO=CO=1,再根据△BCP的面积等于2,即可得到P 的坐标.【解答】解:(1)把A(1,2)代入双曲线y=,可得k=2,∴双曲线的解析式为y=;把A(1,2)代入直线y=x+b,可得b=1,∴直线的解析式为y=x+1;(2)设P点的坐标为(x,0),在y=x+1中,令y=0,则x=﹣1;令x=0,则y=1,∴B(﹣1,0),C(0,1),即BO=1=CO,∵△BCP的面积等于2,∴BP×CO=2,即|x﹣(﹣1)|×1=2,解得x=3或﹣5,∴P点的坐标为(3,0)或(﹣5,0).【点评】本题主要考查了反比例函数与一次函数交点问题,解题时注意:反比例函数与一次函数交点的坐标同时满足两个函数解析式.20.(8分)我市某校组织爱心捐书活动,准备将一批捐赠的书打包寄往贫困地区,其中每包书的数目相等.第一次他们领来这批书的,结果打了16个包还多40本;第二次他们把剩下的书全部取来,连同第一次打包剩下的书一起,刚好又打了9个包,那么这批书共有多少本【分析】设这批书共有3x本,根据每包书的数目相等.即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设这批书共有3x本,根据题意得: =,解得:x=500,∴3x=1500.答:这批书共有500本.【点评】本题考查了一元一次方程的应用,根据每包书的数目相等.列出关于x 的一元一次方程是解题的关键.21.(8分)为了加强学生课外阅读,开阔视野,某校开展了“书香校园,从我做起”的主题活动,学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下:课外阅读时频数(人数)频率间(单位:小时)0<t≤222<t≤434<t≤6156<t≤8at>85b请根据图表信息回答下列问题:(1)频数分布表中的a= 25 ,b= ;(2)将频数分布直方图补充完整;(3)学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,请你估计该校2000名学生中评为“阅读之星”的有多少人【分析】(1)由阅读时间为0<t≤2的频数除以频率求出总人数,确定出a与b的值即可;(2)补全条形统计图即可;(3)由阅读时间在8小时以上的百分比乘以2000即可得到结果.【解答】解:(1)根据题意得:2÷=50(人),则a=50﹣(2+3+15+5)=25;b=5÷50=;故答案为:25;;(2)阅读时间为6<t≤8的学生有25人,补全条形统计图,如图所示:(3)根据题意得:2000×=200(人),则该校2000名学生中评为“阅读之星”的有200人.【点评】此题考查了频率(数)分布表,条形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.22.(8分)某太阳能热水器的横截面示意图如图所示,已知真空热水管AB与支架CD所在直线相交于点O,且OB=OD,支架CD与水平线AE垂直,∠BAC=∠CDE=30°,DE=80cm,AC=165cm.(1)求支架CD的长;(2)求真空热水管AB的长.(结果保留根号)【分析】(1)在Rt△CDE中,根据∠CDE=30°,DE=80cm,求出支架CD的长是多少即可.新课标 xk b1. c om(2)首先在Rt△OAC中,根据∠BAC=30°,AC=165cm,求出OC的长是多少,进而求出OD的长是多少;然后求出OA的长是多少,即可求出真空热水管AB的长是多少.【解答】解:(1)在Rt△CDE中,∠CDE=30°,DE=80cm,∴CD=80×cos30°=80×=40(cm).(2)在Rt△OAC中,∠BAC=30°,AC=165cm,∴OC=AC×tan30°=165×=55(cm),∴OD=OC﹣CD=55﹣40=15(cm),∴AB=AO﹣OB=AO﹣OD=55×2﹣15=95(cm).【点评】此题主要考查了解直角三角形的应用,要熟练掌握,注意将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).23.问题背景:已知∠EDF的顶点D在△ABC的边AB所在直线上(不与A,B重合),DE交AC所在直线于点M,DF交BC所在直线于点N,记△ADM的面积为S1,△BND的面积为S2.(1)初步尝试:如图①,当△ABC是等边三角形,AB=6,∠EDF=∠A,且DE∥BC,AD=2时,则S1S2= 12 ;(2)类比探究:在(1)的条件下,先将点D沿AB平移,使AD=4,再将∠EDF 绕点D旋转至如图②所示位置,求S1S2的值;(3)延伸拓展:当△ABC是等腰三角形时,设∠B=∠A=∠EDF=α.(Ⅰ)如图③,当点D在线段AB上运动时,设AD=a,BD=b,求S1S2的表达式(结果用a,b和α的三角函数表示).(Ⅱ)如图④,当点D在BA的延长线上运动时,设AD=a,BD=b,直接写出S1S2的表达式,不必写出解答过程.【分析】(1)首先证明△ADM,△BDN都是等边三角形,可得S1=22=,S2=(4)2=4,由此即可解决问题;(2)如图2中,设AM=x,BN=y.首先证明△AMD∽△BDN,可得=,推出=,推出xy=8,由S1=ADAMsin60°=x,S2=DBsin60°=y,可得S1S2=xy=xy=12;(3)Ⅰ如图3中,设AM=x,BN=y,同法可证△AMD∽△BDN,可得xy=ab,由S1=ADAMsinα=axsinα,S2=DBBNsinα=bysinα,可得S1S2=(ab)2sin2α.(Ⅱ)结论不变,证明方法类似;【解答】解:(1)如图1中,∵△ABC是等边三角形,∴AB=CB=AC=6,∠A=∠B=60°,∵DE∥BC,∠EDF=60°,∴∠BND=∠EDF=60°,∴∠BDN=∠ADM=60°,∴△ADM,△BDN都是等边三角形,∴S1=22=,S2=(4)2=4,∴S1S2=12,故答案为12.(2)如图2中,设AM=x,BN=y.∵∠MDB=∠MDN+∠NDB=∠A+∠AMD,∠MDN=∠A,∴∠AMD=∠NDB,∵∠A=∠B,∴△AMD∽△BDN,∴=,∴=,∴xy=8,∵S1=ADAMsin60°=x,S2=DBsin60°=y,∴S1S2=xy=xy=12.(3)Ⅰ如图3中,设AM=x,BN=y,w w w .x k b o m同法可证△AMD∽△BDN,可得xy=ab,∵S1=ADAMsinα=axsinα,S2=DBBNsinα=bysinα,∴S1S2=(ab)2sin2α.Ⅱ如图4中,设AM=x,BN=y,同法可证△AMD∽△BDN,可得xy=ab,∵S1=ADAMsinα=axsinα,S2=DBBNsinα=bysinα,∴S1S2=(ab)2sin2α.【点评】本题考查几何变换综合题、等边三角形的性质、等腰三角形的性质、相似三角形的判定和性质、三角形的面积公式.锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考压轴题.24.(10分)如图,抛物线y=x2+bx+c经过点B(3,0),C(0,﹣2),直线l:y=﹣x﹣交y轴于点E,且与抛物线交于A,D两点,P为抛物线上一动点(不与A,D重合).(1)求抛物线的解析式;(2)当点P在直线l下方时,过点P作PM∥x轴交l于点M,PN∥y轴交l于点N,求PM+PN的最大值.(3)设F为直线l上的点,以E,C,P,F为顶点的四边形能否构成平行四边形若能,求出点F的坐标;若不能,请说明理由.【分析】(1)把B(3,0),C(0,﹣2)代入y=x2+bx+c解方程组即可得到结论;(2)设P(m, m2﹣m﹣2),得到N(m,﹣ m﹣),M(﹣m2+2m+2, m2﹣m﹣2),根据二次函数的性质即可得到结论;(3)求得E(0,﹣),得到CE=,设P(m, m2﹣m﹣2),①以CE为边,根据CE=PF,列方程得到m=1,m=0(舍去),②以CE为对角线,连接PF交CE于G,CG=GE,PG=FG,得到G(0,﹣),设P(m, m2﹣m﹣2),则F(﹣m, m﹣),列方程得到此方程无实数根,于是得到结论.【解答】解:(1)把B(3,0),C(0,﹣2)代入y=x2+bx+c得,,∴∴抛物线的解析式为:y=x2﹣x﹣2;(2)设P(m, m2﹣m﹣2),∵PM∥x轴,PN∥y轴,M,N在直线AD上,∴N(m,﹣ m﹣),M(﹣m2+2m+2, m2﹣m﹣2),∴PM+PN=﹣m2+2m+2﹣m﹣m﹣﹣m2+m+2=﹣m2+m+=﹣(m﹣)2+,∴当m=时,PM+PN的最大值是;(3)能,理由:∵y=﹣x﹣交y轴于点E,∴E(0,﹣),∴CE=,设P(m, m2﹣m﹣2),∵以E,C,P,F为顶点的四边形能否构成平行四边形,①以CE为边,∴CE∥PF,CE=PF,∴F(m,﹣ m﹣),∴﹣m﹣﹣m2+m+2=,∴m=1,m=0(舍去),②以CE为对角线,连接PF交CE于G,∴CG=GE,PG=FG,∴G(0,﹣),设P(m, m2﹣m﹣2),则F(﹣m, m﹣),∴×(m2﹣m﹣2+m﹣)=﹣,∵△<0,∴此方程无实数根,综上所述,当m=1时,以E,C,P,F为顶点的四边形能否构成平行四边形.【点评】本题考查了待定系数法求函数的解析式,平行四边形的性质,二次函数的性质,正确的理解题意是解题的关键.。

相关文档
最新文档