模拟与数字电路基础 期末知识点总结
模拟电路基础知识点总结
模拟电路基础知识点总结模拟电路是电子技术中的重要基础知识点,它在现代电子设备中起着至关重要的作用。
通过模拟电路的设计和分析,我们可以实现信号的放大、滤波、混频等功能,从而实现电子设备的正常工作。
一、模拟电路的基本概念1. 电路:由电子元器件和导线等连接而成的电子系统。
2. 模拟电路:处理模拟信号的电路,模拟信号是连续变化的信号。
3. 数字电路:处理数字信号的电路,数字信号是离散变化的信号。
4. 信号:表示信息的物理量,常见的信号有声音、图像、电压等。
5. 信号源:产生信号的电子元器件,比如函数发生器、麦克风等。
二、模拟电路的基本组成1. 电源:提供电路所需的电能。
2. 元件:电子电路中的基本构成单元,包括电阻、电容、电感等。
3. 连接线:将元器件连接起来,传递电能和信号。
4. 放大器:放大电路中的信号,提高信号的幅度。
5. 滤波器:去除电路中的杂散信号,保留所需信号。
6. 比较器:比较两个信号的大小,判断其关系。
7. 混频器:将两个不同频率的信号混合在一起。
三、模拟电路的基本原理1. 电流:电子在导体中的流动,是电荷的移动。
2. 电压:电荷在电场中的势能差,表示电子的能量。
3. 电阻:阻碍电流通过的元件,使电能转化为其他形式的能量。
4. 电容:存储电荷的元件,具有存储和释放能量的特性。
5. 电感:存储磁场能量的元件,具有阻碍电流变化的特性。
四、常见的模拟电路应用1. 放大器:将微弱信号放大到合适的幅度,如音频放大器。
2. 滤波器:去除电路中的噪声和杂散信号,如音频滤波器。
3. 混频器:将两个不同频率的信号混合在一起,如无线电调频。
4. 示波器:观测电路中的信号波形,如示波器。
5. 电源:提供电路所需的直流或交流电源,如电池、电源适配器。
总结:模拟电路是电子技术中的基础知识点,通过对电路的设计和分析,我们可以实现各种功能,如信号放大、滤波、混频等。
了解模拟电路的基本概念、组成和原理,以及常见的应用,对于理解和应用电子技术都是至关重要的。
数电模电基础知识总结
数电模电基础知识总结在电子技术的领域中,数字电子技术(数电)和模拟电子技术(模电)是两个至关重要的基础分支。
无论是日常生活中的电子设备,还是复杂的工业控制系统,都离不开数电和模电的应用。
接下来,让我们一同走进数电模电的世界,对其基础知识进行一番梳理和总结。
一、模拟电子技术基础知识模拟电子技术主要处理连续变化的电信号,其信号的幅度、频率和相位等参数可以在一定范围内连续取值。
(一)半导体器件半导体是模电的基础材料,常见的半导体器件有二极管、三极管和场效应管等。
二极管具有单向导电性,常用于整流、限幅和钳位等电路。
三极管分为 NPN 型和 PNP 型,它可以实现电流放大作用,是放大器的核心元件。
场效应管则具有输入电阻高、噪声低等优点,在集成电路中应用广泛。
(二)基本放大电路放大电路是模电中的重要内容。
共发射极放大电路、共集电极放大电路和共基极放大电路是常见的三种基本放大电路。
共发射极放大电路具有较大的电压和电流放大倍数,但输入输出电阻适中;共集电极放大电路,又称射极跟随器,其输入电阻高,输出电阻低,电压放大倍数接近于 1,但电流放大倍数较大;共基极放大电路具有较大的频率响应和较宽的通频带。
(三)集成运算放大器集成运放是一种高增益、高输入电阻、低输出电阻的直接耦合放大器。
它在信号运算、处理和产生等方面有着广泛的应用。
通过引入负反馈,可以实现加法、减法、积分、微分等运算功能。
(四)反馈电路反馈在模电中起着重要的作用。
正反馈可以使电路产生自激振荡,常用于正弦波振荡器中;负反馈可以改善放大电路的性能,如提高稳定性、改变输入输出电阻、减小非线性失真等。
(五)功率放大电路功率放大电路的主要任务是在保证信号不失真的前提下,尽可能提高输出功率和效率。
常见的功率放大电路有甲类、乙类和甲乙类功放。
(六)直流电源直流电源包括电源变压器、整流电路、滤波电路和稳压电路等部分。
它为电子设备提供稳定的直流电压。
二、数字电子技术基础知识数字电子技术处理的是离散的数字信号,其信号只有高电平和低电平两种状态,分别用“1”和“0”表示。
模拟和数字电路基础知识汇总
模拟和数字电路基础知识汇总作为一位硬件工程师,必须面对的就是两个基本电路:模拟电路和数字电路。
下面我们就来了解一下这两个电路的基本知识。
一、模拟电路与数字电路的定义及特点:模拟电路(电子电路)模拟信号处理模拟信号的电子电路。
“模拟”二字主要指电压(或电流)对于真实信号成比例的再现。
其主要特点是:1、函数的取值为无限多个;2、当图像信息和声音信息改变时,信号的波形也改变,即模拟信号待传播的信息包含在它的波形之中(信息变化规律直接反映在模拟信号的幅度、频率和相位的变化上)。
3.初级模拟电路主要解决两个大的方面:1放大、2信号源。
4、模拟信号具有连续性。
数字电路(进行算术运算和逻辑运算的电路)数字信号用数字信号完成对数字量进行算术运算和逻辑运算的电路称为数字电路,或数字系统。
由于它具有逻辑运算和逻辑处理功能,所以又称数字逻辑电路。
其主要特点是:1、同时具有算术运算和逻辑运算功能数字电路是以二进制逻辑代数为数学基础,使用二进制数字信号,既能进行算术运算又能方便地进行逻辑运算(与、或、非、判断、比较、处理等),因此极其适合于运算、比较、存储、传输、控制、决策等应用。
2、实现简单,系统可靠以二进制作为基础的数字逻辑电路,可靠性较强。
电源电压的小的波动对其没有影响,温度和工艺偏差对其工作的可靠性影响也比模拟电路小得多。
3、集成度高,功能实现容易集成度高,体积小,功耗低是数字电路突出的优点之一。
电路的设计、维修、维护灵活方便,随着集成电路技术的高速发展,数字逻辑电路的集成度越来越高,集成电路块的功能随着小规模集成电路(SSI)、中规模集成电路(MSI)、大规模集成电路(LSI)、超大规模集成电路(VLSI)的发展也从元件级、器件级、部件级、板卡级上升到系统级。
电路的设计组成只需采用一些标准的集成电路块单元连接而成。
对于非标准的特殊电路还可以使用可编程序逻辑阵列电路,通过编程的方法实现任意的逻辑功能。
二、模拟电路与数字电路之间的区别模拟电路是处理模拟信号的电路;数字电路是处理数字信号的电路。
电路知识点总结期末
电路知识点总结期末一、电路基础知识1. 电路的概念电路是由电源、导线、电阻和电子器件等部件连接而成的电子元件的集合体,是电子电路的基本组成单元。
电路可以分为模拟电路和数字电路两种类型。
模拟电路是以变化的电压或电流作为信息载体,用来处理模拟信号;数字电路是以数字信号为信息载体,用来处理数字信号。
2. 电路元件(1)电源:提供电路工作所需的电能,通常包括直流电源和交流电源。
(2)导线:用来连接电路中各部件的导电材料,通常采用金属导线。
(3)电阻:用来阻碍电流通过的元件,是电路中最常见的元件之一。
(4)电容:用来存储电荷和储能的元件,是电路中的重要元件。
(5)电感:利用磁场存储能量的元件,是电路中的重要元件。
(6)二极管:只允许电流在一个方向通过的元件,是电路中的重要元件。
(7)晶体管:用来放大信号或者作为开关的元件,是半导体器件中的重要代表。
(8)集成电路:将多种电子器件集成在一起,组成一个完整功能的电路,是现代电子电路的重要发展方向。
3. 电路的基本参数(1)电压:电路中的电压是指单位电荷所具有的能量,通常用伏特(V)来表示。
(2)电流:电路中的电流是指电荷流动的速度,通常用安培(A)来表示。
(3)电阻:电路中的电阻是指阻碍电流通过的元件,通常用欧姆(Ω)来表示。
(4)功率:电路中的功率是指单位时间内产生或消耗的能量,通常用瓦特(W)来表示。
二、电路分析方法1. 基尔霍夫定律基尔霍夫定律是电路分析中的重要法则,包括基尔霍夫电流定律和基尔霍夫电压定律。
基尔霍夫电流定律是指电路中任意节点的电流代数和为零;基尔霍夫电压定律是指电路中任意闭合回路的电压代数和为零。
2. 等效电路分析等效电路分析是指用简单的电路替代复杂的电路,使得电路分析变得更加简便。
等效电路分析常用的方法包括串联、并联、星形变换、三角形变换等。
3. 非线性电路分析非线性电路是指其特性曲线不是一条直线的电路,常见的非线性元件包括二极管、晶体管等。
模拟与数字电路基础期末知识点总结
一、填空题:(每空1分共40分)1、PN结正偏时(导通),反偏时(截止),所以PN结具有(单向)导电性。
2、漂移电流是(反向)电流,它由(少数)载流子形成,其大小与(温度)有关,而与外加电压(无关)。
3、所谓理想二极管,就是当其正偏时,结电阻为(零),等效成一条直线;当其反偏时,结电阻为(无穷大),等效成断开;4、三极管是(电流)控制元件,场效应管是(电压)控制元件。
5、三极管具有放大作用外部电压条件是发射结(正偏),集电结(反偏)。
6、当温度升高时,晶体三极管集电极电流Ic(增大),发射结压降(减小)。
7、三极管放大电路共有三种组态分别是(共集电极)、(共发射极)、(共基极)放大电路。
8、为了稳定三极管放大电路的静态工作点,采用(直流)负反馈,为了稳定交流输出电流采用(交流)负反馈。
9、负反馈放大电路和放大倍数AF=(A/1+AF),对于深度负反馈放大电路的放大倍数AF=( 1/F )。
10、带有负反馈放大电路的频带宽度BWF=(1+AF)BW,其中BW=(fh-fl ),( 1+AF )称为反馈深度。
11、差分放大电路输入端加上大小相等、极性相同的两个信号,称为(共模)信号,而加上大小相等、极性相反的两个信号,称为(差模)信号。
12、为了消除乙类互补功率放大器输出波形的(交越)失真,而采用(甲乙)类互补功率放大器。
13、OCL电路是(双)电源互补功率放大电路;OTL电路是(单)电源互补功率放大电路。
14、共集电极放大电路具有电压放大倍数(近似于1 ),输入电阻(大),输出电阻(小)等特点,所以常用在输入级,输出级或缓冲级。
15、差分放大电路能够抑制(零点)漂移,也称(温度)漂移,所以它广泛应用于(集成)电路中。
16、用待传输的低频信号去改变高频信号的幅度称为(调波),未被调制的高频信号是运载信息的工具,称为(载流信号)。
17、模拟乘法器输出与输入的关系式是U0=( KUxUy )1、1、P型半导体中空穴为(多数)载流子,自由电子为(少数)载流子。
58条模拟、数字电路基础知识总结
58条模拟、数字电路基础知识总结1、 HC为COMS电平,HCT为TTL电平2、 LS输入开路为高电平,HC输入不允许开路, HC一般都要求有上下拉电阻来确定输入端无效时的电平。
LS 却没有这个要求3、 LS输出下拉强上拉弱,HC上拉下拉相同4、工作电压:LS只能用5V,而HC一般为2V到6V5、CMOS可以驱动TTL,但反过来是不行的。
TTL电路驱动COMS电路时需要加上拉电阻,将2.4V~3.6V之间的电压上拉起来,让CMOS检测到高电平输入6、驱动能力不同,LS一般高电平的驱动能力为5mA,低电平为20mA;而CMOS的高低电平均为5mA7、 RS232电平为+12V为逻辑负,-12为逻辑正8、 74系列为商用,54为军用9、 TTL高电平>2.4V,TTL低电平<0.4V, 噪声容限0.4V10、 OC门,即集电极开路门电路(为什么会有OC门?因为要实现“线与”逻辑),OD门,即漏极开路门电路,必须外界上拉电阻和电源才能将开关电平作为高低电平用。
否则它一般只作为开关大电压和大电流负载,所以又叫做驱动门电路。
并且只能吸收电流,必须外界上拉电阻和电源才才能对外输出电流11、 COMS的输入电流超过1mA,就有可能烧坏COMS12、当接长信号传输线时,在COMS电路端接匹配电阻13、在门电路输入端串联10K电阻后再输入低电平,输入端出呈现的是高电平而不是低电平14、如果电路中出现3.3V的COMS电路去驱动5V CMOS电路的情况,如3.3V单片机去驱动74HC,这种情况有以下几种方法解决,最简单的就是直接将74HC换成74HCT的芯片,因为3.3VCMOS 可以直接驱动5V的TTL电路;或者加电压转换芯片;还有就是把单片机的I/O口设为开漏,然后加上拉电阻到5V,这种情况下得根据实际情况调整电阻的大小,以保证信号的上升沿时间15、逻辑门输出为高电平时的负载电流(为拉电流),逻辑门输出为低电平时的负载电流(为灌电流)16、由于漏级开路,所以后级电路必须接一上拉电阻,上拉电阻的电源电压就可以决定输出电平。
模电数电知识总结
1.模电和数电的主要内容,学习目的。
参考要点:①模电主要讲述对模拟信号进行产生、放大和处理的模拟集成电路;数电主要是通过数字逻辑和计算去分析、处理信号,数字逻辑电路的构成及运用。
由于数字电路稳定性高,结果再现性好;易于设计等诸多优点,因此是今后的发展方向。
但现实世界中信息都是模拟信息,模电是不可能淘汰的。
单就一个系统而言模电部分可能会减少,理想构成为:模拟输入—AD采样(数字化)--数字处理—DA转换—模拟输出。
②电力专业学生学习模电数电,了解常见的模拟数字集成电路,掌握简单的电路设计,对于以后工作中遇到的弱电控制强电等情况很有帮助。
而且目前我国正在建设智能电网,模电数电的这些知识为电网高速通信网络,智能表计等智能电网核心设备打下了基础。
模电一、模拟信号和数字信号。
在时间上和幅值上均是连续的信号称为模拟信号,时间离散、数值也离散的信号称为数字信号。
随着计算机的广泛应用,绝大多数电子系统都采用计算机来对信号进行处理,由于计算机无法直接处理模拟信号,所以需要将模拟信号转换成数字信号。
二、放大电路的类型和主要性能指标。
①电压放大、电流放大、互阻放大和互导放大。
电压放大电路主要考虑电压增益,电流放大电路主要考虑电流增益,需要将电流信号转换为电压信号可利用互阻放大电路,把电压信号转换成与之相应的电流输出,这种电路为互导放大电路。
这四种放大电路模型可实现相互转换。
②输入电阻、输出电阻、增益、频率响应和非线性失真。
输入电阻等于输入电压与输入电流的比值,它的大小决定了放大电路从信号源吸取信号幅值的大小;输出电阻的大小决定了它带负载的能力,在信号源短路和负载开路情况下,在放大电路输出端加一个测试电压,相应产生一测试电流就能求得输出电阻;增益实际上反映了放大电路在输入信号控制下,将供电电源能量转换为信号能量的能力;放大电路频率响应指在输入正弦信号情况下,输出随输入信号频率连续变化的稳态响应;由于元器件特性的非线性和放大电路工作电源受有限电压的限制而造成的失真为非线性失真。
模拟电路基础知识点总结
模拟电路基础知识点总结一、电路基本概念1. 电路电路是由电子元件(如电源、电阻、电容、电感等)连接在一起形成的电子装置。
通过这些元件可以实现电能的输送、控制和转换,从而完成各种电子设备和系统的功能。
2. 电流、电压和电阻电流是电子在导体中流动的载体,是电荷的移动速度,通常用符号I表示,单位是安培(A)。
电压是电源推动电荷流动的力量,通常用符号U表示,单位是伏特(V)。
电阻是导体对电流的阻碍,通常用符号R表示,单位是欧姆(Ω)。
3. 串联电路、并联电路和混联电路串联电路是将电子元件连接在同一电路中,依次排列,电流只有一条通路可走。
并联电路是将电子元件连接在同一电路中,相互平行排列,电流可有多条通路走。
混联电路是将电子元件混合连接在同一电路中,既有串联又有并联的特点。
二、基本电路元件1. 电源电源为电路提供驱动力,可以是直流电源或交流电源,根据需要分别选择。
2. 电阻电阻是电路中常用的元件,可以用来控制电流大小,限制电流大小,分压和分流等。
3. 电容电容是储存电荷的元件,可以用来实现一些信号处理和滤波的功能,在交流电路中有重要作用。
4. 电感电感是导体绕制的线圈,可以将电能转换为磁能,反之亦然,对交流信号传输有重要作用。
5. 二极管二极管是一种电子元件,可以将电流限制在一个方向上流动,常用于整流、开关和光电转换等应用。
6. 晶体管晶体管是一种半导体元件,可以放大电流信号,控制电流开关等,是集成电路中最基本的元件之一。
三、基本电路分析1. 基尔霍夫定律基尔霍夫定律是用来分析串联电路和并联电路中电压和电流的分布情况的定律,包括基尔霍夫电流定律和基尔霍夫电压定律。
2. 电压分压和电流分流电压分压和电流分流是串联电路和并联电路中常见的分析方法,可以通过这些方法来实现电路中电压和电流的控制。
3. 戴维南定理和戴维南等效电路戴维南定理是用来分析电路中电阻和电压之间的关系,戴维南等效电路是用来替代一些复杂电路,简化分析过程的方法。
数电期末总结基础知识要点
数电期末总结基础知识要点数字电路各章知识点第1章逻辑代数基础⼀、数制和码制1.⼆进制和⼗进制、⼗六进制的相互转换 2.补码的表⽰和计算 3.8421码表⽰⼆、逻辑代数的运算规则1.逻辑代数的三种基本运算:与、或、⾮ 2.逻辑代数的基本公式和常⽤公式逻辑代数的基本公式(P10)逻辑代数常⽤公式:吸收律:A AB A =+消去律:AB B A A =+ A B A AB =+ 多余项定律:C A AB BC C A AB +=++ 反演定律:B A AB += B A B A ?=+ B A AB B A B A +=+ 三、逻辑函数的三种表⽰⽅法及其互相转换★逻辑函数的三种表⽰⽅法为:真值表、函数式、逻辑图会从这三种中任⼀种推出其它⼆种,详见例1-6、例1-7 逻辑函数的最⼩项表⽰法四、逻辑函数的化简:★1、利⽤公式法对逻辑函数进⾏化简2、利⽤卡诺图队逻辑函数化简3、具有约束条件的逻辑函数化简例1.1利⽤公式法化简 BD C D A B A C B A ABCD F ++++=)(解:BD C D A B A C B A ABCD F ++++=)(BD C D A B A B A ++++= )(C B A C C B A +=+ BD C D A B +++= )(B B A B A =+ C D A D B +++= )(D B BD B +=+ C D B ++= )(D D A D =+ 例1.2 利⽤卡诺图化简逻辑函数 ∑=)107653()(、、、、m ABCD Y 约束条件为∑8)4210(、、、、m 解:函数Y 的卡诺图如下:00 01 11 1000011110AB CD111×11××××D B A Y +=第2章集成门电路⼀、三极管如开、关状态 1、饱和、截⽌条件:截⽌:beT VV < 饱和:CSBSB Ii Iβ>=2、反相器饱和、截⽌判断⼆、基本门电路及其逻辑符号★与门、或⾮门、⾮门、与⾮门、OC 门、三态门、异或、传输门(详见附表:电⽓图⽤图形符号 P321 )⼆、门电路的外特性★1、电阻特性:对TTL 门电路⽽⾔,输⼊端接电阻时,由于输⼊电流流过该电阻,会在电阻上产⽣压降,当电阻⼤于开门电阻时,相当于逻辑⾼电平。
数字电路期末总复习知识点归纳详细
数字电路期末总复习知识点归纳详细一、简述亲爱的小伙伴们,又是一年一度的期末复习时刻来临了,这次复习的主角是数字电路知识。
让我们一起来看看哪些内容是重点,助力你的复习之旅吧!数字电路虽然听起来高大上,但其实与我们日常生活息息相关。
手机、电视、电脑等电子产品都离不开它。
因此掌握好数字电路知识,不仅对学习有帮助,还能更好地理解生活中的科技应用。
首先你得清楚数字电路的基本概念,比如什么是数字信号、什么是模拟信号。
这可是基础中的基础,得打好基础才能建起高楼大厦。
接下来是数字电路的逻辑门和逻辑代数,这些看似复杂的名词其实背后都有简单的逻辑原理,只要理解了就容易掌握。
别忘了组合逻辑和时序逻辑电路,它们是数字电路的核心部分,考试中的大题往往围绕它们展开。
此外数制与编码也不可忽视,它们在数字电路中有着举足轻重的作用。
1. 回顾本学期数字电路课程的重要性这个学期数字电路课程真是收获满满啊!时间过得飞快,转眼就要期末考试了,大家是不是觉得有必要好好复习一下呢?确实数字电路课程在电子信息技术领域可是非常关键的,这门课程就像打开了一扇神奇的大门,让我们了解了电子设备背后的秘密。
咱们学习的内容都是电子工程师必备的基础知识,对咱们未来无论是从事相关职业还是日常生活都很有帮助。
所以啊同学们,一定要重视这次的复习,为期末考试做好准备!这个段落力求简洁明了,使用口语化的表达方式,易于读者理解和接受。
同时加入了情感化的语气,增强了文章的人情味。
2. 复习目的与意义期末临近是时候开始我们的复习计划了,说到复习数字电路,可不是简单地过一遍课本,而是为了更好地掌握这门课的知识和技能,帮助大家在即将到来的期末考试中取得好成绩。
所以今天就来一起梳理下复习目的和意义,让大家明白为什么要这么认真地对待这次复习。
首先复习数字电路是为了巩固我们学过的知识,毕竟课本上的内容那么多,不可能一下子全记住。
通过复习我们可以再次梳理知识脉络,加深理解确保学过的内容都能牢牢掌握。
数电和模电知识点
模电复习资料第一章半导体二极管一.半导体的基础知识1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。
2.特性---光敏、热敏和掺杂特性。
3.本征半导体----纯净的具有单晶体结构的半导体。
4. 两种载流子----带有正、负电荷的可移动的空穴和电子统称为载流子。
5.杂质半导体--在本征半导体中掺入微量杂质形成的半导体。
体现的是半导体的掺杂特性。
*P型半导体:在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。
*N型半导体: 在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。
6. 杂质半导体的特性*载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。
*体电阻---通常把杂质半导体自身的电阻称为体电阻。
*转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。
7. PN结* PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。
* PN结的单向导电性---正偏导通,反偏截止。
8. PN结的伏安特性二. 半导体二极管*单向导电性------正向导通,反向截止。
*二极管伏安特性----同PN结。
*正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。
*死区电压------硅管0.5V,锗管0.1V。
3.分析方法------将二极管断开,分析二极管两端电位的高低:若 V阳 >V阴( 正偏 ),二极管导通(短路);若 V阳 <V阴( 反偏 ),二极管截止(开路)。
1)图解分析法该式与伏安特性曲线的交点叫静态工作点Q。
2) 等效电路法直流等效电路法*总的解题手段----将二极管断开,分析二极管两端电位的高低:若 V阳 >V阴( 正偏 ),二极管导通(短路);若 V阳 <V阴( 反偏 ),二极管截止(开路)。
*三种模型微变等效电路法三. 稳压二极管及其稳压电路*稳压二极管的特性---正常工作时处在PN结的反向击穿区,所以稳压二极管在电路中要反向连接。
模拟与数字电路知识点总结
模拟与数字电路知识点总结1.数字电路分类数字电路主要分为组合逻辑电路和时序逻辑电路两大类。
组合逻辑电路是指电路中的输出仅由输入信号的当前值决定,与输入信号的时序无关。
常见的组合逻辑电路有门电路、编码器、译码器、多路选择器、加法器、减法器等。
时序逻辑电路是指电路中的输出不仅由输入信号的当前值决定,还与输入信号的时序相关。
常见的时序逻辑电路有时序电路、触发器、寄存器、计数器、状态机等。
2.数字电路基本元件数字电路的基本元件包括门电路、触发器和计数器等。
门电路是数字逻辑电路的基础,用于进行逻辑运算。
常见的门电路有与门、或门、非门、异或门、与非门、或非门等。
触发器是一种能够存储状态的器件,用于时序逻辑电路中。
常见的触发器包括RS触发器、D触发器、JK触发器、T触发器等。
计数器是一种能够对输入的脉冲进行计数的器件,主要用于计数和时序控制。
常见的计数器包括二进制计数器、BCD计数器、分频器等。
3.数字逻辑电路设计数字逻辑电路设计是指根据实际需求,按照一定的逻辑关系和功能要求,设计出符合要求的数字电路。
数字电路设计的基本步骤包括需求分析、逻辑设计、电路绘制、电路仿真和电路测试等。
在数字逻辑电路设计中,需要了解各种逻辑门的逻辑关系、信号的传输与处理、时序控制等知识。
同时,还需要掌握仿真工具的使用,如Verilog、VHDL等,以及数字电路实验平台的使用。
4.数字信号处理数字信号处理是指对数字信号进行采样、量化、编码和处理的过程。
数字信号处理在通信、音频、视频等领域有着广泛的应用。
数字信号处理的基本原理包括采样定理、量化误差、信号编码、数字滤波等。
同时,还需要了解FFT、DFT、数字滤波器等数字信号处理技术。
5.数字电路应用数字电路在计算机、通信、家电、汽车电子等领域有着广泛的应用。
在计算机中,数字电路主要应用于CPU、存储系统、控制系统等部件。
数字电路在通信领域中,主要应用于调制解调器、编解码器、数字滤波器等部件。
数电模电基础知识总结
数电模电基础知识总结数字电子技术是指利用数字信号进行信息处理和传输的一种电子技术。
它是电子工程的一部分,是现代电子技术的重要组成部分。
本文将对数字电子技术的基础知识进行总结,主要包括数字电路的基本概念、数字信号和数字系统的表示方法、数字电路的逻辑运算和布尔代数、数字电路的设计和实现、数字信号处理等方面。
数字电路是指由逻辑门组成的电路,逻辑门是基本的数字电路组件,它具有输入和输出端口。
数字电路中的信号是离散的,只有两个可能的值,分别为高电平(表示逻辑"1")和低电平(表示逻辑"0")。
数字信号通常用二进制数字表示,例如"1010"表示数值为10。
数字系统是由数字电路组成的,它可以实现各种数字功能。
数字系统可以分为组合逻辑和时序逻辑两种类型。
组合逻辑是指输出只取决于当前的输入值,而不受过去的输入的影响;时序逻辑是指输出取决于当前的输入和过去的输入。
数字信号可以用多种方式进行表示,常见的有逻辑电平表示、时序波形表示和逻辑函数表示。
逻辑电平表示是指使用高电平和低电平表示逻辑"1"和逻辑"0";时序波形表示是指使用波形图表示信号的变化;逻辑函数表示是指使用逻辑函数表示信号的逻辑关系。
数字电路的逻辑运算和布尔代数是数字电路设计的基础。
布尔代数是一种数学工具,用于描述逻辑运算的规则。
逻辑运算包括与、或、非、异或等运算。
这些逻辑运算可以通过逻辑门实现,例如与门、或门、非门、异或门等。
数字电路的设计和实现是将逻辑功能转化为电路实现的过程。
数字电路可以通过门电路、触发器、计数器等元件实现。
门电路包括与门、或门、非门、异或门等,它们由逻辑门组成;触发器是一种时序逻辑元件,可以存储一位二进制信息;计数器是一种用于计数的电路,可以进行二进制计数。
数字信号处理是指使用数字信号进行信号处理的一种技术。
数字信号处理可以实现滤波、变换、编码等操作,广泛应用于通信、音频、图像等领域。
模拟电路基础期末总结
模拟电路基础期末总结一、引言模拟电路是电子工程学科中的重要基础课程,是电子工程师必须掌握的技术之一。
本学期学习期间,通过理论学习与实践操作,我对模拟电路的基本概念、原理和设计方法有了更深入的了解与掌握。
在本文中,我将对所学内容进行总结,包括模拟电路的基本概念、基本元件、放大电路、运算放大器、振荡电路、滤波电路等内容,展示我对模拟电路的理解和运用。
二、模拟电路基本概念1. 电路概念:电路是由电子元件和电源组成的电气网络,根据电流和电压的基本关系,电路可以分为串联电路和并联电路。
2. 模拟电路概念:模拟电路是用来处理连续变化的模拟信号的电路,适用于音频信号、音频放大、调制解调等领域。
三、模拟电路基本元件1. 电源:电路的能量来源,可以是电池或交流电源。
2. 电阻:电阻用于控制电流的大小,常用的电阻有固定电阻和可变电阻。
3. 电容:电容用于存储电荷,常用的电容有固定电容和可变电容。
4. 电感:电感用于存储磁能,对交流信号有阻碍作用。
5. 半导体器件:包括二极管、三极管和集成电路等。
四、放大电路放大电路可以将输入信号放大到所需的幅度,常见的放大电路有共射放大器、共基放大器和共集放大器等。
五、运算放大器1. 运算放大器的基本概念:运算放大器是一种可以放大电压和电流的电子放大器,具有高输入阻抗、低输出阻抗、大增益和宽频带等特点。
2. 运算放大器的应用:运算放大器广泛应用于放大电路、反馈电路、滤波器、积分器和微分器等领域。
六、振荡电路振荡电路是一种能够产生周期性信号的电路,常见的振荡电路有LC振荡器、RC振荡器和晶体振荡器等。
七、滤波电路滤波电路可以对输入信号进行滤波处理,以获取所需的频率分量。
八、实践操作在实验室中,我进行了一系列的实验操作,包括放大电路的设计与实现、运算放大器的应用、振荡电路的搭建和滤波电路的设计等。
通过实践操作,我更加深入地理解了模拟电路的原理和设计方法,也提高了实际动手能力。
九、总结与展望本学期学习模拟电路基础,我对模拟电路的基本概念、基本元件、放大电路、运算放大器、振荡电路和滤波电路有了较为全面和深入的了解。
模拟电路知识点总结资料
模拟电路知识点总结资料一、基本概念1. 电路:由电阻、电容、电感等基本元件组成的系统。
根据信号类型,电路可分为模拟电路和数字电路。
2. 模拟电路:能够处理连续变化的信号的电路。
模拟电路中的信号是连续的模拟波形,可以以任意时间间隔改变其数值。
3. 数字电路:只能处理离散的信号的电路。
数字电路中的信号是由0和1组成的脉冲波形,只在规定的时间点改变其数值。
二、基本元件1. 电阻:用于限制电流的流动,常用于控制信号的幅度和输出阻抗。
2. 电容:用于存储电荷,通常用于滤波、隔直、积分等功能。
3. 电感:用于存储磁能,通常用于滤波、隔交、微分等功能。
4. 二极管:用于实现电流的单向导通,可以作为整流器、开关等。
5. 晶体管:用于放大和控制电流,可以作为放大器、开关等。
三、基本电路1. 放大器:用于放大输入信号的幅度,常见的有运放放大器、晶体管放大器等。
2. 滤波器:用于滤除不需要的频率成分,常见的有低通滤波器、高通滤波器、带通滤波器等。
3. 比较器:用于比较两个信号的大小,常见的有比较器、振荡器等。
四、基本分析方法1. 直流分析:分析电路在稳态直流条件下的性能,通常用节点法、网孔法等进行分析。
2. 交流分析:分析电路在交流条件下的性能,通常用复数分析、频域分析等进行分析。
3. 时域分析:分析电路在时间域内的性能,通常用微分方程、积分方程等进行分析。
4. 非线性分析:分析电路中的非线性元件对性能的影响,通常需要用仿真软件进行分析。
五、常用工具和软件1. 万用表:用于测量电路中的电压、电流、电阻等参数。
2. 示波器:用于观测电路中的信号波形,可以分析信号的频率、幅度、相位等。
3. 信号发生器:用于产生各种形式的信号,可以用于测试电路的响应特性。
4. 仿真软件:如Multisim、Protues等,用于构建电路模型,进行电路仿真分析。
六、常见电路应用1. 放大器:用于音频放大、射频放大等。
2. 滤波器:用于音频滤波、射频滤波等。
模拟电路基础知识点总结
模拟电路基础知识点总结
模拟电路是电子工程中的一个重要分支,它涉及到电子元件和电路的设计、分析和应用。
模拟电路的基础知识点包括但不限于以下几个方面:
1. 电路元件,电阻、电容、电感是模拟电路中最基本的元件。
电阻用于限制电流,电容用于存储电荷,电感用于存储能量。
掌握这些元件的特性和相互作用是模拟电路的基础。
2. 电压、电流和功率,了解电压、电流和功率的概念及其在电路中的作用。
掌握欧姆定律、基尔霍夫定律等基本电路定律,能够分析电路中的电压、电流分布以及功率转换。
3. 放大器,放大器是模拟电路中常见的电路元件,用于放大电压、电流或功率。
掌握放大器的基本工作原理、分类、特性参数以及常见的放大电路设计是模拟电路基础知识的重要组成部分。
4. 滤波器,滤波器用于选择特定频率范围内的信号或者屏蔽特定频率范围内的干扰信号。
掌握滤波器的类型、特性以及在电路中的应用是模拟电路基础知识的重要内容。
5. 毛细管理论,毛细管理论是模拟电路中的重要概念,用于描述电路中的信号传输和功率传输。
了解毛细管理论对于理解电路中的信号传输和功率传输具有重要意义。
总之,模拟电路基础知识点涉及电路元件、电压电流功率、放大器、滤波器以及毛细管理论等多个方面。
掌握这些基础知识对于理解和设计模拟电路至关重要。
数电模电基础知识总结
数电模电基础知识总结数字电子技术是一门研究数字信号的产生、传输、处理和应用的学科,在现代科学技术领域具有广泛的应用。
以下是数电模电基础知识的总结。
1. 二进制系统:计算机使用的是二进制系统,即只有两个状态,0和1。
所有的数字、文字、图像等数据都能够以二进制形式存储和表示。
2. 逻辑门:逻辑门是最基本的数字电子元件,主要有与门、或门、非门、异或门等。
通过组合逻辑门,可以构成各种逻辑电路。
3. 布尔代数:布尔代数是刻画逻辑关系的代数。
它包括吸收律、结合律、分配律、德摩根定理等基本规律,用于推演和简化逻辑电路。
4. 编码器和译码器:编码器将若干输入信号转换成相应的输出代码,而译码器则将输入代码转换成相应的输出信号。
常见的编码器有BCD编码器和优先编码器,常见的译码器有BCD译码器和二-四译码器。
5. 时序逻辑电路:时序逻辑电路的输出不仅与当前的输入有关,还与过去的输入和输出有关,因此需要考虑时钟信号和存储器等因素。
常见的时序逻辑电路有时序门电路、触发器和计数器等。
6. 数字信号处理:数字信号处理是一种通过数学算法对数字信号进行滤波、变换、压缩等处理的技术。
常见的数字信号处理算法有傅里叶变换、快速傅里叶变换、离散余弦变换等。
7. A/D转换器和D/A转换器:A/D转换器将模拟信号转换为数字信号,D/A转换器则将数字信号转换为模拟信号。
常见的A/D转换器有逐次逼近型和逐次逼近型转换器,常见的D/A转换器有加权电阻型和数模转换型。
8. 逻辑门电路的设计:逻辑门电路的设计包括了逻辑功能的确定、真值表的绘制、逻辑方程的推导以及电路图的绘制等步骤。
通过逻辑门电路的设计,可以实现各种逻辑功能的电路。
9. 半导体器件的工作原理:半导体器件是数字电子电路的重要组成部分,常见的有二极管、三极管和场效应管等。
了解半导体器件的工作原理对于设计和应用数字电路非常重要。
10. 逻辑电路的时序分析:时序分析是对时序逻辑电路进行分析和验证的过程,主要包括了逻辑电路的状态转换、稳态和时序行为的分析,以及时序电路的性能参数计算。
大一模电期末知识点总结
大一模电期末知识点总结模拟电子技术是现代电子技术的重要组成部分,它研究的是利用电子器件和电路进行电子系统的设计与实现。
在大一模拟电子技术课程中,我们学习了许多重要的知识点,下面对这些知识进行总结和归纳。
一、电路基础知识1. 电流与电压:电流是电荷在单位时间内通过一个截面的数量,用安培(A)表示;电压是两点之间的电势差,用伏特(V)表示。
2. 电阻与电导:电阻是电流通过导体时产生的阻碍,用欧姆(Ω)表示;电导是导体导电性良好的程度,是电阻的倒数。
3. 欧姆定律:描述了在恒定温度下,电流通过导体的大小与电压成正比的关系,数学表达式为I = U/R。
4. 串联与并联:电路中的电阻、电容、电感等元件可以通过串联和并联的方式连接。
在串联中,元件依次连接在一起;而在并联中,元件是同时连接在一起。
二、半导体器件1. PN结:由p型半导体和n型半导体形成的结构,具有整流和发光的特性。
正向偏置使电流通过,反向偏置则阻止电流通过。
2. 二极管:由PN结构组成,具有单向导电性,可以将交流信号转换为直流信号。
3. 晶体管:由三层半导体构成(P-N-P或N-P-N),可以放大信号、开关电路和稳压等。
4. 场效应管:由栅极、漏极和源极组成,根据栅极电压的不同,控制漏极和源极之间的电流。
三、放大电路1. 放大器的基本概念:放大器将输入的弱信号放大为较大的输出信号,可以分为A类、B类、AB类等。
2. 放大器的参数:增益、带宽、输入阻抗和输出阻抗是评估放大器性能的重要指标。
3. 电压放大器:将输入信号的电压放大为较大的输出信号。
4. 电流放大器:将输入信号的电流放大为较大的输出信号。
5. 三极管放大器:使用三极管作为放大器的核心元件,具有高增益和广泛的应用。
四、振荡电路1. 振荡器的基本概念:振荡器是产生周期性信号的电路,可以分为正反馈振荡器和负反馈振荡器。
2. RC振荡器:使用电容和电阻构成的振荡器,具有简单结构和稳定的输出频率。
模拟电路期末知识总结
模拟电路期末知识总结一、模拟电路的基本理论1. 电压、电流和功率在模拟电路中,电压是指两个点之间的电势差,用符号V表示,单位是伏特(V)。
电流是指单位时间内电荷通过的数量,用符号I表示,单位是安培(A)。
功率是指单位时间内电路中转换或消耗的能量,用符号P表示,单位是瓦特(W)。
2. 电路参数电路参数是指描述电路性质和特性的数值,常见的电路参数有电阻、电容和电感。
电阻是指电路中阻碍电流流动的元件,用符号R表示,单位是欧姆(Ω)。
电容是指电路中能够存储电荷的元件,用符号C表示,单位是法拉(F)。
电感是指电路中能够存储磁能的元件,用符号L表示,单位是亨利(H)。
3. 电路定律欧姆定律是描述电压、电流和电阻之间关系的基本定律,即V=IR,其中V表示电压,I表示电流,R表示电阻。
基尔霍夫定律是描述电路中电压和电流分布的定律。
基尔霍夫电压定律说的是,电路中任意一个环的电压和为零。
基尔霍夫电流定律说的是,电路中任意一个节点的入流和等于出流和。
4. 放大器放大器是模拟电路中常用的电子器件,用于放大信号。
常见的放大器有运放放大器、差分放大器等。
运放放大器是一种集成电路,具有高增益、高输入阻抗、低输出阻抗的特点,被广泛应用于电路设计中。
5. 滤波器滤波器是模拟电路中常用的电子器件,用于滤除或增强信号的特定频率分量。
常见的滤波器有低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。
滤波器的设计需要根据具体的应用需求选择适当的类型和参数。
二、电路分析方法1. 等效电路分析等效电路分析是指将复杂的电路简化为等效电路进行分析。
等效电路是指与原电路在某个方面完全相同的电路,但更简单、更易分析。
常用的等效电路有电压源与电阻的串联等效电路、电流源与电阻的并联等效电路等。
2. 套用公式分析套用公式分析是指根据电路中的元件数值和电路定律,直接套用公式进行计算和分析。
这种方法适用于电路比较简单,元件参数已知的情况。
3. 节点分析法节点分析法是一种基于基尔霍夫电流定律的电路分析方法,通过设置节点电压和节点电流方程,得到电路中各节点的电压和电流。
《模拟电路与数字电路》考试要点总结
模拟电路与数字电路考试要点总结一、基本概念模拟电路:能够处理连续信号并输出连续信号的电路。
数字电路:能够处理离散信号并输出离散信号的电路。
模拟信号:连续可变物理量的信号。
数字信号:只能取有限个离散值的信号。
示波器:用于观察波形的仪器,可用于测量电压和时间。
逻辑门:基本的数字电路部件,是实现布尔代数运算的基础。
二、模拟电路1. 基本电路单元1.1 电阻电阻是模拟电路中最基本的电路元件,用来限制电流大小。
1.2 电容电容用来存储电能,能够使电压随时间变化,而电流保持恒定。
1.3 电感电感是存储磁能的元件,可以使电流随时间变化,而电压保持恒定。
2. 放大器放大器是一种能够将输入信号放大的电路。
2.1 运放运放是从模拟电路中最常见而又重要的放大器。
它具有很高的电压增益、输入阻抗高、输出阻抗低等一系列优点。
2.2 三极管放大器三极管具有放大和开关的双重功能,其放大性能比运放要差,但价格便宜、体积小。
3. 滤波器滤波器用于从混杂的信号中提取出所需要的信号。
3.1 低通滤波器低通滤波器能够滤掉高频信号,保留低频信号。
3.2 高通滤波器高通滤波器能够滤掉低频信号,保留高频信号。
3.3 带通滤波器带通滤波器能够通过选择性地滤除非希望的频率而保留一定范围的频率。
4. 振荡器振荡器是将电能转化为振动能的电路。
4.1 电容振荡器电容振荡器基于电容和电感的振荡原理。
4.2 晶体振荡器晶体振荡器使用了晶体的石英共振效应,生成非常稳定的振荡信号。
三、数字电路1. 基本逻辑门1.1 与门与门的输出信号为1的条件是所有输入信号都为1。
1.2 或门或门的输出信号为0的条件是所有输入信号都为0。
1.3 非门非门只有一个输入,其输出正好与输入相反。
1.4 异或门异或门的输出信号在有且仅有一个输入信号为1时为1,否则为0。
2. 组合逻辑电路组合逻辑电路由逻辑门组成,并可以完成一些简单的逻辑处理,如加减法、比较等。
3. 时序逻辑电路时序逻辑电路通过对输入信号的时序处理,根据特定的触发条件产生输出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题:(每空1分共40分)
1、PN结正偏时(导通),反偏时(截止),所以PN结具有(单向)导电性。
2、漂移电流是(反向)电流,它由(少数)载流子形成,其大小与(温度)有关,而与外加电压(无关)。
3、所谓理想二极管,就是当其正偏时,结电阻为(零),等效成一条直线;当其反偏时,结电阻为(无穷大),等效成断开;
4、三极管是(电流)控制元件,场效应管是(电压)控制元件。
5、三极管具有放大作用外部电压条件是发射结(正偏),集电结(反偏)。
6、当温度升高时,晶体三极管集电极电流Ic(增大),发射结压降(减小)。
7、三极管放大电路共有三种组态分别是(共集电极)、(共发射极)、(共基极)放大电路。
8、为了稳定三极管放大电路的静态工作点,采用(直流)负反馈,为了稳定交流输出电流采用(交流)负反馈。
9、负反馈放大电路和放大倍数AF=(A/1+AF),对于深度负反馈放大电路的放大倍数AF=( 1/F )。
10、带有负反馈放大电路的频带宽度BWF=(1+AF)BW,其中BW=(fh-fl ),
( 1+AF )称为反馈深度。
11、差分放大电路输入端加上大小相等、极性相同的两个信号,称为(共模)信号,而加上大小相等、极性相反的两个信号,称为(差模)信号。
12、为了消除乙类互补功率放大器输出波形的(交越)失真,而采用(甲乙)类互补功率放大器。
13、OCL电路是(双)电源互补功率放大电路;
OTL电路是(单)电源互补功率放大电路。
14、共集电极放大电路具有电压放大倍数(近似于1 ),输入电阻(大),输出电阻(小)等特点,所以常用在输入级,输出级或缓冲级。
15、差分放大电路能够抑制(零点)漂移,也称(温度)漂移,所以它广泛应用于(集成)电路中。
16、用待传输的低频信号去改变高频信号的幅度称为(调波),未被调制的高频信号是运载信息的工具,称为(载流信号)。
17、模拟乘法器输出与输入的关系式是U0=( KUxUy )
1、1、P型半导体中空穴为(多数)载流子,自由电子为(少数)载流子。
2、PN结正偏时(导通),反偏时(截止),所以PN结具有(单向)导电性。
3、反向电流是由(少数)载流子形成,其大小与(温度)有关,而与外加电压(无关)。
4、三极管是(电流)控制元件,场效应管是(电压)控制元件。
5、当温度升高时,三极管的等电极电流I(增大),发射结压降UBE(减小)。
6、晶体三极管具有放大作用时,发射结(正偏),集电结(反偏)。
7、三极管放大电路共有三种组态(共发射极)、(共集电极)、(共基极)放大电路。
8、为了稳定三极管放大电路和静态工作点,采用(直流)负反馈,为了减小输出电阻采用(电压)负反馈。
9、负反馈放大电路和放大倍数Af=(A/1+AF ),对于深度负反馈Af=( 1/F )。
10、共模信号是大小(相等),极性(相同)的两个信号。
11、乙类互补功放存在(交越)失真,可以利用(甲乙)类互补功放来克服。
12、用低频信号去改变高频信号的频率称为(调频),低频信号称为(调制)信号,高频信号称高频(载波)。
13、共基极放大电路的高频特性比共射极电路(好),fa=( 1+B )fβ。
14、要保证振荡电路满足相位平衡条件,必须具有(正反馈)网络。
15、在桥式整流电阻负载中,理想二极管承受最高反压是( 2U2 )。
二、选择题(每空2分共30分)
1、稳压二极管是一个可逆击穿二极管,稳压时工作在( B )状态,但其两端电压必须(C )它的稳压值Uz才有导通电流,否则处于( F )状态。
A、正偏
B、反偏
C、大于
D、小于
E、导通
F、截止
2、用直流电压表测得放大电路中某三极管各极电位分别是2V、6V、2.7V,则三个电极分别是( C ),该管是( D )型。
A、(
B、
C、E) B、(C、B、E) C、(E、C、B)
D、(NPN)
E、(PNP)
3、对功率放大器的要求主要是( B )、( C )、( E )。
A、U0高
B、P0大
C、功率大
D、Ri大
E、波形不失真
4、共射极放大电路的交流输出波形上半周失真时为( B ),此时应该( E )偏置电阻。
A、饱和失真
B、截止失真
C、交越失真
D、增大
E、减小
5、差分放大电路是为了( C )而设置的。
A、稳定Au
B、放大信号
C、抑制零点漂移
6、共集电极放大电路的负反馈组态是( A )。
A、压串负
B、流串负
C、压并负
7、差分放大电路RE上的直流电流IEQ近似等于单管集电极电流ICQ( B )倍。
A、1
B、2
C、3
8、为了使放大器带负载能力强,一般引入(A )负反馈。
A、电压
B、电流
C、串联
9、分析运放的两个依据是(A )、( B)。
A、U-≈U+
B、I-≈I+≈0
C、U0=Ui
D、Au=1
1、三端集成稳压器CW7812的输出电压是( A )。
A、12V
B、5V
C、9V
2、用直流电压表测得放大电路中某三极管各管脚电位分别是2V、6V、2.7V,则三个电极分别是( C),该管是( E )型。
A、(
B、
C、E) B、(C、B、E) C、(E、C、B)
D、(PNP)
E、(NPN)
3、共射极放大电路的交流输出波形上半周失真时为( B )失真,下半周失真时为( A)失真。
A、饱和
B、截止
C、交越
D、频率
4、差分放大电路是为了( C )而设置的。
A、稳定Au
B、放大信号
C、抑制零点漂移
5、共模抑制比是差分放大电路的一个主要技术指标,它反映放大电路( A )能力。
A、放大差模抑制共模
B、输入电阻高
C、输出电阻低
6、LM386是集成功率放大器,它可以使电压放大倍数在( B)之间变化。
A、0~20
B、20~200
C、200~1000
7、单相桥式整流电容滤波电路输出电压平均值Uo=( C )Uz
A、0.45
B、0.9
C、1.2
8、当集成运放线性工作时,有两条分析依据(A)(B )。
A、U-≈U+
B、I-≈I+≈0
C、U0=Ui
D、Au=1
9、对功率放大器的主要要求有( B )( C )( E )。
A、U0高,
B、P0大
C、效率高
D、Ri大
E、波形不失真
10、振荡器的输出信号最初由( C )而来的。
A、基本放大器
B、选频网络
C、干扰或噪声信号。