排列组合练习题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《排列组合》
一、排列与组合
3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有90种不同的方案,那么男、女同学的人数是
A.男同学2人,女同学6人
B.男同学3人,女同学5人
C. 男同学5人,女同学3人
D. 男同学6人,女同学2人
4.一条铁路原有m个车站,为了适应客运需要新增加n个车站(n>1),则客运车票增加了58种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有
A.12个
B.13个
C.14个
D.15个
二、注意附加条件
1.6人排成一列(1)甲乙必须站两端,有多少种不同排法?
(2)甲乙必须站两端,丙站中间,有多少种不同排法?
4. 设有编号为1、2、3、4、5的五个茶杯和编号为1、2、3、4、5的五个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有
A.30种
B.31种
C.32种
D.36种
5.从编号为1,2,…,10,11的11个球中取5个,使这5个球中既有编号为偶数的球又有编号为奇数的球,且它们的编号之和为奇数,其取法总数是
A.230种
B.236种
C.455种
D.2640种
6.从6双不同颜色的手套中任取4只,其中恰好有1双同色的取法有
A.240种
B.180种
C.120种
D.60种
7. 用0,1,2,3,4,5这六个数组成没有重复数字的四位偶数,将这些四位数从小到大排列起来,第71个数是。
三、间接与直接
1.有4名女同学,6名男同学,现选3名同学参加某一比赛,至少有1名女同学,由多少种不同选法?
2. 6名男生4名女生排成一行,女生不全相邻的排法有多少种?
4. 从5门不同的文科学科和4门不同的理科学科中任选4门,组成一个综合高考科目组,若要求这组科目中文理科都有,则不同的选法的种数 A.60种 B.80种 C.120种 D.140种
5.四面体的顶点和各棱中点共有10个点,在其中取4个不共面的点不同取法有多少种?
6. 以正方体的8个顶点为顶点的四棱锥有多少个?
7. 对正方体的8个顶点两两连线,其中能成异面直线的有多少对? 四、分类与分步 .
2.一个文艺团队有9名成员,有7人会唱歌,5人会跳舞,现派2人参加演出,其中1名会唱歌,1名会跳舞,有多少种不同选派方法?
3.已知直线
12
//l l ,在1l 上取3个点,在2l 上取4个点,每两个点连成直线,那么这些直线在1l 和
2
l 之间的交点(不包括1l 、2l
上的点)最多
有
A. 18个
B.20个
C.24个
D.36个
4. 9名翻译人员中,6人懂英语,4人懂日语,从中选拔5人参加外事活动,要求其中3人担任英语翻译,2人担任日语翻译,选拔的方法有 种(用数字作答)。
5.某博物馆要在20天内接待8所学校的学生参观,每天只安排一所学校,其中一所人数较多的学校要连续参观3天,其余学校只参观1天,则在这20天内不同的安排方法为 A.
37
2017
C A 种 B.
820
A 种 C.
17
1817
C A 种 D.
1818
A 种
6. 从10种不同的作物种子选出6种放入6个不同的瓶子展出,如果甲乙两种种子不许放第一
号瓶内,那么不同的放法共有
A.
24
108
C A种 B.15
99
C A种 C.15
89
C A种 D.15
98
C A种
7. 在画廊要展出1幅水彩画、4幅油画、5幅国画,要求排成一排,并且同一种的画摆放在一起,还要求水彩画不能摆两端,那么不同的陈列方式有
A.
15
45
A A种 B.245
345
A A A种 C.145
445
A A A种 D.245
245
A A A种
8. 把一个圆周24等分,过其中任意3个分点,可以连成圆的内接三角形,其中直角三角形的个数是
A.122
B.132
C.264
9. 有三张纸片,正、反面分别写着数字1、2、3和4、5、6 ,将这三张纸片上的数字排成三位数,共能组不同三位数的个数是
A. 24
B.36
C.48
D.64
10.在1~20共20个整数中取两个数相加,使其和为偶数的不同取法共有多少种?
12.从5部不同的影片中选出4部,在3个影院放映,每个影院至少放映一部,每部影片只放映一场,共有种不同的放映方法(用数字作答)。
五、元素与位置——位置分析
1.7人争夺5项冠军,结果有多少种情况?
3. 2名医生和4名护士被分配到两所学校为学生体检,每校分配1名医生和2名护士,不同分配方法有多少种?
4.有四位同学参加三项不同的比赛,
(1)每位同学必须参加一项竞赛,有多少种不同的结果?
(2)每项竞赛只许一位学生参加,有多少种不同的结果?
解:(1)每位学生有三种选择,四位学生共有参赛方法:333381
⨯⨯⨯=种;
(2)每项竞赛被选择的方法有四种,三项竞赛共有参赛方法:44464
⨯⨯=种.
七、消序