实数知识点及典型例题练习题总结

合集下载

实数知识点及典型例题

实数知识点及典型例题

实数知识点及典型例题一、实数知识点。

(一)实数的分类。

1. 有理数。

- 整数:正整数、0、负整数统称为整数。

例如:5,0,-3。

- 分数:正分数、负分数统称为分数。

分数都可以表示为有限小数或无限循环小数。

例如:(1)/(2)=0.5,(1)/(3)=0.333·s。

- 有理数:整数和分数统称为有理数。

2. 无理数。

- 无理数是无限不循环小数。

例如:√(2),π,0.1010010001·s(每两个1之间依次多一个0)。

3. 实数。

- 有理数和无理数统称为实数。

(二)实数的相关概念。

1. 数轴。

- 规定了原点、正方向和单位长度的直线叫做数轴。

- 实数与数轴上的点是一一对应的关系。

2. 相反数。

- 只有符号不同的两个数叫做互为相反数。

a的相反数是-a,0的相反数是0。

例如:3与-3互为相反数。

- 若a、b互为相反数,则a + b=0。

3. 绝对值。

- 数轴上表示数a的点与原点的距离叫做数a的绝对值,记作| a|。

- 当a≥slant0时,| a|=a;当a < 0时,| a|=-a。

例如:| 5| = 5,| -3|=3。

4. 倒数。

- 乘积为1的两个数互为倒数。

a(a≠0)的倒数是(1)/(a)。

例如:2的倒数是(1)/(2)。

(三)实数的运算。

1. 运算法则。

- 加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数。

- 减法法则:减去一个数等于加上这个数的相反数。

- 乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘都得0。

- 除法法则:除以一个数等于乘以这个数的倒数(除数不为0)。

2. 运算律。

- 加法交换律:a + b=b + a。

- 加法结合律:(a + b)+c=a+(b + c)。

- 乘法交换律:ab = ba。

初二(下)实数的知识点与练习题

初二(下)实数的知识点与练习题

第十三章 实数知识要点一: 1.实数的性质(1)实数范围内仍然适用在有理数范围内定义的一些概念(如倒数,相反数);(2)两实数的大小关系:正数大于0,0大于负数;两个正实数,绝对值大的实数大;两个负实数,绝对值大的实数反而小;(3)在实数范围内,加、减、乘、除(除数不为零)、乘方五种运算是畅通无阻的,但是开方运算要注意,正实数和零总能进行开方运算,而负实数只能开奇次方,不能开偶次方;(4)有理数范围内的运算律和运算顺序在实数范围内仍然相同. 2.实数与数轴的关系每一个实数都可以用数轴上的一个点表示;反之,数轴上每一个点都表示一个实数,即数轴上的点与实数是一一对应关系.3.实数的分类(1)按实数的定义分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 (2)按实数的正负分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧负无理数负分数负整数负有理数负实数负数)零(既不是正数也不是正无理数正分数正整数正有理数正实数实数4.实数的大小比较两实数的大小关系如下:正实数都大于0,负实数都小于0,正数大于一切负数;两个正实数,绝对值大的实数较大;两个负实数,绝对值大的实数反而小.实数和数轴上的点一一对应,在数轴上表示的两个实数,右边的数总大于左边的数.【典型例题】2-1C B A 例1若a 为实数,下列代数式中,一定是负数的是( ) A. -a 2 B. -( a +1)2 C.-2a D.-(a -+1)分析:本题主要考查负数和非负数的概念,同时涉及考查字母表示数这个知识点.由于a 为实数, a 2、( a +1)2、2a 均为非负数,∴-a 2≤0,-( a +1)2≤0,-2a ≤0.而0既不是正数也不是负数,是介于正数与负数之间的中性数.因此,A 、B 、C 不一定是负数.又依据绝对值的概念及性质知-(a -+1)﹤0.故选D例2 实数a 在数轴上的位置如图所示, 化简:2)2(1-+-a a =分析:这里考查了数形结合的数学思想,要去掉绝对值符号,必须清楚绝对值符号内的数是正还是负.由数轴可知:1﹤a ﹤2,于是,22)2(,112a a a a a -=-=--=-所以, 2)2(1-+-a a =a -1+2-a =1.例3 如图所示,数轴上A 、B 两点分别表示实数1,5,点B 关于点A 的对称点为C ,则点C 所表示的实数为( ) A. 5-2 B. 2-5 C.5-3 D.3-5分析:这道题也考查了数形结合的数学思想,同时又考查了对称的性质.B 、C 两点关于点A 对称,因而B 、C 两点到点A 的距离是相同的,点B 到点A 的距离是5-1,所以点C 到点A 的距离也是5-1,设点C 到点O 的距离为a ,所以a +1=5-1,即a =5-2.又因为点C 所表示的实数为负数,所以点C 所表示的实数为2-5.例4 已知a 、b 是有理数,且满足(a -2)2+3-b =0,则a b 的值为分析:因为(a -2)2+3-b =0,所以a -2=0,b -3=0。

实数知识点及例题

实数知识点及例题

实数习题集【知识要点】1.实数分类:2.相反数:b a ,互为相反数 0=+b a4.倒数:b a ,互为倒数0;1=ab 没有倒数.5.平方根,立方根:==x ,a x a x 记作的平方根叫做数则数若,2±a . 若a x ,a x a x 33,==记作的立方根叫做数则数6.数轴的概念与画法.实数与数轴上的点一一对应;利用数形结合的思想及数轴比较实数大小的方法.实数易错题分类汇总典型例题一:计算1.计算()2010200902211-⨯⎪⎭⎫ ⎝⎛-的结果是【答案】-1 2. ()()212321-+-+⎪⎭⎫ ⎝⎛--π的值为【答案】13.下列计算中,正确的是( )A .020= B .2a a a =+C3=±D .623)(a a =【答案】D4.下列运算正确的是( )A .1331-÷= Ba = C .3.14 3.14ππ-=- D .326211()24a b a b =典型例题二:估算 1.82cm 接近于( )实数有理数无理数 整数(包括正整数,零,负整数) 分数(包括正分数,负整数)正无理数 负无理数)0(>a 3.绝对值: =aa 0 a -)0(=a )0(<aA .珠穆朗玛峰的高度B .三层楼的高度C .姚明的身高D .一张纸的厚度 【答案】C2.如图,数轴上A 、B 两点分别对应实数a 、b ,则下列结论正确的是( )A .0>abB .0>-b aC .0>+b aD .0||||>-b a【答案】D典型例题三:应用题1.有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数为( ) A .8人 B .9人 C .10人 D .11人【答案】B.2.一种商品原来的销售利润率是47%.现在由于进价提高了5%,而售价没变,所以该商品的销售利润率变成了 【注:销售利润率=(售价—进价)÷进价】 【答案】40%典型例题四:信息与推断题1.观察下列算式,用你所发现的规律得出20102的末位数字是( )21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,… A .2 B .4 C .6 D .8 【答案】B 2.观察下列算式:,65613,21873,7293,2433,813,273,93,1387654321========,通过观察,用你所发现的规律确定20023的个位数字是( )A.3B.9C.7D.1 【答案】B 3.观察下列各式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯ ()1343452343⨯=⨯⨯-⨯⨯……计算:3×(1×2+2×3+3×4+…+99×100)=( )A .97×98×99B .98×99×100C .99×100×101D .100×101×102 【答案】C4.已知:3212323=⨯⨯=C ,1032134535=⨯⨯⨯⨯=C ,154321345646=⨯⨯⨯⨯⨯⨯=C ,…,观察上面的计算过程,寻找规律并计算=610C . 【答案】210典型例题五:比较大小10 -1 a b B A1. 31.0与1.02.331与213. 215--与-2 4. 2003-2002与2002-2001作业:设2的整数部分为a ,小数部分为b ,则1+2a b -2b =第三讲 平移、旋转与对称专题例题精讲1. 正方形ABCD 在坐标系中的位置如图所示,将正方形ABCD绕D 点顺时针方向旋转90后,B 点的坐标为( )A .(22)-,B .(41),C .(31), D .(40),随堂练习1下列四张扑克牌图案,属于中心对称的是( ).2.观察下列银行标志,从图案看既是轴对称图形又是中心对称图形的有( )A .1个B .2个C .3个D .4个例题精讲2将图(六)的正方形色纸沿其中一条对角线对折后,再沿原正方形的另 一条对角线对折,如图(七)所示。

实数知识点总结及典型例题练习

实数知识点总结及典型例题练习

实数知识点总结考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数整数包括正整数、零、负整数。

正整数又叫自然数。

正整数、零、负整数、正分数、负分数统称为有理数。

2、无理数在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等(这类在初三会出现) 考点二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=-b ,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值是它本身,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

考点三、平方根、算数平方根和立方根1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。

一个数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。

正数a 的平方根记做“a ±”。

2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

a (a ≥0)0≥a==a a 2 -a (a <0) ;注意a 的双重非负性:a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。

实数知识点及例题

实数知识点及例题

实数知识点及例题一、实数的概念实数是有理数和无理数的总称。

有理数包括整数(正整数、0、负整数)和分数(正分数、负分数);无理数是无限不循环小数。

例如,π(圆周率)、根号 2 等都是无理数。

而像 3、-5、025 等则是有理数。

二、实数的分类1、按定义分类:有理数:整数和分数。

无理数:无限不循环小数。

2、按性质分类:正实数:大于 0 的实数,包括正有理数和正无理数。

负实数:小于 0 的实数,包括负有理数和负无理数。

三、实数的基本性质1、实数的有序性:任意两个实数 a 和 b,必定有 a > b、a = b 或a <b 三种关系之一成立。

2、实数的稠密性:两个不相等的实数之间总有另一个实数存在。

3、实数的四则运算:实数的加、减、乘、除(除数不为 0)运算满足相应的运算律。

四、数轴数轴是规定了原点、正方向和单位长度的直线。

实数与数轴上的点一一对应,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。

例如,在数轴上表示 2 的点在原点右侧距离原点 2 个单位长度。

五、绝对值实数 a 的绝对值记作|a|,定义为:当a ≥ 0 时,|a| = a;当 a < 0 时,|a| = a。

绝对值的性质:1、|a| ≥ 0,即绝对值是非负的。

2、若|a| =|b|,则 a = ±b。

例如,|3| = 3,|-5| = 5。

六、相反数实数 a 的相反数是 a,它们的和为 0,即 a +(a) = 0。

例如,5 的相反数是-5,它们的和为 0。

若两个实数的乘积为 1,则这两个数互为倒数。

非零实数 a 的倒数是 1/a。

例如,2 的倒数是 1/2,-3 的倒数是-1/3。

八、实数的运算1、加法法则:同号两数相加,取相同的符号,并把绝对值相加。

异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。

2、减法法则:减去一个数,等于加上这个数的相反数。

3、乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

实数知识点归纳及典型例题

实数知识点归纳及典型例题

第十三章实数----知识点总结一、算术平方根1.算术平方根的定义:一般地,如果的等于a ,即,那么这个正数x 叫做a 的算术平方根.a 的算术平方根记为,读作“根号a ”,a 叫做.规定:0的算术平方根是0.也就是,在等式a x =2(x ≥0)中,规定a x =。

理解:a x =2(x ≥0)a x =a 是x 的平方x 的平方是ax 是a 的算术平方根a 的算术平方根是x 2.a 的结果有两种情况:当a 是完全平方数时,a 是一个有限数;当a 不是一个完全平方数时,a 是一个无限不循环小数。

3.当被开方数扩大(或缩小)时,它的算术平方根也扩大(或缩小);4.夹值法及估计一个(无理)数的大小(方法:)二、平方根1.平方根的定义:如果的平方等于a ,那么这个数x 就叫做a 的.即:如果,那么x 叫做a 的. 理解:a x =2<—>a x ±=a 是x 的平方x 的平方是ax 是a 的平方根a 的平方根是x2.开平方的定义:求一个数的的运算,叫做.开平方运算的被开方数必须是才有意义。

3.平方与开平方:±3的平方等于9,9的平方根是±34.一个正数有平方根,即正数进行开平方运算有两个结果;一个负数平方根,即负数不能进行开平方运算5.符号:正数a 的正的平方根可用a 表示,a 也是a 的算术平方根;正数a 的负的平方根可用-a 表示.6.平方根和算术平方根两者既有区别又有联系:区别在于正数的平方根有两个,而它的算术平方根只有一个; 联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的相反数。

三、立方根1.立方根的定义:如果的等于a ,这个数叫做a 的(也叫做),即如果,那么x 叫做a 的立方根。

2.一个数a “三次根号a ”,其中a 叫被开方数,3叫根指数,不能省略,若省略表示平方。

理解:a x =3<—>3a x =a 是x 的立方x 的立方是ax 是a 的立方根a 的立方根是x3.一个正数有一个正的立方根;0有一个立方根,是它本身;一个负数有一个负的立方根;任何数都有唯一的立方根。

实数知识点总结及练习题

实数知识点总结及练习题

复习:实数知识点总结一、平方根:如果a x =2,那么x 叫做a 的平方根(或二次方根)。

记作a x ±=性质:(1)平方根号里的数是非负数,即0≥a(2)正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根。

例 1、36的平方根是 ;16的算术平方根是 .2、如果102=x ,则x 是一个 数,x 的整数部分是 .3、=22 ,()23-= ,213= ,()=-225 ,20= , 综上所述,=2a .4、()=29 ,()=236 ,()=⎪⎭⎫ ⎝⎛-227 ,()=20 , 综上所述,()=2a .二、立方根:如果a x =3,那么x 叫做a 的立方根(或三次方根)。

记作3a x =性质:(1)立方根号里的数是任意实数(2)任意实数的立方根只有一个,且符号相同例 1、8的立方根是 ;327-= .2、=-3343 ,=-3343 ,则33433a3、37-的相反数是 .4、=33a ,()=33a .三、实数分类⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧ 0无限不循环小数负无理数正无理数无理数无限不循环小数有限小数或负分数正分数分数负整数正整数整数有理数实数说明:(1)实数与数轴上的点一一对应。

(2)相反数:a ,b 是实数且互为相反数b a b a -==+⇔,0(3)绝对值:设a 表示一个实数,则⎪⎩⎪⎨⎧<-=>=时当时当时当0 000 a a a a a a例 1、把下列各数分别填入相应的集合里:()2,2,3.0,1010010001.0,125,722,0,123-----•π 有理数集合:{ };无理数集合:{ };负实数集合:{ };2、2-的绝对值是,11-的绝对值是 .3+的相反数是,-的相反数的绝对值是 .4、计算:22322+-测试题:一、选择题:1、实数38 2π 34 310 25 其中无理数有()A 、 1个B 、 2个C 、 3个D 、 4个2、如果162=x ,则的值是()A 、 4B 、 -4C 、 4±D 、 2±3、下列说法正确的是()A 、 25的平方根是5B 、22-的算术平方根是2C 、 8.0的立方根是2.0D 、65是3625的一个平方根 4、下列说法其中错误的有( )个⑴无限小数都是无理数 ⑵无理数都是无限小数 ⑶带根号的数都是无理数⑷两个无理数的和还是无理数 (5)两个无理数的积还是无理数A 、 3B 、 1C 、 4D 、 25、如果x x -=2成立的条件是()A 、0≥xB 、0≤xC 、0>xD 、0<x6、下列说法错误的是()A 、2a 与2)(a -相等 B 、a 与a -互为相反数C 、3a 与3a -是互为相反数D 、a 与a -相等 7、b a ,的位置如图所示,则下列各式中有意义的是( ).A 、b a +B 、b a -C 、abD 、a b - 8、16的平方根是( ) A. 4 B. -4 C. 4± D. 2±9、下列说法:① 任意一个数都有两个平方根; ② 3的平方根是3的算术平方根 ; ③ -125的立方根是5±; ④23是一个分数; ⑤ 32-无意义。

最新北师大版八年级数学上册第二章实数知识点及习题

最新北师大版八年级数学上册第二章实数知识点及习题

最新北师大版八年级数学上册第二章实数知识点及习题知识点一、平方根平方根是指一个数的平方等于另一个数时,这个数就是另一个数的平方根。

记作x=±a(a≥0)。

根据这个定义,可以得出以下结论:1.当a=0时,它的平方根只有一个,也就是本身;2.当a>0时,它有两个平方根,且它们是互为相反数,通常记做:x=±a。

3.当a<0时,它不存在平方根。

例1:1.(1)的平方是64,所以64的平方根是±8;2.(2)的平方根是它本身,即1;3.若2x的平方根是±2,则x=±1;16的平方根是±4;4.当x≥1时,3-2x有意义;5.一个正数的平方根分别是m和m-4,则m的值是8,这个正数是16.知识点二、算术平方根如果一个正数x的平方等于a,即x²=a,那么,这个正数x就叫做a的算术平方根,记为:“√a”,其中,a称为被开方数。

特别规定:0的算术平方根仍然为0.算术平方根的性质是具有双重非负性,即:a≥0(√a≥0)。

算术平方根与平方根的关系是算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。

因此,算术平方根只有一个值,并且是非负数,它只表示为:√a;而平方根具有两个互为相反数的值,表示为:±√a。

例2:1.下列说法正确的是:C,81的平方根是±9;2.下列各式正确的是:A,81=±9;B,3.14-π=π-3.14;C,-27=-93;D,5-3=2;3.(-3)的算术平方根是0;4.若x+2√a- x有意义,则x+1=√a;5.已知△ABC的三边分别是a,b,c,且a,b满足a-3+(b-4)²=49,求c的取值范围是[4,∞);6.如果x、y分别是4-3的整数部分和小数部分,求x-y的值是0.01;7.求下列各数的平方根和算术平方根:64的平方根是±8,算术平方根是8;49的平方根是±7,算术平方根是7;0.0004的平方根是±0.02,算术平方根是0.02;(-25)²的平方根是±25,算术平方根是25;11的平方根是±√11,算术平方根是√11;8.(64)²=4096,(-64)²=4096;9.(7.2)²=51.84;10.对于正数a,(a)²=a²。

专题01 实数(重点+难点)(解析版)

专题01 实数(重点+难点)(解析版)

专题01实数(重点+难点)一、单选题1.下列各数中:﹣227,﹣39,0,0.15,3π,﹣49,1.010010001……(0的个数依次加一个),23.1313313332中,无理数有()个A .1B .2C .3D .4【答案】C【分析】无限不循环小数称为无理数,根据此概念判断即可.【解析】根据无理数的概念知:无理数有﹣39,3π, 1.010010001……(0的个数依次加一个)三个;故选:C .【点睛】本题考查了无理数的含义,常见三类无理数:不能开尽方的平方根或立方根;π与有理数的和差积商;形如1.010010001……(0的个数依次加一个)的数.2.下列说法中,不.正确的是()A .4的平方根是2±B .8的立方根是2C .64的立方根是4±D .9的算术平方根是3【答案】C【分析】根据平方根和立方根的定义进行计算,一个正数的平方根有正负两个,正的平方根是该数的算术平方根,所有实数的立方根只有一个,然后进行逐一判断即可.【解析】A.4的平方根是2±,原选项不合题意;B.8的立方根是2,原选项不合题意;C.64的立方根是4,原选项符合题意;D.9的算术平方根是3,原选项不合题意.故选:C【点睛】本题考查了平方根和立方根的概念,熟练掌握相关知识是解题的关键.3.如图,数轴上点P 表示的数可能是()A.①②【答案】D【分析】根据运算规则即可求解.【解析】解:①x的值不唯一.②输入值x为16时,③对于任意的正无理数④当x=1时,始终输不出其中错误的是①③.故选:D.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:及像0.1010010001…,等有这样规律的数.二、填空题11.比较大小:6【答案】<【分析】根据实数的大小比较方法求解即可.<,【解析】解:∵67∴67<,1615>故答案为:<,>.【点睛】本题考查实数的大小比较,三、解答题(1)已知点A、B表示两个实数﹣3、2,请在数轴上描出它们大致的位置,用字母标示出来;(2)O为原点,求出O、A两点间的距离.(3)求出A、B两点间的距离.【答案】(1)见解析;(2)解:∵表示点A的数为﹣3,表示点O的数为0,∴OA=0﹣(﹣3)=3;(3)解:∵表示点A的数为﹣3,表示点B的数为2,∴AB=2﹣(﹣3)=2+3.【点睛】本题考查了实数与数轴以及两点间的距离,在数轴上准确表示出点∴103823的立方根的十位数字是4,又∵103823的立方根的个位数字是7,∴103823的立方根是47.【点睛】考查了立方根的概念和求法,解题关键是理解一个数的立方的个位数就是这个数的个位数的立方的个位数.一、单选题A.216【答案】D【分析】由4A纸张的宽为【解析】解:由图得,当∵纸张长与宽的比为∴0A纸的长为42x米,∵0A纸面积为1平方米,∴421x x⋅=,∴2²32x=,∴x的值为232的算术平方根.故选:D.【点睛】本题考查了平方根的计算,根据图形表示出二、填空题三、解答题。

第六章--实数(知识点+知识点分类练习)

第六章--实数(知识点+知识点分类练习)

【知识要点】被开放数扩大(或缩小)n倍,算术平方根扩大(或缩小)n倍,例如.25 5, 2500 50.一、算数平方根算数平方根的定义:一般的,如果一个非负数x的平方等于a,即x2=a ,(a>0),那么这个非负数x叫做a的算术平方根。

a的算术平方根记为谄,读作“根号a”,a叫做被开方数。

求一个正数a的平方根的运算叫做开平方。

1.0的算术平方根是02. 被开方数越大,对应的算术平方根也越大(对所有正数都成立)。

3. 一个正数如果有平方根,那么必定有两个,它们互为相反数。

显然,如果我们知道了这两个平方根的一个,那么就可以及时的根据相反数的概念得到它的另一个平方根。

4. 负数在实数系内不能开平方。

二、平方根平方根的定义:如果一个数x的平方等于a ,即x2=a,那么这个数x就叫做a的平方根,求一个数a的平方根的运算,叫做开平方。

平方根的性质:一个正数有2个平方根,它们互为相反数,其中正的平方根就是这个数的算数平方根;0只有1个平方根,它是0;负数没有平方根。

开平方:求一个数a的平方根的运算,叫做开平方。

三、立方根立方根的定义:如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根或三次方根,求一个数的立方根的运算叫做开立方,a的立方根记为鴛读作“三次根号a”,其中a是被开方数。

立方根的性质:每个数a都只有1个立方根。

正数的立方根是正数;0的立方根是0;负数的立方根是负数。

四、实数1. 无理数的定义:无限不循环小数叫做无理数。

2. 实数的定义:有理数和无理数统称实数。

3. 实数的分类:整数宀拓有理数八”有限小数或无限循环小数 实数 分数无理数无限不循环小数像有理数一样,无理数也有正负之分。

例如2 ,3 3 , 是正无理数, 2, 3 3, 是负无理数。

由于非0有理数和无理数都有正负之分,所以实数也可以这样分类:4. 实数与数轴上的点的对应关系:实数与数轴上的点是 -- 对应的。

5. 有关概念:在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的意义相同。

实数概念例题和知识点总结

实数概念例题和知识点总结

实数概念例题和知识点总结一、实数的概念实数,是有理数和无理数的总称。

有理数包括整数(正整数、0、负整数)和分数(正分数、负分数);无理数,也称为无限不循环小数,不能写作两整数之比。

例如,π(圆周率)约等于 31415926就是一个无理数,因为它的小数部分是无限不循环的。

再比如√2(根号 2)约等于 141421356也是无理数。

实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。

二、实数的分类1、按定义分类实数可以分为有理数和无理数。

有理数又可以分为整数和分数。

整数包括正整数、0、负整数;分数包括正分数、负分数。

无理数就是无限不循环小数。

2、按正负分类实数可以分为正实数、0、负实数。

正实数包括正有理数(正整数、正分数)和正无理数。

负实数包括负有理数(负整数、负分数)和负无理数。

三、实数的性质1、实数的相反数实数 a 的相反数是 a,0 的相反数是 0。

例如,5 的相反数是-5,π 的相反数是π。

2、实数的绝对值正数的绝对值是它本身;负数的绝对值是它的相反数;0 的绝对值是 0。

例如,|5| = 5,|-5| = 5 ,|0| = 0 。

3、实数的倒数若实数 a 不为 0,则 a 的倒数为 1/a 。

例如,5 的倒数是 1/5 ,-2 的倒数是-1/2 。

4、实数的运算实数的运算遵循加、减、乘、除、乘方、开方等运算规则。

加法交换律:a + b = b + a加法结合律:(a + b) + c = a +(b + c)乘法交换律:ab = ba乘法结合律:(ab)c = a(bc)乘法分配律:a(b + c) = ab + ac在进行实数运算时,要注意先算乘方、开方,再算乘除,最后算加减;有括号的先算括号里的。

四、实数的大小比较1、数轴比较法在数轴上,右边的点表示的数总比左边的点表示的数大。

2、差值比较法设 a、b 是两个实数,若 a b > 0,则 a > b;若 a b = 0,则 a = b;若 a b < 0,则 a < b 。

实数知识点及例题

实数知识点及例题

实数习题集【知识要点】 1.定义实数(R ):包括有理数和无理数。

其中无理数就是无限不循环小数,有理数就包括整数和分数。

数学上,实数直观地定义为和数轴上的点一一对应的数。

本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”。

有理数(Q):整数(Z)和分数的统称。

正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。

因而有理数集的数可分为正有理数、负有理数和零3种数。

无理数:无理数是指实数范围内不能表示成两个整数之比的数。

简单的说,无理数就是10进制下的无限不循环小数。

如圆周率π、√2等。

2.实数分类:2.相反数:b a ,互为相反数 0=+b a4.倒数:b a ,互为倒数 0;1=ab 没有倒数.5.平方根:①如果一个正数X 的平方等于A ,那么这个正数X 就叫做A 的算术平方根。

②如果一个数X 的平方等于A ,那么这个数X 就叫做A 的平方根。

③一个正数有2个平方根,它们互为相反数,0的平方根为0,负数没有平方根。

④求一个数A 的平方根运算,叫做开平方,其中A 叫做被开方数。

立方根:①如果一个数X 的立方等于A ,那么这个数X 就叫做A 的立方根。

②正数的立方根是正数/0的立方根是0/负数的立方根是负数。

③求一个数A 的立方根的运算叫开立方,其中A 叫做被开方数。

6.数轴的概念与画法.实数与数轴上的点一一对应;利用数形结合的思想及数轴比较实数大小的方法. 实数的有关概念(1)数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意1:上述规定的三要素缺一个不可,2:实数与数轴上的点是一一对应的,3:数轴上任一点对应的数总大于这个点左边的点对应的数.)(2)倒数实数a (a≠0)的倒数是(乘积为1的两个数,叫做互为倒数);注意:零没有倒数.知识点1:平方根、算术平方根、立方根若x 2=a ,则x 叫做a 的平方根。

记作,而正的平方根叫做算术平方根知识点2:零指数、负整指数幂a 0=1(a≠0);(a≠0)知识点3:科学记数法、近似数、有效数字实数有理数无理数整数(包括正整数,零,负整数) 分数(包括正分数,负整数) 正无理数 负无理数)0(>a 3.绝对值: =aa 0 a -)0(=a )0(<a把一个数写成a×10n (1≤a <10,n 是整数)的形式一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位,四舍五入得到的数从左边第一个非零数字起到末位数字止,所有的数字叫做这个近似数的有效数字 知识点4:三种重要的非负数(绝对值、偶次方、算术平方根)知识点5:常见的几种无理数(开方开不尽的数、含圆周率的数、无限不循环的数) 知识点6:实数的运算 实数的运算法则(1)加法同号两数相加,取原来的符号,并把绝对值相加;异号两数相加。

中考数学知识点总结 实数 (6大知识点+例题) 新人教版

中考数学知识点总结 实数 (6大知识点+例题) 新人教版

中考数学知识点总结 实数 (6大知识点+例题) 新人教版基础知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成q p 的形式,其中p 、q 是互质的整数,这是有理数的重要特征。

2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、45sin °等。

3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。

二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。

(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=02、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数 3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。

(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。

4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。

(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

(3)立方根:3a 叫实数a 的立方根。

(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。

三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。

原点、正方向、单位长度是数轴的三要素。

2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。

第六章 实数知识点-+典型题及答案

第六章 实数知识点-+典型题及答案

第六章 实数知识点-+典型题及答案一、选择题1.下列说法中正确的是( ) A .4的算术平方根是±2 B .平方根等于本身的数有0、1 C .﹣27的立方根是﹣3 D .﹣a 一定没有平方根2.已知x 、y (y ﹣3)2=0.若axy ﹣3x =y ,则实数a 的值是( ) A .14B .﹣14C .74D .﹣743.2,估计它的值( ) A .小于1 B .大于1 C .等于1 D .小于0 4.下列选项中的计算,不正确的是( )A 2=±B 2=-C .3=±D 4=5.下列各组数中,互为相反数的是( )A .2-与12-B .|C D 6.下列说法中,正确的个数是( ).(1)64-的立方根是4-;(2)49的算术平方根是7±;(3)2;(4是7的平方根. A .1B .2C .3D .47.下列各数中3.14,0.1010010001…,﹣17,2π有理数的个数有( ) A .1个 B .2个 C .3个 D .4个8.4的平方根是( )A .±16B .2C .﹣2D .±29.下列实数中,..1π073,,,无理数的个数有( ) A .1个 B .2个 C .3个 D .4个10.若a 、b 为实数,且满足|a -2|0,则b -a 的值为( ) A .2B .0C .-2D .以上都不对二、填空题11.[x )表示小于x 的最大整数,如[2.3)=2,[-4)=-5,则下列判断:①[385-)= 8-;②[x )–x 有最大值是0;③[x ) –x 有最小值是-1;④x 1-≤[x )<x ,其中正确的是__________ (填编号).12.定义一种对正整数n 的“F”运算:①当n 为奇数时,结果为3n+5;②当n 为偶数时,结果为2k n (其中k 是使2kn为奇数的正整数),并且运算重复进行.例如:取n=26,则:若449n =,则第201次“F”运算的结果是 . 13.若实数a 、b 满足240a b ++-=,则ab=_____. 14.若已知x-1+(y+2)2=0,则(x+y)2019等于_____. 15.观察下列算式:①246816⨯⨯⨯+=2(28)⨯+16=16+4=20; ②4681016⨯⨯⨯+=2(410)⨯+16=40+4=44;… 根据以上规律计算:3032343616⨯⨯⨯+=__________ 16.若()221210a b c -+++-=,则a b c ++=__________. 17.写出一个大于3且小于4的无理数:___________. 18.27的立方根为 .19.用“*”表示一种新运算:对于任意正实数a ,b ,都有*1a b b =+.例如89914*=+=,那么*(*16)m m =__________.20.如图,数轴上的点A 能与实数15,3,,22---对应的是_____________三、解答题21.2是无理数,而无理是无限不循环小数,因2212的小数部分,事2的整数部分是1,将这个数减去其整数部2的小数部分,又例如:∵232273<<,即273<<7的整数部分为2,小数部分为)72。

实数知识点和典型例题练习题总结(超全面)

实数知识点和典型例题练习题总结(超全面)

实数知识点和典型例题练习题总结(超全面).doc实数知识点和典型例题练习题总结(超全面)引言实数是数学中最基本的数的概念之一,它包括有理数和无理数。

掌握实数的知识点对于解决各种数学问题至关重要。

本文档旨在全面总结实数的知识点和典型例题,以帮助学生深入理解和掌握实数的概念、性质和运算。

实数的定义与分类实数的定义实数是可以在数轴上表示的数,它包括有理数和无理数。

有理数有理数是可以表示为两个整数的比的数,即形式为 ( \frac{p}{q} ) 的数,其中 ( p ) 和 ( q ) 是整数,且 ( q \neq 0 )。

无理数无理数是不能表示为两个整数比的实数,例如圆周率 ( \pi ) 和黄金分割比 ( \phi )。

实数的性质有序性实数具有有序性,即对于任意两个实数 ( a ) 和 ( b ),要么 ( a < b ),要么 ( a > b ),或者 ( a = b )。

完备性实数的完备性指的是,任意实数的上界和下界都存在极限点。

稠密性实数具有稠密性,即在任意两个不同的实数之间,都存在无穷多个实数。

实数的运算加法实数的加法满足交换律和结合律。

减法实数的减法是加法的逆运算。

乘法实数的乘法同样满足交换律、结合律和分配律。

除法实数的除法是乘法的逆运算,但除数不能为零。

乘方实数的乘方表示将一个数自乘若干次。

开方实数的开方是乘方的逆运算,表示求一个数的 ( n ) 次根。

典型例题例题1:实数的比较给定两个实数 ( a = \sqrt{2} ) 和 ( b = \sqrt{3} ),比较它们的大小。

解答:由于 ( 2 < 3 ),因此 ( \sqrt{2} < \sqrt{3} ),即 ( a < b )。

例题2:实数的运算计算 ( (-3)^2 + \pi - \frac{1}{2} ) 的值。

解答:根据实数的运算法则,我们有 ( (-3)^2 = 9 ),所以 ( 9 + \pi - \frac{1}{2} )。

第6章 实数知识点及典型例题

第6章 实数知识点及典型例题

第6章 实数(一) 平方根1、平方根的含义:如果一个数的平方等于a ,那么这个数就叫做a 的平方根。

即a x =2,(0x a =解得:≥),x 叫做a 的平方根。

正数a 的平方根用a ±表示,其中a 叫做正平方根,也称为算术平方根,a -叫做a 的负平方根,也称为算术平方根的相反数。

注意点:(1)一个正数有两个平方根,它们互为相反数:记作a ±(根指数2省略)0有一个平方根,为0,记作0=,负数没有平方根。

0=,负数没有算术平方根。

(2)平方与开平方互为逆运算 开平方:求一个数a 的平方根的运算。

2222222223111211214413169141961522516256172891832419361=========()熟记:,,,,,,,,(4a ≥0)a ≥0)表示非负数a 的算术平方根。

二次根式的要求:①根指数为2 ②被开方数可以是数,也可以是单项式、多项式、分式等,但必须是非负数。

(5)二次根式中字母的取值范围:二次根式有意义的条件:被开方数大于或等于0。

二次根式无意义的条件:被开方数小于0,二次根式做分母时: 被开方数大于0. 例1:求下列各数的平方根:(1)81(2)1625(3)214(4)0.49例2:下列各数有平方根吗?如果有,求出它的平方根;如果没有,要说明理由。

(1)-64(2)0(3)()-142(4)102-例3:求下列各数的算术平方根:(1)25(2)4964(3)0.81(4)81例4:求下列各式的值: (1)144(2)-36121(3)±00001.(4)214116+ 例5:(1)已知正方形的边长为5cm ,求这个正方形的面积;(2)已知正方形的面积是25cm 2,求这个正方形的边长。

例6:判断下列语句是否正确,正确的打“√”,错误的画“×”,并将错误改正。

(1)7是()-72的算术平方根; ( )(2)-25的平方根是±5;()(3)36等于±6; () (4)16的平方根是±2;()(5)6是()-62的平方根; ()(6)10是10的一个平方根; ()(7)正数的平方比它的算术平方根大。

实数知识要点及参考例题

实数知识要点及参考例题

八、知识要点及参考例题(1)平方根知识要点:1.定义(1)如果2(0)x a a =≥,那么x 叫做a 的平方根。

记作:x a =±,其中a +叫做a 的正的平方根,a -叫做a 的负的平方根。

0的平方根是0.(2)我们把平方根中正的平方根,叫做a 的算术平方根,通常表示为a . 0的平方根也叫做0的算术平方根。

因此0的算术平方根是0,即0=0。

(3)平方根的性质○1一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身; 负数没有平方根。

○2 2()(0).a a a ±=≥ 参考例题:例1 求下列各数的算术平方根:(1)900 ; (2)1 ; (3);6449 (4)14 . 例2 求下列各数的平方根:(1)64 ; (2);12149 (3)0.0004 ; (4)();252- (5)11。

例3 ()()?12149?64122等于多少等于多少⎪⎪⎭⎫⎝⎛()()?2.722等于多少 ()()?,32等于多少对于正数a a例4 求满足下列条件的未知数x : (1)x 2=49 (2)x 2=8125 例5 (易错题)25的算术平方根是 ;25的平方根是 ;例6 比较大小(1)14与15; (2)4与15; (3)3与115-; 例7 已知13的整数部分为a ,小数部分为b ,求代数式a 2-a -b 的值。

(*)例8 判断下列各式中字母x 的取值范围:①x -;②x 32-;③2)3(-x ;④631-x ; ⑤34-+x x ;⑥||21x x --;⑦x x -+-44。

拓展练习 1、(1)求下列各式的值24 (2)2)4(- (3)2)8.0((2)对于任意数a ,2a 一定等于a 吗?2、 求下列x 的值:(1)2042=x (2)049162=-x (3)25)1(2=-x3、已知数M 的平方根为a+3及2a -15,求M (2) 立方根知识要点:1. 如果x 3=a ,那么x 叫做a 的立方根。

完整版)新浙教版七年级上册数学第三章《实数》知识点及典型例题

完整版)新浙教版七年级上册数学第三章《实数》知识点及典型例题

完整版)新浙教版七年级上册数学第三章《实数》知识点及典型例题实数是数学中一个重要的概念,它包括有理数和无理数两种。

其中,一个数的平方等于a时,这个数就叫做a的平方根。

一个正数有正、负两个平方根,它们互为相反数。

需要注意的是,零的平方根是零,而负数没有平方根。

另外,一个正数a的平方根表示成±a(读做“正、负根号a”),其中a叫做被开方数。

例如,3的平方根是±3,4的平方根是±2.类似地,一个数a的立方等于a时,这个数就叫做a的立方根。

一个正数有一个正的立方根,一个负数有一个负的立方根,它们互为相反数。

需要注意的是,立方根等于它本身的数是1和-1.一个数a的立方根表示成3a,其中a叫做被开方数。

例如,3的立方根是33,-8的立方根是-2.实数可以分为有理数和无理数两种。

有理数包括正有理数、负有理数和零,它们可以用分数表示,而无理数则不能用分数表示。

有限小数或无限循环小数都是有理数,而无限不循环小数是无理数。

实数的相反数、绝对值、倒数的意义与有理数一样,有理数的运算法则、运算律在实数范围内仍然适用。

最后需要注意的是,在求一个数的平方根时,我们可以使用开平方运算,它可以用平方运算来计算。

例如,一个数的正平方根称为算术平方根,它可以表示为M/N的形式(M、N 均为整数,且N≠0)。

81的平方根是±9.1的立方根是±1.1=±1.-5是5的平方根的相反数。

一个自然数的算术平方根为a,则与之相邻的前一个自然数是a-1.考点三、计算类型题1、设26=a,则下列结论正确的是()A.4.5<a<5.0B.5.0<a<5.5C.5.5<a<6.0D.6.0<a<6.5答案:B4、对于有理数x,2013-x+(3π-9)^2/4=(3π-10)/2,求x的值。

答案:x=2014-3π考点四、数形结合1.点A在数轴上表示的数为35,点B在数轴上表示的数为-5,则A,B两点的距离为40.2、如图,数轴上表示1,2的对应点分别为A,B,点B 关于点A的对称点为C,则点C表示的数是()A.2-1 B.1-2C.2-2D.2-2答案:B考点五、实数绝对值的应用1、|3-22|+|3+2|-|2-3|=2考点六、实数非负性的应用1.已知:x²-2x-3≥0,求x的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(4)《实数》知识点总结及典型例题练习题第一节、平方根1.平方根与算数平方根的含义平方根:如果一个数的平方等于a ,那么数x 就叫做a 的平方根。

即a x =2,记作x=a ± 算数平方根:如果一个正数x 的平方等于a ,那么正数x 叫做a 的算术平方根,即x 2=a ,记作x=a 。

2.平方根的性质与表示⑴表示:正数a 的平方根用a ±表示,a 叫做正平方根,也称为算术平方根,a -叫做a 的负平方根。

⑵一个正数有两个平方根:a ±(根指数2省略) 0有一个平方根,为0,记作00= 负数没有平方根⑶平方与开平方互为逆运算开平方:求一个数a 的平方根的运算。

a a =2==⎩⎨⎧-a a0<≥a a()a a =2(0≥a )⑷a 的双重非负性:0≥a 且0≥a (应用较广) 例:y x x =-+-44 得知0,4==y x⑸如果正数的小数点向右或者向左移动两位,它的正的平方根的小数点就相应地向右或向左移动一位。

区分:4的平方根为____ 4的平方根为____ ____4=4开平方后,得____ (6)若0>>b a ,则b a > (7)())0,0(0,0>≥=≥≥=⨯b a b a b a b a ab b a 典型习题:(1)求算数平方根与平方根1:求下列数的平方根36 (-4)2 0 102:求eg1中各数的平方根(2)解简单的二次方程3:281250x -= 4 :4(x+1)2=8(3)被开方数的意义5:若a 为实数,下列代数式中,一定是负数的是( ) A. -a 2 B. -( a +1)2 C.-2a D.-(a -+1) 6:实数a 在数轴上的位置如图所示, 化简:2)2(1-+-a a(4):有关x 的取值范围目前中考的所有考点 考点:例题:求使得下列各式成立的x 的取值范围 7:53-x8: 当______m 时,m -3有意义;当______m 时,33-m 有意义9:x-1110.等式1112-=+⋅-x x x 成立的条件是( ). A 、1≥x B 、1-≥xC 、11≤≤-xD 、11≥-≤或x(5)非负性知识点:总结:若几个非负数的和为零,则每个非负数都为零,这个性质在代数式求值中经常被使用.10.已知b a ,是实数,且有0)2(132=+++-b a ,求b a ,的值.11: .已知实数a 、b 、c 满足,2)21(-c =0,,求a+b+c 的值.13.若111--+-=x x y ,求x ,y 的值。

14.522y 2++-+-=x x x ,求x y 的平方根和算术平方根。

15. 若0|2|1=-++y x ,求x+y 的值。

16.若312-a 和331b -互为相反数,求ba的值。

17.若054=-++-y x x ,求xy 的值.18.若10m +=,求20004m n -的值。

其它问题19.已知b a ,为有理数,且3)323(2b a +=-,求b a +的平方根20.设a 、b 是有理数,且满足(21a +=-,求b a 的值21.已知a 、b 互为相反数,c 、d 互为倒数,x 、y 满足04422=+++-y y x ,求2008220092()()()a b x cd y a b cd y +-+++-的值.22. 已知实数a 满足1992a a -=,则21992a -的值是( ) A.1991 B.1992 C.1993 D.199423 .已知x 、y 互为倒数,c 、d 互为相反数,a 的绝对值为3,z 的算术平方根是5,求22c d xy a-++的值24.请你估算11的大小( )﹤11﹤2 B. 2﹤11﹤3 C. 3﹤11﹤4 D. 4﹤11﹤525.若数轴上表示数a 的点在原点的左边,则化简22a a +的结果是( ) 26、21++a 的最小值是________,此时a 的取值是________.27、当x=-8时,则32x 的值是( )A ,-8B ,-4C ,4D ,±4 28、若a=23-,b=-∣-2∣,c=33)2(--,则a 、b 、c 的大小关系是( ).>b >c >a >b >a >c >b >a第二节:立方根和开立方1.立方根的定义如果一个数的立方等于a ,呢么这个数叫做a 的立方根,记作3a2. 立方根的性质任何实数都有唯一确定的立方根。

正数的立方根是一个正数。

负数的立方根是一个负数。

0的立方根是0. 3. 开立方与立方开立方:求一个数的立方根的运算。

()a a =33a a =33 33a a -=- (a 取任何数)这说明三次根号内的负号可以移到根号外面。

*0的平方根和立方根都是0本身。

三、推广: n 次方根1. 如果一个数的n 次方(n 是大于1的整数)等于a ,这个数就叫做a 的n 次方根。

当n 为奇数时,这个数叫做a 的奇次方根。

当n 为偶数时,这个数叫做a 的偶次方根。

2. 正数的偶次方根有两个。

n a ± 0的偶次方根为0。

00=n 负数没有偶次方根。

正数的奇次方根为正。

0的奇次方根为0。

负数的奇次方根为负。

实战演练:1、36的平方根是 ;16的算术平方根是 ;2、8的立方根是 ;327-= ;3、37-的相反数是 ;绝对值等于3的数是4、的倒数的平方是 ,2的立方根的倒数的立方是 。

5、2的绝对值是 ,11的绝对值是 。

6、9的平方根的绝对值的相反数是 。

7+的相反数是 ,-的相反数的绝对值是 。

8-+的相反数之和的倒数的平方为 。

一、填空1.如果162=x ,那么_____=x ;2.144的平方根是______,64的立方根是_______; 3._____2516=±,_____814=-,____104=,_____106=-;4.______287169=,_____8333=,_____643=--; 5.要切一面积为16平方米的正方形钢板,它的边长是__________米; 6.5-的相反数是__________,绝对值是_________,倒数是_________;9.=0144.0_______;=-327102_________;=+•632__________,=⎪⎪⎭⎫ ⎝⎛-2323________,()()_______2525=+-;10.比较大小:5-______6-, 14.3- _______π,213-______ 21;12.若492=x ,则x =______,若64)1(3=-x ,则x =______; 14.如果0)6(42=++-y x ,那么=+y x ;15.若a 、b 互为相反数,c 、d 互为倒数,则______3=++cd b a ;21.2)5(-的平方根是二、 选择题1.与数轴上的点一一对应的是( )A.实数B. 正数C. 有理数D. 整数 2.下列说法正确的是( ).A .(-5)是()25-的算术平方根B .16的平方根是4±C .2是-4的算术平方根D .64的立方根是4± 3.如果1-x 有意义,则x 可以取的最小整数为( ). A .0 B .1 C .2 D .3 4.若 ()03212=-+++-z y x 则x+2y+z= ( )A .6B .2C .8D .05一组数246135,343,22,16,27,2,14.3,313---π 这几个数中,无理数的个数是( ) A. 2 B. 3 C. 4 D. 5 7.一个自然数的算术平方根是x ,把么下一个与他它相邻的自然数的算术平方根是( ) A. 12+x B. 1+x C. 1+x D. 12+x 8.若一个数的平方根是8±,则这个数的立方根是( ) A. ±2 B. ±4 C. 2 D. 49.计算(1)461211)31()31()2(023-+÷+++⨯--(2) 02010)---+第三节、实 数1. 实数:有理数和无理数统称为实数 实数的分类:① 按属性分类: ② 按符号分类2. 实数和数轴上的点的对应关系:实数和数轴上的点一一对应,即每一个实数都可以用数轴上的一个点表示. 数轴上的每一个点都可以表示一个实数.2的画法:画边长为1的正方形的对角线在数轴上表示无理数通常有两种情况: 思考:(1)-a 2一定是负数吗?-a 一定是正数吗? (2)大家都知道是一个无理数,那么-1在哪两个整数之间?(3)15的整数部分为a,小数部分为b ,则a= , b= (4)判断下面的语句对不对?并说明判断的理由。

① 无限小数都是无理数; ② 无理数都是无限小数; ③ 带根号的数都是无理数;④ 有理数都是实数,实数不都是有理数; ⑤ 实数都是无理数,无理数都是实数; ⑥ 实数的绝对值都是非负实数; ⑦ 有理数都可以表示成分数的形式。

3. 实数大小比较的方法 一、平方法: 比较23和3的大小二、移动因式法: 比较32和23的大小三、求差法: 比较215-和1的大小 练习:一、比较下列各组数的大小:① 2-和3- ② 15和543④ 7-和- ⑤ 327-与31练习:平方根1. 36的平方根是 ;16的算术平方根是 ;2. 平方数是它本身的数是 ( ) ;平方数是它的相反数的数是 ( ) ;3. 当x=__________ 时,12+x 有意义;4.下列各式中,正确的是( )(A)2)2(2-=- (B) 9)3(2=- (C) 393-=- (D) 39±=±6.若a<0,则a a 22等于( ) A 、21 B 、21- C 、±21D 、09. 计算 ⑴ 914414449⋅⑵494 ⑶41613+-10.若1<x <3练习:立方根1.当x= _________时,325+x 有意义;2.若164=x ,则x=_________;若813=n ,则n= ________。

3.若23-=x ,则x= __________; 若x -=364,则x =__________;4.若n 为正整数,则121+-n 等于( )A. -1B. 1C. ±1D. 2n+15.求χ的值:8)12(3-=-x6.(1)18783333-+-(2)83122)10(973.0123+--⨯-(3)333)6(25.0343--•+-实数习题集作业1.若式子2)4(a --是一个实数,则满足这个条件的a 有( ). A 、0个B 、1个C 、4个D 、无数个2.已知ABC ∆的三边长为c b a ,,,且b a 和满足04412=+-+-b b a ,则c 的取值范围为 .3.若b a ,互为相反数,d c ,互为倒数,则=++333cd b a . 4. 若y=,122--+-x x 则y x 的值为多少5.已知0)8(652=++++-z y x ,求13+-+z y x 的值.6.计算(1))138)(138(-+ (2))83)(31()35(2-++-(3)222222513683)4(--++-- (4))625()23(2-+。

相关文档
最新文档