(完整版)实数知识点及例题
实数知识点及典型例题
实数知识点及典型例题一、实数知识点。
(一)实数的分类。
1. 有理数。
- 整数:正整数、0、负整数统称为整数。
例如:5,0,-3。
- 分数:正分数、负分数统称为分数。
分数都可以表示为有限小数或无限循环小数。
例如:(1)/(2)=0.5,(1)/(3)=0.333·s。
- 有理数:整数和分数统称为有理数。
2. 无理数。
- 无理数是无限不循环小数。
例如:√(2),π,0.1010010001·s(每两个1之间依次多一个0)。
3. 实数。
- 有理数和无理数统称为实数。
(二)实数的相关概念。
1. 数轴。
- 规定了原点、正方向和单位长度的直线叫做数轴。
- 实数与数轴上的点是一一对应的关系。
2. 相反数。
- 只有符号不同的两个数叫做互为相反数。
a的相反数是-a,0的相反数是0。
例如:3与-3互为相反数。
- 若a、b互为相反数,则a + b=0。
3. 绝对值。
- 数轴上表示数a的点与原点的距离叫做数a的绝对值,记作| a|。
- 当a≥slant0时,| a|=a;当a < 0时,| a|=-a。
例如:| 5| = 5,| -3|=3。
4. 倒数。
- 乘积为1的两个数互为倒数。
a(a≠0)的倒数是(1)/(a)。
例如:2的倒数是(1)/(2)。
(三)实数的运算。
1. 运算法则。
- 加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数。
- 减法法则:减去一个数等于加上这个数的相反数。
- 乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘都得0。
- 除法法则:除以一个数等于乘以这个数的倒数(除数不为0)。
2. 运算律。
- 加法交换律:a + b=b + a。
- 加法结合律:(a + b)+c=a+(b + c)。
- 乘法交换律:ab = ba。
实数知识点及典型例题
(4 )《实数》知识点总结及典型例题练习题第一节.平方根1.平方根与算数平方根的含义平方根:如果一个数的平方等于4,那么数X 就叫做d 的平方根。
即X —,记作X 二土長算数平方根:如果一个正数X 的平方等于a,那么正数x 叫做a 的篡:术士方投,即X 2=a,记作x 二需。
2 .平方根的性质与表示⑴表示:正数d 的平方根用土丽表示,亦叫做正平方根,也称为算术平方根,-百叫做a 的负 平方根。
⑵一个正数有两个平方根:土亦(根指数2省略) 0有一个平方根,为0,记作"=0负数没有平方根⑶平方与开平方互为逆运算开平方:求一个数。
的平方根的运算。
(y[a =6/ ( a >0 )⑷長的双重非负性:a>0且亦n0 (应用较广)例:Jx-4 +j4-x = y 得知 x = 4,y = 0⑸如果正数的小数点向右或者向左移动两位,它的正的平方根的小数点就相应地向右或向左移动 一位。
区分:4的平方根为 _____ 的平方根为 _________ 品=—4开平方后,得 ___________ (6)若 a > b > 0 ,则 yfa > y/b (7)y[a x y[b = 4ab(ci > O,b > 0)典型习题:(1) 求算数平方根与平方根 1:求下列数的平方根 36 0.09 (-4) 2 0 1(2) 解简单的二次方程3:81X 2-25 = O(3) 被开方数的意义5:若a 为实数,下列代数式中,一定是负数的是() A. -a 2 B. -( d+l)2 C.-倚D.-(|-«| + l)爷弋心/?>0)4 :4(X +1)2=8u>0 a <06:实数a在数轴上的位置如图所示,化简:-1| + yj(a-2)2二 * o 1 ~' 2 才(4):有关x的取值范围目前中考的所有考点例题:求使得下列各式成立的x的取值范围7:』3x-58:当加____________ 时,丁3 —加有意义;当加 ____________ 时,"加一3有意义io.等式= 成立的条件是( ).A、xllB、x>-\C、-1 <x< 1D、x<-ls£> 1(5)非负性知识点:总结:若儿个非负数的和为零,则每个非负数都为零,这个性质在代数式求值中经常被使用.10.已知a,b是实数,且有h_V5 + l| + (b + Q2=o,求的值.11 :.已知实数a、b、c 满足,2 a-1 + J” + c + (c-丄)?二0,,求a+b+c 的值.213•若y = Jx-l + Jl-x -1,求x, y 的值。
(完整版)实数知识点及例题
实数习题集【知识要点】1.实数分类:2.相反数:互为相反数b a ,0=+b a 4.倒数:互为倒数没有倒数.b a ,0;1=ab 5.平方根,立方根:±.==x ,a x a x 记作的平方根叫做数则数若,2a 若a x ,a x a x 33,==记作的立方根叫做数则数6.数轴的概念与画法.实数与数轴上的点一一对应;利用数形结合的思想及数轴比较实数大小的方法.【课前热身】1、36的平方根是 ;的算术平方根是 ;162、8的立方根是 ;= ;327-3、的相反数是 ;绝对值等于的数是37-34、的倒数的平方是 ,2的立方根的倒数的立方是。
5、的绝对值是 ,的绝对值是 。
211-6、9的平方根的绝对值的相反数是 。
7的相反数是 ,的相反数的绝对值是。
+-8的相反数之和的倒数的平方为 。
--+【典型例题】例1、把下列各数分别填入相应的集合里:2,3.0,10,1010010001.0,125,722,0,1223π---∙- 有理数集合:{ };无理数集合:{ };负实数集合:{ };例2、比较数的大小(1)(2)2332与6756--与例3.化简:实数有理数无理数整数(包括正整数,零,负整数)分数(包括正分数,负整数)正无理数负无理数)0(>a 3.绝对值:=a a0a -)0(=a )0(<a(1)233221-+-+-(2+例4.已知是实数,且有,求的值.b a ,0)2(132=+++-b a b a ,例5 若|2x+1|与互为相反数,则-xy 的平方根的值是多少?x y 481+总结:若几个非负数的和为零,则每个非负数都为零,这个性质在代数式求值中经常被使用.例6.已知为有理数,且,求的平方根b a ,3)323(2b a +=-b a +例7. 已知实数x 、y 、z 在数轴上的对应点如图试化简:。
x zx y y z x z x z ---++++-【课堂练习】1.无限小数包括无限循环小数和 ,其中 是有理数, 是无理数.2.如果,则是一个 数,的整数部分是 .102=x x x 3.的平方根是 ,立方根是 .644.的相反数是 ,绝对值是 .51-5.若 .==x x 则66.当时,有意义;_______x 32-x 7.当时,有意义;_______x x -118.若一个正数的平方根是和,则,这个正数是 ;12-a 2+-a ____=a 9.当时,化简;10≤≤x __________12=-+x x 10.的位置如图所示,则下列各式中有意义的是( ).b a , A 、B 、C 、D 、b a +b a -ab ab -11.全体小数所在的集合是( ).A 、分数集合B 、有理数集合C 、无理数集合D 、实数集合12.等式成立的条件是( ).1112-=+⋅-x x x A 、B 、C 、D 、1≥x 1-≥x 11≤≤-x 11≥-≤或x 13.若,则等于( ).64611)23(3=-+x x A 、B 、C、D 、214141-49-14.计算:(1) (221--4-(3(4) 24+-+-++81214150232-+-ab15.若,求的值.054=-++-y x x xy16.设a 、b 是有理数,且满足,求的值(21a +=-b a17.若,求的值。
初二(下)实数的知识点与练习题
第十三章 实数知识要点一: 1.实数的性质(1)实数范围内仍然适用在有理数范围内定义的一些概念(如倒数,相反数);(2)两实数的大小关系:正数大于0,0大于负数;两个正实数,绝对值大的实数大;两个负实数,绝对值大的实数反而小;(3)在实数范围内,加、减、乘、除(除数不为零)、乘方五种运算是畅通无阻的,但是开方运算要注意,正实数和零总能进行开方运算,而负实数只能开奇次方,不能开偶次方;(4)有理数范围内的运算律和运算顺序在实数范围内仍然相同. 2.实数与数轴的关系每一个实数都可以用数轴上的一个点表示;反之,数轴上每一个点都表示一个实数,即数轴上的点与实数是一一对应关系.3.实数的分类(1)按实数的定义分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 (2)按实数的正负分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧负无理数负分数负整数负有理数负实数负数)零(既不是正数也不是正无理数正分数正整数正有理数正实数实数4.实数的大小比较两实数的大小关系如下:正实数都大于0,负实数都小于0,正数大于一切负数;两个正实数,绝对值大的实数较大;两个负实数,绝对值大的实数反而小.实数和数轴上的点一一对应,在数轴上表示的两个实数,右边的数总大于左边的数.【典型例题】2-1C B A 例1若a 为实数,下列代数式中,一定是负数的是( ) A. -a 2 B. -( a +1)2 C.-2a D.-(a -+1)分析:本题主要考查负数和非负数的概念,同时涉及考查字母表示数这个知识点.由于a 为实数, a 2、( a +1)2、2a 均为非负数,∴-a 2≤0,-( a +1)2≤0,-2a ≤0.而0既不是正数也不是负数,是介于正数与负数之间的中性数.因此,A 、B 、C 不一定是负数.又依据绝对值的概念及性质知-(a -+1)﹤0.故选D例2 实数a 在数轴上的位置如图所示, 化简:2)2(1-+-a a =分析:这里考查了数形结合的数学思想,要去掉绝对值符号,必须清楚绝对值符号内的数是正还是负.由数轴可知:1﹤a ﹤2,于是,22)2(,112a a a a a -=-=--=-所以, 2)2(1-+-a a =a -1+2-a =1.例3 如图所示,数轴上A 、B 两点分别表示实数1,5,点B 关于点A 的对称点为C ,则点C 所表示的实数为( ) A. 5-2 B. 2-5 C.5-3 D.3-5分析:这道题也考查了数形结合的数学思想,同时又考查了对称的性质.B 、C 两点关于点A 对称,因而B 、C 两点到点A 的距离是相同的,点B 到点A 的距离是5-1,所以点C 到点A 的距离也是5-1,设点C 到点O 的距离为a ,所以a +1=5-1,即a =5-2.又因为点C 所表示的实数为负数,所以点C 所表示的实数为2-5.例4 已知a 、b 是有理数,且满足(a -2)2+3-b =0,则a b 的值为分析:因为(a -2)2+3-b =0,所以a -2=0,b -3=0。
实数知识点及例题
实数习题集【知识要点】1.实数分类:2.相反数:b a ,互为相反数 0=+b a4.倒数:b a ,互为倒数0;1=ab 没有倒数.5.平方根,立方根:==x ,a x a x 记作的平方根叫做数则数若,2±a . 若a x ,a x a x 33,==记作的立方根叫做数则数6.数轴的概念与画法.实数与数轴上的点一一对应;利用数形结合的思想及数轴比较实数大小的方法.实数易错题分类汇总典型例题一:计算1.计算()2010200902211-⨯⎪⎭⎫ ⎝⎛-的结果是【答案】-1 2. ()()212321-+-+⎪⎭⎫ ⎝⎛--π的值为【答案】13.下列计算中,正确的是( )A .020= B .2a a a =+C3=±D .623)(a a =【答案】D4.下列运算正确的是( )A .1331-÷= Ba = C .3.14 3.14ππ-=- D .326211()24a b a b =典型例题二:估算 1.82cm 接近于( )实数有理数无理数 整数(包括正整数,零,负整数) 分数(包括正分数,负整数)正无理数 负无理数)0(>a 3.绝对值: =aa 0 a -)0(=a )0(<aA .珠穆朗玛峰的高度B .三层楼的高度C .姚明的身高D .一张纸的厚度 【答案】C2.如图,数轴上A 、B 两点分别对应实数a 、b ,则下列结论正确的是( )A .0>abB .0>-b aC .0>+b aD .0||||>-b a【答案】D典型例题三:应用题1.有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数为( ) A .8人 B .9人 C .10人 D .11人【答案】B.2.一种商品原来的销售利润率是47%.现在由于进价提高了5%,而售价没变,所以该商品的销售利润率变成了 【注:销售利润率=(售价—进价)÷进价】 【答案】40%典型例题四:信息与推断题1.观察下列算式,用你所发现的规律得出20102的末位数字是( )21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,… A .2 B .4 C .6 D .8 【答案】B 2.观察下列算式:,65613,21873,7293,2433,813,273,93,1387654321========,通过观察,用你所发现的规律确定20023的个位数字是( )A.3B.9C.7D.1 【答案】B 3.观察下列各式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯ ()1343452343⨯=⨯⨯-⨯⨯……计算:3×(1×2+2×3+3×4+…+99×100)=( )A .97×98×99B .98×99×100C .99×100×101D .100×101×102 【答案】C4.已知:3212323=⨯⨯=C ,1032134535=⨯⨯⨯⨯=C ,154321345646=⨯⨯⨯⨯⨯⨯=C ,…,观察上面的计算过程,寻找规律并计算=610C . 【答案】210典型例题五:比较大小10 -1 a b B A1. 31.0与1.02.331与213. 215--与-2 4. 2003-2002与2002-2001作业:设2的整数部分为a ,小数部分为b ,则1+2a b -2b =第三讲 平移、旋转与对称专题例题精讲1. 正方形ABCD 在坐标系中的位置如图所示,将正方形ABCD绕D 点顺时针方向旋转90后,B 点的坐标为( )A .(22)-,B .(41),C .(31), D .(40),随堂练习1下列四张扑克牌图案,属于中心对称的是( ).2.观察下列银行标志,从图案看既是轴对称图形又是中心对称图形的有( )A .1个B .2个C .3个D .4个例题精讲2将图(六)的正方形色纸沿其中一条对角线对折后,再沿原正方形的另 一条对角线对折,如图(七)所示。
实数知识点及例题
实数知识点及例题一、实数的概念实数是有理数和无理数的总称。
有理数包括整数(正整数、0、负整数)和分数(正分数、负分数);无理数是无限不循环小数。
例如,π(圆周率)、根号 2 等都是无理数。
而像 3、-5、025 等则是有理数。
二、实数的分类1、按定义分类:有理数:整数和分数。
无理数:无限不循环小数。
2、按性质分类:正实数:大于 0 的实数,包括正有理数和正无理数。
负实数:小于 0 的实数,包括负有理数和负无理数。
三、实数的基本性质1、实数的有序性:任意两个实数 a 和 b,必定有 a > b、a = b 或a <b 三种关系之一成立。
2、实数的稠密性:两个不相等的实数之间总有另一个实数存在。
3、实数的四则运算:实数的加、减、乘、除(除数不为 0)运算满足相应的运算律。
四、数轴数轴是规定了原点、正方向和单位长度的直线。
实数与数轴上的点一一对应,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。
例如,在数轴上表示 2 的点在原点右侧距离原点 2 个单位长度。
五、绝对值实数 a 的绝对值记作|a|,定义为:当a ≥ 0 时,|a| = a;当 a < 0 时,|a| = a。
绝对值的性质:1、|a| ≥ 0,即绝对值是非负的。
2、若|a| =|b|,则 a = ±b。
例如,|3| = 3,|-5| = 5。
六、相反数实数 a 的相反数是 a,它们的和为 0,即 a +(a) = 0。
例如,5 的相反数是-5,它们的和为 0。
若两个实数的乘积为 1,则这两个数互为倒数。
非零实数 a 的倒数是 1/a。
例如,2 的倒数是 1/2,-3 的倒数是-1/3。
八、实数的运算1、加法法则:同号两数相加,取相同的符号,并把绝对值相加。
异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
2、减法法则:减去一个数,等于加上这个数的相反数。
3、乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
(完整版)实数知识点和练习
第六章实数知识网络:考点一、实数的概念及分类1、实数的分类2、无理数在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类,7等;(1)开方开不尽的数,如32π+8等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o等(这类在初三会出现)是有理数,而不是无判断一个数是否是无理数,不能只看形式,要看运算结果,如0,16理数。
3、有理数与无理数的区别(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。
考点二、平方根、算术平方根、立方根1、概念、定义(1)如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根。
(2)如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。
如果,那么x叫做a的平方根。
(3)如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。
如果,那么x叫做a的立方根。
2、运算名称(1)求一个正数a 的平方根的运算,叫做开平方。
平方与开平方互为逆运算。
(2)求一个数的立方根的运算,叫做开立方。
开立方和立方互为逆运算。
3、运算符号(1)正数a 的算术平方根,记作“a ”。
(2)a(a ≥0)的平方根的符号表达为。
(3)一个数a 的立方根,用表示,其中a 是被开方数,3是根指数。
4、运算公式4、开方规律小结(1)若a ≥0,则a 的平方根是a ±,a 的算术平方根a ;正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;0的平方根和算术平方根都是0;负数没有平方根。
实数都有立方根,一个数的立方根有且只有一个,并且它的符号与被开方数的符号相同。
正数的立方根是正数,负数的立方根是负数,0的立方根是0。
(2)若a<0,则a 没有平方根和算术平方根;若a 为任意实数,则a 的立方根是。
实数_知识点+题型归纳
第六章实数知识讲解+题型归纳知识讲解一、实数的组成1、实数又可分为正实数,零,负实数2.数轴:数轴的三要素——原点、正方向和单位长度。
数轴上的点与实数一一对应二、相反数、绝对值、倒数1. 相反数:只有符号不同的两个数互为相反数。
数a的相反数是-a。
正数的相反数是负数,负数的相反数是正数,零的相反数是零. 性质:互为相反数的两个数之和为0。
2.绝对值:表示点到原点的距离,数a的绝对值为3.倒数:乘积为1的两个数互为倒数。
非0实数a的倒数为1a. 0没有倒数。
4.相反数是它本身的数只有0;绝对值是它本身的数是非负数〔0和正数〕;倒数是它本身的数是±1. 三、平方根与立方根1.平方根:如果一个数的平方等于a,这个数叫做a的平方根。
数a的平方根记作〔a>=0〕特性:一个正数有两个平方根,它们互为相反数,零的平方根还是零。
负数没有平方根。
正数a的正的平方根也叫做a的算术平方根,零的算术平方根还是零。
开平方:求一个数的平方根的运算,叫做开平方。
2.立方根:如果一个数的立方等于a,那么称这个数为a立方根。
数a 的立方根用3a表示。
任何数都有立方根,一个正数有一个正的立方根;一个负数有一个负的立方根,零的立方根是零。
开立方:求一个数的立方根〔三次方根〕的运算,叫做开立方。
四、实数的运算有理数的加法法那么:a〕同号两数相加,取一样的符号,并把绝对值相加;b)异号两数相加。
绝对值相等时和为0;绝对值不相等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值. 任何数与零相加等于原数。
2.有理数的减法法那么:减去一个数等于加上这个数的相反数。
3.乘法法那么:a| |aa〕两数相乘,同号得正,异号得负,并把绝对值相乘;零乘以任何数都得零.b〕几个不为0的有理数相乘,积的符号由负因数的个数决定,当负因数的个数为奇数时,积为负,为偶数,积为正c〕几个数相乘,只要有一个因数为0,积就为04.有理数除法法那么:a〕两个有理数相除〔除数不为0〕同号得正,异号得负,并把绝对值相除。
实数知识点归纳及典型例题
第十三章实数----知识点总结一、算术平方根1.算术平方根的定义:一般地,如果的等于a ,即,那么这个正数x 叫做a 的算术平方根.a 的算术平方根记为,读作“根号a ”,a 叫做.规定:0的算术平方根是0.也就是,在等式a x =2(x ≥0)中,规定a x =。
理解:a x =2(x ≥0)a x =a 是x 的平方x 的平方是ax 是a 的算术平方根a 的算术平方根是x 2.a 的结果有两种情况:当a 是完全平方数时,a 是一个有限数;当a 不是一个完全平方数时,a 是一个无限不循环小数。
3.当被开方数扩大(或缩小)时,它的算术平方根也扩大(或缩小);4.夹值法及估计一个(无理)数的大小(方法:)二、平方根1.平方根的定义:如果的平方等于a ,那么这个数x 就叫做a 的.即:如果,那么x 叫做a 的. 理解:a x =2<—>a x ±=a 是x 的平方x 的平方是ax 是a 的平方根a 的平方根是x2.开平方的定义:求一个数的的运算,叫做.开平方运算的被开方数必须是才有意义。
3.平方与开平方:±3的平方等于9,9的平方根是±34.一个正数有平方根,即正数进行开平方运算有两个结果;一个负数平方根,即负数不能进行开平方运算5.符号:正数a 的正的平方根可用a 表示,a 也是a 的算术平方根;正数a 的负的平方根可用-a 表示.6.平方根和算术平方根两者既有区别又有联系:区别在于正数的平方根有两个,而它的算术平方根只有一个; 联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的相反数。
三、立方根1.立方根的定义:如果的等于a ,这个数叫做a 的(也叫做),即如果,那么x 叫做a 的立方根。
2.一个数a “三次根号a ”,其中a 叫被开方数,3叫根指数,不能省略,若省略表示平方。
理解:a x =3<—>3a x =a 是x 的立方x 的立方是ax 是a 的立方根a 的立方根是x3.一个正数有一个正的立方根;0有一个立方根,是它本身;一个负数有一个负的立方根;任何数都有唯一的立方根。
(完整版)八年级数学上册第二章实数知识点总结+练习
第二章:实数【无理数】1.定义:无限不循环小数的小数叫做无理数;注:它必须满足“无限”以及“不循环”这两个条件。
2.常见无理数的几种类型:(1)特殊意义的数,如:圆周率以及含有的一些数,如:2-,3等;ππππ(2)特殊结构的数(看似循环而实则不循环):如:2.010 010 001 000 01…(两个1之间依次多1个0)等。
(3)无理数与有理数的和差结果都是无理数。
如:2-是无理数π(4)无理数乘或除以一个不 为0的有理数结果是无理数。
如2,π(5)开方开不尽的数,如:等;应当要注意的是:带根号的数不一定是无理数,39,5,2如:等;无理数也不一定带根号,如:)9π3.有理数与无理数的区别:(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。
例:(1)下列各数:①3.141、②0.33333……、③、④π、⑤、⑥、⑦0.3030003000003…75-252.±32-…(相邻两个3之间0的个数逐次增加2)、其中是有理数的有____;是无理数的有___。
(填序号)(2)有五个数:0.125125…,0.1010010001…,-,,其中无理数有 ( )个π432【算术平方根】:1.定义:如果一个正数x 的平方等于a ,即,那么,这个正数x 就叫做a 的算术平方根,a x =2记为:“”,读作,“根号a”,其中,a 称为被开方数。
例如32=9,那么9的算术平方根a 是3,即。
39=特别规地,0的算术平方根是0,即,负数没有算术平方根00=2.算术平方根具有双重非负性:(1)若 有意义,则被开方数a 是非负数。
(2)算术平方根a 本身是非负数。
3.算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。
因此,算术平方根只有一个值,并且是非负数,它只表示为:;而平方根具有两a个互为相反数的值,表示为:。
实数知识点汇总及经典
第二章实数一、 平方根、立方根仁算术平方根: 一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么正数 x 叫做a 的算术平方根,记作 a 。
0的算术平方根为0;从定义可知,只有当a> 0时,a 才有算术平方根。
2. 平方根:一般地,如果一个数x 的平方根等于a,即x 2=a ,那么数x 就叫 做a 的平方根。
正数有两个平方根(一正一负)它们互为相反数; 0只有一个平方根,就是它本 身;负数没有平方根。
3•正数的立方根是正数;0的立方根是0;负数的立方根是负数。
(2)若b 3=a ,贝U b 叫做a 的立方根。
a(a 0) a(a 0).、实数1 •实数的分类(1)按实数的定义分类: 2、 实数的运算(1) 有理数的运算定律在实数范围内都适用, 其中常用的运算定律有加法交 换律、乘法交换律、加法结合律、乘法分配律、乘法结合律。
(2) 在实数范围内进行运算的顺序:先算乘方、开方,再算乘除,最后算加 减。
运算中有括号的,先算括号内的,同一级运算从左到右依次进行。
3、 实数的大小比较常用方法:数轴表示法、作差法、平方法、估值法。
(1) 在数轴上表示两个数的点,右边的点表示的数大,左边的点表示的数小。
(2) 正数大于零,负数小于零;两个正数,绝对值大的较大;两个负数,绝对 值大的较小。
(3)设a ,b 是任意两实数,若 a-b>0,则 a>b; 若 a-b=0则 a=b; 若 a-b<0,则 a<b 。
4.⑴.a . b ab a 0,b 0 a a..b \b (a 0, b 0)524、数轴(1) 规定了原点、正方向和单位长度的直线叫做数轴。
(2) 数轴的三要素为原点、正方向和单位长度。
数轴上的点与实数 对应 所有的有理数都可以用数轴上的点表示,但数轴上的点所表示的不都是有理 数。
5、相反数、倒数、绝对值(1) 、只有符号不同的两个实数,其中一个叫做另一个的相反数。
第六章--实数(知识点+知识点分类练习)
【知识要点】被开放数扩大(或缩小)n倍,算术平方根扩大(或缩小)n倍,例如.25 5, 2500 50.一、算数平方根算数平方根的定义:一般的,如果一个非负数x的平方等于a,即x2=a ,(a>0),那么这个非负数x叫做a的算术平方根。
a的算术平方根记为谄,读作“根号a”,a叫做被开方数。
求一个正数a的平方根的运算叫做开平方。
1.0的算术平方根是02. 被开方数越大,对应的算术平方根也越大(对所有正数都成立)。
3. 一个正数如果有平方根,那么必定有两个,它们互为相反数。
显然,如果我们知道了这两个平方根的一个,那么就可以及时的根据相反数的概念得到它的另一个平方根。
4. 负数在实数系内不能开平方。
二、平方根平方根的定义:如果一个数x的平方等于a ,即x2=a,那么这个数x就叫做a的平方根,求一个数a的平方根的运算,叫做开平方。
平方根的性质:一个正数有2个平方根,它们互为相反数,其中正的平方根就是这个数的算数平方根;0只有1个平方根,它是0;负数没有平方根。
开平方:求一个数a的平方根的运算,叫做开平方。
三、立方根立方根的定义:如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根或三次方根,求一个数的立方根的运算叫做开立方,a的立方根记为鴛读作“三次根号a”,其中a是被开方数。
立方根的性质:每个数a都只有1个立方根。
正数的立方根是正数;0的立方根是0;负数的立方根是负数。
四、实数1. 无理数的定义:无限不循环小数叫做无理数。
2. 实数的定义:有理数和无理数统称实数。
3. 实数的分类:整数宀拓有理数八”有限小数或无限循环小数 实数 分数无理数无限不循环小数像有理数一样,无理数也有正负之分。
例如2 ,3 3 , 是正无理数, 2, 3 3, 是负无理数。
由于非0有理数和无理数都有正负之分,所以实数也可以这样分类:4. 实数与数轴上的点的对应关系:实数与数轴上的点是 -- 对应的。
5. 有关概念:在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的意义相同。
实数概念例题和知识点总结
实数概念例题和知识点总结一、实数的概念实数,是有理数和无理数的总称。
有理数包括整数(正整数、0、负整数)和分数(正分数、负分数);无理数,也称为无限不循环小数,不能写作两整数之比。
例如,π(圆周率)约等于 31415926就是一个无理数,因为它的小数部分是无限不循环的。
再比如√2(根号 2)约等于 141421356也是无理数。
实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。
二、实数的分类1、按定义分类实数可以分为有理数和无理数。
有理数又可以分为整数和分数。
整数包括正整数、0、负整数;分数包括正分数、负分数。
无理数就是无限不循环小数。
2、按正负分类实数可以分为正实数、0、负实数。
正实数包括正有理数(正整数、正分数)和正无理数。
负实数包括负有理数(负整数、负分数)和负无理数。
三、实数的性质1、实数的相反数实数 a 的相反数是 a,0 的相反数是 0。
例如,5 的相反数是-5,π 的相反数是π。
2、实数的绝对值正数的绝对值是它本身;负数的绝对值是它的相反数;0 的绝对值是 0。
例如,|5| = 5,|-5| = 5 ,|0| = 0 。
3、实数的倒数若实数 a 不为 0,则 a 的倒数为 1/a 。
例如,5 的倒数是 1/5 ,-2 的倒数是-1/2 。
4、实数的运算实数的运算遵循加、减、乘、除、乘方、开方等运算规则。
加法交换律:a + b = b + a加法结合律:(a + b) + c = a +(b + c)乘法交换律:ab = ba乘法结合律:(ab)c = a(bc)乘法分配律:a(b + c) = ab + ac在进行实数运算时,要注意先算乘方、开方,再算乘除,最后算加减;有括号的先算括号里的。
四、实数的大小比较1、数轴比较法在数轴上,右边的点表示的数总比左边的点表示的数大。
2、差值比较法设 a、b 是两个实数,若 a b > 0,则 a > b;若 a b = 0,则 a = b;若 a b < 0,则 a < b 。
实数知识点及例题
实数习题集【知识要点】 1.定义实数(R ):包括有理数和无理数。
其中无理数就是无限不循环小数,有理数就包括整数和分数。
数学上,实数直观地定义为和数轴上的点一一对应的数。
本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”。
有理数(Q):整数(Z)和分数的统称。
正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。
因而有理数集的数可分为正有理数、负有理数和零3种数。
无理数:无理数是指实数范围内不能表示成两个整数之比的数。
简单的说,无理数就是10进制下的无限不循环小数。
如圆周率π、√2等。
2.实数分类:2.相反数:b a ,互为相反数 0=+b a4.倒数:b a ,互为倒数 0;1=ab 没有倒数.5.平方根:①如果一个正数X 的平方等于A ,那么这个正数X 就叫做A 的算术平方根。
②如果一个数X 的平方等于A ,那么这个数X 就叫做A 的平方根。
③一个正数有2个平方根,它们互为相反数,0的平方根为0,负数没有平方根。
④求一个数A 的平方根运算,叫做开平方,其中A 叫做被开方数。
立方根:①如果一个数X 的立方等于A ,那么这个数X 就叫做A 的立方根。
②正数的立方根是正数/0的立方根是0/负数的立方根是负数。
③求一个数A 的立方根的运算叫开立方,其中A 叫做被开方数。
6.数轴的概念与画法.实数与数轴上的点一一对应;利用数形结合的思想及数轴比较实数大小的方法. 实数的有关概念(1)数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意1:上述规定的三要素缺一个不可,2:实数与数轴上的点是一一对应的,3:数轴上任一点对应的数总大于这个点左边的点对应的数.)(2)倒数实数a (a≠0)的倒数是(乘积为1的两个数,叫做互为倒数);注意:零没有倒数.知识点1:平方根、算术平方根、立方根若x 2=a ,则x 叫做a 的平方根。
记作,而正的平方根叫做算术平方根知识点2:零指数、负整指数幂a 0=1(a≠0);(a≠0)知识点3:科学记数法、近似数、有效数字实数有理数无理数整数(包括正整数,零,负整数) 分数(包括正分数,负整数) 正无理数 负无理数)0(>a 3.绝对值: =aa 0 a -)0(=a )0(<a把一个数写成a×10n (1≤a <10,n 是整数)的形式一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位,四舍五入得到的数从左边第一个非零数字起到末位数字止,所有的数字叫做这个近似数的有效数字 知识点4:三种重要的非负数(绝对值、偶次方、算术平方根)知识点5:常见的几种无理数(开方开不尽的数、含圆周率的数、无限不循环的数) 知识点6:实数的运算 实数的运算法则(1)加法同号两数相加,取原来的符号,并把绝对值相加;异号两数相加。
《实数》知识点及典型例题
6
3
)
C、 -9=-3
D、
1 1 16 =4 9 3 ) ) )
5、一个数的平方根和它的立方根相等,则这个数是 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ( A、1 B、0 C、1 或 0 D、1 或 0 或-1 6、已知 x+10+ y-13=0,则 x+y 的值是 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ( A、13 B、3 C、-3 D、23 7、两个连续自然数,前一个数的算术平方根是 x,则后一个数的算术平方根是 · · · · · · · · · ( A、x+1 2 A、 3
· 1 24、在- ,π ,0, 2,-22,2.121121112„(两个 2 之间依次多一个 1),0. 3 。 3
(1)是有理数的有: (2)是无理数的有: (3)是整数的有: (4)是分数的有:
; ; ; 。
5
25、跳伞运动员跳离飞机,在未打开降落伞前,下降的高度 d(米)与下降的时间 t(秒)之间有关系式:t= (不计空气阻力) (1)填表: 下降高度 d(米) 下降时间 t(秒) (2)若共下降 2000 米,则前 500 米与后 1500 米所用的时间分别是多少? 20 80 245 320
考点六、实数非负性的应用 1.已知:
3a b | a 49 | a7
2
0 ,求实数 a,b 的值。
2.已知(x-6) +
第6章 实数知识点及典型例题
第6章 实数(一) 平方根1、平方根的含义:如果一个数的平方等于a ,那么这个数就叫做a 的平方根。
即a x =2,(0x a =解得:≥),x 叫做a 的平方根。
正数a 的平方根用a ±表示,其中a 叫做正平方根,也称为算术平方根,a -叫做a 的负平方根,也称为算术平方根的相反数。
注意点:(1)一个正数有两个平方根,它们互为相反数:记作a ±(根指数2省略)0有一个平方根,为0,记作0=,负数没有平方根。
0=,负数没有算术平方根。
(2)平方与开平方互为逆运算 开平方:求一个数a 的平方根的运算。
2222222223111211214413169141961522516256172891832419361=========()熟记:,,,,,,,,(4a ≥0)a ≥0)表示非负数a 的算术平方根。
二次根式的要求:①根指数为2 ②被开方数可以是数,也可以是单项式、多项式、分式等,但必须是非负数。
(5)二次根式中字母的取值范围:二次根式有意义的条件:被开方数大于或等于0。
二次根式无意义的条件:被开方数小于0,二次根式做分母时: 被开方数大于0. 例1:求下列各数的平方根:(1)81(2)1625(3)214(4)0.49例2:下列各数有平方根吗?如果有,求出它的平方根;如果没有,要说明理由。
(1)-64(2)0(3)()-142(4)102-例3:求下列各数的算术平方根:(1)25(2)4964(3)0.81(4)81例4:求下列各式的值: (1)144(2)-36121(3)±00001.(4)214116+ 例5:(1)已知正方形的边长为5cm ,求这个正方形的面积;(2)已知正方形的面积是25cm 2,求这个正方形的边长。
例6:判断下列语句是否正确,正确的打“√”,错误的画“×”,并将错误改正。
(1)7是()-72的算术平方根; ( )(2)-25的平方根是±5;()(3)36等于±6; () (4)16的平方根是±2;()(5)6是()-62的平方根; ()(6)10是10的一个平方根; ()(7)正数的平方比它的算术平方根大。
实数知识点总结及典型例题练习
实数知识点总结考点一、实数的概念及分类(3分)1、实数的分类{正有理数r有理数零有限小数和无限循环小数负有理数实数{正无理数}无理数无限不循环小数负无理数Y 整数包括正整数、零、负整数。
匚正整数又叫自然数。
正整数、零、负整数、正分数、负分数统称为有理数。
2、无理数在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类:(1)开方开不尽的数,如万,迈等;(2)有特定意义的数,如圆周率心或化简后含有7T的数,如扌+8 等;(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin6()“等(这类在初三会出现)考点二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0, a二b,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|A0。
零的绝对值是它本身,若|a|=a,则Q0;若|a|二a,则a<0。
正数大于零, 负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a与b互为倒数,则有ab=l,反之亦成立。
倒数等于本身的数是1和・1。
零没有倒数。
考点三、平方根、算数平方根和立方根1、平方根如果一个数的平方等于心那么这个数就叫做巾的平方根(或二次方跟)。
一个数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
正数a的平方根记做“土蘇”。
2、算术平方根正数a的正的平方根叫做a的算术平方根,记作“亦”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a ( a >0) > 0、庐=|询=_ -a ( a <0) ;注意需的双重非负性Ya >03、立方根如果一个数的立方等于a,那么这个数就叫做a的立方根(或a的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
实数全章知识点+例题+练习
第二章 实数实数主要知识点【无理数】(1)无限不循环小数叫做无理数;它必须满足“无限”以及“不循环”这两个条件。
在初中阶段,无理数的表现形式主要包含下列几种:(1)特殊意义的数,如:圆周率π以及含有π的一些数,如:2-π,3π等;(2)开方开不尽的数,如:39,5,2等;(3)特殊结构的数:如:2.010 010 001 000 01…(两个1之间依次多1个0)等。
应当要注意的是:带根号的数不一定是无理数,如:9等;无理数也不一定带根号,如:π(2)有理数与无理数的区别:(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。
练习:(1)下列各数:①3.141、②0.33333……、③75-、④π、⑤252.±、⑥32-、⑦0.3030003000003……(相邻两个3之间0的个数逐次增加2)、其中是有理数的有_____;是无理数的有______。
(填序号) (2)有五个数:0.125125…,0.1010010001…,-π,4,32其中无理数有 ( )个A 2B 3C 4D 5【平方根】如果一个数x 的平方等于a ,那么,这个数x 就叫做a 的平方根;也即,当)0(2≥=a a x 时,我们称x 是a 的平方根,记做:)0(≥±=a a x 。
因此:1.当a=0时,它的平方根只有一个,也就是0本身;2.当a >0时,也就是a 为正数时,它有两个平方根,且它们是互为相反数,通常记做:a x ±=。
3.当a <0时,也即a 为负数时,它不存在平方根。
练习:(1) 的平方是64,所以64的平方根是 ; (2) 的平方根是它本身。
【算术平方根】(1)如果一个正数x 的平方等于a ,即a x =2,那么,这个正数x 就叫做a 的算术平方根,记为:“a ”,读作,“根号a”,其中,a 称为被开方数。
实数知识点(含例题)
1.无理数(1)无限不循环小数叫做__________,π,0.1225486…等.(2)判断方法:①定义是判断一个数是不是无理数的重要依据;②有理数都可以写成分数的形式,而无理数则不能写成分数的形式(两个整数的商).(3)常见的无理数:等;②含有π一类数,如5π,3+π等;③以无限不循环小数的形式出现的特定结构的数,如0.2020020002…(相邻两个2之间0的个数逐渐加1).2.实数的概念和分类(1)概念:有理数与无理数统称为__________.(2)实数按定义分类:按正负分类:3.实数与数轴(1)实数与数轴上的点的对应关系:实数与数轴上的点是__________的.即每个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.(2)在数轴上的两个点,右边的点表示的实数总比左边的点表示的实数__________.4.相反数与绝对值相反数:数a的相反数是-a.绝对值:一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.即||=00,,,a aa aa a⎧>⎪=⎨⎪-<⎩.5.实数的运算实数运算的顺序是先算乘方和开方,再算乘除,最后算加减.如果遇到括号,则先进行括号里的运算.K知识参考答案:1.(1)无理数2.(1)实数3.(1)一一对应(2)大4.一、无理数的判断1.判断一个数是不是无理数,必须看它是否同时满足两个条件:无限小数和不循环小数这两者缺一不可.2.带根号的数并不都是无理数,而开方开不尽的数才是无理数.【例1】0;3π227;1.1010010001…,无理数的个数是A.5 B.4 C.3D.2 【答案】C【解析】因为0;227;3π;1.1010010001…是无限不循环小数,所以无理数有3个,故选C.二、实数的概念和分类1.实数的分类有不同的方法,但要按同一标准,做到不重不漏.2.对实数进行分类时,应先对某些数进行计算或化简,然后根据最后结果进行分类.【例2】在5π13140123,,,.,----中,其中__________是整数,__________是无理数,__________是有理数.【答案】,1-;π513140132,;,,.,----【例3】将这些数按要求填入下列集合中:0.01001001…,4,122-,3.2,0,-1,-(-5),-|-5|π负数集合{…};分数集合{…};非负整数集合{…};无理数集合{…}.【解析】负数集合{122-,-1,-|-5| 分数集合{122-,3.2…}; 非负整数集合{4,0,-(-5)…}; 无理数集合{0.01001001…, 三、实数与数轴两个实数比较大小:1.数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大; 2.正实数大于0,负实数小于0,正实数大于一切负实数,两个负实数比较,绝对值大的反而小.【例4】如图,数轴上点P 表示的数可能是A B.C.–3.2 D.【答案】B≈2.65 3.16,设点P表示的实数为x,由数轴可知,–3<x<–2,∴符合题意的数为.故选B.【例5】和数轴上的点成一一对应关系的数是A.自然数B.有理数C.无理数D.实数【答案】D【解析】数轴上的点不仅表示有理数,还表示所有的无理数,即实数与数轴上得点是一一对应的,故选D.【例6】已知实数m、n在数轴上对应点的位置如图所示,则下列判断错误的是A.m<0 B.n>0 C.n>m D.n<m【答案】D【解析】由数轴上的点,得m<0<n,所以m<0,n>0,n>m都正确,即选项A,B,C判断正确,选项D判断错误.故选D.【例7】已知数轴上A、B两点表示的数分别为–3和,则A、B间的距离为__________.【答案】+3【解析】A、B两点表示的数分别为–3和,则A、B间的距离为–(–3)= +3,故答案为:+3.【例8】如图,点A、B、C在数轴上,O为原点,且BO:OC:CA=2:1:5.(1)如果点C表示的数是x,请直接写出点A、B表示的数;(2)如果点A表示的数比点C表示的数两倍还大4,求线段AB的长.【解析】(1)∵BO:OC:CA=2:1:5,点C表示的数是x,∴点A、B表示的数分别为:6x,–2x;(2)设点C表示的数是y,则点A表示的数为6y,由题意得,6y=2y+4,解得:y=1,∴点C表示的数是1,点A表示的数是6,点B表示的数是–2,∴AB=8.四、相反数与绝对值求一个有理数的相反数和绝对值与求一个实数的相反数和绝对值的意义是一样的,实数a的相反数是-a,一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,0的绝对值是0.【例9的相反数是A.B C.D【答案】A的相反数是,故选A.【例10】3-π的绝对值是A.3-πB.π-3 C.3 D.π【答案】B【解析】∵3−π<0,∴|3−π|=π−3,故选B.【例11】A.相反数B.倒数C.绝对值D.算术平方根【答案】A【解析】只是符号不同,所以它们是一对相反数,故选A.五、实数的运算1.在进行实数的运算时,有理数的运算法则、运算性质、运算顺序、运算律等同样适用.2.在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算.【例12】计算下列各式:-.(1)--;(21【解析】(1=-.(2)原式=-+211=-.【名师点睛】此题考查了二次根式的加减混合运算,关键是熟练掌握绝对值的化简及同类二次根式的合并.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实数习题集
【知识要点】
1.实数分类:
2.相反数:b a ,互为相反数 0=+b a
4.倒数:b a ,互为倒数
0;1=ab 没有倒数.
5.平方根,立方根:==x ,a x a x 记作的平方根叫做数则数若,2
±a .
若a x ,a x a x 33,=
=记作的立方根叫做数则数
6.数轴的概念与画法.实数与数轴上的点一一对应;利用数形结合的思想及数轴比较实数大小的方法. 【课前热身】
1、36的平方根是 ;16的算术平方根是 ;
2、8的立方根是 ;327-= ;
3、37-的相反数是 ;绝对值等于3的数是
4
、的倒数的平方是 ,2的立方根的倒数的立方是 。
5
、2的绝对值是
,11的绝对值是 。
6、9的平方根的绝对值的相反数是 。
7
+的相反数是
,-的相反数的绝对值是 。
8
-
-+的相反数之和的倒数的平方为 。
【典型例题】
例1、把下列各数分别填入相应的集合里:
2
,3.0,10,1010010001.0,125,722,0,1223π---•-Λ
有理数集合:{ }; 无理数集合:{ }; 负实数集合:{ }; 例2、比较数的大小 (1)2332与
(2)6756--与
例3.化简: (1)233221-+-+
-
实数
有理数
无理数 整数(包括正整数,零,负整数) 分数(包括正分数,负整数) 正无理数
负无理数
)0(>a
3.绝对值: =a
a
a -
)0(=a )0(<
a
(2
例4.已知b a ,是实数,且有0)2(132=+++-b a ,求b a ,的值.
例5 若|2x+1|与x y 48
1
+互为相反数,则-xy 的平方根的值是多少?
总结:若几个非负数的和为零,则每个非负数都为零,这个性质在代数式求值中经常被使用.
例6.已知b a ,为有理数,且3)323(2
b a +=-,求b a +的平方根
例7. 已知实数x 、y 、z 在数轴上的对应点如图 试化简:x z x y y z x z x z
---++++
-。
y x
z
【课堂练习】
1.无限小数包括无限循环小数和 ,其中 是有理数, 是无理数. 2.如果102
=x ,则x 是一个 数,x 的整数部分是 . 3.64的平方根是 ,立方根是 . 4.51-的相反数是 ,绝对值是 . 5.若==
x x 则6 .
6.当_______x 时,32-x 有意义; 7.当_______x 时,
x
-11有意义;
8.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ; 9.当10≤≤x 时,化简__________12
=-+x x ; 10.b a ,的位置如图所示,则下列各式中有意义的是( ). A 、b a + B 、b a -
C 、ab
D 、a b - 11.全体小数所在的集合是( ).
A 、分数集合
B 、有理数集合
C 、无理数集合
D 、实数集合
12.等式1112-=+⋅-x x x 成立的条件是( ).
A 、1≥x
B 、1-≥x
C 、11≤≤-x
D 、11≥-≤或x
13.若64
61
1)23(3
=
-+x ,则x 等于( ). A 、
2
1 B 、4
1
C 、4
1-
D 、4
9-
14.计算: (1
)21--- (2)
34-+-
(3
24++-++
(4)8
1
214150232-+
-
a
b
o
15.若054=-++-y x x ,求xy 的值.
16.设a 、b 是有理数,且满足(
2
1a +=-
,求b a 的值
17.若10m ++=,求2000
4m n -的值。
实数习题集作业
1.若式子2)4(a --是一个实数,则满足这个条件的a 有( ). A 、0个
B 、1个
C 、4个
D 、无数个
2.已知ABC ∆的三边长为c b a ,,,且b a 和满足04412=+-+-b b a ,则c 的取值范围
为 .
3.若b a ,互为相反数,d c ,互为倒数,则=++333cd b a . 4. 若y=,122--+-x x 则y x 的值为多少
5.已知0)8(652=++++-z y x ,求13+-+z y x 的值.
6.计算
(1))138)(138(-+ (2))83)(31()35(2
-++-
(3)222222513683)4(--++-- (4))625()23(2-+。