第三章水动力学基础环境优秀课件
《水动力学理论基础》课件
重大突破
回顾水动力学领域的重大发现和 创新成果,以及它们对科学与工 程的影响。
势流理论
探索理想流体的势流理论以及它在实际 中的应用。
湍流和边界层理论
湍流现象
了解湍流的本质和特征,以 及其在实际中的影响。
边界层的形成
探究流体在边界附近的运动 规律,以及边界层的重要性。
边界层控制
思考如何控制边界层,以减 少阻力和实现更高的效率。
纳维-斯托克斯方程
方程表达
深入了解纳维-斯托克斯方程,它 描述了流体运动的基本规律。
水动力学的环境应用
1 水体污染模拟
使用水动力学模型评估和 预测水体污染的传播和影 响。
2 海岸工程
研究海岸侵蚀、海洋能源 利用等问题,保护生态环 境和人类安全。
3 水力发电
探讨利用水动力学原理进 行可持续的水力发电的技 术和方案。
总结与未来发展
研究趋势
展望水动学研究的未来发展方 向和挑战。
潜在应用
流体力学基础
流体的性质
探索流体的特性,包括粘性、密 度和表观黏度等。
流体力学的基本原理
学习流体力学的基本方程和质量 守恒定律。
流体分类
研究不同类型的流体,例如牛顿 流体和非牛顿流体。
流体运动的描述与分析
1
涡度和环流
2
讨论涡度和环流的重要性,以及它们在
流体运动中的角色。
3
流线、路径线和划线
解释流体运动中不同类型曲线的概念和 应用。
数值解法
讨论使用数值方法解决流体流动 问题的相关技术和算法。
工程应用
探索纳维-斯托克斯方程在不同工 程领域中的应用。
水力学课件 第三章_水动力学基础PPT资料66页
为了摆脱 粘性 在分析实际液体运动时 在数学上的某些困难,我们先以忽略粘性 的 理想液体 为研究对象,然后在此基础 上进一步研究实际液体(修正)。
§3—1 描述液体运动的两种方法
1.拉格朗日法 拉格朗日法着眼于液体各质点的运动情况,追踪每一质点,研 究各质点的运动历程,通过综合足够多质点的运动情况来获得整个 液体运动的规律。
(4) 过水断面 与元流或总流所有流
3.流量与断面平均流速
(1)流量Q:单位时间内通过过水断面的液体体积。 总流的流量等于所有元流的流量之和(m3/s,l3/s)。
Q v ud
v
Q
ud
(2)断面平均流速 v:假想均匀分布在过水断面上的流速。
4.均匀流与非均匀流 若液流中同一流线上各质点的流速矢量沿程不变,这
pA
zA
pB
zB
pC
zC
C
pA ? pB ? pC ?Leabharlann §3—3 恒定总流的连续性方程
考虑到: (1)在恒定流条件下,元流的形状与位置不随时间改变; (2)不可能有液体经元流侧面流进或流出; (3)液流为连续介质,元流内部不存在空隙。
根据质量守恒原理, 对不可压缩液体:
对于总流
引入断面平均流速后得
非均匀流中,流线多为彼此不平行的曲线,按流线图形沿流程 变化的缓急程度,又可将非均匀流分为渐变流和急变流两类。
渐变流(又称缓变流):指各流线接近于平行直线的流动,即 渐变流各流线之间的夹角很小,流线的曲率半径 R 很大。
否则称为 急变流。 渐变流的极限情况是流线为平行直线的均匀流.
渐变流过水断面具有的两个性质:
活学活用
恒定渐变流中,同一过水断面上的动水压强近似按地静水压强分布 恒定均匀流中,同一过水断面上的动水压强精确地按静水压强分布
水力学课件:3第三章 水动力学基础
第三章 水动力学基础
§4 恒定总流的能量方程
4 恒定总流的能量方程
恒定总流的能量方程
z1
p1
1V12
2g
z2
p2
2V22
2g
hw
1
Z1 1
0
Yangzhou Univ
V 2 总水头h线w
2g
测压管水头线
2
2 Z2
0
位压 流 置强 速 水水 水 头头 头
测总 压水 管头 水 头
H1 H 2hw
Yangzhou Univ
流线图
《水力学》
第三章 水动力学基础
§2 欧拉法的若干基本概念
2.2 过水断面 过水断面是指与水流运动方向成正交的横断面
过水断面的水力要素——影响水流运动的物理指标 例如:断面几何形状、过水断面面积、湿周和水力半径等
Yangzhou Univ
《水力学》
第三章 水动力学基础
2
水流总是从水头大处流 向水头小处;
水流总是从单位机械能大 处流向单位机械能小处
2
水力坡度Z2 J——单位长度流程上的水头损失
0
J dhw dH
dL dL
《水力学》
第三章 水动力学基础
§4 恒定总流的能量方程
4 恒定总流的能量方程
方程的应用条件:
z1
p1
1V12
2g
z2
p2
2V22
2g
hw
水流必需是恒定流;
在所选取的两个过水断面上,水流应符合渐变流的条件, 但所取的两个断面之间,水流可以不是渐变流;
流程中途没有能量H输入或输出。否则,修正方程式:
z1
p1
1V12
水力学课件:3第三章 水动力学基础
水流总是从水头大处流 向水头小处;
水流总是从单位机械能大 处流向单位机械能小处
2
水力坡度Z2 J——单位长度流程上的水头损失
0
J dhw dH
dL dL
《水力学》
第三章 水动力学基础
§4 恒定总流的能量方程
4 恒定总流的能量方程
方程的应用条件:
z1
p1
1V12
2g
z2
p2
2V22
2g
单单 位位 位压 能能
单水 位头 动损 能失
单单 位位 势总 能机
械
E1 E能2hw
《水力学》
第三章 水动力学基础
§4 恒定总流的能量方程
4 恒定总流的能量方程
恒定总流的能量方程
z1
p1
1V12
2g
z2
p2
2V22
2g
hw
1
Z1 1
0
Yangzhou Univ
V 2 总水头h线w
2g
测压管水头线
全国水文水资源专业进修班
水力学
熊亚南
扬州大学水利与能源动力工程学院
Yangzhou Univ
《水力学》
第三章 水动力学基本原理
§1 描述液体运动的两种方法 §2 欧拉法的若干基本概念 §3 恒定总流的连续性方程 §4 恒定总流的能量方程 §5 能量方程式在水流量测方面的应用
Yangzhou Univ
第三章 水动力学基础
§4 恒定总流的能量方程
4 恒定总流的能量方程
恒定总流的能量方程
z1
p1
1V12
2g
z2
p2
2V22
2g
hw
第三章 水动力学基础 ppt课件
F y
Q( 2v2z 1v1z )
F z
11
ppt课件
恒定总流动量方程建 立了流出与流进控制体 的动量流量之差与控制 体内流体所受外力之间 的关系,避开了这段流 动内部的细节。对于有 些水力学问题,能量损 失事先难以确定,用动 量方程来进行分析常常 是方便的。
水排
12
ppt课件
水排简介
东汉初(公元31年)杜诗制造的 “水排”,利用溪水流作原动力, 转动鼓风机械供冶炼和铸造铁器农具。这种水平装置的转轮,利 用水流动量原理,是近代水轮机的先驱。水排主体包括装在同 一主轴上的两个水平木轮,将装有叶板的下轮放在河中,水流 冲击叶板即使下轮转动,上轮也同时转动,再带动旁边的绳轮 和连杆、平轴等传动机械,使鼓风的皮囊一开一合地连续运动, 即可把空气送到炼铁炉内。这种利用水流作用力推动轮叶的作 法,是完全和现代水力学的理论相符的,用于冶金、筛面、舂 米、磨面、纺纱和提水扬水工具。
第三章 水动力学基础
本章学习基本要求:
了解描述流体运动的两种方法; 理解流动类型和流束与总流等相关概念; 掌握总流连续性方程、能量方程和动量方程及其应用; 理解量纲分析法。
1
ppt课件
第三章 水动力学基础
3.1 描述液体运动的两种方法
3.2 液体运动的基本概念
3.3 恒定总流的连续性方程
3.4 恒定元流的能量方程
定。 18
ppt课件
弯管内水流对管壁的作用力
管轴竖直放置
1
管轴水平放置
1 2
V1 Rz
R
P1=p1A1 z
Fx V2
G
2
V1
P1=p1A1
x y
x y
P2=p2A·2
水动力学基础课件:第三章 流体动力学(6)
例1:有压管流流网绘制
5
C
4
3
2
A
△m
1 1 2 3 4 5 6 7 8 9 10 11
因流线不能转折,图中的C点必为驻点,此处网 格并非方格(网格分成无穷小时,则该处应为方格) 试描等势线时应先绘C点两侧的等势线,然后再分别向 上下游描绘其他等势线、
5
C
4
3
2
A
△m
1 1 2 3 4 5 6 7 8 9 10 11
y
速势 的增值方向与
Ψ+ dΨ
流速u的方向一致;将 流速方向逆时针旋转 900
ψ
u
后所得的方向即为流
函数 的增值方向
Φ+ dΦ
只要知道水流 方向就可确定 流速势和流函 数的增值方向
θ
φ
O
x
证明:以流速u的方向作为n的增值方向
d uxdx uydy u cos dn cos u sin dnsin udn(cos2 sin 2 )
φ
O
x
3、取每个网眼相邻两流线间的流函数差与相邻等势线
间的流速势差相等,每个网眼则为正交方格。
y
Ψ+ dΨ
u d d
dn dm
ψ
u
u n m
Φ+ dΦ
θ
φ
O
x
实用上绘制流网时流线及等势线是有
限的,因此,上式应改为差分形式。
u (14 21) n
u (14 22) m
y Ψ+ dΨ
运动方程为:
l
0
V t
dl U
p
UA
pA
pc
pA
UA
UC
水力学第三章水动力学基础PPT课件
斯托克斯定理
总结词
描述流体在重力场中运动时,流速与密 度的关系。
VS
详细描述
斯托克斯定理指出,在不可压缩、理想流 体中,流体的流速与密度之间存在一定的 关系。具体来说,流速大的地方密度小, 流速小的地方密度大。这个定理对于理解 流体运动的基本规律和解决实际问题具有 重要的意义。
06 水动力学中的流动现象与 模拟
设计、预测和控制等领域。
THANKS FOR WATCHING
感谢您的观看
静水压强
静止液体内部压强的分布规律。
液柱压力计
利用静止液体的压强测量压力的方法。
帕斯卡原理
静止液体中任意封闭曲面所受外力之和为零。
浮力原理
浸没在液体中的物体受到一个向上的浮力, 其大小等于物体所排液体的重量。
03 水流运动的基本方程
连续性方程
总结词
描述水流在流场中连续分布的特性
详细描述
连续性方程是水力学中的基本方程之一,它表达了单位时间内流场中某一流体 的质量守恒原理。对于不可压缩流体,连续性方程可以简化为:单位时间内流 出的流量等于该时间内流体的减少量。
湍流
水流呈现不规则状态,流线曲折、交 叉甚至断裂,流速沿程变化大,有强 烈的脉动现象。
均匀流与非均匀流
均匀流
水流在同一条流线上,速度和方向保持一致,过水断面形状和尺寸沿程保持不变 。
非均匀流
水流在同一条流线上,速度和方向发生变化,过水断面形状和尺寸沿程也发生变 化。
一维、二维和三维流动
一维流动
水流只具有一个方向的流动,如 管道中的水流。一维流动的研究 可以通过建立一维数学模型进行。
水力学第三章水动力学基础ppt课 件
目 录
第3章 水动力学理论基础(1)课件
第三章 水动力学理论基础目的要求:掌握水动力学的一些基本概念;三大方程的推导和应用。
难点:动量方程的应用。
全部为重点,尤其是能量方程的应用。
质量守恒原理 牛顿第二定律 动量定理 ↓ ↓ ↓连续性方程 能量方程 动量方程§3-1 描述液体运动的两种方法 一、拉格朗日法无论运动、平衡的液体,都是由液体质点组成的。
拉格朗日法的实质就是以液体质点为研究对象。
跟踪它,研究每个液体质点所具有的运动要素(速度、加速度、压强)随时间的变化规律。
质点运动的轨迹线叫迹线。
如果把组成流场的所有质点的运动规律都搞清楚了,即可得到整个流场的运动特性。
以起始时刻的坐标区别质点(不同质点有不同的起始坐标,而每一质点的起始坐标不随时间变化,就好比人的名字)。
某一质点,起始坐标(a 、b 、c 、t ),t 时刻的运动坐标(x 、y 、z ),则x=x (a 、b 、c 、t ) , y=(a 、b 、c 、t ) , z=z (a 、b 、c 、t )。
a 、b 、c 、t 统称为拉格朗日变量t x u x ∂∂= , t y u y ∂∂=, t z u z ∂∂=; 22t x a x ∂∂= , 22ty a y ∂∂=, 22t za z ∂∂=由于液体质点的运动轨迹非常复杂,除特殊情况外,在水力学中均采用欧拉法。
二、欧拉法欧拉法的实质是研究流场中某些固定空间点上的运动要素随时间的变化规律,而不直接追究给定质点在某时刻的位置及其运动状况。
若某一质点在t 时刻占据的空间坐标为(x ,y ,z ),则u x =u x (x , y, z, t), u y =u y (x, y, z , t) , u z =u z (x , y, z, t),p=(x , y, z, t) (x, y, z, t 称为欧拉变量)。
由于某一质点在不同时刻占据不同的空间点,因此空间坐标也是时间t 的函数。
则:dtdz z u dt dy y u dt dx x u t u dt du a x x x x x ∂∂+∂∂+∂∂+∂∂==χ =z uu y u u x u u t u x z x y x x x ∂∂+∂∂+∂∂+∂∂zu u yu u xu u tu a y zy yy xy y ∂∂+∂∂+∂∂+∂∂=zuu y u u x u u t u a z z z y z x z z ∂∂+∂∂+∂∂+∂∂=上面三个式子中,等号右边第一项是速度相对于时间的变化率,称为当地加速度;后三项之和是速度相对于位移的变化率,称为迁移加速度。
第三章 水动力学基础优秀课件
本章主要介绍与液体运动有关的基本概念及液 体运动所遵循的普遍规律并建立相应的方程式。
主要念 ❖恒定一元流的连续性方程式 ❖实际液体恒定总流的能量方程式 ❖能量方程式的应用举例 ❖实际液体恒定总流的动量方程式 ❖恒定总流动量方程式的应用举例
以个别液体运动质点为对象.研究给定质点在整 个运动过程中的轨迹.各个质点运动状态总和构 成整个液体运动.
点—线—面 运动轨迹 运动要素
四、局限性: 液体质点运动轨迹非常复杂,实用上不需要知 道某一质点的运动轨迹,因此水力学上不常采 用此方法。
3.1.2 欧拉法
一、定义: 直接从流场中每一固定空间点的流速分布入手 ,建立速度、加速度等运动要素的数学表达式 ,来获得整个流场的运动特性。
uz t
(ux
uz x
uy
uz y
uz
uz ) z
三、含义:
1.等号右边第一项表示通过某固定点的液体质点,其速度 随时间变化而形成的加速度,称为当地加速度.
2.等号右边括号内项表示同一时刻因地点变化而形成的加 速度,称为迁移加速度。
∴ 液体运动质点加速度=当地加速度+迁移加速度
ax
du x dt
ux ) z u y ) z
az
duz dt
uz t
(ux
u z x
uy
u z y
uz
uz ) z
ax
a y
dux dt du y
dt
ux t u y
t
(ux (ux
ux x u y
x
uy uy
ux y u y
y
uz uz
ux ) z uy ) z
az
duz dt
水动力学理论基础课件
对于理想液体或实际液体都合用。
注意:当流量有流进或流出时,能够写成: Q3
Q3
Q2
Q1
Q2
Q3 Q1 Q2
Q1 Q2 Q3
Q1
§3-4 一维恒定总流旳能量方程
§3-4 一维恒定总流旳能量方程
一、恒定元流旳能量方程
1.推导过程
动能定理:运动物体在
某一时段内,动能旳增
加速度旳体现式: 在直角坐标系中,流速可写成:
U x ux x, y, z, t U y uy x, y, z, t U z uz x, y, z, t
则加速度为:
ax
du x dt
u x t
u x x
dx dt
u x y
dy dt
u x z
dz dt
dx dt ux
dy dt
uy
u1
质量为2u2dA2dt,
1
u2 dA2 2
由质量守恒定律,有: 1u1dA1dt 2u2dA2dt
液体不可压缩:
u1dA1 u2dA2
或: dQ u1dA1 u2dA2 常数
(元流旳连续性方程)
§3-3 一维恒定总流旳连续性方程
总流流量等于元流流量之和,故总流旳连续性方 程为:
dQ A1 u1dA1 A2 u2dA2
§3-4 一维恒定总流旳能量方程
a.重力作功
W1= dV(z1-z2) 若z1>z2则重力作正功; 若z1<z2则重力作负功。
b.压力作功
p1 z1 dA1
u u1 2
z2
p2 dA2
断面1-1上旳总压力为P1=p1dA1,移动距离为ds1, 作正功,为p1dA1ds1
水动力学基础课件
p
α z z dz
(z
p g
)2
C2
O
3-2 研究液体运动的若干基本概念
5 均匀流、非均匀流
证明: 如图,取微分柱体
下端动水压力为
pdA
2 上端动水压力为
(pdp)dA
内摩擦力及侧面动水压力投影为零
柱体自重沿n方向的投影为
dG ca o sgdc Aa o d sg ndA
n方向无加速度故有
3-2 研究液体运动的若干基本概念
8 有压流、无压流:
根据运动2液体是否有自由液面来区分的。有自由液面称无压流,
否则称有压流。 层流、紊流;急流、缓流、临界流等后面介绍。
3-3 恒定总流的连续性方程
1 恒定元流的连续性方程
液流的连续性方程是质量守恒定律的一种特殊方式。取恒定流中微小流束, 因液体 为
不变。2).同一流线上不同点的流速应相等,从而各过水断面上
的流速分布相同,断面平均流速相等。3).过水断面上的动水压
强分布规律与静水压强分布规律相同,即在同一过水断面上各点测
压管水头为一常数。
z p c
g
3-2 研究液体运动的若干基本概念
5 均匀流、非均匀流
2
p (z g )1 C1
O
p+dp dA
Q A ud A A v d vA A A v A
v Q A
3-2 研究液体运动的若干基本概念
5 均匀流、非均匀流
均匀流: 当水流的流线为相互平行的直线时,该水流称为均匀流。
均匀流与恒定流是二个不同的概念。恒定流时,当地加速度为零,
均匀流时,2迁移加速度为零。
均匀流特性: 1).过水断面为平面,且过水断面的形状和尺寸沿程
水力学系统讲义课件第三章水动力学基础
ux t
ux
ux x
uy
ux y
uz
ux z
ay
uy t
ux
uy x
uy
uy y
uz
uy z
az
uz t
ux
uz x
uy
uz y
uz
uz z
4
a du du(x, y, z,t) u u dx u dy u dz
z p C
g
中,各项都为长度量纲。
位置势能(位能): Z 位置水头(水头) : Z
pA /
pB /
压强势能(压能): p
测压管高度(压强水头) : g
zA
O
zB
O
单测位压势管能水:头:z
p
g
35
恒定总流的能量方程
理想液体恒定微小流束能量方程推导
动能定理:某物体在运动过程中动能的改变等于其在同 一时间内所有外力所做的功。
解:ax
ux t
ux
ux x
uy
ux y
4y 6x 4y 6xt 6t 6y 9xt 4t
4y 6x 1 6t2 6t2
将t 2, x 2, y 4代入得,ax 4m / s2 同理可得, ay (6 y 9x) (4 y 6x)9t 2 (6 y 9t)6t 2
Q A
49 60
umax
24
(2)过流断面上,速度等于平均流速的点距管壁的距离。
1/ 7
《水动力学基础》课件
流体动力学方程
连续性方程
解释连续性方程的意义和应 用,如质量守恒定律。
动量守恒方程
揭示动量守恒方程的重要性, 以及它在流体流动研究中的 应用。
能量守恒方程
介绍能量守恒方程的基本原 理,以及在流体热力学和能 源转换中的应用。
流体静力学
1 压力分布
讲解黏性和粘度的概念,以及 在工程和自然现象中的影响。
边界层
探索边界层的特性和作用,以 及它在流体力学中的重要性。
应用领域
1
水力发电
介绍水力发电的原理和技术,以及它在可再生能源中的重要性。
2
航海
探讨流体力学在航海中的应用,如船舶稳性和水动力设计。
3
城市排水系统
解释城市排水系统的原理和设计,以及流体力学在此领域的应用案例。
《水动力学基础》PPT课 件
水动力学基础的介绍提供了关于流体力学的基本知识。涉及流体的静态和动 态性质,以及它们在应用领域中的重要性。
液体静压力
1 作用原理
讲解液体静压力的作用原理和公式,以及在不同场景中的应用。
2 实验演示
通过实验演示液体静压力的原理,使观众更直观地理解它在实际中的应用。
3 应用案例
总结和关键要点
主要概念
总结课程中涉及的主要概 念和重要原理,以加深观 众对水动力学基础的理解。
实际应用
强调水动力学基础在各个 工程和科学领域中的实际 应用,并鼓励观众继续深 入研究。
下一步
提供一些学习水动力学进 一步的资源和参考资料, 以激发观涉及到应变、杨氏模量等重要概念。
2 巴什卡拉定理
详解巴什卡拉定理的背景和应用,以及对流体静力学的贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节. 研究液体运动的若干基本问题
一.迹线和流线
• 迹线是液体
质点运动的轨 迹,是与拉格 朗日观点相对 应的概念。
• 拉格朗日法中位移
表达式
rr(a,b,c,t)
即为迹线的参数方程。
t 是变数,a,b,c 是参数。
• 流线是流速场的矢量线,是某瞬时对应的流场中的一条曲
线,该瞬时位于流线上的液体质点之速度矢量都和流线相切。 流线是与欧拉观点相对应的概念。有了流线,流场的空间分布 情况就得到了形象化的描绘。
位为 m3/s。
n
dA
u
总流过水断面上每一点 的流速与该点法向一致, 所以穿过过水断面A的 流量大小为
Q udA ,其中 u
为流速A的大小。
• 定义体积流量与断面面积
之比 v Q A为断面平均流速, 它是过水断面上不均匀流速 u 的一个平均值,假设过水 断面上各点流速大小均等于 v,方向与实际流动方向相 同,则通过的流量与实际流 量相等。
第一节 描述水流运动的两种方法
(一). 拉格朗日法
•液体是由为数众多的质点所组成的连续介质,
其运动要素随时间和空间变化,描述整个液体的 运动规律有两种方法。
•拉格朗日法以研究个别液体质点的运动为基础,
通过对每个液体质点运动规律的研究来获得整个 液体运动的规律性。
(二). 欧拉法
•欧拉法 是以考察不同液体质点通过固定空间点
• 迹线和流线最基本的差别是:迹线同一流
体质点在不同时刻的位移曲线,与拉格朗日观 点对应,而流线是同一时刻、不同流体质点速 度矢量与之相切的曲线,与欧拉观点相对应。 即使是在恒定流中,迹线与流线重合,两者仍 是完全不同的概念。
二、描述水流运动的基本概念
流管、元流、总流、过水断面
• 在流场中,取一条不与
第三章水动力学基 础环境
学习重点
1.掌握并能应用恒定总流连续性方程。 2.掌握恒定总流的能量方程,理解恒定总流 的能量方程和动能修正系数的物理意义; 3.理解测压管水头线、总水头线、水力坡度 与测压管水头、流速水头、总水头和水头损 失的关系。
教学目的、 要求:
1.了解描述液体运动的拉格朗日法和欧拉法的内 容和特点。 2.理解液体运动的基本概念,包括流线和迹线, 元流和总流,过水断面、流量和断面平均流速, 一元流、二元流和三元流等。 3.掌握液体运动的分类和特征,即恒定流和非恒 定流,均匀流和非均匀流,渐变流和急变流。
t ux xuy yuz z
du dt
=
u t
+ ux
uxuy
uyuz
u z
质
点
当地加速度
迁移 加速度
加 速 度
由流速 不恒定 性引起
由流速不均 匀性引起
a x d d u tx u tx u x u x x u y u y x u z u z x a y d d u ty u ty u x u x y u y u y y u z u zy a z d d u tz u tz u x u x z u y u y z u z u z z
流线重合的封闭曲线L, 在同一时刻过 L上每一点 L 作流线,由这些流线围 成的管状曲面称为流管。
流管 流线
• 与流线一样,
流管是瞬时概
念。
•根据流管的定义易知,在
对应瞬时,流体不可能通
过流管表面流出或流入。
• 过水断面 与流动方向正交的流管的横断面
• 过水断面为面积微元
的流管叫元流管,其
中的流动称为元流。 dA1
• 欧拉法是描述流体运
动常用的一种方法。
• 若流场是用欧拉法
uu(x,y,z,t)
描述的,流体质点
加速度的求法必须
• 特别注意。
用欧拉法描述,处
理拉格朗日观点的
问题。
• 跟定流体质点
后,x,y,z 均随 t
变,而且
du(xd,ty,z)(ux,uy,uz)
addut u t u xddxt u y ddyt u z ddzt u u u u
(一)、流线的基本特性 1 流线不能相交、不能是折线,只能是一条连续 光滑的曲线。 2 液体质点无横跨流线的运动。 3 流线某一点的切线方向为该点的流速方向。
18
(二)流线迹线的差异
• 在非恒定流情况下,流线
一般会随时间变化。在恒 定流情况下,流线不随时 间变,流体质点将沿着流 线走,迹线与流线重合。
u1
dA2
u2
• 过水断面为有限面积的流管中的流动叫总流。
总流可看作无数个元流的集合。总流的过水断
面一般为曲面。
注意:过水断面可为平面 也可为曲面。
22
三、流量与断面平均流速
• 单位时间内通过某一过水面积的
A
液体的体积
udA
A
称为流量,记为Q,它的物理意
义是单位时间穿过该曲面的流体
体积,所以也称为体积流量,单
5
一元流、二元流、三元流
• 凡水流中任一点的运动要素只与一个空间自变 量有关,这种水流称为一元流。微小流束为一 元流;过水断面上各点的流速用断面平均流速 代替的总流也可视为一元流;
•流场中任何点的流速和两个空间自变量有关, 此种水流称为二元流。宽浅矩形明渠为二元流;
6
• 若水流中任一点的流速,与三个空间位 置变量有关,这种水流称为三元流。大 部分水流的运动为三元流。
• 一元流动 流动要素只取决于一个空间坐标变量的流动
其流场为
uu(s,t)
s s — 空间曲线坐标
➢ 元流是严格的一元流动,空间曲线坐标 s 沿着流线。
➢ 在实际问题中,常把总流也简化为一维流动,此时取定空间
曲线坐标 s 的值相当于指定总流的过水断面,但由于过水断面
上的流动要素一般是不均匀的,所以一维简化的关键是要在过 水断面上给出运动要素的代表值,通常的办法是取平均值。
的运动情况来了解整个流动空间的流动情况,即 着眼于研究各种运动要素的分布场。
拉格朗日法
着眼于流体质点,跟踪
跟踪 质点描述其运动历程
欧拉法
布哨
着眼于空间点,研究 质点流经空间各固定 点的运动特性
• 如果流场的空间分布不随时间变化,其欧拉表达式中将不显
含时间 t ,这样的流场称为恒定流。否则称为非恒定流。
水位不变
(u)u0
恒定流:在流场中,任何空间点上所有的运动要素 都不随时间而改变。 运动要素仅仅是空间坐标的连 续函数,而与时间无关。
4
恒定流时,所有的运动要素对于时间的偏导数 应等于零:
u x t
u y t
u z t
0
p 0 t
非恒定流:流场中任何点上有任何一个运动要素是随 时间而变化的。