电磁场与电磁波第二章习题参考答案

合集下载

电磁场与电磁波 第2章习题解答

电磁场与电磁波  第2章习题解答

第二章习题解答【习题2.1】101929=.=101.6102.0810e qR R mq e Cp m Ce e 解:电偶极矩p 其中 1.3可得电偶极矩p 的大小其方向为从负电荷指向正电荷,即从氯离子指向氢离子。

---´== =醋【习题2.2】解1解:由例2.2得,电偶极子所产生的电场为533()1[]4e e P R RP E RRπε=-0()R R << ……………………①其中 0e P qR = ,0R方向从负电荷指向正电荷,R是从电偶极子指向电场中任一点的矢量,起点在正负电荷连线的中点。

(如图)本题 100 1.310R m -=⨯ 1010010R m -=⨯满足 0R R << .将①式整理:32013[()]4e e E P R R P RRπε=-令 ()e m k P R R P =-(23k R=)则 304m E Rπε=…………………………②欲求E的最大值,求出m最大值即可.222222[()]()2()()e e e e e e m k P R R P k P R R P k P R P R =-=+- 2222(2)()e e k R k P R P =-+2224296()()e e R P R P R R=-+ 2223()e e P R P R=+其中 00cos e P R qR R qR R θ== , (θ是0R 和R之间的夹角)易见,当cos 1θ=,即0θ=时,2m可取最大值22222m ax 234e e e m R P P P R=+=则 m=2e P 代入②式得 m a x33m ax042e P mERRπεπε==将习题2.1中的结论 e P=2.082910c m -⨯⋅ 代入得29112103max2.08102 3.148.910(10010)EV m ----⨯=⋅⨯⨯⨯⨯⨯513.710V m-≈⨯⋅距离自由电子处的电场 191712121020 1.6101.41044 3.148.910(10010)e E V mV mRπε-----⨯==⋅≈⨯⋅⨯⨯⨯⨯⨯故 距离电偶极子处的电场最大值为 513.710V m -⨯⋅ 距离自由电子处的电场为 711.410V m -⨯⋅【习题2.2】解2解:设矢量0R e的方向从电荷C L -指向电荷H +R n 是从由C L - H +构成的电偶极子指向电场中的任一点的矢量,起点在正负电荷连线的中点,且0R 〈〈R. ( e , n 为单位矢量,θ是e , n的夹角)(1)003303cos 1[]4qR qR E n e R R θπε=- (41P )由向量减法的三角形法则及余弦定理得:=03024qR R πε⎛⎫⎪⎝⎭E =由上题得290( 2.110)e p qR cm -==⨯因此,当0θ=或θπ=时E有最大值, 03024qR E R πε==50302 3.7104qR V M R πε=⨯ (2)7201() 1.4104q R VE M R R πε==⨯【习题2.3】证明: 电偶极距qRe p =其方向为从负电荷指向正电荷。

电磁场与电磁波(西安交大第三版)第2章课后答案

电磁场与电磁波(西安交大第三版)第2章课后答案

第2章习题2-1.已知真空中有四个点电荷q C 11=,q C 22=,q C 34=,q C 48=,分别位于(1,0,0),(0,1,0),(-1,0,0,),(0,-1,0)点,求(0,0,1)点的电场强度。

解:z y r z x r z y r z xr ˆˆ;ˆˆ;ˆˆ;ˆˆ4321+=+=+-=+-=84ˆ15ˆ6ˆ3)ˆˆˆˆ(41024442333222221110πεπεz y xr r q r r q r r q r r q E ++=+++=2-2.已知线电荷密度为ρl 的均匀线电荷围成如图所示的几种形状,求P 点的电场强度。

题2-2图解:(a) 由对称性04321=+++=E E E E E(b) 由对称性0321=++=E E E E(c) 两条半无限长线电荷产生的电场为yay x y x a E E E ll a ˆ2)}ˆˆ()ˆˆ{(40021περπερ-=+--=+=半径为a 的半圆环线电荷产生的电场为y a E lb ˆ20περ=总电场为0=+=b a E E E2-3.真空中无限长的半径为a 的半边圆筒上电荷密度为ρs ,求轴线上的电场强度。

解:在无限长的半边圆筒上取宽度为ϕad 的窄条,,电荷线密度为ϕρρad s l =,对ϕ积分,可得真空中无限长的半径为a 的半边圆筒在轴线上的电场强度为y d x y a d r a E ss s ˆ)ˆcos ˆsin (22ˆ00000⎰⎰-=--==πππερϕϕϕπερπεϕρ题2-3图 题2-4图2-4.真空中无限长的宽度为a 的平板上电荷密度为ρs ,求空间任一点上的电场强度。

解: 在平板上'x 处取宽度为'dx 的无限长窄条,可看成无限长的线电荷,电荷线密度为'dx s l ρρ=,在点),(y x 处产生的电场为ρρρπε'ˆ21),(0dx y x E d s =其中 22)'(y x x +-=ρ;22)'(ˆˆ)'(ˆyx x y y xx x +-+-=ρ对'x 积分可得无限长的宽度为a 的平板上的电荷在点),(y x 处产生的电场为)}2/2/(2ˆ)2/()2/(ln ˆ{4),(22220y a x arctg y a x arctg y ya x y a x x y x E s --+++-++=περ 2-5.r 为场点到坐标原点的距离,a ,b 为常数。

《电磁场与电磁波》课后习题解答(全)

《电磁场与电磁波》课后习题解答(全)
(2)
(3)
【习题3.4】
解:(1)在区域中,传导电流密度为0,即J=0
将 表示为复数形式,有
由复数形式的麦克斯韦方程,可得电场的复数形式
所以,电场的瞬时值形式为
(2) 处的表面电流密度
(3) 处的表面电荷密度
(4) 处的位移电流密度
【习题3.5】
解:传导电流密度 (A/ )
位移电流密度
【习题3.6】
(2)内导体表面的电流密度
(3)
所以,在 中的位移电流
【习题2.13】
解:(1)将 表示为复数形式:
则由时谐形式的麦克斯韦方程可得:
而磁场的瞬时表达式为
(2)z=0处导体表面的电流密度为
z=d处导体表面的电流密度为
【习题2.14】
已知正弦电磁场的电场瞬时值为
式中
试求:(1)电场的复矢量;
(2)磁场的复矢量和瞬时值。
由安培环路定律: ,按照上图所示线路积分有
等式左边
等号右边为闭合回路穿过的总电流
所以
写成矢量式为
将 代入得
【习题3.18】
解:当 时, ,
当 时, ,
这表明 和 是理想导电壁得表面,不存在电场的切向分量 和磁场的法向分量 。
在 表面,法线
所以
在 表面,法线
所以
【习题3.19】
证明:考虑极化后的麦克斯韦第一方程
(1)
和 (2)
若采用库仑规范,即 (3)
对(1)式两边取散度,有
将(2)、(3)式代入,得
故电流连续性也是满足的。
【习题4.3】解:
【习题4.4】
证明:因为 即
故 满足连续性方程。
另外, 满足洛仑兹条件。

电磁场与电磁波[第四版]课后答案谢处方第二章习题

电磁场与电磁波[第四版]课后答案谢处方第二章习题
电位
描述电场中某点电荷所具有的势 能,其值等于单位正电荷从该点 移动到参考点时所做的功。
电介质与电位移矢量
电介质
指能够被电场极化的物质,其内部存 在大量的束缚电荷。
电位移矢量
描述电场中某点的电场强度和电介质 极化效应的矢量,其值等于电场强度 和极化强度矢量的矢量和。
高斯定理与泊松方程
高斯定理
在静电场中,穿过任意闭合曲面的电 场强度通量等于该闭合曲面内所包围 的电荷量。
填空题答案及解析
答案
麦克斯韦方程组
解析
麦克斯韦方程组是描述电磁场的基本方程,其中包括了 变化的磁场产生电场和变化的电场产生磁场两个重要的 结论。因此,填空题2的答案是麦克斯韦方程组。
计算题答案及解析
答案:见解析
解析:根据电磁场理论,电场和磁场是相互依存的,变化的电场产生磁场,变化的磁场产生电场。在 计算题1中,需要利用法拉第电磁感应定律和麦克斯韦方程组进行计算和分析。具体计算过程和结果 见解析部分。
泊松方程
描述静电场中某点的电位与电荷分布 的关系,其解为该点的电位分布。
03
恒定磁场
磁场强度与磁感应强度
磁场强度
描述磁场强弱的物理量,与电流、导线的环绕方向相关。
磁感应强度
描述磁场对放入其中的导体的作用力的物理量,与磁场强度和导体在磁场中的放置方式 相关。
Hale Waihona Puke 安培环路定律与磁通连续性原理
安培环路定律
偏振是指电磁波的振动方向与传播方向之间的关系,可以分为横波和纵波两种类 型。在时变电磁场中,电磁波通常是横波,其电场矢量和磁场矢量都与传播方向 垂直。
05
习题答案及解析
选择题答案及解析
选择题1答案及解析

电磁场与电磁波》(第四版 )答案二章习题解答

电磁场与电磁波》(第四版 )答案二章习题解答

电磁场与电磁波》(第四版 )答案二章习题解答2.1 一个平行板真空二极管内的电荷体密度为$\rho=-\frac{4\epsilon U}{d}-4\times 10^{-3}x-2\times 10^{-3}$,式中阴极板位于$x=9$,阳极板位于$x=d$,极间电压为$U$。

如果$U=40V$,$d=1cm$,横截面$S=10cm^2$,求:(1)$x$和$x=d$区域内的总电荷量$Q$;(2)$x=d/2$和$x=d$区域内的总电荷量$Q'$。

解(1)$Q=\int\limits_{0}^{9}\rhoSdx+\int\limits_{d}^{9}\rho Sdx=-4.72\times 10^{-11}C(3d)$2)$Q'=\int\limits_{d/2}^{d}\rho Sdx=-0.97\times 10^{-11}C$2.2 一个体密度为$\rho=2.32\times 10^{-7}Cm^3$的质子束,通过$1000V$的电压加速后形成等速的质子束,质子束内的电荷均匀分布,束直径为$2mm$,束外没有电荷分布,试求电流密度和电流。

解:质子的质量$m=1.7\times 10^{-27}kg$,电量$q=1.6\times 10^{-19}C$。

由$1/2mv^2=qU$得$v=2mqU=1.37\times 10^6ms^{-1}$,故$J=\rho v=0.318Am^2$,$I=J\pi (d/2)^2=10^{-6}A$2.3 一个半径为$a$的球体内均匀分布总电荷量为$Q$的电荷,球体以匀角速度$\omega$绕一个直径旋转,求球内的电流密度。

解:以球心为坐标原点,转轴(一直径)为$z$轴。

设球内任一点$P$的位置矢量为$r$,且$r$与$z$轴的夹角为$\theta$,则$P$点的线速度为$v=\omega\times r=e_\phi \omegar\sin\theta$。

电磁场与电磁波理论第二版徐立勤,曹伟第2章习题解答

电磁场与电磁波理论第二版徐立勤,曹伟第2章习题解答

电磁场与电磁波理论第二版徐立勤,曹伟第2章习题解答第2章习题解答2.2已知半径为a 、长为l 的圆柱体内分布着轴对称的体电荷,已知其电荷密度()0Va ρρρρ=,()0a ρ≤≤。

试求总电量Q 。

解:2π200002d d d d π3laV VQ V z la aρρρρρ?ρ===?2.3 半径为0R 的球面上均匀分布着电荷,总电量为Q 。

当球以角速度ω绕某一直径(z 轴)旋转时,试求其表面上的面电流密度。

解:面电荷密度为 204πS QR ρ=面电流密度为 00200sin sin sin 4π4πS S S Q Q J v R R R R ωθρρωθωθ=?=== 2.4 均匀密绕的螺旋管可等效为圆柱形面电流0S S J e J ?=。

已知导线的直径为d ,导线中的电流为0I ,试求0S J 。

解:每根导线的体电流密度为 00224π(/2)πI I J d d== 由于导线是均匀密绕,则根据定义面电流密度为04πS IJ Jd d ==因此,等效面电流密度为04πS IJ e d=2.6 两个带电量分别为0q 和02q 的点电荷相距为d ,另有一带电量为0q 的点电荷位于其间。

为使中间的点电荷处于平衡状态,试求其位置。

当中间的点电荷带电量为-0q 时,结果又如何?解:设实验电荷0q 离02q 为x ,那么离0q 为x d -。

由库仑定律,实验电荷受02q 的排斥力为实验电荷受0q 的排斥力为要使实验电荷保持平衡,即21F F =,那么由00222114π4π()q q x d x εε=-,可以解得如果实验电荷为0q -,那么平衡位置仍然为d d x 585.0122=+=。

只是这时实验电荷与0q 和02q 不是排斥力,而是吸引力。

2.7 边长为a 的正方形的三个顶点上各放置带电量为0q 的点电荷,试求第四个顶点上的电场强度E 。

解:设点电荷的位置分别为()00,0,0q ,()0,0,0q a 和()00,,0q a ,由库仑定律可得点(),,0P a a 处的电场为2.9半径为0R 的半球面上均匀分布着面电荷,电荷密度为0S ρ,试求球心处的电场强度;若同样的电荷均匀分布在半径为0R 的半球内,再求球心处的电场强度。

电磁场与电磁波第二章课后答案

电磁场与电磁波第二章课后答案

电磁场与电磁波第二章课后答案本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March第二章 静电场重点和难点电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。

利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。

通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。

至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。

讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。

介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。

关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。

介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。

至于电容和部分电容一节可以从简。

重要公式真空中静电场方程:积分形式:⎰=⋅SS E 0d εq⎰=⋅ll E 0d微分形式:ερ=⋅∇E0=⨯∇E已知电荷分布求解电场强度:1,)()(r r E ϕ-∇=; ⎰''-'=V Vd )(41)(|r r |r r ρπεϕ2,⎰'''-'-'=V V 3d |4))(()(|r r r r r r E περ3,⎰=⋅SS E 0d εq高斯定律介质中静电场方程:积分形式:q S=⋅⎰ d S D⎰=⋅ll E 0d微分形式:ρ=⋅∇D0=⨯∇E线性均匀各向同性介质中静电场方程:积分形式:εqS=⋅⎰ d S E⎰=⋅ll E 0d微分形式:ερ=⋅∇E0=⨯∇E静电场边界条件:1,t t E E 21=。

电磁场与电磁波第2章课后答案

电磁场与电磁波第2章课后答案

电磁场与电磁波第2章课后答案2-1.已知真空中有四个点电荷q C 11=,q C 22=,q C 34=,q C 48=,分别位于(1,0,0),(0,1,0),(-1,0,0,),(0,-1,0)点,求(0,0,1)点的电场强度。

解:z y r z x r z y r z xr ??;??;??;??4321+=+=+-=+-=ρρρρ 84?15?6?3)(41024442333222221110πεπεz y xr r q r r q r r q r r q E ++=+++=ρ2-2.已知线电荷密度为ρl 的均匀线电荷围成如图所示的几种形状,求P 点的电场强度。

题2-2图解:(a) 由对称性04321=+++=E E E E E ρρρρρ(b) 由对称性0321=++=E E E E ρρρρ(c) 两条半无限长线电荷产生的电场为yay x y x a E E E ll a ?2)}??()??{(40021περπερ-=+--=+=ρρρ 半径为a 的半圆环线电荷产生的电场为y aE lb ?20περ=ρ总电场为0=+=b a E E E ρρρ2-3.真空中无限长的半径为a 的半边圆筒上电荷密度为ρs ,求轴线上的电场强度。

解:在无限长的半边圆筒上取宽度为?ad 的窄条,此窄条可看作无限长的线电荷,电荷线密度为?ρρad s l =,对?积分,可得真空中无限长的半径为a 的半边圆筒在轴线上的电场强度为y d x y a d r a E ss s ?)?cos ?sin (22?00000??-=--==πππερπερπε?ρρ 题2-3图题2-4图2-4.真空中无限长的宽度为a 的平板上电荷密度为ρs ,求空间任一点上的电场强度。

解: 在平板上'x 处取宽度为'dx 的无限长窄条,可看成无限长的线电荷,电荷线密度为'dx s l ρρ=,在点),(y x 处产生的电场为ρρρπε'?21),(0dx y x E d s =ρ其中 22)'(y x x +-=ρ;22)'(??)'(?yx x y y xx x +-+-=ρ对'x 积分可得无限长的宽度为a 的平板上的电荷在点),(y x 处产生的电场为)}2/2/(2?)2/()2/(ln ?{4),(2222y a x arctg y a x arctg y y a x y a x x y x E s --+++-++=περρ2-5.已知真空中电荷分布为ρ=≤>r a r ar a220;;ρs b r a ==;r 为场点到坐标原点的距离,a ,b 为常数。

电磁场与电磁波课后答案谢处方

电磁场与电磁波课后答案谢处方

第二章习题解答2.1 一个平行板真空二极管内的电荷体密度为43230049U d x ρε--=-,式中阴极板位于0x =,阳极板位于x d =,极间电压为0U 。

如果040V U =、1cm d =、横截面210cm S =,求:(1)0x =和x d =区域内的总电荷量Q ;(2)2x d =和x d =区域内的总电荷量Q '。

解 (1) 43230004d ()d 9dQ U d x S x τρτε--==-=⎰⎰110044.7210C 3U S dε--=-⨯ (2)4320024d ()d 9dd Q U d x S x τρτε--''==-=⎰⎰11004(10.9710C 3U S d ε--=-⨯ 2.2 一个体密度为732.3210C m ρ-=⨯的质子束,通过1000V 的电压加速后形成等速的质子束,质子束内的电荷均匀分布,束直径为2mm ,束外没有电荷分布,试求电流密度和电流。

解 质子的质量271.710kg m -=⨯、电量191.610C q -=⨯。

由21mv qU = 得 61.3710v ==⨯ m s 故 0.318J v ρ== 2A m26(2)10I J d π-== A2.3 一个半径为a 的球体内均匀分布总电荷量为Q 的电荷,球体以匀角速度ω绕一个直径旋转,求球内的电流密度。

解 以球心为坐标原点,转轴(一直径)为z 轴。

设球内任一点P 的位置矢量为r ,且r 与z 轴的夹角为θ,则P 点的线速度为sin r φωθ=⨯=v r e ω球内的电荷体密度为343Qa ρπ=故 333sin sin 434Q Q r r a aφφωρωθθππ===J v e e 2.4 一个半径为a 的导体球带总电荷量为Q ,同样以匀角速度ω绕一个直径旋转,求球表面的面电流密度。

解 以球心为坐标原点,转轴(一直径)为z 轴。

设球面上任一点P 的位置矢量为r ,且r 与z 轴的夹角为θ,则P 点的线速度为sin a φωθ=⨯=v r e ω球面的上电荷面密度为24Q a σπ=故 2sin sin 44S Q Q a a aφφωσωθθππ===J v e e 2.5 两点电荷18C q =位于z 轴上4z =处,24C q =-位于y 轴上4y =处,求(4,0,0)处的电场强度。

电磁场与电磁波理论基础 第二章 课后答案

电磁场与电磁波理论基础 第二章 课后答案

u=0
∂u 1 ∂u ∂u E = −∇u = − e ρ + eϕ + e z ρ ∂ϕ ∂z ∂ρ
得到 题 2-9 图
E = −∇u = 0, ρ ≤ a
a2 a2 E = − A 1 + 2 cos ϕ e ρ + A 1 − 2 sin ϕ eϕ , ρ ≥ a ρ ρ
代入得到
2 2
r1
-2 q
Y
S1 (-a, 0 , 0)
X
S 2 (a, 0, 0)
题 2-7 图
u (r ) =
q 4πε 0
1
( x + a)
2
+ y2 + z2

2 2 2 ( x − a) + y + z 2
电位为零,即令
q u (r ) = 4πε 0
∂u2 =0 ∂x
代入,得到
ρ S下 = −ε 0
∂u1 ∂x
=
x =0
ρd ρd ε U ε U x2 − 0 0 + 0 = − 0 0 + 0 2d 6 x =0 6 d d
ρ0
对于上极板,导体中的电位为常数
u1 = U 0

∂u1 =0 ∂x
上极板下表面电荷密度为
l
场分布具有柱对称性,电通密度矢量 D 仅有 e ρ 分量,由 高斯定理 题 2-15 图
D ⋅ dS = ρ
(S ) (V )
V
dV
取圆柱面为高斯面,有

Dρ ρ ldϕ = 20 ρ e
0 0 0

电磁场与电磁波第三版 郭辉萍 第二章习题解答

电磁场与电磁波第三版 郭辉萍 第二章习题解答

D2 z ( x, y,0) = 2
所以
r r r r D2 ( x, y, 0) = ax ⋅ 3 y − a y ⋅ 3x + az ⋅ 2 r E2 ( x, y, 0) = r r r r ax ⋅ 3 y − a y ⋅ 3 x + az ⋅ 2 D2 = ε0 ⋅εr2 3⋅ε0
故不能求出区域 2 中任一点处的 E2 和 D2 2.15 同轴电容器内导体半径为 a, 外导体内直径为 b, 在 a<r<b′部分填充介电常数为ε 的电介质, 求: (1) 单位长度的电容; (2) 若a=5 mm、 b=10 mm、 b′=8 mm, 内外导体间所加电压为 10 000 V, 介 质的相对介电常数为εr=5, 空气的击穿场强为 3×106 V/m, 介质的击穿场强为 20×106 V/m, 问电介质是否会被击穿? 解:
r
r
r
r
r
r
D2 z ( x, y,0) = 2 ,
(1)
r r ax D2 x ( x, y,0) + a y D2 y ( x, y,0) 3 ⋅ ε0
由(1)和(2)解得
=
r r ax ⋅ 2 y − a y ⋅ 2 x 2 ⋅ ε0
(2)
D2 x ( x, y,0) = 3 y ,
D2 y ( x, y,0) = −3 x ,
φab = ∫ E ⋅ d r = ∫
a
b
ur
r
b
a
ρs a ρs a b dr = ln ε 0r ε0 a
1 1
要使 ρ >b 的区域外电场强度为 0,即:
r ur ρ s a + ρ s b uu b 2 E= 1 ar =0,得 ρ S1 = − ρ s2 ε 0r a

电磁场与电磁波第三版 郭辉萍 第2章习题答案

电磁场与电磁波第三版 郭辉萍 第2章习题答案

(2-1-5)
第2章 静电场分析
2. 分布电荷的电场强度
上述的分析, 我们假设电荷是集中在一个点上, 从宏观的角度讲, 电荷是连续的分布在一段线上、 一 个面上或一个体积内的, 因此, 我们先定义电荷分布。 线电荷密度(Charge Line Density): 当电荷分布 在一细线(其横向尺寸与长度的比值很小)上时, 定 义线电荷密度为单位长度上的电荷
第2章 静电场分析
第2章 静电场和恒定电场
2.1 电场强度与电位函数
2.2 真空中静电场的基本方程 2.3 电介质的极化与介质中的场方程 2.4 导体间的电容与电耦合 2.5 静电场的边界条件
2.6 恒定电场
习 题
第2章 静电场分析
2.1 电场强度与电位函数
2.1.1 库仑定律 库仑定律(Coulom's Law)是静电现象的基本实验定 律, 它表明固定在真空中相距为R的两点电荷q1与q2之间 的作用力:正比于它们的电荷量的乘积; 反比于它们之 两点电 间距离的平方;作用力的方向沿两者间的连线;
(2-1-7)
第2章 静电场分析
P(r) R
dV
V
r
r
O
图2 - 3 体电荷产生的场
第2章 静电场分析
体电荷密度(Charge Volume Density): 如果电 荷分布在一个体积空间内, 定义体电荷密度为单位体 积内的电荷
q V lim V 0 V
式中, Δq是体积元ΔV内所包含的电荷。
荷同性为斥力, 异性为吸力(如图2-1所示), 表达式为
第2章 静电场分析
q1q2 q1q2 F12 a R R 2 3 4 0 R 4 0 R
F12 q2 R

电磁场与电磁波第二章课后答案

电磁场与电磁波第二章课后答案

第二章静电场重点和难点电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。

利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。

通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。

至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。

讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。

介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。

关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。

介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。

至于电容和部分电容一节可以从简。

重要公式真空中静电场方程:E d S q积分形式: E d l 0S l微分形式:E E 0已知电荷分布求解电场强度:1,E(r)( r ) ;1( r) ( r ) d V4 0V | r r|(r)( r r)2,E(r) d VV 4 0| r r|33,E d S q高斯定律S介质中静电场方程:积分形式:D d S q E d l0S l微分形式:D E0线性均匀各向同性介质中静电场方程:积分形式:E d S qE d l 0S l微分形式:E E0静电场边界条件:1,E1 t E 2 t。

对于两种各向同性的线性介质,则D1t D2 t122,D2 n D 1n s 。

在两种介质形成的边界上,则D1 n D2 n对于两种各向同性的线性介质,则1 E1 n 2E2 n3,介质与导体的边界条件:e n E0 ;e n D S若导体周围是各向同性的线性介质,则E n S;Sn 静电场的能量:1 Q21孤立带电体的能量: W e Q2 C2离散带电体的能量: W e n1i Q i i 12分布电荷的能量:W e11S d S1V 2d V l d lS 2l 21静电场的能量密度:w e D E212对于各向同性的线性介质,则w e E2电场力:库仑定律: Fq q2err4常电荷系统: Fd W eq 常数d ldW e常电位系统: F常数d l题解2-1 若真空中相距为d的两个电荷q1及q2的电量分别为q点电荷q 位于q1及q2的连线上时,系统处于平衡状态,试求及 4 q ,当q的大小及位置。

电磁场与电磁波(第三版)课后答案第2章

电磁场与电磁波(第三版)课后答案第2章

电磁场与电磁波(第三版)课后答案第2章第⼆章习题解答⼀个平⾏板真空⼆极管内的电荷体密度为43230049U d x ρε--=-,式中阴极板位于0x =,阳极板位于x d =,极间电压为0U 。

如果040V U =、1cm d =、横截⾯210cm S =,求:(1)0x =和x d =区域内的总电荷量Q ;(2)2x d =和x d =区域内的总电荷量Q '。

解(1) 43230004d ()d 9dQ U d x S x τρτε--==-=??110044.7210C 3U S dε--=-? (2)4320024d ()d 9dd Q U d x S x τρτε--''==-=?11004(10.9710C 3U S d ε--=-? ⼀个体密度为732.3210C m ρ-=?的质⼦束,通过1000V 的电压加速后形成等速的质⼦束,质⼦束内的电荷均匀分布,束直径为2mm ,束外没有电荷分布,试求电流密度和电流。

解质⼦的质量271.710kg m -=?、电量191.610C q -=?。

由21mv qU = 得 61.3710v ==? m s故 0.318J v ρ== 2A m26(2)10I J d π-== A⼀个半径为a 的球体内均匀分布总电荷量为Q 的电荷,球体以匀⾓速度ω绕⼀个直径旋转,求球内的电流密度。

解以球⼼为坐标原点,转轴(⼀直径)为z 轴。

设球内任⼀点P 的位置⽮量为r ,且r 与z 轴的夹⾓为θ,则P 点的线速度为sin r φωθ=?=v r e ω球内的电荷体密度为343Qa ρπ=故 333sin sin 434Q Q r r a a φφωρωθθππ===J v e e ⼀个半径为a 的导体球带总电荷量为Q ,同样以匀⾓速度ω绕⼀个直径旋转,求球表⾯的⾯电流密度。

解以球⼼为坐标原点,转轴(⼀直径)为z 轴。

设球⾯上任⼀点P 的位置⽮量为r ,且r 与z 轴的夹⾓为θ,则P 点的线速度为sin a φωθ=?=v r e ω球⾯的上电荷⾯密度为24Q a σπ=故 2sin sin 44S Q Q a a aφφωσωθθππ===J v e e 两点电荷18C q =位于z 轴上4z =处,24C q =-位于y 轴上4y =处,求(4,0,0)处的电场强度。

谢处方《电磁场与电磁波》(第4版)课后习题-第2章 电磁场的基本规律【圣才出品】

谢处方《电磁场与电磁波》(第4版)课后习题-第2章 电磁场的基本规律【圣才出品】

2.4 简述
和▽×E=0 所表征的静电场特性。
答:
表明空间任意一点电场强度的散度与该处的电荷密度有关,静电荷是
静电场的通量源。
1 / 37
圣才电子书
十万种考研考证电子书、题库视频学习平


▽×E=0 表明静电场是无旋场。
2.5 表述高斯定律,并说明在什么条件下可应用高斯定律求解给定电荷分布的电场强 度。
答:传导电流和位移电流都可以在空间激发磁场但两者本质不同。 (1)传导电流是电荷的定向运动,而位移电流的本质是变化着的电场。 (2)传导电流只能存在于导体中,而位移电流可以存在于真空、导体、电介质中。 (3)传导电流通过导体时会产生焦耳热,而位移电流不会产生焦耳热。
2.17 写出微分形式、积分形式的麦克斯韦方程组,并简要阐述其物理意义。 答:麦克斯韦方程组: 微分形式
合线。
表明恒定磁场是有旋场,恒定电流是产生恒定磁场的旋涡源。
2.7 表述安培环路定理,并说明在什么条件下可用该定律求解给定电流分布的磁感应 强度。
答:安培环路定理:磁感应强度沿任何闭合回路的线积分,等于穿过这个环路所有电 流的代数和 μ0 倍,即
如果电流分布存在某种对称性,则可用该定理求解给定电流分布的磁感应强度。
2.2 研究宏观电磁场时,常用到哪几种电荷分布模型?有哪几种电流分布模型?它们是 如何定义的?
答:常用的电荷分布模型有体电荷、面电荷、线电荷和点电荷。 常用的电流分布模型有体电流模型,面电流模型和线电流模型。 它们是根据电荷和荷的电场强度随距离变化的规律是什么?电偶极子的电场强度又如何呢? 答:点电荷的电场强度与距离 r 的二次方成反比。电偶极子的电场强度与距离 r 的三 次方成反比。
3 / 37

电磁场与电磁波第二章课后答案

电磁场与电磁波第二章课后答案

第二章 静电场重点和难点电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。

利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。

通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。

至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。

讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。

介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。

关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。

介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。

至于电容和部分电容一节可以从简。

重要公式真空中静电场方程:积分形式:⎰=⋅SS E 0d εq⎰=⋅ll E 0d微分形式:ερ=⋅∇E0=⨯∇E已知电荷分布求解电场强度:1,)()(r r E ϕ-∇=; ⎰''-'=V Vd )(41)(|r r |r r ρπεϕ2,⎰'''-'-'=V V 3d |4))(()(|r r r r r r E περ3,⎰=⋅SS E 0d εq高斯定律介质中静电场方程:积分形式:q S=⋅⎰ d S D⎰=⋅ll E 0d微分形式:ρ=⋅∇D0=⨯∇E线性均匀各向同性介质中静电场方程:积分形式:εqS=⋅⎰ d S E⎰=⋅ll E 0d微分形式:ερ=⋅∇E0=⨯∇E静电场边界条件:1,t t E E 21=。

对于两种各向同性的线性介质,则2211εεttD D =2,s n n D D ρ=-12。

在两种介质形成的边界上,则n n D D 21=对于两种各向同性的线性介质,则n n E E 2211εε=3,介质与导体的边界条件:0=⨯E e n ; S n D e ρ=⋅若导体周围是各向同性的线性介质,则ερS n E =;ερϕS n -=∂∂静电场的能量:孤立带电体的能量:Q C Q W e 21212Φ== 离散带电体的能量:∑==ni i i e Q W 121Φ分布电荷的能量:l S V W l l S S Ve d 21d 21d 21ρϕρϕρϕ⎰⎰⎰===静电场的能量密度:E D ⋅=21e w 对于各向同性的线性介质,则2 21E w e ε=电场力:库仑定律:rrq q e F 2 4πε'=常电荷系统:常数=-=q e lW F d d常电位系统:常数==ϕlW F e d d题 解2-1 若真空中相距为d 的两个电荷q 1及q 2的电量分别为q 及4q ,当点电荷q '位于q 1及q 2的连线上时,系统处于平衡状态,试求q '的大小及位置。

电磁场与电磁波课后答案__谢处方

电磁场与电磁波课后答案__谢处方
(1) (1) 板上外加电压,求板上的自由电荷面密度、束缚电荷; (2) (2) 若已知板上的自由电荷总量为,求此时极板间电压和束缚电荷; (3) (3) 求电容器的电容量。 解 (1) 设介质中的电场为,空气中的电场为。由,有
题图
(2)由
得到 故
又由于 由以上两式解得
, 故下极板的自由电荷面密度为 上极板的自由电荷面密度为
题图

所以 介质板左表面的束缚电荷面密度
介质板右表面的束缚电荷面密度 在介电常数为的无限大均匀介质中,开有如下的空腔,求各腔中的和:
(1)平行于的针形空腔; (2)底面垂直于的薄盘形空腔; (3)小球形空腔(见第四章题)。 解 (1)对于平行于的针形空腔,根据边界条件,在空腔的侧面上,有。故在针形空


题 3. 3 图
在区域中,由高斯定律,可求得大、小圆柱中的正、负电荷在点产生的电场分别为 点处总的电场为 在且区域中,同理可求得大、小圆柱中的正、负电荷在点产生的电场分别为
点处总的电场为 在的空腔区域中,大、小圆柱中的正、负电荷在点产生的电场分别为
点处总的电场为 半径为的球中充满密度的体电荷,已知电位移分布为 其中为常数,试求电荷密度。
所以 故在中点处,有
(3)
令 ,有

故解得
题图
一条扁平的直
导体带,宽为,中心线
与轴重合,通过的电流为。证明在第一象限内的磁感
应强度为 , 式中、和如题图所示。
解 将导体带划分为无数个宽度为的细条带,每
一细条带的电流。由安培环路定理,可得位于处的细
条带的电流在点处的磁场为

所以
题图
如题图所示,有一个电矩为的电偶极子,位于坐标原点上,另一个电矩为的电偶极子, 位于矢径为的某一点上。试证明两偶极子之间相互作用力为

电磁场与电磁波(第四版)课后答案 谢处方 第二章习题

电磁场与电磁波(第四版)课后答案 谢处方 第二章习题

uu uu v v (4)H = eϕ ar
u v uu v , B = µ0 H
解:(1)uu v
∇H=
1 ∂ 1 ∂ ( ρ Bρ ) = (a ρ 2 ) = 2a ≠ 0 该矢量不是磁场的矢量。 ρ ∂ρ ρ ∂ρ
uu ∂ v ∂ (2) H = (−ay ) + (ax) = 0 ∇ ∂r ∂r uu v ex u v uu v ∂ J = ∇× H = ∂x
(
)
(
(
)
)
2.9无限长线电荷通过点A(6,8,0)且平行于z轴,线电荷密度为 ρl ,试求点 P (x,y,0)处的电场强度E。 。 解:线电荷沿z轴无限长,故电场分布与z无关。设点P位于z=0的平面上,线电 荷与点P的距离矢量为
r ˆ ˆ R = x( x −6) + y( y −8) r 2 2 R = ( x−6) +( y −8)
u v 2.21下面的矢量函数中哪些可能是磁场?如果是,求其源变量 J
uu v (1)H = ρ aρ ˆ
u v uu v , B = µ0 H (圆柱坐标)
u v uu v uu uu v v uu v (2)H = ex (−ay ) + ey ax , B = µ0 H uu uu v v uu v u v uu v (3)H = ex ax − ey ay , = µ0 H B
v v ∂D 解:(1)由 ∇ × H = 得 ∂t
v v v ∂D ∂ Jd = = ∇× H = ∂t ∂x Hx v ex v ey ∂ ∂y 0 v ez ∂ v ∂H x = − ez ∂z ∂y 0
v Bb =
d
a
µ0 v v J × ρb

电磁场与电磁波(西安交大第三版)第2章课后答案

电磁场与电磁波(西安交大第三版)第2章课后答案

第2章习题2-1.已知真空中有四个点电荷q C 11=,q C 22=,q C 34=,q C 48=,分别位于(1,0,0),(0,1,0),(-1,0,0,),(0,-1,0)点,求(0,0,1)点的电场强度。

解:z y r z x r z y r z xr ˆˆ;ˆˆ;ˆˆ;ˆˆ4321+=+=+-=+-=ρρρρ 84ˆ15ˆ6ˆ3)ˆˆˆˆ(41024442333222221110πεπεz y xr r q r r q r r q r r q E ++=+++=ρ2-2.已知线电荷密度为ρl 的均匀线电荷围成如图所示的几种形状,求P 点的电场强度。

题2-2图解:(a) 由对称性04321=+++=E E E E E ρρρρρ(b) 由对称性0321=++=E E E E ρρρρ(c) 两条半无限长线电荷产生的电场为yay x y x a E E E ll a ˆ2)}ˆˆ()ˆˆ{(40021περπερ-=+--=+=ρρρ 半径为a 的半圆环线电荷产生的电场为y aE lb ˆ20περ=ρ总电场为0=+=b a E E E ρρρ2-3.真空中无限长的半径为a 的半边圆筒上电荷密度为ρs ,求轴线上的电场强度。

解:在无限长的半边圆筒上取宽度为ϕad 的窄条,此窄条可看作无限长的线电荷,电荷线密度为ϕρρad s l =,对ϕ积分,可得真空中无限长的半径为a 的半边圆筒在轴线上的电场强度为y d x y a d r a E ss s ˆ)ˆcos ˆsin (22ˆ00000⎰⎰-=--==πππερϕϕϕπερπεϕρρ题2-3图 题2-4图2-4.真空中无限长的宽度为a 的平板上电荷密度为ρs ,求空间任一点上的电场强度。

解: 在平板上'x 处取宽度为'dx 的无限长窄条,可看成无限长的线电荷,电荷线密度为'dx s l ρρ=,在点),(y x 处产生的电场为ρρρπε'ˆ21),(0dx y x E d s =ρ其中22)'(y x x +-=ρ;22)'(ˆˆ)'(ˆyx x y y xx x +-+-=ρ对'x 积分可得无限长的宽度为a 的平板上的电荷在点),(y x 处产生的电场为)}2/2/(2ˆ)2/()2/(ln ˆ{4),(22220y a x arctg y a x arctg y ya x y a x x y x E s --+++-++=περρ 2-5.已知真空中电荷分布为ρ=≤>⎧⎨⎪⎩⎪r a r ar a220;;ρs b r a ==;r 为场点到坐标原点的距离,a ,b 为常数。

电磁场与电磁波(西安交大第三版)第2章课后答案

电磁场与电磁波(西安交大第三版)第2章课后答案

第2章习题2-1.已知真空中有四个点电荷q C 11=,q C 22=,q C 34=,q C 48=,分别位于(1,0,0),(0,1,0),(-1,0,0,),(0,-1,0)点,求(0,0,1)点的电场强度。

解:z y r z x r z y r z xr ˆˆ;ˆˆ;ˆˆ;ˆˆ4321+=+=+-=+-=84ˆ15ˆ6ˆ3)ˆˆˆˆ(41024442333222221110πεπεz y xr r q r r q r r q r r q E ++=+++=2-2.已知线电荷密度为ρl 的均匀线电荷围成如图所示的几种形状,求P 点的电场强度。

题2-2图解:(a) 由对称性04321=+++=E E E E E(b) 由对称性0321=++=E E E E(c) 两条半无限长线电荷产生的电场为yay x y x a E E E ll a ˆ2)}ˆˆ()ˆˆ{(40021περπερ-=+--=+=半径为a 的半圆环线电荷产生的电场为y a E lb ˆ20περ=总电场为0=+=b a E E E2-3.真空中无限长的半径为a 的半边圆筒上电荷密度为ρs ,求轴线上的电场强度。

解:在无限长的半边圆筒上取宽度为ϕad 的窄条,,电荷线密度为ϕρρad s l =,对ϕ积分,可得真空中无限长的半径为a 的半边圆筒在轴线上的电场强度为y d x y a d r a E ss s ˆ)ˆcos ˆsin (22ˆ00000⎰⎰-=--==πππερϕϕϕπερπεϕρ题2-3图 题2-4图2-4.真空中无限长的宽度为a 的平板上电荷密度为ρs ,求空间任一点上的电场强度。

解: 在平板上'x 处取宽度为'dx 'dx s l ρρ=,在点),(y x 处产生的电场为ρρρπε'ˆ21),(0dx y x E d s =其中22)'(y x x +-=ρ;22)'(ˆˆ)'(ˆyx x y y xx x +-+-=ρ对'x 积分可得无限长的宽度为a 的平板上的电荷在点),(y x 处产生的电场为)}2/2/(2ˆ)2/()2/(ln ˆ{4),(22220y a x arctg y a x arctg y ya x y a x x y x E s --+++-++=περ 2-5.已知真空中电荷分布为r a ,b 为常数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

r r V
S r e r a E r a E a r E a r e r E r E r r E a r dV S d r D r
e r r 20302030302000302
003334433344)(:1ερερπρπεε
ρερπρπερεε=⇒=⇒⨯=⨯>=⇒=⇒⨯=⨯≤=⋅=⎰⎰时,当时,当得,,根据高斯定理可和电常数分别为设真空中及导体球的介,即为中某一场点的位置矢量若采用球坐标,设空间、解 0
)(2)()(2)()(2222222:22222122221222212222
12122121=>--=⇒--=⇒---=≤≤=⇒=⇒=<<=⇒=⇒=≤=⎰⋅B c e b c c I B b c c I B I b c b I B c b e I B I B I B b a e a I B a I B I a B a I
l d H C 时,当时,当时,当时,当得,,根据安培环路定理可和为常数分别,设导体及介质的介电心轴线的距离为截面中某一场点的与中横
,若采用圆柱坐标,设内部的磁场具有对称性根据题意可知,同轴线、解ρπρρμπρρμρμπρρπρ
μπρμμπρρπρμπρμρμπρρεερφφφ)()cos 21(sin 75.12.0)cos 21(sin 35.0)cos 21(sin 35.0)
cos 1(cos 35.0)]cos 1(35.07.0[cos x)
-(0.72.0cos 5:2.24mA t t t t R i t t dt
d t t t t t cd ab
e B e S d B abcda in in z z ωωωωωωεωωωψεωωωωωψ+-=+-=-=+=-
=-=--=⨯=⨯⋅⎰=⋅=系,那么
与磁场符合右手螺旋关设感应电动势参考方向的磁通为穿过导体回路解。

相关文档
最新文档