复数单元测试题含答案 百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、复数选择题
1.已知复数2z i =-,若i 为虚数单位,则1i
z
+=( ) A .
3155
i + B .
1355i + C .113
i +
D .
13
i + 2.已知复数()2m m m i
z i
--=为纯虚数,则实数m =( )
A .-1
B .0
C .1
D .0或1
3.已知复数()123z i i +=- (其中i 是虚数单位),则z 在复平面内对应点在( ) A .第一象限
B .第二象限
C .第三象限
D .第四象限
4.若复数()()24z i i =--,则z =( ) A .76i -- B .76-+i
C .76i -
D .76i +
5.已知复数5i
5i 2i
z =+-,则z =( )
A B .C .D .6.设复数2i
1i
z =+,则复数z 的共轭复数z 在复平面内对应的点位于( ) A .第一象限
B .第二象限
C .第三象限
D .第四象限
7.设复数z 满足方程4z z z z ⋅+⋅=,其中z 为复数z 的共轭复数,若z ,则z 为( )
A .1
B
C .2
D .4
8.已知复数z 满足2
2z z =,则复数z 在复平面内对应的点(),x y ( ) A .恒在实轴上 B .恒在虚轴上
C .恒在直线y x =上
D .恒在直线y x
=-上
9.若复数()4
1i 34i
z +=
+,则z =( )
A .
4
5
B .
35
C .
25
D .
5
10.在复平面内,复数z 对应的点为(,)x y ,若2
2
(2)4x y ++=,则( ) A .22z +=
B .22z i +=
C .24z +=
D .24z i +=
11.已知2021(2)i z i -=,则复平面内与z 对应的点在( ) A .第一象限 B .第二象限
C .第三象限
D .第四象限
12.复数
2i
i
-的实部与虚部之和为( )
A .
35
B .15
-
C .
15
D .
35
13.复数()()212z i i =-+在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 14.已知i 是虚数单位,2i z i ⋅=+,则复数z 的共轭复数的模是( )
A .5
B
C D .3
15.若复数()()1i 3i a +-(i 为虚数单位)的实部和虚部互为相反数,则实数a =( ) A .1-
B .12
-
C .
13
D .1
二、多选题
16.下面是关于复数2
1i
z =-+的四个命题,其中真命题是( )
A .||z =
B .22z i =
C .z 的共轭复数为1i -+
D .z 的虚部为1- 17.下面关于复数的四个命题中,结论正确的是( ) A .若复数z R ∈,则z R ∈ B .若复数z 满足2z ∈R ,则z R ∈ C .若复数z 满足
1
R z
∈,则z R ∈ D .若复数1z ,2z 满足12z z R ∈,则12z z =
18.设复数z 满足1
z i z
+=,则下列说法错误的是( ) A .z 为纯虚数
B .z 的虚部为12
i -
C .在复平面内,z 对应的点位于第三象限
D .2
z =
19.若复数z 满足()234z i i +=+(i 为虚数单位),则下列结论正确的有( )
A .z 的虚部为3
B .z =
C .z 的共轭复数为23i +
D .z 是第三象限的点
20.已知复数1cos 2sin 22
2z i π
πθθθ⎛⎫=++-
<< ⎪⎝⎭(其中i 为虚数单位),则( )
A .复数z 在复平面上对应的点可能落在第二象限
B .z 可能为实数
C .2cos z θ=
D .
1
z 的实部为12
- 21.下列说法正确的是( ) A .若2z =,则4z z ⋅=
B .若复数1z ,2z 满足1212z z z z +=-,则120z z =
C .若复数z 的平方是纯虚数,则复数z 的实部和虛部相等
D .“1a ≠”是“复数()()
()2
11z a a i a R =-+-∈是虚数”的必要不充分条件
22.若复数z 满足(1i)3i z +=+(其中i 是虚数单位),复数z 的共轭复数为z ,则( )
A .|z |=
B .z 的实部是2
C .z 的虚部是1
D .复数z 在复平面内对应的点在第一象限
23.下列关于复数的说法,其中正确的是( ) A .复数(),z a bi a b R =+∈是实数的充要条件是0b = B .复数(),z a bi a b R =+∈是纯虚数的充要条件是0b ≠ C .若1z ,2z 互为共轭复数,则12z z 是实数
D .若1z ,2z 互为共轭复数,则在复平面内它们所对应的点关于y 轴对称 24.已知1z ,2z 为复数,下列命题不正确的是( ) A .若12z z =
,则12=z z B .若12=z z ,则12z z =
C .若12z z >则12z z >
D .若12z z >,则12z z >
25.已知i 为虚数单位,以下四个说法中正确的是( ).
A .234i i i i 0+++=
B .3i 1i +>+
C .若()2
z=12i +,则复平面内z 对应的点位于第四象限
D .已知复数z 满足11z z -=+,则z 在复平面内对应的点的轨迹为直线 26.任何一个复数z a bi =+(其中a 、b R ∈,i 为虚数单位)都可以表示成:
()cos sin z r i θθ=+的形式,通常称之为复数z 的三角形式.法国数学家棣莫弗发现:
()()()n cos sin co i s s n
n n z i n r i r n n N θθθθ+==+⎡⎤⎣∈⎦
+,我们称这个结论为棣莫弗定理.根据以上信息,下列说法正确的是( ) A .2
2
z z = B .当1r =,3
π
θ=时,31z =
C .当1r =,3
π
θ=时,122
z =
- D .当1r =,4
π
θ=
时,若n 为偶数,则复数n z 为纯虚数
27.已知复数z 满足(1﹣i )z =2i ,则下列关于复数z 的结论正确的是( )
A .||z =
B .复数z 的共轭复数为z =﹣1﹣i
C .复平面内表示复数z 的点位于第二象限
D .复数z 是方程x 2+2x +2=0的一个根