复数单元测试题含答案 百度文库

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、复数选择题

1.已知复数2z i =-,若i 为虚数单位,则1i

z

+=( ) A .

3155

i + B .

1355i + C .113

i +

D .

13

i + 2.已知复数()2m m m i

z i

--=为纯虚数,则实数m =( )

A .-1

B .0

C .1

D .0或1

3.已知复数()123z i i +=- (其中i 是虚数单位),则z 在复平面内对应点在( ) A .第一象限

B .第二象限

C .第三象限

D .第四象限

4.若复数()()24z i i =--,则z =( ) A .76i -- B .76-+i

C .76i -

D .76i +

5.已知复数5i

5i 2i

z =+-,则z =( )

A B .C .D .6.设复数2i

1i

z =+,则复数z 的共轭复数z 在复平面内对应的点位于( ) A .第一象限

B .第二象限

C .第三象限

D .第四象限

7.设复数z 满足方程4z z z z ⋅+⋅=,其中z 为复数z 的共轭复数,若z ,则z 为( )

A .1

B

C .2

D .4

8.已知复数z 满足2

2z z =,则复数z 在复平面内对应的点(),x y ( ) A .恒在实轴上 B .恒在虚轴上

C .恒在直线y x =上

D .恒在直线y x

=-上

9.若复数()4

1i 34i

z +=

+,则z =( )

A .

4

5

B .

35

C .

25

D .

5

10.在复平面内,复数z 对应的点为(,)x y ,若2

2

(2)4x y ++=,则( ) A .22z +=

B .22z i +=

C .24z +=

D .24z i +=

11.已知2021(2)i z i -=,则复平面内与z 对应的点在( ) A .第一象限 B .第二象限

C .第三象限

D .第四象限

12.复数

2i

i

-的实部与虚部之和为( )

A .

35

B .15

-

C .

15

D .

35

13.复数()()212z i i =-+在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 14.已知i 是虚数单位,2i z i ⋅=+,则复数z 的共轭复数的模是( )

A .5

B

C D .3

15.若复数()()1i 3i a +-(i 为虚数单位)的实部和虚部互为相反数,则实数a =( ) A .1-

B .12

-

C .

13

D .1

二、多选题

16.下面是关于复数2

1i

z =-+的四个命题,其中真命题是( )

A .||z =

B .22z i =

C .z 的共轭复数为1i -+

D .z 的虚部为1- 17.下面关于复数的四个命题中,结论正确的是( ) A .若复数z R ∈,则z R ∈ B .若复数z 满足2z ∈R ,则z R ∈ C .若复数z 满足

1

R z

∈,则z R ∈ D .若复数1z ,2z 满足12z z R ∈,则12z z =

18.设复数z 满足1

z i z

+=,则下列说法错误的是( ) A .z 为纯虚数

B .z 的虚部为12

i -

C .在复平面内,z 对应的点位于第三象限

D .2

z =

19.若复数z 满足()234z i i +=+(i 为虚数单位),则下列结论正确的有( )

A .z 的虚部为3

B .z =

C .z 的共轭复数为23i +

D .z 是第三象限的点

20.已知复数1cos 2sin 22

2z i π

πθθθ⎛⎫=++-

<< ⎪⎝⎭(其中i 为虚数单位),则( )

A .复数z 在复平面上对应的点可能落在第二象限

B .z 可能为实数

C .2cos z θ=

D .

1

z 的实部为12

- 21.下列说法正确的是( ) A .若2z =,则4z z ⋅=

B .若复数1z ,2z 满足1212z z z z +=-,则120z z =

C .若复数z 的平方是纯虚数,则复数z 的实部和虛部相等

D .“1a ≠”是“复数()()

()2

11z a a i a R =-+-∈是虚数”的必要不充分条件

22.若复数z 满足(1i)3i z +=+(其中i 是虚数单位),复数z 的共轭复数为z ,则( )

A .|z |=

B .z 的实部是2

C .z 的虚部是1

D .复数z 在复平面内对应的点在第一象限

23.下列关于复数的说法,其中正确的是( ) A .复数(),z a bi a b R =+∈是实数的充要条件是0b = B .复数(),z a bi a b R =+∈是纯虚数的充要条件是0b ≠ C .若1z ,2z 互为共轭复数,则12z z 是实数

D .若1z ,2z 互为共轭复数,则在复平面内它们所对应的点关于y 轴对称 24.已知1z ,2z 为复数,下列命题不正确的是( ) A .若12z z =

,则12=z z B .若12=z z ,则12z z =

C .若12z z >则12z z >

D .若12z z >,则12z z >

25.已知i 为虚数单位,以下四个说法中正确的是( ).

A .234i i i i 0+++=

B .3i 1i +>+

C .若()2

z=12i +,则复平面内z 对应的点位于第四象限

D .已知复数z 满足11z z -=+,则z 在复平面内对应的点的轨迹为直线 26.任何一个复数z a bi =+(其中a 、b R ∈,i 为虚数单位)都可以表示成:

()cos sin z r i θθ=+的形式,通常称之为复数z 的三角形式.法国数学家棣莫弗发现:

()()()n cos sin co i s s n

n n z i n r i r n n N θθθθ+==+⎡⎤⎣∈⎦

+,我们称这个结论为棣莫弗定理.根据以上信息,下列说法正确的是( ) A .2

2

z z = B .当1r =,3

π

θ=时,31z =

C .当1r =,3

π

θ=时,122

z =

- D .当1r =,4

π

θ=

时,若n 为偶数,则复数n z 为纯虚数

27.已知复数z 满足(1﹣i )z =2i ,则下列关于复数z 的结论正确的是( )

A .||z =

B .复数z 的共轭复数为z =﹣1﹣i

C .复平面内表示复数z 的点位于第二象限

D .复数z 是方程x 2+2x +2=0的一个根

相关文档
最新文档