七年级数学全册单元测试卷测试卷(解析版)
七年级上册数学全册单元试卷综合测试卷(word含答案)
七年级上册数学全册单元试卷综合测试卷(word含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.点O为直线AB上一点,过点O作射线OC,使∠BOC=65°,将一直角三角板的直角顶点放在点O处.(1)如图①,将三角板MON的一边ON与射线OB重合时,则∠MOC=________;(2)如图②,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的角平分线,求旋转角∠BON和∠CON的度数;(3)将三角板MON绕点O逆时针旋转至图③时,∠NOC=∠AOM,求∠NOB的度数.【答案】(1)25°(2)解:∠BOC=65°,OC平分∠MOB∠MOB=2∠BOC=130°∠BON=∠MOB-∠MON=130°-90°=40°∠CON=∠COB-∠BON=65°-40°=25°(3)解:∠NOC= ∠AOM ∠AOM=4∠NOC ∠BOC=65°∠AOC=∠AOB-∠BOC=180°-65°=115°∠MON=90°∠AOM+∠NOC=∠AOC-∠MON=115°-90°=25°4∠NOC+∠NOC=25°∠NOC=5°∠NOB=∠NOC+∠BOC=70°【解析】【解答】解:(1)∠MON=90,∠BOC=65°∠MOC=∠MON-∠BOC=90°-65°=25°【分析】(1)根据∠MON和∠BOC的度数可以得到∠MON的度数;(2)根据角平分线的性质,由∠BOC=65°,可以求得∠BOM的度数,然后由∠NOM-90°,可得∠BON的度数,从而得解;(3)由∠BOC=65°,∠NOM=90°,∠NOC= ∠AOM,从而可求得∠NOC的度数,然后由∠BOC=65°,从而得解.2.如图,直线AB、CD相交于点O,已知,OE把分成两个角,且::3(1)求的度数;(2)过点O作射线,求的度数.【答案】(1)解:,,::3,;(2)解:,,,OF在的内部时,,,,OF在的内部时,,,,综上所述或【解析】【分析】(1)根据对顶角相等得出,然后根据::3 即可算出∠BOE的度数;(2)根据角的和差,由算出∠DOE的度数,根据垂直的定义得出∠EOF=90°;当OF在的内部时,根据,算出答案;OF在的内部时,根据,算出但,综上所述即可得出答案。
沪科版数学七年级下册全册单元测试卷含答案
沪科版数学七年级下册全册单元测试卷含答案第六章实数(2)一、选择题(每小题3分,共30分)1.下列各式中无意义的是()A.B.C.D.2.在下列说法中: 10的平方根是±; -2是4的一个平方根; 的平方根是;④0.01的算术平方根是0.1;⑤,其中正确的有()A.1个B.2个C.3个D.4个2.下列说法中正确的是()A.立方根是它本身的数只有1和0B.算数平方根是它本身的数只有1和0C.平方根是它本身的数只有1和0D.绝对值是它本身的数只有1和04.的立方根是()A.B.C.D.5.现有四个无理数,,,,其中在实数+1与+1之间的有()A.1个B.2个C.3个D.4个6.实数,-2,-3的大小关系是()A.B.C.D.7.已知=1.147,=2.472,=0.5325,则的值是()A.24.72B.53.25C.11.47D.114.78.若,则的大小关系是()A.B.C.D.9.已知是169的平方根,且,则的值是()A.11B.±11C.±15D.65或10.大于且小于的整数有()A.9个B.8个C.7个D.5个二、填空题(每小题3分,共30分)11.绝对值是,的相反数是.12.的平方根是,的平方根是,-343的立方根是,的平方根是.13.比较大小:(1);(2);(3);(4)2..14.当时,有意义。
15.已知=0,则=.16.最大的负整数是,最小的正整数是,绝对值最小的实数是,不超过的最大整数是.17.已知且,则的值为。
18.已知一个正数的两个平方根是和,则=,=.19.设是大于1的实数,若在数轴上对应的点分别记作A、B、C,则A、B、C三点在数轴上从左至右的顺序是.20.若无理数满足1,请写出两个符合条件的无理数.三、解答题(共40分)21.(8分)计算:(1);(2);(3);(4);22.(12分)求下列各式中的的值:(1);(2);(3);(4);23.(6分)已知实数、、在数轴上的对应点如图所示,化简:24.(7分)若、、是有理数,且满足等式,试计算的值。
七年级数学上册 全册单元测试卷检测题(WORD版含答案)
七年级数学上册全册单元测试卷检测题(WORD版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.定义:从一个角的顶点出发,在角的内部引两条射线,如果这两条射线所成的角等于这个角的一半,那么这两条射线所成的角叫做这个角的内半角.如图1,若∠COD= ∠AOB,则∠COD是∠AOB的内半角.(1)如图1,已知∠AOB=70°,∠AOC=25°,∠COD是∠AOB的内半角,则∠BOD=________.(2)如图2,已知∠AOB=60°,将∠AOB绕点O按顺时针方向旋转一个角度口(0<a<60°)至∠COD,当旋转的角度a为何值时,∠COB是∠AOD的内半角.(3)已知∠AOB=30°,把一块含有30°角的三角板如图3叠放,将三角板绕顶点O以3度/秒的速度按顺时针方向旋转(如图4),问:在旋转一周的过程中,射线OA,OB,OC,OD 能否构成内半角,若能,请求出旋转的时间;若不能,请说明理由.【答案】(1)10°(2)解:∵∠AOB绕点O按顺时针方向旋转一个角度口(0<a<60°)至∠COD,∴∠AOB=∠COD=60°∴∠AOC=∠BOD=a∴a+∠COB=60°∵∠COB是∠AOD的内半角∴∠COB=∠AOD∴2∠COB=∠COB+2a∴∠COB=2a∴a+2a=60°解之:a=20°即当旋转的角度a为20°时,∠COB是∠AOD的内半角。
(3)解:在旋转一周的过程中,射线OA,OB,OC,OD能否构成内半角,理由:设按顺时针方向旋转一个角度α,旋转的时间为t如图1∵∠BOC是∠AOD的内半角,∠AOC=∠BOD=α∴∠AOD=30°+α,∠BOC=∠AOD=30°-α∴(30°+α)=30°-α解之:α=10°∴t=s;如图2∵∠BOC是∠AOD的内半角,∠AOC=∠BOD=α∴∠AOD=30°+α,∠BOC=∠AOD=α-30°∴(30°+α)=α-30°解之:α=90°∴t==30s;如图3∵∠AOD是∠BOC的内半角,∠AOC=∠BOD=360°-α∴∠BOC=360°+30°-α,∠AOD=∠BOC=360°-α-30°∴(360°+30°-α)=360°-α-30°解之:α=330°∴t==110s;如图4∵∠AOD是∠BOC的内半角,∠AOC=∠BOD=360°-α∴∠BOC=360°+30°-α,∴(360°+30°-α)=30°+30°-(360°+30°-α)解之:α=350°∴t=s;综上所述,当旋转的时间为s或30s或110s或s时,射线OA,OB,OC,OD能构成内半角。
人教版七年级数学上册单元测试题全套含答案
输入 x ―→ ×(-3) ―→ -2 ―→ 输出 16.太阳的半径为 696000 千米,用科学记数法表示为________千米;把 210400 精确到万位是________. 17.已知(a-3)2 与|b-1|互为相反数,则式子 a2+b2 的值为________. 18.填在下面各正方形中的四个数之间都有一定的规律,据此规律得出 a+b+c=________.
-1 A.3 个 B.4 个 C.5 个 D.6 个 7.将一把刻度尺按如图所示放在数轴上(数轴的单位长度是 1cm),刻度尺上的“0cm”和“8cm”分别对应 数轴上的-3.6 和 x,则 x 的值为( )
A.4.2 B.4.3 C.4.4 D.4.5 8.有理数 a,b 在数轴上的位置如图所示,下列各式成立的是( )
A.b>0 B.|a|>-b C.a+b>0 D.ab<0 9.若|a|=5,b=-3,则 a-b 的值为( ) A.2 或 8 B.-2 或 8 C.2 或-8 D.-2 或-8
10.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…用你所发
5
3
___________________.
13.绝对值大于 4 而小于 7 的所有整数之和是________.
14.点 A,B 表示数轴上互为相反数的两个数,且点 A 向左平移 8 个单位到达点 B,则这两点所表示
的数分别是________和________.
15.如图是一个简单的数值运算程序.当输入 x 的值为-1 时,则输出的数值为________.
现的规律得出 22016 的末位数字是( )
A.2 B.4 C.6 D.8
二、填空题(每小题 3 分,共 24 分)
新人教版七年级数学上册第一单元测试卷(含答案)
新人教版七年级数学上册单元测试卷第一单元:有理数一、选择题(本题共10小题,每小题3分,共30分)1.如果水库的水位高于正常水位2m时,记作+2m,那么低于正常水位3m时,应记作()A.+3mB.-3mC.+13D.-132. 室内温度是150℃,室外温度是-30℃,则室外温度比室内温度低( )A .120℃ B.180℃ C.-120℃ D.-180℃3. 一个数和它的倒数相等,则这个数是()A.1B.-1C.±1 D.±1和04. 若|a|=5,b=-3,则a-b的值是()A.2或8B.-2或8C.2或-8D.-2或-85. 下列四组有理数的大小比较正确的是()A.−12>−13B.-|-1|>-|+1|C.12<13D.|−12|>|−13|6. 若三个有理数的和为0,则下列结论正确的是()A.这三个数都是0B.最少有两个数是负数C.最多有两个正数D.这三个数是互为相反数7. 下列各式中正确的是()A.a2=.(−a)2B. a3=.(−a)3C.−a2=.|−a2|D. a3=.|a|38. 若x的相反数是3,│y│=5,则x+y的值为()A.-8B.2C.-8或2D.8或-29. 两个数的差是负数,则这两个数一定是( )A.被减数是正数,减数是负数B.被减数是负数,减数是正数C.被减数是负数,减数也是负数D.被减数比减数小10. 点A在数轴上表示+2,从点A沿数轴向左平移3个单位到点B,点B表示的数是( )A. 3B.-1C.5D.-1或3二、填空题(本题共6小题,每小题3分,共18分)11. 甲潜水员所在高度为-45米,乙潜水员在甲的上方15米处,则乙潜水员的所在的高度是__________.12. 大肠杆菌每过20分便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成__________个。
13. 在数轴上,与表示数-1的点的距离是5的点表示的数是。
鲁教版五四制七年级上册数学全册各个单元测试卷(及答案)
鲁教版五四制七年级上册数学全册试卷(五套单元试卷+一套期末测试卷)第一章测试卷一、选择题(每题3分,共30分)1.若三角形的两个内角的和是85°,那么这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.不能确定2.如图,AE⊥BC于点E,BF⊥AC于点F,CD⊥AB于点D,则△ABC中AC 边上的高是线段()A.AE B.CD C.BF D.AF3.如图,△ABC≌△EDF,AF=20,EC=8,则AE等于()A.6B.8C.10D.124.下列各条件中,能作出唯一的△ABC的是()A.AB=4,BC=5,AC=10B.AB=5,BC=4,∠A=30°C.∠A=90°,AB=10D.∠A=60°,∠B=50°,AB=55.如图,AB∥ED,CD=BF,若要说明△ABC≌△EDF,则还需要补充的条件可以是()A.AC=EF B.AB=ED C.∠B=∠E D.不用补充6.如图,在△ABC中,∠ABC,∠ACB的平分线分别为BE,CD,BE与CD相交于点F,∠A=60°,则∠BFC等于()A.118°B.119°C.120°D.121°7.如果某三角形的两边长分别为5和7,第三边的长为偶数,那么这个三角形的周长可以是()A.14B.17C.22D.268.如图,下列四个条件:①BC=B′C;②AC=A′C;③∠A′CA=∠B′CB;④AB =A′B′.从中任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A.1B.2C.3D.49.如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC ,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF等于()A.1B.2C.3D.410.如图,△ABC 的三个顶点和它内部的点P 1,把△ABC 分成3个互不重叠的小三角形;△ABC 的三个顶点和它内部的点P 1,P 2,把△ABC 分成5个互不重叠的小三角形;△ABC 的三个顶点和它内部的点P 1,P 2,P 3,把△ABC 分成7个互不重叠的小三角形;△ABC 的三个顶点和它内部的点P 1,P 2,P 3,…,P n ,把△ABC 分成()个互不重叠的小三角形.A .2nB .2n +1C .2n -1D .2(n +1)二、填空题(每题3分,共24分)11.一个三角形的其中两个内角为88°,32°,则这个三角形的第三个内角的度数为________.12.要测量河两岸相对的两点A ,B 间的距离(AB 垂直于河岸BF ),先在BF 上取两点C ,D ,使CD =CB ,再作出BF 的垂线DE ,且使A ,C ,E 三点在同一条直线上,如图,可以得到△EDC ≌△ABC ,所以ED =AB .因此测得ED 的长就是AB 的长.判定△EDC ≌△ABC 的理由是____________.13.如图,E 点为△ABC 的边AC 的中点,∥AB ,若MB =6 cm ,=4 cm ,则AB=________.14.用直尺和圆规作一个角等于已知角,如图所示,则要说明∠A′O′B′=∠AOB,需要说明△C′O′D′≌△COD,则这两个三角形全等的依据是____________(写出全等的简写).15.已知△ABC的三边长分别为a,b,c,若a=3,b=4,则c的取值范围是____________;已知四边形EFMN的四边长分别为e,f,m,n,若e=3,f =4,n=10,则m的取值范围是____________.16.如图,在△ABC中,AD是BC边上的高,BE是AC边上的高,且AD,BE 交于点F,若BF=AC,CD=3,BD=8,则线段AF的长度为________.17.如图是由相同的小正方形组成的网格,点A,B,C均在格点上,连接AB,AC,则∠1+∠2=________.1(AB 18.如图,已知四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且AE=2+AD),若∠D=115°,则∠B=________.三、解答题(19题7分,20,21题每题8分,25题13分,其余每题10分,共66分)19.如图,在△ABC中,AD是角平分线,∠B=54°,∠C=76°.(1)求∠ADB和∠ADC的度数;(2)若DE⊥AC,求∠EDC的度数.20.如图,已知线段m,n,如果以线段m,n分别为等腰三角形的底或腰作三角形,能作出几个等腰三角形?请作出.不写作法,保留作图痕迹.21.如图,在△ABC中,AB=AC,D在AC的延长线上,试说明:BD-BC<AD -AB.22.如图,是一座大楼相邻的两面墙,现需测量外墙根部两点A,B之间的距离(人不能进入墙内测量).请你按以下要求设计一个方案测量A,B的距离.(1)画出测量图案;(2)写出简要的方案步骤;(3)说明理由.23.如图,已知△ABC≌△ADE,AB与ED交于点M,BC与ED,AD分别交于点F,N.请写出图中两对全等三角形(△ABC≌△ADE除外),并选择其中的一对加以说明.24.如图,在R t△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5 cm,求线段AE的长.25.已知点P是R t△ABC斜边AB上一动点(不与点A,B重合),分别过点A,B 向直线CP作垂线,垂足分别为点E,F,点Q为斜边AB的中点.(1)如图①,当点P与点Q重合时,AE与BF的位置关系是________,QE与QF的数量关系是________;(2)如图②,当点P在线段AB上且不与点Q重合时,试判断QE与QF的数量关系,并说明理由.(温馨提示:直角三角形斜边上的中线等于斜边的一半)答案一、1.A2.C :因为BF ⊥AC 于点F ,所以△ABC 中AC 边上的高是线段BF ,故选C.3.A :因为△ABC ≌△EDF ,所以AC =EF .所以AE =CF .因为AF =20,EC =8,所以AE =CF =6.故选A.4.D5.B :由已知条件AB ∥ED 可得,∠B =∠D ,由CD =BF 可得,BC =DF ,再补充条件AB =ED ,可得△ABC ≌△EDF ,故选B.6.C 7.C 8.B119.B :易得S △ABE =3×12=4,S △ABD =2×12=6,所以S △ADF -S △BEF =S △ABD -S △ABE =2.10.B :△ABC 的三个顶点和它内部的点P 1,把△ABC 分成的互不重叠的小三角形的个数=3+2×0;△ABC 的三个顶点和它内部的点P 1,P 2,把△ABC 分成的互不重叠的小三角形的个数=3+2×1;△ABC 的三个顶点和它内部的点P 1,P 2,P 3,把△ABC 分成的互不重叠的小三角形的个数=3+2×2,所以△ABC的三个顶点和它内部的点P 1,P 2,P 3,…,P n ,把△ABC 分成的互不重叠的小三角形的个数=3+2(n -1)=2n +1.二、11.60°12.ASA :由题意可知,∠ECD =∠ACB ,∠EDC =∠ABC =90°,CD =CB ,故可用ASA 说明两个三角形全等.13.10 cm :由∥AB ,点E 为AC 的中点,可得∠EAM =∠E ,AE =CE .又因为∠AEM =∠CEN ,所以△AEM ≌△CEN .所以AM ==4 cm.所以AB =AM +MB =4+6=10(cm).14.SSS15.1<c <7;3<m <17:由三角形的三边关系得第三边的取值范围为4-3<c <4+3,即1<c <7.同理,得四边形EFMN 对角线EM 的取值范围为4-3<EM <4+3,即1<EM <7.所以10-7<m <10+7,即3<m <17.16.5:由已知可得,∠ADC =∠BDF =∠BEC =90°,所以∠DAC =∠DBF .又因为AC =BF ,所以△ADC ≌△BDF .所以AD =BD =8,DF =DC =3.所以AF =AD -DF =8-3=5.17.90°:如图,由题意可知,∠ADC =∠E =90°,AD =BE ,CD =AE ,所以△ADC ≌△BEA .所以∠CAD =∠2.所以∠1+∠2=∠1+∠CAD =90°.18.65°:过点C 作CF ⊥AD ,交AD 的延长线于点F .因为AC 平分∠BAD ,所以∠CAF =∠CAE .又因为CF ⊥AF ,CE ⊥AB ,所以∠AFC =∠AEC =90°.在⎧∠AFC =∠AEC ,△CAF 和△CAE 中,⎨∠CAF =∠CAE ,⎩AC =AC ,1所以△CAF ≌△CAE (AAS).所以FC =EC ,AF =AE .又因为AE =2(AB +AD ),1所以AF =2(AE +EB +AD ),即AF =BE +AD .又因为AF =AD +DF ,所以DF⎧CF =CE ,=BE .在△FDC 和△EBC 中,所⎨∠CFD =∠CEB ,所以△FDC ≌△EBC (SAS).⎩DF =BE ,以∠FDC =∠EBC .又因为∠ADC =115°,所以∠FDC =180°-115°=65°.所以∠B =65°.三、19.解:(1)因为∠B =54°,∠C =76°,所以∠BAC =180°-54°-76°=50°.因为AD 平分∠BAC ,所以∠BAD =∠CAD =25°.所以∠ADB =180°-54°-25°=101°.所以∠ADC =180°-101°=79°.(2)因为DE ⊥AC ,所以∠DEC =90°.所以∠EDC =180°-90°-76°=14°.20.解:能作出两个等腰三角形,如图所示.21.解:因为AB =AC ,所以AD -AB =AD -AC =CD .因为BD -BC <CD ,所以BD -BC <AD -AB .22.解:(1)如图所示.(2)延长BO 至D ,使DO =BO ,连接AD ,则AD 的长即为A ,B 间的距离.(3)因为AO =AO ,∠AOB =∠AOD =90°,BO =DO ,所以△AOB ≌△AOD .所以AD =AB .23.解:△AEM ≌△A ,△BMF ≌△DNF ,△ABN ≌△ADM .(任写其中两对即可)选择△AEM ≌△A :因为△ABC ≌△ADE ,所以AC =AE ,∠C =∠E ,∠CAB⎧∠E =∠C ,=∠EAD .所以∠EAM =∠CAN .在△AEM 和△A 中,⎨AE =AC ,所以⎩∠EAM =∠CAN ,△AEM ≌△A (ASA).选择△ABN ≌△ADM :因为△ABC ≌△ADE ,所以AB =AD ,∠B =∠D .又因为∠BAN =∠DAM ,所以△ABN ≌△ADM (ASA).选择△BMF ≌△DNF :因为△ABC ≌△ADE ,所以AB =AD ,∠B =∠D .又因为∠BAN =∠DAM ,所以△ABN ≌△ADM (ASA).所以AN =AM .所以BM =DN .又因为∠B =∠D ,∠BFM =∠DFN ,所以△BMF ≌△DNF (AAS).(任选一对进行说明即可)24.解:因为∠ACB =90°,所以∠ECF +∠BCD =90°.因为CD ⊥AB ,所以∠BCD +∠B =90°.所以∠ECF =∠B .在△ABC和△FCE中,∠B=∠ECF,BC=CE,∠ACB=∠FEC=90°,所以△ABC≌△FCE(ASA).所以AC=FE.因为EC=BC=2 cm,EF=5 cm,所以AE=AC-CE=FE-BC=5-2=3(cm).25.解:(1)AE∥BF;QE=QF(2)QE=QF.理由:如图,延长EQ交BF于点D,由题意易得AE∥BF,所以∠AEQ=∠BDQ.在△AEQ和△BDQ中,∠AQE=∠BQD,∠AEQ=∠BDQ,AQ=BQ,所以△AEQ≌△BDQ.所以EQ=DQ.因为∠DFE=90°,所以QE=QF.第二章测试卷一、选择题(每题3分,共30分)1.下面所给的图中是轴对称图形的是()2.如图,△ABC和△ADE关于直线l对称,下列结论:①△ABC≌△ADE;②l 垂直平分DB;③∠C=∠E;④BC与DE的延长线的交点一定落在直线l上.其中错误的有()A.0个B.1个C.2个D.3个3.下列说法正确的是()A.等腰三角形的一个角的平分线是它的对称轴B.有一个内角是60°的三角形是轴对称图形C.等腰直角三角形是轴对称图形,它的对称轴是斜边上的中线所在的直线D.等腰三角形有3条对称轴4.如图是小明在平面镜里看到的电子钟示数,这时的实际时间是() A.12:01B.10:51C.10:21D.15:105.如图,在△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48°B.36°C.30°D.24°6.如图,A,B,C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.AC,BC两边高的交点处B.AC,BC两边中线的交点处C.AC,BC两边垂直平分线的交点处D.∠A,∠B两内角平分线的交点处7.如图,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是()8.如图,已知:AB-AC=2 cm,BC的垂直平分线交AB于点D,交BC于点E,△ACD的周长为14 cm,则AC的长是()A.6B.7C.8D.99.如图,已知D为△ABC边AB的中点,E在AC上,将△ABC沿着DE折叠,使A点落在BC上的F处,若∠B=65°,则∠BDF等于()A.65°B.50°C.60°D.57.5°10.如图,已知AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED 的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE =DF;②DB=DC;③AD⊥BC;④AC=3BF.其中正确的结论共有()A.4个B.3个C.2个D.1个二、填空题(每题3分,共24分)11.有些字母是轴对称图形,在E,H,I,M,N这5个字母中,是轴对称图形的是__________.12.我国传统的木结构房屋,窗子常用各种图案装饰,如图是一种常见的图案,这种图案有________条对称轴.13.如图是一个经过改造的台球桌面示意图(该图由相同的小正方形组成),图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入________号球袋.14.等腰三角形一腰上的高与底边所夹的角为∠α,则这个等腰三角形的顶角为________.15.如图,在△ABC中,AB=AC,AD⊥BC于点D,点E,F为AD上的两点,若△ABC的面积为12,则图中阴影部分的面积是________.16.如图,在直角三角形ABC中,∠B=90°,AD平分∠BAC,交边BC于点D,如果BD=2,AC=6,那么△ADC的面积等于________.17.如图,在△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O 恰好重合,则∠OEC=________.18.小威在计算时发现:11×11=121,111×111=12 321,1 111×1 111=1 234 321,…,他从中发现了一个规律.请根据他所发现的规律很快地写出111 111 111×111 111 111=________________________________________________________.三、解答题(19题8分,20~21题每题10分,24题14分,其余每题12分,共66分)19.如图,在正方形网格上有一个△ABC.(1)画△ABC关于直线MN的对称图形(不写画法);(2)若网格上的每个小正方形的边长为1,求△ABC的面积.20.两个城镇A,B与两条公路l1,l2的位置如图所示,电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,那么点C应选在何处?请在图中用尺规作图找出所有符合条件的点C(不写已知、求法、作法,只保留作图痕迹).21.如图,在等边三角形ABC中,∠ABC,∠ACB的平分线相交于点O,作BO,CO的垂直平分线分别交BC于点E和点F.小明说:“E,F是BC的三等分点.”你同意他的说法吗?请说明理由.22.如图,在△ABC中,AB=AC,AD⊥BC于点D,CE⊥AB于点E,AE=CE.试说明:(1)△AEF≌△CEB;(2)∠ABF=2∠FBD.23.操作与探究.(1)如图,分别画出①中“”和“”关于直线l的对称图形(画出示意图即可);(2)如图,②中小冬和小亮上衣上印的字母分别是什么?(3)把字母“”和“”写在薄纸上,观察纸的背面,写出你看到的字母背影;(4)小明站在三个学生的身后,这三个学生正向前方某人用手势示意一个三位数,从小明站的地方看(如图③所示),这个三位数是235.请你判断出他们示意的真实三位数是多少?24.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(不与点B,C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=115°时,∠BAD=________°,∠DEC=________°,点D从B向C运动时,∠BDA逐渐变________(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE?请说明理由;(3)在点D的运动过程中,是否存在△ADE是等腰三角形的情形?若存在,请直接写出此时∠BDA的度数;若不存在,请说明理由.答案一、1.A 2.A 3.C 4.B 5.A 6.C 7.A 8.A9.B :因为△DEF 是由△DEA 沿直线DE 翻折变换而来,所以AD =FD .因为D是AB 边的中点,所以AD =BD .所以BD =FD .所以∠B =∠BFD .因为∠B =65°,所以∠BDF =180°-∠B -∠BFD =180°-65°-65°=50°.故选B.10.A :因为BF ∥AC ,所以∠C =∠CBF .因为BC 平分∠ABF ,所以∠ABC =∠CBF .所以∠C =∠ABC .所以AB =AC .因为AD 是△ABC 的角平分线,所以⎧∠C =∠DBF ,BD =CD ,AD ⊥BC .故②③正确.在△CDE 与△BDF 中,⎨CD =BD ,⎩∠CDE =∠BDF ,所以△CDE ≌△BDF .所以DE =DF ,CE =BF .故①正确;因为AE =2BF ,所以AC =3BF .故④正确.故选A.二、11.E ,H ,I ,M12.213.1:如图,该球最后将落入1号球袋.14.2∠α15.6:因为AB =AC ,AD ⊥BC ,所以△ABC 关于直线AD 对称.所以S △BEF1=S △CEF .因为△ABC 的面积为12,所以图中阴影部分的面积=2S △ABC =6.16.6:过点D 作DE ⊥AC 于点E ,因为AD 平分∠BAC ,所以DE =BD =2.11所以S △ADC =2AC ·DE =2×6×2=6.17.108°18.12 345 678 987 654 321三、19.解:(1)如图,利用图中格点,可以直接确定出△ABC 中各顶点的对称点的位置,从而得到△ABC 关于直线MN 的对称图形,即为△A ′B ′C ′.111(2)S △ABC =4×6-2×4×1-2×3×6-2×2×4=9.20.解:如图.点C 1,C 2即为所求作的点.21.解:同意.理由如下:如图,连接OE ,OF .由题意知,BE =OE ,CF =OF ,∠OBC =∠OCB =30°,所以∠BOE =∠OBC =30°,∠COF =∠OCB =30°,∠BOC =120°.所以∠EOF =60°,∠OEF =60°,∠OFE =60°.所以△OEF 是等边三角形.所以OE =OF =EF =BE =CF .所以E ,F 是BC 的三等分点.22.解:(1)因为AD⊥BC,CE⊥AB,所以∠AEF=∠CEB=90°,∠AFE+∠EAF=90°,∠CFD+∠ECB=90°.又因为∠AFE=∠CFD,所以∠EAF=∠ECB.在△AEF和△CEB中,∠AEF=∠CEB,AE=CE,∠EAF=∠ECB,所以△AEF≌△CEB(ASA).(2)由△AEF≌△CEB,得EF=EB,所以∠EBF=∠EFB.在△ABC中,AB=AC,AD⊥BC,所以BD=CD.所以FB=FC.所以∠FBD=∠FCD.因为∠EFB=180°-∠BFC=∠FBD+∠FCD=2∠FBD,所以∠EBF=2∠FBD,即∠ABF=2∠FBD.23.解:(1)图略.(2)“”和“”.(3)“”和“”.(4)他们示意的真实三位数是235.24.解:(1)25;115;小(2)当DC=2时,△ABD≌△DCE.理由如下:因为DC=2,AB=2,所以DC=AB.因为AB=AC,∠B=40°,所以∠C=∠B=40°.因为∠ADB=180°-∠ADC=∠DAC+∠C,∠DEC=180°-∠AED=∠DAC+∠ADE,且∠C=40°,∠ADE=40°,所以∠ADB=∠DEC.在△ABD与△DCE中,∠ADB=∠DEC,∠B=∠C,AB=DC,所以△ABD≌△DCE(AAS).(3)存在,∠BDA=110°或∠BDA=80°.第三章测试卷一、选择题(每题3分,共30分)1.下列各组数中,能够作为直角三角形的三边长的一组是() A.1,2,3B.2,3,4C.4,5,6D.3,4,52.在Rt△ABC中,∠C=90°,若角A,B,C所对的三边分别为a,b,c,且a =7,b=24,则c的长为()A.26B.18C.25D.213.如图,阴影部分是一个正方形,此正方形的面积是()A.16B.8C.4D.24.已知四个三角形分别满足下列条件:①一个内角等于另两个内角之和;②三个内角度数之比为3∶4∶5;③三边长分别为7,24,25;④三边长之比为5∶12∶13.其中直角三角形有()A.1个B.2个C.3个D.4个5.若△ABC的三边长分别为a,b,c,且满足(a-b)(a2+b2-c2)=0,则△ABC 是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形6.如图,直线l上有三个正方形a,b,c,若a,b的面积分别为5和13,则c 的面积为()A.4B.8C.12D.187.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线上的D′处.若AB=3,AD=4,则ED的长为()3 A. 2B.3C.14D.38.如图,在△ABC中,AD是BC边上的中线,AC=17,BC=16,AD=15,则△ABC的面积为()A.128B.136C.120D.2409.如图是台阶的示意图,已知每个台阶的宽度都是30 cm,每个台阶的高度都是15 cm,则A,B两点之间的距离等于()A.195 cm B.200 cm C.205cm D.210 cm10.如图是一个圆柱形的饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一根到达底部的直吸管在罐内部分的长度a(罐壁的厚度和小圆孔的大小忽略不计)的范围是()A.12≤a≤13B.12≤a≤15C.5≤a≤12D.5≤a≤13二、填空题(每题3分,共24分)11.在Rt△ABC中,a,b为直角边,c为斜边,若a2+b2=16,则c=________.12.如图,在△ABC中,AB=5 cm,BC=6 cm,BC边上的中线AD=4 cm,则∠ADB=________.13.如图,一架长为4 m的梯子,一端放在离墙脚2.4 m处,另一端靠墙,则梯子顶端离墙脚的距离是________.14.飞机在空中水平飞行,某一时刻刚好飞到一个男孩正上方4 000 m处,过了10 s,飞机距离这个男孩头顶5 000 m,则飞机平均每小时飞行__________.15.已知a,b,c是△ABC的三边长,且满足关系(c2-a2-b2)2+|a-b|=0,则△ABC 的形状为____________.16.在△ABC中,AB=13 cm,AC=20 cm,BC边上的高为12 cm,则△ABC的面积为________.17.如图,在一根长90 cm的灯管上缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4 cm,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为________.18.如图,在Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=5,BC=12,则AD的长为________.三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分) 19.如图,在△ABC中,AD⊥BC于D,AD=12,BD=16,CD=5.(1)求△ABC的周长;(2)判断△ABC是否是直角三角形.20.如图,在△ADC中,AD=15,AC=12,DC=9,点B是CD延长线上一点,连接AB.若AB=20,求△ABD的面积.21.如图,∠ABC=90°,AB=6 cm,AD=24 cm,BC+CD=34 cm,C是直线l 上一动点,请你探索当点C离点B多远时,△ACD是一个以CD为斜边的直角三角形.22.若△ABC的三边长a,b,c满足a2+b2+c2+50=6a+8b+10c,判断△ABC 的形状.23.如图,在△ABC中,AB:BC:CA=3:4:5,且周长为36 cm,点P从点A 开始沿AB边向点B以1 cm/s的速度移动,点Q从点B开始沿BC边向点C 以2 cm/s的速度移动,如果同时出发,过3 s时,△BPQ的面积为多少?24.如图,圆柱形玻璃容器高19 cm,底面周长为60 cm,在外侧距下底1.5 cm 的点A处有一只蜘蛛,在蜘蛛正对面的圆柱形容器的外侧,距上底1.5 cm处的点B处有一只苍蝇,蜘蛛急于捕捉苍蝇充饥,请你帮蜘蛛计算它沿容器侧面爬行的最短距离.25.如图,甲是一个直角三角形ABC,它的两条直角边长分别为a,b,斜边长为c.如图乙、丙那样分别取四个与直角三角形ABC全等的三角形,放在边长为a+b的正方形内.(1)由图乙、图丙,可知①是以________为边长的正方形,②是以________为边长的正方形,③的四条边长都是________,且每个角都是直角,所以③是以________为边长的正方形;(2)图乙中①的面积为________,②的面积为________,图丙中③的面积为________;(3)图乙中①②面积之和为________;(4)图乙中①②的面积之和与图丙中③的面积有什么关系?为什么?由此你能得到关于直角三角形三边长的关系吗?答案一、1.D 2.C 3.B 4.C 5.D 6.B 7.A 8.C9.A 10.A 二、11.412.90°13.3.2 m 14.1 080 km 15.等腰直角三角形16916.126 cm 2或66 cm 217.150 cm 18.24三、19.解:(1)因为AD ⊥BC ,所以△ABD 和△ACD 均为直角三角形.所以AB 2=AD 2+BD 2,AC 2=AD 2+CD 2.又因为AD =12,BD =16,CD =5,所以AB =20,AC =13.所以△ABC 的周长为20+13+16+5=54.(2)由(1)知AB =20,AC =13,BC =21,因为AB 2+AC 2=202+132=569,BC 2=212=441,所以AB 2+AC 2≠BC 2.所以△ABC 不是直角三角形.20.解:在△ADC 中,因为AD =15,AC =12,DC =9,所以AC 2+DC 2=122+92=152=AD 2.所以△ADC 是直角三角形,且∠C =90°.在Rt △ABC 中,AC 2+1BC 2=AB 2,所以BC =16.所以BD =BC -DC =16-9=7.所以S △ABD =2×7×12=42.21.解:设当BC =x cm 时,△ACD 是一个以CD 为斜边的直角三角形.因为BC+CD =34 cm ,所以CD =(34-x )cm.因为∠ABC =90°,AB =6 cm ,所以在Rt △ABC 中,由勾股定理得AC 2=AB 2+BC 2=36+x 2.在Rt △ACD 中,AD =24 cm ,由勾股定理得AC 2=CD 2-AD 2=(34-x )2-576,所以36+x 2=(34-x )2-576.解得x =8.所以当点C 离点B 8 cm 时,△ACD 是一个以CD 为斜边的直角三角形.22.解:因为a 2+b 2+c 2+50=6a +8b +10c ,所以a 2+b 2+c 2-6a -8b -10c +50=0,即(a -3)2+(b -4)2+(c -5)2=0.所以a =3,b =4,c =5.因为32+42=52,即a 2+b 2=c 2,所以根据勾股定理的逆定理可判定△ABC 是直角三角形.:本题利用配方法,先求出a ,b ,c 的值,再利用勾股定理的逆定理进行判断.23.解:设AB 为3x cm ,则BC 为4x cm ,AC 为5x cm.因为△ABC 的周长为36 cm ,所以AB +BC +AC =36 cm ,即3x +4x +5x =36.解得x =3.所以AB =9 cm ,BC =12 cm ,AC =15 cm.因为AB 2+BC 2=AC 2,所以△ABC 是直角三角形,且∠B =90°.过3 s 时,BP =9-3×1=6(cm),BQ =2×3=6(cm),11所以S △BPQ =2BP ·BQ =2×6×6=18(cm 2).故过3 s 时,△BPQ 的面积为18 cm 2.24.解:如图,将圆柱侧面展开成长方形MNQP ,过点B 作BC ⊥MN 于点C ,连接AB ,则线段AB 的长度即为所求的最短距离.在Rt △ACB 中,AC =MN -AN -CM =16 cm ,BC 的长等于底面周长的一半,即BC =30 cm.由勾股定理得,AB 2=AC 2+BC 2=162+302=1 156=342,所以AB =34 cm.故蜘蛛沿容器侧面爬行的最短距离为34 cm.25.解:(1)a ;b ;c ;c (2)a 2;b 2;c 2(3)a 2+b 2(4)图乙中①②的面积之和与图丙中③的面积相等.由大正方形的边长为a +b ,得大正方形的面积为(a +b )2,图乙中把大正方形分成了四部分,分别是边长为a 的正方形,边长为b 的正方形,还有两个长为a ,宽为b 的长方形.根12据面积相等得(a +b )2=a 2+b 2+2ab .由图丙可得(a +b )2=c 2+4×ab .所以a +2b 2=c 2.能得到关于直角三角形三边长的关系:两直角边的平方和等于斜边的平方.第四章测试卷一、选择题(每题3分,共30分)1.9的算术平方根是()A.±3B.3 C.-3 D.3222.下列4个数:9,7,π,(3)0,其中无理数是()A.922B.7C.πD.(3)03.下列各式中正确的是()A.497=±14412B.-3273-8=-2C.-9=-33D.(-8)2=44.已知a+2+|b-1|=0,那么(a+b)2 018的值为()A.1B.-1C.32 018D.-32 0185.若平行四边形的一边长为2,面积为45,则此边上的高介于() A.3与4之间B.4与5之间C.5与6之间D.6与7之间6.设边长为a的正方形的面积为2.下列关于a的四种结论:①a是2的算术平方根;②a是无理数;③a可以用数轴上的一个点来表示;④0<a<1.其中正确的是()A.①②C.①②③B.①③D.②③④7.实数a,b在数轴上对应点的位置如图所示,则化简a2-|a+b|的结果为() A.2a+b B.-2a+b C.b D.2a-b8.有一个数值转换器,原理如图所示,当输入x为64时,输出y的值是()A.4C.33B.43D.29.一个正方体木块的体积是343 cm3,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是()74949147A.2cm2B.4cm2C.8cm2D.2cm210.如图,数轴上A,B两点表示的实数分别为1和3,若点A关于点B的对称点为点C,则点C所表示的实数为()A.23-1B.1+3C.2+3D.22+1二、填空题(每题3分,共24分)11.6的相反数是________;绝对值等于2的数是________.12.一个数的平方根与这个数的立方根相等,那么这个数是________.313.估算比较大小:(1)-10________-3.2;(2)130________5.314.若2x+7=3,(4x+3y)3=-8,则x+y=________.15.点A在数轴上和表示1的点相距6个单位长度,则点A表示的数为________.16.若两个连续整数x,y满足x<5+1<y,则x+y的值是________.17.若x,y为实数,且|x-2|+y+3=0,则(x+y)2 017的值为________.18.任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[3]=1.现对72第一次第二次第三次进行如下操作:72――→[72]=8――→[8]=2――→[2]=1,这样对72只需进行3次操作后变为1,类似地,对81只需进行________次操作后变为1;只需进行3次操作后变为1的所有正整数中,最大的是________.三、解答题(19题16分,20题12分,24、25题每题10分,其余每题6分,共66分)19.计算:(1)(-1)2 018+16-(3)-(-2)+(-2)--82;(4)2+|3-32|-(-5)2.20.求下列各式中未知数的值:(1)|a -2|=5;(2)4x 2=25;(3)(x -0.7)3=0.0272294;(2)132+0.5-8;43|a|-|a+b|+(c-a)2 21.已知a,b,c在数轴上对应点的位置如图所示,化简:+|b-c|.322.若实数a,b互为相反数,c,d互为倒数,求2(a+b)+8c d的值.23.已知a,b,c是△ABC的三边长,化简:(a+b+c)2-(b+c-a)2+(c-b-a)2.24.我们知道a+b=0时,a3+b3=0也成立,若将a看成a3的立方根,b看成b3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立;33(2)若1-2x与3x-5互为相反数,求1-x的值.25.全球气候变暖导致一些冰川融化并消失.在冰川消失12年后,一种低等植物苔藓就开始在岩石上生长.每一个苔藓都会长成近似圆形,苔藓的直径和冰川消失后经过的时间近似地满足如下的关系式:d=7×t-12(t≥12).其中d代表苔藓的直径,单位是厘米;t代表冰川消失后经过的时间,单位是年.(1)计算冰川消失16年后苔藓的直径;(2)如果测得一些苔藓的直径是35厘米,问冰川约是在多少年前消失的?答案一、1.B 2.C3.D :A 中正确.4.A 5.B6.C:∵a 2=2,a >0,∴a =2≈1.414,即a >1,故④错误.37.C 8.B :64的立方根是4,4的立方根是 4.9.D 10.A二、11.-6;±212.013.(1)>(2)>14.-115.1-6或1+6:数轴上到某个点距离为a (a >0)的点有两个,易忽略左边的点而漏解.注意运用数形结合思想,利用数轴帮助分析.16.7:∵2<5<3,∴3<5+1<4.∵x <5+1<y ,且x ,y 为两个连续整数,∴x =3,y =4.∴x +y =3+4=7.17.-1:∵|x -2|+y +3=0,∴|x -2|=0,y +3=0,∴x =2,y =-3.∴(x +y )2 017=[2+(-3)]2 017=(-1)2 017=-1.18.3;255三、19.解:(1)(-1)2 018+16-(2)937=1+4-42=2.3497273=;B 中--144128=2;C 中-9无算术平方根;只有D1132+0.5-8=42+0.5-2=-1.3(3)-(-2)2+(-2)2--82=-4+2-(-4)=2.(4)2+|3-32|-(-5)2=2+(32-3)-5=2+32-3-5=32-6.20.解:(1)由|a -2|=5,得a -2=5或a -2=- 5.当a -2=5时,a =5+2;当a -2=-5时,a =-5+2.255(2)因为4x 2=25,所以x 2=4.所以x =±2.(3)因为(x -0.7)3=0.027,所以x -0.7=0.3.所以x =1.21.解:由数轴可知b <a <0<c ,所以a +b <0,c -a >0,b -c <0.所以原式=-a -[-(a +b )]+(c -a )+[-(b -c )]=-a +a +b +c -a -b +c =-a +2c .322.解:由已知得a +b =0,cd =1,所以原式=0+8=2.23.解:因为a ,b ,c 是△ABC 的三边长,所以a +b +c >0,b +c -a >0,c -b -a <0.所以原式=a +b +c -(b +c -a )+(a +b -c )=3a +b -c .24.解:(1)因为2+(-2)=0,而且23=8,(-2)3=-8,有8+(-8)=0,所以结论成立.所以“若两个数的立方根互为相反数,则这两个数也互为相反数”是成立的.(2)由(1)验证的结果知,1-2x +3x -5=0,所以x =4,所以1-x =1-2=-1.25.解:(1)当t =16时,d =7×16-12=7×2=14(厘米).答:冰川消失16年后苔藓的直径为14厘米.(2)当d =35时,t -12=5,即t -12=25,解得t =37.答:如果测得一些苔藓的直径是35厘米,冰川约是在37年前消失的.第五章测试卷一、选择题(每题3分,共30分)1.点P(4,3)所在的象限是()A.第一象限B.第二象限 C.第三象限 D.第四象限2.根据下列表述,能确定位置的是()A.红星电影院2排C.北偏东30°B.北京市四环路D.东经118°,北纬40°3.如图,在直角坐标系中,卡片盖住的点的坐标可能是() A.(2,3)B.(-2,1)C.(-2,-2.5)D.(3,-2)4.点P(-2,3)关于x轴对称的点的坐标是()A.(-3,2)B.(2,-3)C.(-2,-3)D.(2,3)5.已知点A(-1,-4),B(-1,3),则()A.点A,B关于x轴对称B.点A,B关于y轴对称C.直线AB平行于y轴D.直线AB垂直于y轴6.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(-2,-2),“马”位于点(1,-2),则“兵”位于点()A.(-1,1)B.(-2,-1)C.(-4,1)D.(1,2)7.如图,将长为3的长方形ABCD放在平面直角坐标系中,AD∥x轴,若点D 的坐标为(6,3),则点A的坐标为()A.(5,3)B.(4,3)C.(4,2)D.(3,3)8.在平面直角坐标系xOy中,若点A的坐标为(-3,3),点B的坐标为(2,0),则三角形ABO的面积是()A.15B.7.5C.6D.39.已知点P的坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是()A.(3,3)B.(3,-3)C.(6,-6)D.(3,3)或(6,-6)10.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位长度,第2步向右走2个单位长度,第3步向上走1个单位长度,第4步向右走1个单位长度,……以此类推,第n步的走法是:当n能被3整除时,向上走1个单位长度;当n被3除,余数为1时,向右走1个单位长度;当n被3除,余数为2时,向右走2个单位长度,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)二、填空题(每题3分,共24分)11.写出平面直角坐标系中第三象限内一个点的坐标:________.12.在直角坐标系中,第四象限内一点P到x轴的距离为2,到y轴的距离为5,那么点P的坐标是________.13.如图是益阳市行政区域图,图中益阳市区所在地用坐标表示为(1,0),安化县城所在地用坐标表示为(-3,-1),那么南县县城所在地用坐标表示为________.14.第二象限内的点P(x,y)满足|x|=9,y2=4,则点P的坐标是__________.15.已知点N的坐标为(a,a-1),则点N一定不在第________象限.16.如图,点A,B的坐标分别为(2,4),(6,0),点P是x轴上一点,且△ABP 的面积为6,则点P的坐标为________.17.如图,长方形OABC的边OA,OC分别在x轴、y轴上,点B的坐标为(3,2).点D,E分别在AB,BC边上,BD=BE=1.沿直线DE将三角形BDE翻折,点B落在点B′处,则点B′的坐标为________.18.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断地移动,每移动一个单位长度,得到点A1(0,1),A2(1,1),A 3(1,0),A4(2,0),…,那么点A4n+1(n为自然数)的坐标为______(用n表示).三、解答题(19题6分,20题8分,21,23题每题9分,22题10分,其余每题12分,共66分)19.如图,如果规定北偏东30°的方向记作30°,从O点出发沿这个方向走50 m 记作50,图中点A记作(30°,50);北偏西45°的方向记作-45°,从O点出发沿着该方向的反方向走20 m记作-20,图中点B记作(-45°,-20).(1)(-75°,-15),(10°,-25)分别表示什么意义?(2)在图中标出点(60°,-30)和(-30°,40).20.春天到了,七(1)班组织同学到人民公园春游,张明、李华对着景区示意图(如图)描述牡丹园的位置(图中小正方形的边长为100 m).张明:“牡丹园的坐标是(300,300).”李华:“牡丹园在中心广场东北方向约420m处.”实际上,他们所说的位置都是正确的.根据所学的知识解答下列问题:(1)请指出张明同学是如何在景区示意图上建立平面直角坐标系的,并在图中画出所建立的平面直角坐标系;(2)李华同学是用什么来描述牡丹园的位置的?请用张明同学所用的方法,描述出公园内其他地方的位置.。
人教版七年级上册数学单元测试试卷《第一章-有理数》(含答案解析)
人教版七年级上册数学单元测试试卷第一章《有理数》第Ⅰ卷考试时间:120分钟总分:100分得分:一、选择题(共10题,每小题2分,共20分)1.(2分)用科学记数法表示2500000000是()A.2.5×109B.0.25×10C.2.5×1010D.0.25×10102.(2分)-2022的倒数是()A.-2022B.2022C.12022-D.120223.(2分)下列各组数中,互为相反数的是()A.43和34-B.13和0.333-C.a 和a -D.14和44.(2分)温度由﹣3℃上升8℃是()A.5℃B.﹣5℃C.11℃D.﹣11℃5.(2分)下列说法错误的是()A.开启计算器使之工作的按键是ONB.输入 5.8-的按键顺序是C.输入0.58的按键顺序是58⋅D.按键6987-=能计算出6987--的结果6.(2分)小时候我们常常唱的一首歌“小燕子穿花衣,年年春天来这里”,研究表明小燕子从北方飞往南方过冬,迁徙路线长达25000千米左右,将数据25000用科学记数法表示为()A.32510⨯B.42.510⨯C.52.510⨯D.50.2510⨯7.(2分)若a 、b 为有理数,0a <,0b >,且a b >,那么a ,b ,a -,b -的大小关系是()A.b a b a -<<<-B.b b a a <-<<-C.a b b a<-<<-D.a b b a<<-<-8.(2分)a、b 两数在数轴上的位置如图所示,下列结论正确的是()A.a>b B.|a|=﹣a C.a<﹣b D.|a|>|b|9.(2分)小明家的汽车在阳光下暴晒后车内温度达到了60℃,打开车门后经过8min 降低到室外同温32℃,再启动空调关车门,若每分钟降低4℃,降到设定的20℃共用时间是()A.13minB.12minC.11minD.10min10.(2分)已知4,5x y ==,且x y >,则2x y -的值为()A.13-B.13+C.3-或13+D.3+或13-二、填空题(共10题;每题2分,共20分)11.(2分)45-的倒数是.12.(2分)比较大小:15-16-(填“>”“<”或“=”)13.(2分)如果向东走35米记作+35米,那么向西走50米记作米。
七年级数学上册全册单元测试卷测试卷(含答案解析)精选全文
精选全文完整版(可编辑修改)七年级数学上册全册单元测试卷测试卷(含答案解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知 (本题中的角均大于且小于 )(1)如图1,在内部作,若,求的度数;(2)如图2,在内部作,在内,在内,且,,,求的度数;(3)射线从的位置出发绕点顺时针以每秒的速度旋转,时间为秒( 且 ).射线平分,射线平分,射线平分 .若,则 ________秒.【答案】(1)解:∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD又∵∠AOD+∠BOC=160°且∠AOB=120°∴(2)解:,设,则,则,(3) s或15s或30s或45s【解析】【解答】(2)解:当OI在直线OA的上方时,有∠MON=∠MOI+∠NOI= (∠AOI+∠BOI))= ∠AOB= ×120°=60°,∠PON= ×60°=30°,∵∠MOI=3∠POI,∴3t=3(30-3t)或3t=3(3t-30),解得t= 或15;当OI在直线AO的下方时,∠MON═(360°-∠AOB)═ ×240°=120°,∵∠MOI=3∠POI,∴180°-3t=3(60°- )或180°-3t=3( -60°),解得t=30或45,综上所述,满足条件的t的值为 s或15s或30s或45s【分析】(1)利用角的和差进行计算便可;(2)设,则,,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON在不同情况下的定值,再根据角的和差确定t的不同方程进行解答便可.2.结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和2的两点之间的距离是多少.②数轴上表示﹣2和﹣6的两点之间的距离是多少.③数轴上表示﹣4和3的两点之间的距离是多少.(2)归纳:一般的,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,求a的值.②若数轴上表示数a的点位于﹣4与3之间,求|a+4|+|a﹣3|的值.③当a取何值时,|a+4|+|a﹣1|+|a﹣3|的值最小,最小值是多少?请说明理由.(3)拓展:某一直线沿街有2014户居民(相邻两户居民间隔相同):A1, A2, A3,A4, A5,…A2014,某餐饮公司想为这2014户居民提供早餐,决定在路旁建立一个快餐店P,点P选在什么线段上,才能使这2014户居民到点P的距离总和最小.【答案】(1)解:①数轴上表示5和2的两点之间的距离是3.②数轴上表示﹣2和﹣6的两点之间的距离是4.③数轴上表示﹣4和3的两点之间的距离是7.(2)解:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,a=10或﹣4.②若数轴上表示数a的点位于﹣4与3之间,|a+4|+|a﹣3|=a+4+3﹣a=7;③当a=1时,|a+4|+|a﹣1|+|a﹣3|取最小值,|a+4|+|a﹣1|+|a﹣3|最小=5+0+2=7,理由是:a=1时,正好是3与﹣4两点间的距离.(3)解:点P选在A1007A1008这条线段上【解析】【分析】(1)根据两点间的距离公式:数轴上表示数m和数n的两点之间的距离等于|m﹣n|,分别计算可得出答案。
最新人教版七年级数学下册全册单元测试(附答案)
人教版数学七年级下册第五章平行线与相交线单元测试(含答案)一、单选题(共有12道小题)1.如图,将直线乙沿四的方向得到直线b若N『50° ,则N2的度数是()A.40°B.50°C.90°D.130°2.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合, 含30。
角的直角三角板的斜边与纸条一边重合,含45。
角的三角板的一个顶点在纸条的另一边上,则N1的度数是(A. 30°B. 20°C.3.如图,Zl+Z2=180°90 a15° D. 14°\一 1,Z3=100° 则N4 等于()A. 70°B. 80°C.90°D. 100°4.如图々〃处等边△板的顶点£在直线r上,Zl= 20° ,则N2的度数为()上BA. 60°B. 45°5.如图,已知直线a〃8, N如131° oo o oC. 40°D.30°,则N2等于()则N2的度数是()7.如图,AB〃CD,EF交AB、CD于点E、F,EG平分NBEF,交CD于点G.若如1=40° , 则NEGF=()8.如图,4?是/见。
的平分线,AD//BC. ZB=30° ,则为()C. 70°D. 110°9.下列命题的逆命题不正确的是(A.平行四边形的对角线互相平分C.等腰三角形的两个底角相等C. 80°D. 120°)B.两直线平行,内错角相等D.对顶角相等10.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等,则N2的度数是()NE=3(T ,则NA的度数为(A. 30°B. °C. 35°D. ° 二、填空题(共有8道小题)13.已知三条不同的直线左6、。
青岛版七年级数学上册全册单元测试题(带答案)
青岛版七年级数学上册单元测试题全套(含答案)青岛版七年级青岛版七年级数学上册单元测试题全套(含答案)第 1 章检测卷一 . 选择题1. 某工程队,在修建兰宁高速公路时,有时需将弯曲的道路改直,根据什么公理可以说明这样做能缩短路程() .A. 直线的公理B. 直线的公理或线段的公理C. 线段最短的公理D. 平行公理2.10 个棱长为 1 的正方体木块堆成如图所示的形状,则它的表面积是()(第 2 题图)A. 30B. 34C. 36D. 483. 延长线段 AB 到 C ,下列说法正确的是()A. 点 C 在线段 AB 上B. 点 C 在直线 AB 上C. 点 C 不在直线 AB 上D. 点 C 在直线 BA 的延长线上4. 如图是一个正方体的平面展开图,折叠成正方体后与“建”字所在面相对的面的字是()(第 4 题图)A. 创B. 教C. 强D. 市5. 如图,点 C 为线段 AB 的中点,点 D 为线段 AC 的中点、已知 AB=8 ,则 BD= ()(第 5 题图)A. 2B. 4C. 6D. 86. 如图,点 C 是线段 AB 上的点,点 D 是线段 BC 的中点, AB=10 , AC=6 ,则线段 CD 的长是()(第 6 题图)A.4B.3C.2D.17. 下面四个图形是如图的展开图的是()(第 7 题图)A. B. C. D.8. 如图,从 A 到 B 的四条路径中,最短的路线是()(第 8 题图)A. A ﹣ E ﹣ G ﹣ BB. A ﹣ E ﹣ C ﹣ BC. A ﹣ E ﹣ G ﹣ D ﹣ BD. A ﹣ E ﹣ F ﹣ B9. 下列图形中,经过折叠可围成长方体的是()10. 观察图形,下列说法正确的个数是()① 直线和直线是同一条直线;② 射线和射线是同一条射线;③ .A.1B.2C.3D.0二 . 填空题11. 笔尖在纸上快速滑动写出英文字母 C ,这说明了 ________ .12. 如图,点 E , F 分别是线段 AC , BC 的中点,若 EF=3 厘米,则线段 AB= 厘米.(第 12 题图)13. 下列图形中,是柱体的有 ________ .(填序号)14. 用 6 根火柴最多组成 ________ 个一样大的三角形,所得几何体的名称是________ .15. 将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,应剪去 ____ (填序号) .(第 15 题图)16. 如图是一个长方体的表面展开图,其中四边形 ABCD 是正方形,根据图中标注的数据可求得原长方体的体积是 ________cm 3 .(第 16 题图)17. 如图,线段 AC=BD ,那么 AB=________ .(第 17 题图)18. 如图所示, C 和 D 是线段的三等分点, M 是 AC 的中点,那么 CD=________BC ,AB=________MC .(第 18 题图)3. 解答题19. 如图,各图中的阴影图形绕着直线 I 旋转 360 °,各能形成怎样的立体图形 ?(第 19 题图)20. 将长为 10 厘米的一条线段用任意方式分成 5 小段,以这 5 小段为边可以围成一个五边形.问其中最长的一段的取值范围.21. 如图,一个正五棱柱的底面边长为 2cm ,高为 4cm .( 1 )这个棱柱共有多少个面?计算它的侧面积;( 2 )这个棱柱共有多少个顶点?有多少条棱?( 3 )试用含有 n 的代数式表示 n 棱柱的顶点数、面数与棱的条数.(第 21 题图)22. 如图是由 6 个相同的正方形拼成的图形,请你将其中一个正方形移动到合适的位置,使它与另 5 个正方形能拼成一个正方体的表面展开图.(请在图中将要移动的那个正方形涂黑,并画出移动后的正方形).(第 22 题图)23. 如图,在无阴影的方格中选出两个画出阴影,使它们与图中 4 个有阴影的正方形一起可以构成一个正方体的表面展开图.(在图 1 和图 2 中任选一个进行解答,只填出一种答案即可)(第 23 题图)24. 如图, A 、 B 是公路 L 两旁的两个村庄,若两村要在公路上合修一个汽车站,使它到 A 、 B 两村的距离和最小,试在 L 上标注出点 P 的位置,并说明理由.(第 24 题图)25. 如图,已知 AD=5cm , B 是 AC 的中点, CD= AC .求 AB 、 BC 、 CD 的长.(第 25 题图)26. 已知,如图,线段 AD=10cm ,点 B , C 都是线段 AD 上的点,且 AC=7cm ,BD=4cm ,若 E , F 分别是线段 AB , CD 的中点,求 BC 与 EF 的长度.(第 26 题图)答案一 . 1.C 【解析】由题意修建兰宁高速公路时,有时需将弯曲的道路改直,修路肯定要尽量缩短两地之间的里程,从而减少成本,就用到两点间线段最短公理.故选C.2.C 【解析】第一层露出 5 个面;第二层露出 4 × 2+2 个面;第三层露出 4 ×2+3+2 × 1+2 ;底面 6 个面.所以露出的面积 =5+4 × 2+2+4 × 2+3+2 ×1+2+6=36 .故选 C.3.B 【解析】延长线段 AB 到 C ,则点 C 在直线 AB 上 . 故选 B.4.C 【解析】因为正方体的表面展开图,相对的面之间一定相隔一个正方形,所以“建”与“强”是相对面.故选 C .5.C 【解析】因为点 C 为线段 AB 的中点, AB=8 ,则 BC=AC=4 .点 D 为线段 AC 的中点,则 AD=DC=2 .所以 BD=CD+BC=6 .故选 C .6.C 【解析】因为 AB=10 , AC=6 ,所以 BC=AB ﹣ AC=10 ﹣ 6=4 ,又因为点 D 是线段 BC 的中点,所以 CD= BC= × 4=2 .故选 C .7.A 【解析】 A 、能折叠成原正方体的形式,符合题意; B 、 C 带图案的三个面不相邻,没有一个公共顶点,不能折叠成原正方体的形式,不符合题意; D 、折叠后带圆圈的面在上面时,带三角形的面在左边与原正方体中的位置不同,不符合题意.故选 A .8.D 【解析】最短的路线是 A ﹣ E ﹣ F ﹣ B .故选 D .9.B 【解析】 A 、 C 、 D 不能折叠成长方体,只有 B 符合条件 .10.C 【解析】① 直线和直线是同一条直线,正确;② 射线和射线是同一条射线,都是以为端点,同一方向的射线,正确;③ 由“两点之间,线段最短”知,故此说法正确 . 所以共有 3 个正确的.故选 C .二 . 11. 点动成线【解析】笔尖在纸上快速滑动写出英文字母 C ,这说明了点动成线;故答案为:点动成线.12. 6 【解析】因为点 E , F 分别是线段 AC , BC 的中点,所以 CE=12AB ,BF=12BC ,所以 EF=CE ﹣ CF=12AC ﹣ 12BC=12 ( AC ﹣ BC ) =3 ,所以 AC ﹣ BC=6 ,即 AB=6 .13. ②③⑥ 【解析】①是圆锥,②是正方体,属于棱柱,③是圆柱,④是棱锥,⑤是球,⑥是三棱柱.所以是柱体的有②③⑥.14. 4 ;三棱锥或四面体【解析】要使搭的个数最多,就要搭成三棱锥,这时最多可以搭 4 个一样的三角形.图形如下:故答案为: 4 ,三棱锥或四面体.(第 14 题答图)15. 1 或 2 或 6 【解析】根据有“田”字格的展开图都不是正方体的表面展开图可知,应剪去 1 或 2 或 6 ,答案不唯一.16. 12 【解析】因为四边形 ABCD 是正方形,所以 AB=AE=4cm ,所以立方体的高为:( 6 ﹣ 4 )÷ 2=1 ( cm ),所以 EF=4 ﹣ 1=3 ( cm ),所以原长方体的体积是: 3 × 4 × 1=12( cm 3 ).(第 16 题答图)17.CD 【解析】由题意得: AB ﹣ BC=BD ﹣ BC ,故可得: AB=CD .故答案为:CD .18. ; 6 【解析】【由已知条件可知 CD= AB , BC= AB ,所以 CD= BC ;又因为 AB=3AC , MC= AC ,所以 AB=6MC .故答案为 CD= BC ; AB=6MC .三 . 19. 第一个可以得到圆柱;第二个可以得到圆锥;第三个可以得到球.20. 【解】设最长的一段 AB 的长度为 x 厘米(如图),则其余 4 段的和为( 10 ﹣x )厘米.因为它是最长的边,假定所有边相等,则此时它最小为 2 .又由线段基本性质知 x < 10 ﹣ x ,所以 x < 5 ,所以2 ≤ x < 5 .即最长的一段 AB 的长度必须大于等于 2 厘米且小于 5 厘米.(第 20 题答图)21. 【解】( 1 )侧面有 5 个,底面有 2 个,共有 5+2=7 个面;侧面积: 2 × 5 × 4=40 ( cm 2 ).( 2 )顶点共 10 个,棱共有 15 条;( 3 ) n 棱柱的顶点数 2n ;面数 n+2 ;棱的条数 3n .22. 【解】答案如下:或或等.23. 【解】只写出一种答案即可.图 1 :图 2 :24. 【解】点 P 的位置如下图所示:作法是:连接 AB 交 L 于点 P ,则 P 点为汽车站位置,理由是:两点之间,线段最短.25. 【解】设 AC=x ,有 x+ x=5 ,解得: x=3 ,即 AC=3cm ,所以 CD=2 ,又 B 是 AC 的中点, AB=BC= cm26. 【解】由线段的和差,得 AC+BD=AC+BC+CD=AD+BC=7+4=11cm ,由 AD=10cm ,得 10+BC=11 ,解得 BC=1cm ;由线段的和差,得AB+CD=AD ﹣ BC=10 ﹣ 1=9cm ,由 E , F 分别是线段 AB , CD 的中点,得AE= AB , DF= CD .由线段得和差,得EF=AD ﹣( AE+DF ) =AD ﹣(AB+ CD ) =10 ﹣( AB+CD ) =10 ﹣= cm .第2章检测卷一.选择题1.- 的绝对值是()A. -B.C. 3D. -32.如果m表示有理数,那么|m|+m的值()A. 可能是负数;B. 不可能是负数;C. 必定是正数;D. 可能是负数也可能是正数3.下列各数中:+3、-2.1、−、9、、-(-8)、0、-|+3|负有理数有()A. 2个B. 3个C. 4个D. 5个4.2的相反数是()A. 2B.C. -2D. -5.﹣3的绝对值是()A. -3B.C.D. 36.﹣的绝对值为()A. -2B. -C.D. 17.数轴上的点A到原点的距离是4,则点A表示的数为()A. 4B. -4C. 4或﹣4D. 2或﹣28.某大米包装袋上标注着“净含量10kg±150g”,小华从商店买了2袋大米,这两袋大米相差的克数不可能是()A. 100gB. 150gC. 300gD. 400g9.在纪念“中国人民抗日战争暨世界反法西斯战争胜利70周年”知识竞赛中,如果把加10分记为“+10分”,那么扣20分应记为()A. 10分B. ﹣20分C. ﹣10分D. +20分10.若向东走15米记为+15米,则向西走28米记为()A. ﹣28米B. +28米C. 56米D. ﹣56米二.填空题11.如果a﹣3与a+1互为相反数,那么a=________12.同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间的距离是________(2)数轴上表示x与2的两点之间的距离可以表示为________(3)如果|x﹣2|=5,则x=________(4)同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是________13.比较大小:﹣________ ﹣|﹣|.14.数轴上离开原点3个单位长的点所表示的数是________.15.在数轴上,﹣2对应的点为A,点B与点A的距离为,则点B表示的数为________.16.如果“盈利5%”记作+5%,那么亏损3%记作________.17.用“>”“<”或“=”连接:﹣π________﹣3.14.18.数轴上有两个点A和B,点A表示的数是,点B与点A相距2个单位长度,则点B所表示的实数是________.三.解答题19.某校对七年级男生进行定跳远测试,以能跳1.7m及以上为达标.超过1.7m的厘米数用正数表示,不足1.7m的厘米数用负数表示.第一组10名男生成绩如下(单位:cm):+2 -1 0 -5 +8 0 +4 -7 +10 -3问:第一组有百分之几的学生达标?20.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A,B两点的位置,分别写出它们所表示的有理数.(2)请问A,B两点之间的距离是多少?(3)在数轴上画出与点A的距离为2的点(用不同于A,B的其它字母表示),并写出这些点表示的数.21.随着人们的生活水平的提高,家用轿车越来越多地进入普通家庭.小明家买了一辆小轿车,他连续记录了7天中每天行驶的路程,以50km为标准,多于50km的记为“+”,不足50km的记为“﹣”,刚好50km的记为“0”,记录数据如下表:时间第一天第二天第三天第四天第五天第六天第七天路程(km)﹣8 ﹣11 ﹣14 0 ﹣16 +41 +8(1)请你估计小明家的小轿车一月(按30天计)要行驶多少千米?(2)若每行驶100km需用汽油8L,汽油每升7.14元,试求小明家一年(按12个月计)的汽油费用是多少元?22.在数轴上把下列各数表示出来,并用“<”连接各数.﹣|﹣2.5|,112 , 0,﹣(﹣212),﹣(﹣1) 100 ,﹣2 2 .23.某服装店以每件82元的价格购进了30套保暖内衣,销售时,针对不同的顾客,这30套保暖内衣的售价不完全相同,若以100元为标准,将超过的钱数记为正,不足的钱数记为负,则记录结果如表所示:售出件数7 6 7 8 2售价(元)+5 +1 0 ﹣2 ﹣5请你求出该服装店在售完这30套保暖内衣后,共赚了多少钱?24.某人用400元购买了8套儿童服装,准备以一定价格出售,如果每套儿童服装以55元的价格为标准,超出的记作正数,不足的记作负数,记录下:+2,﹣4,+2,+1,﹣2,﹣1,0,﹣2当它卖它这8套儿童服装后是盈利还是亏损?盈利(亏损)多少钱?答案一. 1.B 【解析】 |- |= .故- 的绝对值是.故选B.2.B 【解析】当m>0时,原式=2m>0.当m=0时,原式=0.当m<0时,原式=0.故选B.3.B 【解析】把各式化简得:3,-2.1,- ,9,1.4,8,0,-3.-2.1为负数有限小数,- 为负数无限循环小数,-|+3|是负整数,所以是负有理数.共3个.故选B.4.C 【解析】根据相反数的含义,可得2的相反数是:﹣2.故选C.5.D 【解析】:因为﹣3的绝对值表示﹣3到原点的距离,所以|﹣3|=3.故选D.6.C 【解析】因为|﹣|= ,所以﹣的绝对值为.故选C.7.C 【解析】在数轴上,4和﹣4到原点的距离为4.所以点A所表示的数是4和﹣4.故选C.8.D 【解析】根据题意得:10+0.15=10.15(kg),10﹣0.15=9.85(kg),因为两袋两大米最多差10.15﹣9.85=0.3(kg)=300(g),所以这两袋大米相差的克数不可能是400g.故选D.9.B 【解析】把加10分记为“+10分”,那么扣20分应记为﹣20分.故选B.10.A 【解析】向东走15米记为+15米,则向西走28米记为﹣28米.故选A.二. 11. 1 【解析】由题意得,a﹣3+a+1=0,解得a=1.故答案为1.12. 7;|x﹣2|;7或﹣3;﹣3、﹣2、﹣1、0、1 【解析】(1)数轴上表示5与﹣2两点之间的距离是|5﹣(﹣2)|=|5+2|=7,故答案为:7;(2)数轴上表示x与2的两点之间的距离可以表示为|x﹣2|,故答案为:|x﹣2|;(3)因为|x﹣2|=5,所以x﹣2=5或x﹣2=﹣5,解得:x=7或x=﹣3,故答案为:7或﹣3;(4)因为|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,|x+3|+|x﹣1|=4,所以这样的整数有﹣3、﹣2、﹣1、0、1,故答案为:﹣3、﹣2、﹣1、0、1;13.<【解析】因为﹣|﹣34|=﹣34 ,所以两数均为负,取其相反数做商,即45÷34=1615>1.即45>34 ,所以﹣45<﹣34=﹣|﹣34|.故答案为:<.14.±3 【解析】设数轴上离开原点3个单位长的点所表示的数是x,则|x﹣0|=3,解得x=±3.故答案为:±3.15. 7 ﹣2或﹣7 ﹣2 【解析】设B点表示的数是x,因为﹣2对应的点为A,点B 与点A的距离为 7 ,所以|x+2|= 7 ,解得x= 7﹣2或x=﹣7﹣2.故答案为:7﹣2或﹣7﹣2.16.﹣3% 【解析】“盈利5%”记作+5%,那么亏损3%记作﹣3%,故答案为:﹣3%.17. <【解析】因为|﹣π|=π,|﹣3.14|=3.14,而π>3.14,所以﹣π<﹣3.14.故答案为<.18. ,【解析】当点 B 在点 A 的右侧时,点 B 所表示的实数是;当点 B 在点 A 的左侧时,点 B 表示的实数是;所以点 B 所表示的实数是或.三. 19. 【解】根据题意,得超过1.7m的用正数表示,不足的用负数表示.由表格可知这10名男生的成绩是正数的有4个,刚好为0m的有2个,所以一共有6名成绩达标,则6÷10×100%=60%.答:第一组有60%的学生达标.20. 【解】(1)根据所给图形可知A:1,B:﹣2.5 .(2)依题意得:AB之间的距离为:1+2.5=3.5 .(3)设这两点为C、D,则这两点为C:1﹣2=﹣1,D:1+2=3.21. 【解】(1)=50,50×30=1500(km).答:小明家的小轿车一月要行驶1500千米 .(2)×8×7.14×12=10281.6(元),答:小明家一年的汽油费用是10281.6元.22. 【解】:因为﹣|﹣2.5|﹣2.5,﹣(﹣212)=212=2.5,﹣(﹣1) 100 =﹣1,﹣2 2 =﹣4,所以如图所示:所以用“<”连接各数为:﹣2 2 <﹣|﹣2.5|<﹣(﹣1) 100 <0<112<﹣(﹣212).23. 【解】 7×(100+5)+6×(100+1)+7×100+8×(100﹣2)+2×(100﹣5)=735+606+700+784+190=3015,30×82=2460(元),3015﹣2460=555(元) .答:共赚了555元 .24. 【解】售价:55×8+(2﹣4+2+1﹣2﹣1+0﹣2)=440﹣4=436,盈利:436﹣400=36(元).答:当它卖完这8套儿童服装后盈利36元 .第3章检测卷一.选择题1.计算:(﹣)×(﹣2)的结果等于()A. 1B. -1C. 4D. -2.计算:的结果是()A. -1B. 1C.D. -493.(﹣1) 2015 的值是()A. -1B. 1C. 2015D. -20154.形如式子叫作二阶行列式,它的运算法则用公式表示为=ad﹣bc,依此法则计算的结果为()A.-5B.-11C.5D.115.长汀冬季的某天的最高气温是8℃,最低气温是﹣1℃,则这一天的温差是()A. 9℃B. ﹣7℃C. 7℃D. ﹣9℃6.计算:﹣1﹣1的值为()A. 0B. -1C. -2D. -37.计算:1﹣1×(﹣3)=()A. 0B. 4C. -4D. 58.下列计算正确的是()A.2 3 =6B.﹣4 2 =﹣16C.﹣8﹣8=0D.﹣5﹣2=﹣39.计算(﹣20)+16的结果是()A.4B.4C.﹣2016D.201610.马小虎做了6道题:①(﹣1) 2013 =﹣2013;②0﹣(﹣1)=1;③﹣+ =﹣;④ ÷(﹣)=﹣1;⑤2×(﹣3) 2 =36;⑥﹣3÷ ×2=﹣3.那么,他做对了()题.A. 1道B.2道C.3道D.4道二.填空题11.-6×0×10=________ .12.小芳在用计算器计算“14.9×73”时,发现计算器的小数点键坏了,你还能用这个计算器把正确的结果算出来吗?请把你想到的方法用算式表示出来:________ .13.若m<n<0,则(m+n)(m﹣n)________ 0.(填“<”、“>”或“=”)14.如图是一个计算程序,若输入的值为﹣1,则输出的结果应为________.15.为了求1+3+3 2 +3 3 +…+3 100 的值,可令M=1+3+3 2 +3 3 +…+3 100 ,则3M=3+3 2 +3 3 +…+3 101 ,因此3M﹣M=3 101 ﹣1,所以M= ,即1+3+32 +3 3 +…+3 100 = ,仿照以上推理计算:1+5+5 2 +5 3 +…+5 2016 的值是________.16.计算:﹣5÷ ×5=________,(﹣1) 2000 ﹣0 2015 +(﹣1) 2016 =___ _,(﹣2) 11 +(﹣2) 10 =________.17.规定a*b=5a+2b﹣1,则(﹣3)*7的值为________ .三.解答题18.一个病人每天下午需要测量一次血压,下表是该病人周一至周五高压变化情况,该病人上个周日的高压为160单位.星期一二三四五高压的变化(与前一天比较)升25单位降15单位升13单位升15单位降20单位(1)该病人哪一天的血压最高?哪一天血压最低?(2)与上周比,本周五的血压是升了还是降了?19.你吃过“手拉面”吗?如果把一个面团拉开,然后对折,再拉开,再对折,……如此往复下去,对折10次,会拉出多少根面条?20.用简便方法计算:(﹣﹣+ )÷(﹣).21.小强有5张卡片写着不同的数字的卡片,他想从中取出2张卡片,使这2张卡片上数字乘积最大.(1)使数字的积最小,应如何抽?最小积是多少?(2)使数字的积最大,应如何抽?最大积是多少?22.(1)计算下列各题:①2 2 ×3 2 与(2×3) 2 ;②(﹣2) 4 ×3 4 与(﹣2×3) 4 ;③2 7 ×2与2 8 .(2)比较(1)中的结果,由此可以推断a n ×b n (a×b) n , a n+1 a n ×a.(3)试根据(2)的结论,不用计算器计算0.125 2010 ×8 2011 的值.23.已知|x|=3,y 2 =4,且x+y<0,求的值.答案一. 1.A 【解析】(﹣)×(﹣2)=1.故选A.2.C 【解析】原式=﹣1× × =﹣.故选C.3.A 【解析】(﹣1) 2015 =﹣1.故选A.4.A 【解析】根据题意,得=2×(﹣4)﹣(﹣3)×1=﹣8+3=﹣5.故选A.5.A 【解析】 8﹣(﹣1)=9(℃).故选:A.6.C 【解析】﹣1﹣1=﹣2.故选C.7.B 【解析】 1﹣1×(﹣3)=1﹣(﹣3)=4.故选:B.8.B 【解析】 A、2 3 =8≠6,错误; B、﹣4 2 =﹣16,正确;C、﹣8﹣8=﹣16≠0,错误;D、﹣5﹣2=﹣7≠﹣3,错误.故选B.9.A 【解析】(﹣20)+16 =﹣(20﹣16)=﹣4.故选A.10.C 【解析】因为(﹣1) 2013 =﹣1,所以①不正确;因为0﹣(﹣1)=1,所以②正确;因为﹣+ =﹣,所以③正确;因为÷(﹣)=﹣1,所以④正确;因为2×(﹣3) 2 =18,所以⑤不正确;因为﹣3÷ ×2=﹣12,所以⑥不正确.综上,可得他做对了3题:②、③、④.故选C.二. 11. 0 【解析】原式=0×(-10)=0,0和任何数相乘都等于0.12. 149÷10×73 【解析】根据题意得:149÷10×73.13. >【解析】解:因为m<n<0,所以m+n<0,m﹣n<0,所以(m+n)(m﹣n)>0.故答案是>.14. 7 【解析】依题意,所求代数式为(a 2 ﹣2)×(﹣3)+4=[(﹣1) 2 ﹣2]×(﹣3)+4=[1﹣2]×(﹣3)+4=﹣1×(﹣3)+4=3+4=7.15. 【解析】设M=1+5+5 2 +5 3 +…+5 2016 ,则5M=5+5 2 +5 3 +54 …+5 2017 ,两式相减得:4M=5 2017 ﹣1,则M= .16.﹣125;2;﹣2 10 【解析】原式=﹣5×5×5=﹣125,原式=1﹣0+1=2,原式=(﹣2) 10 ×(﹣2+1)=﹣2 10 .故答案为:﹣125;2;﹣2 1017. -2 【解析】(﹣3)*7 =5×(﹣3)+2×7﹣1=﹣15+14﹣1=﹣2.18. 8 【解析】因为a+8+b﹣5=8+b﹣5+c=b﹣5+c+d=﹣5+c+d+4,所以a+8+b﹣5=8+b﹣5+c①,8+b﹣5+c=b﹣5+c+d②,b﹣5+c+d=﹣5+c+d+4③,所以a﹣5=c﹣5,8+c=c+d,b﹣5=﹣5+4,所以b=4,d=8,a=c.故答案为8.三. 19. 【解】(1)因为第一天,185;第二天,170;第三天,183;第四天,198;第五天,178,所以该病人周四的血压最高,周二的血压最低低;(2)因为+25﹣15+13+15﹣20=18,所以与上周比,本周五的血压升了.20. 【解】对折一次拉出的面条根数是,2 1 =2 ;对折二次拉出的面条根数是,2 2 =4 ;对折三次拉出的面条根数是,2 3 =8 ;……对折10次拉出的面条根数是,2 10 =1024 ;所以对折10次,会拉出1024根面条.21. 【解】原式=(﹣﹣+ )×(﹣36)=16+15﹣6=25.22. 【解】(1)抽取﹣8和4,数字的积最小,﹣8×4=﹣32;(2)抽取﹣8和﹣3.5,数字的积最大,﹣8×(﹣3.5)=28.23. 【解】(1)①2 2 ×3 2 =36,(2×3) 2 =36;②(﹣2) 4 ×3 4 =1296,(﹣2×3) 4 =1296;③2 7 ×2=256,2 8 =256;(2)由(1)可以推断a n ×b n =(a×b) n , a n+1 =a n ×a;(3)0.125 2010 ×8 2011 =(18×8) 2010 ×8=8.24. 【解】因为|x|=3,y 2 =4,所以x=±3,y=±2.因为x+y<0,所以当x=﹣3时,y=2或x=﹣3,y=﹣2,所以当x=﹣3,y=2时,=﹣;当x=﹣3,y=﹣2时,= .第 4 章检测卷一 . 选择题1. 为了了解我市城区某一天的气温变化情况,应选择()A. 条形统计图B. 折线统计图C. 扇形统计图D. 以上图形均可2. 要了解一批电视机的使用寿命,从中任意抽取 40 台电视机进行试验,在这个问题中,样本是()A. 每台电视机的使用寿命B. 40 台电视机C. 40 台电视机的使用寿命D. 403. 如图的两个统计图,女生人数多的学校是()(第 3 题图)A. 甲校B. 乙校C. 甲、乙两校女生人数一样多D. 无法确定4. 八年级( 1 )班有 60 位学生,秋游前,班长把全班学生对秋游地点的意向绘制成了扇形统计图,其中想去“动物园”的学生数的扇形的圆心角为 60 °,则下列说法正确的是()A. 想去动物园的学生占全班学生的 60%B. 想去动物园的学生有 36 人C. 想去动物园的学生肯定最多D. 想去动物园的学生占全班学生的5. 某市从参加数学质量检测的 4355 名学生中,随机抽取了部分学生的成绩为研究对象,结果如表所示:分数段0 ~ 60 60 ~ 72 72 ~ 84 84 ~ 96 96 ~ 108 108 ~ 120 人数(人) 5 8 35 42 15百分比20% 40%则被抽取的学生人数是()A. 70 人B. 105 人C. 175 人D. 200 人6. 下列调查中,适宜采用全面调查(普查)方式的是()A. 调查长江流域的水污染情况B. 调查重庆市民对中央电视台 2016 年春节联欢晚会的满意度C. 为保证我国首艘航母“瓦良格”的成功试航,对其零部件进行检查D. 调查一批新型节能灯泡的使用寿命7. 今天我们全区约 1500 名初二学生参加数学考试,拟从中抽取 300 名考生的数学成绩进行分析,则在该调查中,样本指的是()A. 300 名考生的数学成绩B. 300C. 1500 名考生的数学成绩D. 300 名考生8. 为直观反映某种股票的涨跌情况,选择()最合适.A. 扇形统计图B. 条形统计图C. 折线统计图D. 统计表9. 下列调查中,其中适合采用抽样调查的是()①检测深圳的空气质量;②为了解某中东呼吸综合征( MERS )确诊病人同一架飞机乘客的健康情况;③为保证“神舟 9 号”成功发射,对其零部件进行检查;④调查某班 50 名同学的视力情况.A. ①B. ②C. ③D. ④10. 某校对学生上学方式进行了一次抽样调查,如图是根据此次调查结果所绘制的一个未完成的扇形统计图,已知该校学生共有 2560 人,被调查的学生中骑车的有21 人,则下列四种说法中,不正确的是()(第 10 题图)A. 被调查的学生有 60 人B. 被调查的学生中,步行的有 27 人C. 估计全校骑车上学的学生有 1152 人D. 扇形图中,乘车部分所对应的圆心角为 54 °二 . 填空题11. 小亮对 60 名同学进行节水方法选择的问卷调查(每人选择一项),人数统计如图,如果绘制成扇形统计图,那么表示“一水多用”的扇形圆心角的度数是________ .(第 11 题图)12. 如图是某城市 2010 年以来绿化面积变化折线图,根据图中所给信息可知,2011 年、 2012 年、 2013 年这三年中,绿化面积增加最多的是年.(第 12 题图)13. 清明期间,某校师生组成 200 个小组参加“保护环境,美化家园”植树活动.综合实际情况,校方要求每小组植树量为 2 至 5 棵,活动结束后,校方随机抽查了其中 50 个小组,根据他们的植树量绘制出如图所示的两幅不完整统计图.请根据图中提供的信息,解答下面的问题:(第 13 题图)( 1 )请把条形统计图补充完整,并算出扇形统计图中,植树量为“ 5 棵树”的圆心角是 °.( 2 )请你帮学校估算此次活动共种 ________ 棵树.14. 根据环保公布的重庆市 2014 年至 2015 年 PM2.5 的主要来源的数据,制成扇形统计图,其中所占百分比最大的主要来源是 ________ (观察图形填主要来源的名称).(第 14 题图)15. 调查某城市的空气质量,应选择(填抽样或全面)调查.16. 从某市不同职业的居民中抽取 200 户调查各自的年消费额,在这个问题中样本是 ________.17. 为了考察某区 3500 名毕业生的数学成绩,从中抽出 20 本试卷,每本 30 份,在这个问题中,样本容量是 ________ .18. 某市为了了解七年级学生的身体素质情况,随机抽取了 500 名七年级学生进行检测,身体素质达标率为 92% ,请你估计该市 6 万名七年级学生中,身体素质达标的大约有 ________ 万人.三 . 解答题19. 某市为了了解七年级学生的身体素质情况,随机抽取了本市七年级部分学生的身体素质测试成绩为样本,按 A (优秀)、 B (良好)、 C (合格)、 D (不合格)四个等级进行统计,并将统计结果绘制成如图的统计图表,请你结合图表所给的信息解答下列问题:等级 A (优秀) B (良好) C (合格) D (不及格)人数80 200 160 60(1)请你根据图表中的信息计算出所抽取的样本容量是多少;( 2 )请将表格中缺少的数据补充完整;( 3 )如果本市共有 50000 名七年级学生,试估计出合格以上(包括合格)的学生有多少人.(第 19 题图)20. 从 2013 年 1 月 7 日起,中国中东部大部分地区持续出现雾霾天气,某市记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表.组别观点频数(人数)A 大气气压低,空气不流动80B 地面灰尘大,空气湿度低mC 汽车尾气排放nD 工厂造成污染120E 其他60请根据图表中提供的信息解答下列问题:(Ⅰ)求接受调查的总人数;(Ⅱ) m 、 n 各等于多少?扇形统计图中 E 组所占的百分比是多少?(Ⅲ)若该市人口约有 100 万人,请你估计其中持 D 组“观点”的市民人数.(第 20 题图)21. 三名同学想了解所在城市的小学生是否感觉学习压力大,他们各自提出了自己的调查设想.甲:周末去公园,随机询问 10 个小学生,就可以知道大致情况了.乙:我有个弟弟,正在上小学,成绩中等,问问他就可以了解绝大部分学生的感受了.丙:我妈妈是小学老师,向她询问就可以了.你觉得这三位同学提出的调查方式,能比较客观地反映“他们所在城市的小学生是否感觉学习压力大”吗?为什么?22. 小华在 A 班随机询问了 30 名同学,其中有 10 人患有近视,他又在同年级的 B 班询问了 2 名同学,发现其中有 1 人患有近视,于是,他认为 B 班的近视率比 A 班高,你同意他的观点吗?23. 某学生组织全体学生参加了“走出校门,服务社会”的活动,八年级一班同学统计了该天本班学生打扫街道,去敬老院服务和到社区文艺演出的人数,并做了如下直方图和扇形统计图.请根据该班同学所作的两个图形解答:( 1 )八年级一班有多少名学生?( 2 )求去敬老院服务的学生人数,并补全直方图的空缺部分.( 3 )若八年级有 800 名学生,估计该年级去敬老院的人数.(第 23 题图)24. 某校为了解九年级学生近两个月“推荐书目”的阅读情况,随机抽取了该年级的部分学生,调查了他们每人“推荐书目”的阅读本数.设每名学生的阅读本数为 n ,并按以下规定分为四档:当 n < 3 时,为“偏少”;当3 ≤ n < 5 时,为“一般”;当 5 ≤ n < 8 时,为“良好”;当n ≥ 8 时,为“优秀”.将调查结果统计后绘制成不完整的统计图表:阅读本数 n (本) 1 2 3 4 5 6 7 8 9 人数(名) 1 2 6 7 12 x 7 y 1请根据以上信息回答下列问题:( 1 )求出本次随机抽取的学生总人数;( 2 )分别求出统计表中的 x , y 的值;( 3 )估计该校九年级 400 名学生中为“优秀”档次的人数.(第 23 题图)答案一 . 1.B 【解析】天气的温度变化会随着每天的基本情况进行变化,故,只有折线统计图适合题意。
数学七年级上册全册单元试卷测试卷(含答案解析)
数学七年级上册全册单元试卷测试卷(含答案解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.在数轴上、两点分别表示有理数和,我们用表示到之间的距离;例如表示7到3之间的距离.(1)当时,的值为________.(2)如何理解表示的含义?(3)若点、在0到3(含0和3)之间运动,求的最小值和最大值.【答案】(1)5或-3(2)解:∵ = ,∴表示到-2的距离(3)解:∵点、在0到3(含0和3)之间运动,∴0≤a≤3, 0≤b≤3,当时, =0+2=2,此时值最小,故最小值为2;当时, =2+5=7,此时值最大,故最大值为7【解析】【解答】(1)∵,∴a=5或-3;故答案为:5或-3;【分析】(1)此题就是求表示数a的点与表示数1的点之间的距离是4,根据表示数a的点在表示数1的点的右边与左边两种情况考虑即可得出答案;(2)此题就是求表示数b的点与表示数-2的点之间的距离;(3)此题就是求表示数a的点与表示数2的点之间的距离及表示数b的点与表示数-2的点之间的距离和,而0≤a≤3, 0≤b≤3, 借助数轴当时,的值最小;当时,的值最大.2.把一副三角板放成如图所示.(1)当OD平分∠AOB时,求∠COB;(2)若摆成如图2,OB、OD重合,OM平分∠AOD,ON平分∠AOC,求∠MON;(3)将三角板OCD绕O点旋转,把OD旋转到∠AOB的内部或外部,(2)中的条件不变,试问∠MON的角度是否变化?若不变,求出它的值,并说理由.【答案】(1)解:∵OD平分∠AOB,∠AOB=90°∴∠DOB=∠AOB=45°∵∠DOC=30°∴∠COB=∠DOB-∠DOC=45°-30°=15°(2)解:如图,∵OM平分∠AOD,ON平分∠AOC∴∠MOA=∠AOD=45°∠AON=∠AOC=(90°+30°)=60°∴∠MON=∠AON-∠AOM=60°-45°=15°(3)解:把OD旋转到∠AOB的内部时,如图,∵OM平分∠AOD,ON平分∠AOC∴∠MOA=∠AOD=(90°-∠BOD)=45°-∠BOD∠AON=∠AOC=(∠AOB+∠COD-∠BOD)=60°-∠BOD∴∠MON=∠AON-∠MOA=15°把OD旋转到∠AOB的外部时,如图,设∠AOC=α,则∠AOD=360°-30°-α=330°-α∵OM平分∠AOD,ON平分∠AOC∴∠MOA=∠AOD=(330°-α)=165°-α∠AON=∠AOC=α∠MON=∠MOA+∠AON=165°-α+α=165°∴∠MON=15°或∠MON=165°【解析】【分析】(1)利用角平分线的定义求出∠DOB的度数,再根据∠COB=∠DOB-∠DOC,就可求出结果。
人教版七年级数学下册全册单元测试试卷及答案
第五章相交线与平行线检测题(时间:120分钟,满分:100分)一、选择题(每小题3分,共30分)1.下列命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中错误的有()A.1个B.2个C.3个D.4个2.点P是直线l外一点,,且PA=4 cm,则点P到直线l的距离()A.小于4 cm B.等于4 cm C.大于4 cm D.不确定3.如图,点在延长线上,下列条件中不能判定的是()A.∠1=∠2 B.∠3=∠4C.∠5=∠D.∠+∠BDC=180°第3题图第4题图第5题图4.如图,,∠3=108°,则∠1的度数是()A.72°B.80°C.82°D.108°5.如图,BE平分∠ABC,DE∥BC,图中相等的角共有()A.3对B.4对C.5对D.6对6.如图,AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.1个B.2个C.3个D.4个第6题图第8题图7.在以下现象中:①用打气筒打气时,气筒里活塞的运动;②传送带上,瓶装饮料的移动;③在笔直的公路上行驶的汽车;④随风摆动的旗帜;⑤钟摆的摆动.属于平移的是()A.①B.①②C.①②③D.①②③④8.如图,DH∥EG∥BC,DC∥EF,那么与∠DCB相等的角(不包括∠EFB)的个数为()A.2个B.3个C.4个D.5个9. 点P是直线l外一点,A、B、C为直线l上的三点,PA=4 cm,PB=5 cm,PC=2 cm,则点P 到直线l的距离()A.小于2 cm B.等于2 cmC.不大于2 cm D.等于4 cm10. 两平行直线被第三条直线所截,同位角的平分线()A.互相重合B.互相平行C.互相垂直D.相交二、填空题(共8小题,每小题3分,满分24分)11.如图,直线a、b相交,∠1=,则∠2=.第11题图12.如图,当剪子口∠AOB增大15°时,∠COD增大.第12题图第13题图第14题图13.如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是 .14.如图,直线AB,CD,EF相交于点O,且AB⊥CD,∠1与∠2的关系是.15.如图,D是AB上一点,CE∥BD,CB∥ED,EA⊥BA于点A,若∠ABC=38°,则∠AED= .第15题图第16题图16.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,则∠2= .17.如图,直线a∥b,则∠ACB= .第17题图第18题图18.如图,一个宽度相等的纸条按如图所示方法折叠一下,则∠1= .三、解答题(共6小题,满分46分)19.(7分)读句画图:如图,直线CD与直线AB相交于C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.第19题图20.(7分)如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1,则小鱼的面积为;(2)画出小鱼向左平移3格后的图形.(不要求写作图步骤和过程)第20题图21.(8分)已知:如图,∠BAP+∠APD =,∠1 =∠2.求证:∠E =∠F.第21题图22.(8分)已知:如图,∠1 =∠2,∠3 =∠4,∠5 =∠6.求证:ED//FB.第22题图23.(8分)如图,CD平分∠ACB,DE∥BC,∠AED=80°,求∠EDC的度数.第23题图24.(8分)如图,已知AB∥CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.第24题图第五章检测题答案1.B 解析:①是正确的,对顶角相等;②正确,在同一平面内,垂直于同一条直线的两直线平行;③错误,角平分线分成的两个角相等但不是对顶角;④错误,同位角只有在两直线平行的情况下才相等.故①②正确,③④错误,所以错误的有两个,故选B.2. B 解析:根据点到直线的距离为点到直线的垂线段长(垂线段最短),所以点P到直线l的距离等于4 cm,故选C.3. A 解析:选项B中,∵∠3=∠4,∴AB∥CD(内错角相等,两直线平行),故正确;选项C中,∵∠5=∠B,∴AB∥CD(内错角相等,两直线平行),故正确;选项D中,∵∠B+∠BDC=180°,∴AB∥CD(同旁内角互补,两直线平行),故正确;而选项A中,∠1与∠2是直线AC、BD被AD所截形成的内错角,∵∠1=∠2,∴AC∥BD,故A错误.选A.4. A 解析:∵a∥b,∠3=108°,∴∠1=∠2=180°∠3=72°.故选A.5. C 解析:∵DE∥BC,∴∠DEB=∠EBC,∠ADE=∠ABC,∠AED=∠ACB.又∵BE平分∠ABC,∴∠ABE=∠EBC.即∠ABE=∠DEB.所以图中相等的角共有5对.故选C.6. C 解析:∵AB∥CD,∴∠ABC=∠BCD.设∠ABC的对顶角为∠1,则∠ABC=∠1.又∵AC⊥BC,∴∠ACB=90°,∴∠CAB+∠ABC=∠CAB+∠BCD=∠CAB+∠1=90°,因此与∠CAB互余的角为∠ABC,∠BCD,∠1.故选C.7. C 解析:①用打气筒打气时,气筒里活塞沿直线运动,符合平移的性质,故属平移;②传送带上,瓶装饮料的移动沿直线运动,符合平移的性质,故属平移;③在笔直的公路上行驶的汽车沿直线运动,符合平移的性质,故属平移;④随风摆动的旗帜,在运动的过程中改变图形的形状,不符合平移的性质;⑤钟摆的摆动,在运动的过程中改变图形的方向,不符合平移的性质.故选C.8. D 解析:如题图,∵DC∥EF,∴∠DCB=∠EFB.∵DH∥EG∥BC,∴∠GEF=∠EFB,∠DCB=∠HDC,∠DCB=∠CMG=∠DME,故与∠DCB相等的角共有5个.故选D.9. C 解析:根据点到直线的距离为点到直线的垂线段长(垂线段最短),又2<4<5,∴点P到直线l的距离小于等于2,即不大于2,故选C.10. B 解析:∵两平行直线被第三条直线所截,同位角相等,∴它们角的平分线形成的同位角相等,∴同位角相等的平分线平行.故选B.二、填空题11. 144°解析:由图示得,∠1与∠2互为邻补角,即∠1+∠2=180°.又∵∠1=36°,∴∠2=180°36°=144°.12. 15°解析:因为∠AOB与∠COD是对顶角,∠AOB与∠COD始终相等,所以随∠AOB变化,∠COD也发生同样变化.故当剪子口∠AOB增大15°时,∠COD也增大15°.13. 垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短解析:根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,∴沿AB开渠,能使所开的渠道最短.14. ∠1+∠2=90°解析:∵直线AB、EF相交于O点,∴∠1=∠DOF.又∵AB⊥CD,∴∠2+∠DOF=90°,∴∠1+∠2=90°.15. 52°解析:∵EA⊥BA,∴∠EAD=90°.∵CB∥ED,∠ABC=38°,∴∠EDA=∠ABC=38°,∴∠AED=180°∠EAD∠EDA=52°.16. 54°解析:∵AB∥CD,∴∠BEF=180°∠1=180°72°=108°,∠2=∠BEG.又∵EG平分∠BEF,∴∠BEG=∠BEF=×108°=54°,故∠2=∠BEG=54°.17. 78°解析:延长BC与a相交于D,∵a∥b,∴∠ADC=∠50°.∴∠ACB=∠ADC +28°=50°+28°=78°.故应填78°.18. 65°解析:根据题意得2∠1与130°角相等,即2∠1=130°,解得∠1=65°.故填65°.三、解答题19.解:(1)(2)如图所示.(3)∠PQC =60°. ∵ PQ ∥CD ,∴ ∠DCB +∠PQC =180°. ∵ ∠DCB =120°,∴ ∠PQC =180°120°=60°. 20. 解:(1)小鱼的面积为7×6121 ×5×6121 ×2×5121 ×4×2121 ×1.5×121×21×11=16.(2)将每个关键点向左平移3个单位,连接即可.21.证明:∵ ∠BAP +∠APD = 180°,∴ AB ∥CD . ∴ ∠BAP =∠APC . 又∵ ∠1 =∠2,∴ ∠BAP −∠1 =∠APC −∠2. 即∠EAP =∠APF . ∴ AEF ∥P . ∴ ∠E =∠F . 22.证明:∵ ∠3 =∠4,∴ AC ∥BD .∴ ∠6+∠2+∠3 = 180°. ∵ ∠6 =∠5,∠2 =∠1, ∴ ∠5+∠1+∠3 = 180°. ∴ ED ∥FB .23. 解:∵ DE ∥BC ,∠AED =80°, ∴ ∠ACB =∠AED =80°. ∵ CD 平分∠ACB , ∴ ∠BCD =21∠ACB =40°, ∴ ∠EDC =∠BCD =40°.24. 解:∵ AB ∥CD ,∴ ∠B +∠BCE =180°(两直线平行同旁内角互补). ∵ ∠B =65°,∴ ∠BCE =115°. ∵ CM 平分∠BCE ,∴ ∠ECM =21∠BCE =57.5°, ∵ ∠ECM +∠MCN +∠NCD =180°,∠MCN =90°,∴ ∠NCD =180°-∠ECM -∠MCN =180°-57.5°-90°=32.5°.第六章《实数》水平测试题班级 学号 姓名 成绩一、选择题 (每题3分,共30分。
人教版七年级数学上册全册单元试卷测试卷附答案
人教版七年级数学上册全册单元试卷测试卷附答案一、初一数学上学期期末试卷解答题压轴题精选(难)1.点O为直线AB上一点,过点O作射线OC,使∠BOC=65°,将一直角三角板的直角顶点放在点O处.(1)如图①,将三角板MON的一边ON与射线OB重合时,则∠MOC=________;(2)如图②,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的角平分线,求旋转角∠BON和∠CON的度数;(3)将三角板MON绕点O逆时针旋转至图③时,∠NOC=∠AOM,求∠NOB的度数.【答案】(1)25°(2)解:∠BOC=65°,OC平分∠MOB∠MOB=2∠BOC=130°∠BON=∠MOB-∠MON=130°-90°=40°∠CON=∠COB-∠BON=65°-40°=25°(3)解:∠NOC= ∠AOM ∠AOM=4∠NOC ∠BOC=65°∠AOC=∠AOB-∠BOC=180°-65°=115°∠MON=90°∠AOM+∠NOC=∠AOC-∠MON=115°-90°=25°4∠NOC+∠NOC=25°∠NOC=5°∠NOB=∠NOC+∠BOC=70°【解析】【解答】解:(1)∠MON=90,∠BOC=65°∠MOC=∠MON-∠BOC=90°-65°=25°【分析】(1)根据∠MON和∠BOC的度数可以得到∠MON的度数;(2)根据角平分线的性质,由∠BOC=65°,可以求得∠BOM的度数,然后由∠NOM-90°,可得∠BON的度数,从而得解;(3)由∠BOC=65°,∠NOM=90°,∠NOC= ∠AOM,从而可求得∠NOC的度数,然后由∠BOC=65°,从而得解.2.数轴上A, B, C, D四点表示的有理数分别为1, 3, -5, -8(1)计算以下各点之间的距离:①A、B两点, ②B、C两点,③C、D两点,(2)若点M、N两点所表示的有理数分别为m、n,求M、N两点之间的距离.【答案】(1)AB=3-1=2;BC=3-(-5)=8;CD=-5-(-8)=-5+8=3.(2)MN=【解析】【分析】(1)数轴上两点间的距离等于数值较大的数减去数值较小的数,据此计算即可;(2)因为m、n的大小未知,则M、N两点间的距离为它们所表示的有理数之差的绝对值.3.已知:O是直线AB上的一点,是直角,OE平分.(1)如图1.若.求的度数;(2)在图1中,,直接写出的度数(用含a的代数式表示);(3)将图1中的绕顶点O顺时针旋转至图2的位置,探究和的度数之间的关系.写出你的结论,并说明理由.【答案】(1)解:∵是直角,,,,∵OE平分,,.(2)解:是直角,,,,∵OE平分,,(3)解:,理由是:,OE平分,,,,,即【解析】【分析】(1)根据平角的定义得出∠BOD,∠COB的度数,根据角平分线的定义得出∠BOE=∠BOC=75°,根据角的和差,由∠DOE=∠BOE−∠BOD即可算出答案;(2)根据平角的定义得出∠BOD90°−a ,∠COB180°−a ,根据角平分线的定义得出∠BOE=∠BOC=90°−a,根据角的和差,由∠DOE=∠BOE−∠BOD即可算出答案;(3)∠AOC=2∠DOE ,根据平角的定义得出∠BOC=180°−∠AOC,根据角平分线的定义得出∠BOE=∠BOC=90°−∠AOC ,根据角的和差得出∠BOD=90°−∠BOC=90°−(180°−∠AOC)=∠AOC−90° ,∠DOE=∠BOD+∠BOE,再整体替换即可得出答案。
人教版七年级上册数学全册单元试卷测试题(Word版 含解析)
人教版七年级上册数学全册单元试卷测试题(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知,,点E是直线AC上一个动点(不与A,C重合),点F是BC边上一个定点,过点E作,交直线AB于点D,连接BE,过点F作,交直线AC于点G.(1)如图①,当点E在线段AC上时,求证:.(2)在(1)的条件下,判断这三个角的度数和是否为一个定值?如果是,求出这个值,如果不是,说明理由.(3)如图②,当点E在线段AC的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.(4)当点E在线段CA的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.【答案】(1)解:∵∴∵∴∴(2)解:这三个角的度数和为一个定值,是过点G作交BE于点H∴∵∴∴∴即(3)解:过点G作交BE于点H∴∵∴∴∴即故的关系仍成立(4)不成立| ∠EGF-∠DEC+∠BFG=180°【解析】【解答】解:(4)过点G作交BE于点H∴∠DEC=∠EGH∵∴∴∠HGF+∠BFG=180°∵∠HGF=∠EGF-∠EGH∴∠HGF=∠EGF-∠DEC∴∠EGF-∠DEC+∠BFG=180°∴(2)中的关系不成立,∠EGF、∠DEC、∠BFG之间关系为:∠EGF-∠DEC+∠BFG=180°故答案为:不成立,∠EGF-∠DEC+∠BFG=180°【分析】(1)根据两条直线平行,内错角相等,得出;两条直线平行,同位角相等,得出,即可证明.(2)过点G作交BE于点H,根据平行线性质定理,,,即可得到答案.(3)过点G作交BE于点H,得到,因为,所以,得到,即可求解.(4)过点G作交BE于点H,得∠DEC=∠EGH,因为,所以,推得∠HGF+∠BFG=180°,即可求解.2.如图1,已知∠MON=140°,∠AOC与∠BOC互余,OC平分∠MOB,(1)在图1中,若∠AOC=40°,则∠BOC=°,∠NOB=°.(2)在图1中,设∠AOC=α,∠NOB=β,请探究α与β之间的数量关系(必须写出推理的主要过程,但每一步后面不必写出理由);(3)在已知条件不变的前提下,当∠AOB绕着点O顺时针转动到如图2的位置,此时α与β之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出此时α与β之间的数量关系.【答案】(1)解:如图1,∵∠AOC与∠BOC互余,∴∠AOC+∠BOC=90°,∵∠AOC=40°,∴∠BOC=50°,∵OC平分∠MOB,∴∠MOC=∠BOC=50°,∴∠BOM=100°,∵∠MON=40°,∴∠BON=∠MON-∠BOM=140°-100°=40°,(2)解:β=2α-40°,理由是:如图1,∵∠AOC=α,∴∠BOC=90°-α,∵OC平分∠MOB,∴∠MOB=2∠BOC=2(90°-α)=180°-2α,又∵∠MON=∠BOM+∠BON,∴140°=180°-2α+β,即β=2α-40°;(3)解:不成立,此时此时α与β之间的数量关系为:2α+β=40°,理由是:如图2,∵∠AOC=α,∠NOB=β,∴∠BOC=90°-α,∵OC平分∠MOB,∴∠MOB=2∠BOC=2(90°-α)=180°-2α,∵∠BOM=∠MON+∠BON,∴180°-2α=140°+β,即2α+β=40°,答:不成立,此时此时α与β之间的数量关系为:2α+β=40.【解析】【分析】(1)先根据余角的定义计算∠BOC=50°,再由角平分线的定义计算∠BOM=100°,根据角的差可得∠BON的度数;(2)同理先计算∠MOB=2∠BOC=2(90°-α)=180°-2α,再根据∠BON=∠MON-∠BOM列等式即可;(3)同理可得∠MOB=180°-2α,再根据∠BON+∠MON=∠BOM列等式即可.3.如图,在数轴上有三个点A、B、C,完成下列问题:(1)将点B向右移动六个单位长度到点D,在数轴上表示出点D.(2)在数轴上找到点E,使点E为BA的中点(E到A、C两点的距离相等),井在数轴上标出点E表示的数,求出CE的长.(3)O为原点,取OC的中点M,分OC分为两段,记为第一次操作:取这两段OM、CM 的中点分别为了N1、N2,将OC分为4段,记为第二次操作,再取这两段的中点将OC分为8段,记为第三次操作,第六次操作后,OC之间共有多少个点?求出这些点所表示的数的和.【答案】(1)解:如图所示,(2)解:如图所示,点E表示的数为:﹣3.5,∵点C表示的数为:4,∴CE=4﹣(﹣3.5)=7.5(3)解:∵第一次操作:有3=(21+1)个点,第二次操作,有5=(22+1)个点,第三次操作,有9=(23+1)个点,∴第六次操作后,OC之间共有(26+1)=65个点;∵65个点除去0有64个数,∴这些点所表示的数的和=4×()=130.【解析】【分析】(1)根据数轴上的点移动时的大小变化规律“左减右加”即可求解;(2)根据题意和数轴上两点间的距离等于两坐标之差的绝对值即可求解;(3)由题意可得点数依次是2的指数次幂+1,再求和即可求解.4.如图,O是直线AB上一点,OD平分∠AOC.(1)若∠AOC=60°,请求出∠AOD和∠BOC的度数.(2)若∠AOD和∠DOE互余,且∠AOD= ∠AOE,请求出∠AOD和∠COE的度数.【答案】(1)解:∠AOD= ×∠AOC= ×60°=30°,∠BOC=180°﹣∠AOC=180°﹣60°=120°(2)解:∵∠AOD和∠DOE互余,∴∠AOE=∠AOD+∠DOE=90°,∴∠AOD= ∠AOE= ×90°=30°,∴∠AOC=2∠AOD=60°,∴∠COE=90°﹣∠AOC=30°【解析】【分析】(1)①由角平分线的定义可得:∠AOD=∠COD= ∠AOC即可求解;②由邻补角的定义可得:∠BOC+∠AOC= 180°,所以∠BOC= 180° -∠AOC即可求解;(2)①由互为余角的定义和图形可得∠AOE=∠AOD+∠DOE= 90°,所以∠AOD= ∠AOE 可求解;②由①可得∠AOD的度数,由角平分线的定义可得∠AOC=2∠AOD,所以∠COE=∠AOE-∠AOC,把∠AOE和∠AOC的度数代入计算即可求解。
七年级数学上册全册单元测试卷(提升篇)(Word版 含解析)
七年级数学上册全册单元测试卷(提升篇)(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知,,点E是直线AC上一个动点(不与A,C重合),点F是BC边上一个定点,过点E作,交直线AB于点D,连接BE,过点F作,交直线AC于点G.(1)如图①,当点E在线段AC上时,求证:.(2)在(1)的条件下,判断这三个角的度数和是否为一个定值?如果是,求出这个值,如果不是,说明理由.(3)如图②,当点E在线段AC的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.(4)当点E在线段CA的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.【答案】(1)解:∵∴∵∴∴(2)解:这三个角的度数和为一个定值,是过点G作交BE于点H∴∵∴∴∴即(3)解:过点G作交BE于点H∴∵∴∴∴即故的关系仍成立(4)不成立| ∠EGF-∠DEC+∠BFG=180°【解析】【解答】解:(4)过点G作交BE于点H∴∠DEC=∠EGH∵∴∴∠HGF+∠BFG=180°∵∠HGF=∠EGF-∠EGH∴∠HGF=∠EGF-∠DEC∴∠EGF-∠DEC+∠BFG=180°∴(2)中的关系不成立,∠EGF、∠DEC、∠BFG之间关系为:∠EGF-∠DEC+∠BFG=180°故答案为:不成立,∠EGF-∠DEC+∠BFG=180°【分析】(1)根据两条直线平行,内错角相等,得出;两条直线平行,同位角相等,得出,即可证明.(2)过点G作交BE于点H,根据平行线性质定理,,,即可得到答案.(3)过点G作交BE于点H,得到,因为,所以,得到,即可求解.(4)过点G作交BE于点H,得∠DEC=∠EGH,因为,所以,推得∠HGF+∠BFG=180°,即可求解.2.将一副三角板放在同一平面内,使直角顶点重合于点O(1)如图①,若∠AOB=155°,求∠AOD、∠BOC、∠DOC的度数.(2)如图①,你发现∠AOD与∠BOC的大小有何关系?∠AOB与∠DOC有何关系?直接写出你发现的结论.(3)如图②,当△AOC与△BOD没有重合部分时,(2)中你发现的结论是否还仍然成立,请说明理由.【答案】(1)解:∵而同理:∴∴(2)解:∠AOD与∠BOC的大小关系为:∠AOB与∠DOC存在的数量关系为:(3)解:仍然成立.理由如下:∵又∵∴【解析】【分析】(1)先计算出再根据(2)根据(1)中得出的度数直接写出结论即可.(3)根据即可得到利用周角定义得∠AOB+∠COD+∠AOC+∠BOD=360°,而∠AOC=∠BOD=90°,即可得到∠AOB+∠DOC=180°.3.如图1,已知∠AOB=120°,∠COD=60°,OM在∠AOC内,ON在∠BOD内,∠AOM=∠AOC,∠BON=∠BOD.(1)∠COD从图1中的位置绕点O逆时针旋转到OC与OB重合时,如图2,∠MON=________°;(2)∠COD从图2中的位置绕点O逆时针旋转n°(0<n<120且n≠60),求∠MON的度数;(3)∠COD从图2中的位置绕点O顺时针旋转n°(0<n<120),则n=________时,∠MON=2∠BOC.【答案】(1)100(2)解:①当0<n<60°时,∠AOC=∠AOB-∠BOC=120°-n,∠BOD=60°-n,∴∠MON=∠MOC+∠COB+∠BON= ∠AOC+n+ ∠BOD= (120°-n)+n+ (60°-n)=100°;②当60°<n<120°时,∠AOC=120°-n,∠COD=60°,∠BOD=n-60°,∠MOC= ∠AOC,∠DON= ∠BOD,∴∠MON=∠MOC+∠COD+∠DON= (120°-n)+60°+ (n-60°)=100°.综上所述:∠MON的度数恒为100°(3)解:①当0<n<60°时,∠BOC=n,∠MON=2n,∴∠MON= (120°+n)+60°-(60°+n)=100°;解得:n=50°;②当60°<n<120°时,∠AOC=360°-(120°+n)=240°-n,∠BOD=60°+n,∴∠MON=360°-∠AOM-∠AOB-∠BON=360°-(240°-n)-120°-(60°+n)=140°,解得:n=70°.综上所述:n=50°或70°【解析】【解答】解:(1)∠MON= ∠AOB+ ∠COD=100°;【分析】(1)由∠AOM=∠AOC,∠AOC= ∠AOB,∠AOC=∠AOM+∠MOC得出∠MOC= ∠AOB,又∠BON=∠BOD,从而由∠MON= ∠AOB+ ∠COD即可算出答案;(2)需要分类讨论:①当0<n<60°时,根据旋转的性质得出∠AOC=∠AOB-∠BOC=120°-n,∠BOD=60°-n,由∠MON=∠MOC+∠COB+∠BON整体替换再化简即可得出答案;②当60°<n<120°时,根据旋转的性质得出∠AOC=120°-n,∠COD=60°,∠BOD=n-60°,∠MOC= ∠AOC,∠DON= ∠BOD,由∠MON=∠MOC+∠COD+∠DON整体替换再化简即可得出答案;(3)分类讨论:①当0<n<60°时,∠BOC=n,∠MON=2n,又∠MON=∠MOB+∠BOC-∠NOC = (120°+n)+60°- (60°+n)=100°,从而列出方程,求解得出n的值;②当60°<n<120°时,∠BOC=n,∠MON=2n,∠AOC=360°-(120°+n)=240°-n,∠BOD=60°+n,又∠MON=360°-∠AOM-∠AOB-∠BON,从而整体整体代入化简并列出方程,求解即可。
七年级数学全册单元测试卷试卷(word版含答案)
七年级数学全册单元测试卷试卷(word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.将一副三角板放在同一平面内,使直角顶点重合于点O(1)如图①,若∠AOB=155°,求∠AOD、∠BOC、∠DOC的度数.(2)如图①,你发现∠AOD与∠BOC的大小有何关系?∠AOB与∠DOC有何关系?直接写出你发现的结论.(3)如图②,当△AOC与△BOD没有重合部分时,(2)中你发现的结论是否还仍然成立,请说明理由.【答案】(1)解:∵而同理:∴∴(2)解:∠AOD与∠BOC的大小关系为:∠AOB与∠DOC存在的数量关系为:(3)解:仍然成立.理由如下:∵又∵∴【解析】【分析】(1)先计算出再根据(2)根据(1)中得出的度数直接写出结论即可.(3)根据即可得到利用周角定义得∠AOB+∠COD+∠AOC+∠BOD=360°,而∠AOC=∠BOD=90°,即可得到∠AOB+∠DOC=180°.2.如图,数轴上点 A、B 到表示-2 的点的距离都为 6,P 为线段 AB 上任一点,C,D 两点分别从 P,B 同时向 A 点移动,且 C 点运动速度为每秒 2 个单位长度,D 点运动速度为每秒 3 个单位长度,运动时间为 t 秒.(1)A 点表示数为________,B 点表示的数为________,AB=________.(2)若 P 点表示的数是 0,①运动 1 秒后,求 CD 的长度;②当 D 在 BP 上运动时,求线段 AC、CD 之间的数量关系式.(3)若 t=2 秒时,CD=1,请直接写出 P 点表示的数.【答案】(1)-8;4;12(2)解:①运动一秒后,C点为-2,D点为1,所以CD=3;②当点D在BP上运动时, ,此时C在线段AP上,AC=8-2t,CD=2t+4-3t=4-t,所以AC=2CD(3)解:若 t=2秒时,D点为-2,若 CD=1,则 C=-3 或-1,①当 C=-3 时,CP=4,此时 P=1;②当 C=-1 时,P=3.【解析】【解答】解:⑴故答案为:-8;4;12;【分析】(1)由已知数轴上点 A、B 到表示-2 的点的距离都为 6 ,且点A在点B的左边,就可求出点A和点B表示的数,再利用两点间的距离公式求出AB的长。
人教版七年级数学上册全册单元试卷测试卷(含答案解析)
∴ ∠ BPN=1800-2t,
∠ CPD=3600-∠ DPB-∠ BPN-∠ NPA-∠ CPA=900-t,
∴ 【解析】【分析】(1)利用含有 30゜、60゜的三角板得出∠ DPC=180°-∠ CPA-∠ DPB,代 入计算即可;
( 2 ) 根 据 角 平 分 线 的 定 义 得 出 ∠ DPF= ∠ APD,∠ DPE= ∠ CPD , 根 据 角 的 和 差 得 出 APD=180°−30°−α=150°−α ,∠ CPD=180°−30°−60°−α=90°−α ,从而得出∠ DPF 及,∠ DPE 的度 数,最后根据 EPF=∠ DPF−∠ DPE 算出结果;
的度数;
(2)过点 O 作射线
,求
的度数.
【答案】 (1)解:
,
,
:
:3,
;
(2)解:
,
,
,
OF 在
的内部时,
,
,
,
OF 在
的内部时, ,
,
,
综上所述
或
【解析】【分析】(1)根据对顶角相等得出
, 然后根据
:
:3 即可算出∠ BOE 的度数;
华师大版数学七年级下册全册单元测试卷含答案
华师大版数学七年级下册全册单元测试卷含答案绝密★启用前初一数学一元一次方程单元测试评卷人得分一、选择题(每小题2分,共30分)1.下列方程中,是一元一次方程的是()(A)(B)(C)(D)2.在解方程-=1时,去分母正确的是A、3(x-1)-2(2+3x)=1B、3(x-1)-2(2x+3)=6C、3x-1-4x+3=1D、3x-1-4x+3=63.下列方程变形不正确的是()A、4x+8=0x+2=0B、x+5=3-3x4x=-2C、2x=15D、3x=-1x=-34.关于的方程的解是3,则的值是()A.4B.—4C.5D.—55.某工厂计划每天烧煤5吨,实际每天少烧2吨,吨煤多烧了20天,则可列的方程是()A.B.C.D.6.某个体户在一次买卖中同时卖出两件上衣,售价都是165元,若按成本价计算,其中一件盈利25%,另一件亏损25%,在这次买卖中他()A、赚22元B、赚36元C、亏22元D、不赚不亏.7.下列方程中,解是x=1的是()A.B.C.D.8.、若是一元一次方程,则m的值是()A.±1B.-1C.1D.29.某校一年级有64人,分成甲、乙、丙三队,其人数比为4:5:7。
若由外校转入1人加入乙队,则后来乙与丙的人数比为何?A.3:4B.4:5C.5:6D.6:710.下列方程中,一元一次方程的有()个。
①2x-3y=6②x2-5x+6=0③3(x-2)=1-2x④⑤3x-2(6-x)A.1B.2C.3D.411.方程2x+1=3与2-=0的解相同,则a的值是()A.7B.0C.3D.512.有m辆客车及n个人,若每辆乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①;②;③;④,其中正确的是().A.①②B.②④C.①③D.③④13.若与互为倒数,那么x的值等于()A.B.C.D.14.若代数式(a-1)x│a│+8=0是关于x的一元一次方程,则a的值为()A.-1B.0C.1D.1或-115.下面是一个被墨水污染过的方程:,答案显示此方程的解是x=-1,被墨水遮盖的是一个常数,则这个常数是A.1B.-1C.D.二、填空题(每小题3分,共30分)16.若方程2x-5=1和的解相同,则a=17..写出满足下列条件的一个一元一次方程:①未知数的系数是;②方程的解是3,这样的方程可以是:____________.18.若式子的值比式子的值少5,那么__________.19.若,,则的取值为_____________.20.小李在解方程(x为未知数)时,误将-x看作+x,解得方程的解,则原方程的解为___________________________。
人教版,初中七年级数学下册,全册各章,单元测试卷汇总,(附详细参考答案)
1
1
2
2
BPE=∠PAC+∠PBD,即∠APB=∠PAC+∠PBD.
若点 P 在 C、D 两点的外侧运动时(P 点与点 C、D 不重合),则有两种情形:
(1)如图 1,有结论:∠APB=∠PBD-∠PAC.理由是:过点 P 作 PE∥l ,则∠APE=∠ 1
PAC,又因为 l ∥l ,所以 PE∥l ,所以∠BPE=∠PBD,所以∠APB=∠BAE+∠APE,即∠APB
1. 下列运算正确的是( )
A. 9 3
B. 3 3 C. 9 3
2. 下列各组数中互为相反数的是(
)
D. 32 9
A.-2 与 (2)2 B.-2 与 38
C.-2 与 1 2
D.2 与 2
3. 下列实数 371, π,3.14159, 8 , 3 27 ,12 中无理数有(
)
A. 2 个
9. 81的平方根是
。
10. 在数轴上离原点距离是 5 的点表示的数是_________。
11. 化简: 2 3 3 =
。
12. 写出 1 到 2 之间的一个无理数___________。
13. 计算: (1)2009 9 3 8 =____________。
14. 当 x≤ 0 时,化简 1 x x2 的结果是 15. 若 0 x 1,则 x、x2、1x 、 x 中,最小的数是
13.观察图 7 中角的位置关系,∠1 和∠2 是______角,∠3 和∠1 是_____角,∠1•和∠4 是
_______角,∠3 和∠4 是_____角,∠3 和∠5 是______角.
12 3
5
4
李庄
A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学全册单元测试卷测试卷(解析版)一、初一数学上学期期末试卷解答题压轴题精选(难)1.数轴上A, B, C, D四点表示的有理数分别为1, 3, -5, -8(1)计算以下各点之间的距离:①A、B两点, ②B、C两点,③C、D两点,(2)若点M、N两点所表示的有理数分别为m、n,求M、N两点之间的距离.【答案】(1)AB=3-1=2;BC=3-(-5)=8;CD=-5-(-8)=-5+8=3.(2)MN=【解析】【分析】(1)数轴上两点间的距离等于数值较大的数减去数值较小的数,据此计算即可;(2)因为m、n的大小未知,则M、N两点间的距离为它们所表示的有理数之差的绝对值.2.在数轴上、两点分别表示有理数和,我们用表示到之间的距离;例如表示7到3之间的距离.(1)当时,的值为________.(2)如何理解表示的含义?(3)若点、在0到3(含0和3)之间运动,求的最小值和最大值.【答案】(1)5或-3(2)解:∵ = ,∴表示到-2的距离(3)解:∵点、在0到3(含0和3)之间运动,∴0≤a≤3, 0≤b≤3,当时, =0+2=2,此时值最小,故最小值为2;当时, =2+5=7,此时值最大,故最大值为7【解析】【解答】(1)∵,∴a=5或-3;故答案为:5或-3;【分析】(1)此题就是求表示数a的点与表示数1的点之间的距离是4,根据表示数a的点在表示数1的点的右边与左边两种情况考虑即可得出答案;(2)此题就是求表示数b的点与表示数-2的点之间的距离;(3)此题就是求表示数a的点与表示数2的点之间的距离及表示数b的点与表示数-2的点之间的距离和,而0≤a≤3, 0≤b≤3, 借助数轴当时,的值最小;当时,的值最大.3.如图,直线SN与直线WE相交于点O,射线ON表示正北方向,射线OE表示正东方向.已知射线OB的方向是南偏东m°,射线OC的方向是北偏东n°,且m+n=90°.(1)①若m=50,则射线OC的方向是________,②图中与∠BOE互余的角有________,与∠BOE互补的角有________.(2)若射线OA是∠BON的角平分线,则∠SOB与∠AOC是否存在确定的数量关系?如果存在,请写出你的结论以及计算过程;如果不存在,请说明理由.【答案】(1)北偏东40°;∠BOS,∠EOC;∠BOW(2)解:∠AOC= ∠SOB.理由如下:∵OA平分∠BON,∴∠NOA= ∠NOB,又∵∠BON=180°-∠SOB,∴∠NOA= ∠BON=90°- ∠SOB,∵∠NOC=90°-∠EOC,由(1)知∠BOS=∠EOC,∴∠NOC=90°-∠SOB,∠AOC=∠NOA-∠NOC=90°- ∠SOB-(90°-∠SOB),即∠AOC= ∠SOB.【解析】【解答】解:(1)①∵m+n=90°,m=50°,∴n=40°,∴射线OC的方向是北偏东40°;②∵∠BOE+∠BOS=90°,∠BOE+∠EOC=90°,∴图中与∠BOE互余的角有∠BOS,∠EOC;∠BOE+∠BOW=180°,∴图中与∠BOE互补的角有∠BOW,故答案为:①北偏东40°;②∠BOS,∠EOC;∠BOW.【分析】(1)①由m+n=90°,m=50°可求得n值,从而可得射线OC的方向.②根据余角定义可知∠BOE+∠BOS=90°,∠BOE+∠EOC=90°,从而可得图中与∠BOE互余的角;由补角定义可得∠BOE+∠BOW=180°,从而可得图中与∠BOE互补的角.(2)∠AOC=∠SOB.理由如下:由角平分线定义和领补角定义可得∠NOA= ∠BON=90°-∠SOB,结合(1)中条件可得∠NOC=90°-∠SOB;由∠AOC=∠NOA-∠NOC即可求得它们之间的数量关系.4.如图,两个形状、大小完全相同的含有30。
角的直角三角板如图1放置,PA、PB与直线MN重合,且三角板PAC和三角板PBD均可以绕点P逆时针旋转.(1)如图1.则∠DPC为多少度?(2)如图2,若三角板PAC的边PA从PN处开始绕点P逆时针旋转的角度为α,PF平分∠APD,PE平分∠CPD,求∠EPF的度数;(3)如图3,若三角板PAC的边PA从PN处开始绕点P逆时针旋转,转速为3。
/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速为2。
/秒,在两个三角板旋转过程中,当PC转到与PM重合时,两个三角板都停止转动.设两个三角板旋转时间为t秒,请问是定值吗?若是定值,请求出这个定值;若不是定值,请说明理由。
【答案】(1)解:∵∠DPC=180°-∠CPA-∠DPB,∠CPA=60°,∠DPB=30°,∴∠DPC=180゜-30゜-60゜=90゜(2)(3)解:是定值,理由如下:设运动时间为t秒,则∠NPA=3t,∠MPB=2t,∴∠BPN=1800-2t,∠CPD=3600-∠DPB-∠BPN-∠NPA-∠CPA=900-t,∴【解析】【分析】(1)利用含有30゜、60゜的三角板得出∠DPC=180°-∠CPA-∠DPB,代入计算即可;(2)根据角平分线的定义得出∠DPF=∠APD,∠DPE=∠CPD ,根据角的和差得出APD=180°−30°−α=150°−α ,∠CPD=180°−30°−60°−α=90°−α ,从而得出∠DPF及,∠DPE的度数,最后根据EPF=∠DPF−∠DPE算出结果;(3)首先得出是一个定值,设运动时间为t秒,则∠BPM=2t,∠NPA=3t ,∠BPN=1800-2t ,∠CPD=3600-∠DPB-∠BPN-∠NPA-∠CPA=900-t ,即可得出答案.5.如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°,将有一30度角的直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(图中∠OMN=30°,∠NOM=90°)(1)将图1中的三角板绕点O逆时针旋转至图2,使OM在∠BOC的内部,且恰好平分∠BOC,问直线ON是否平分∠AOC?请说明理由;(2)将图1中的三角板绕点O按每秒6°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,求t;(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究:∠AOM与∠NOC之间的数量关系,并说明理由.【答案】(1)解:直线ON平分∠AOC;理由:设ON的反向延长线为OD,∵OM平分∠BOC,∴∠MOC=∠MOB=60°,又∵OM⊥ON,∴∠MON=90°,∴∠BON=30°,∴∠CON=120°+30°=150°,∴∠COD=30°,∴OD平分∠AOC,即直线ON平分∠AOC(2)解:由(1)可知∠BON=30°,∠DON=180°因此ON旋转60°或240°时直线ON平分∠AOC,由题意得,6t=60°或240°,∴t=10或40(3)解:∵∠MON=90°,∠AOC=60°,∴∠AOM=90°﹣∠AON、∠NOC=60°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°【解析】【分析】(1)由角的平分线的定义和等角的余角相等求解;(2)由∠BOC=120°可得∠AOC=60°,则∠AON=30°或∠NOR=30°,即顺时针旋转300°或120°时ON平分∠AOC,据此求解;(3)因为∠MON=90°,∠AOC=60°,所以∠AOM=90°﹣∠AON、∠NOC=60°﹣∠AON,然后作差即可.6.如图如图1,点C在线段AB上,图中共有3条线段:AB、AC和BC,若其中有一条线段的长度是另一条线段长度的两倍,则称点C是线段AB的一个“二倍点”.(1)一条线段的中点________这条线段的“二倍点”;(填“是”或“不是”)(2)如图2,若线段AB=20cm,点M从点B的位置开始,以每秒2cm的速度向点A运动,当点M到达点A时停止运动,运动的时间为t秒.问t为何值时,点M是线段AB的“二倍点”.(3)同时点N从点A的位置开始,以每秒1cm的速度向点B运动,并与点M同时停止.请直接写出点M是线段AN的“二倍点”时t的值.【答案】(1)是(2)解:当AM=2BM时,20﹣2t=2×2t,解得:t= ;当AB=2AM时,20=2×(20﹣2t),解得:t=5;当BM=2AM时,2t=2×(20﹣2t),解得:t= ;答:t为或5或时,点M是线段AB的“二倍点”(3)解:当AN=2MN时,t=2[t﹣(20﹣2t)],解得:t=8;当AM=2NM时,20﹣2t=2[t﹣(20﹣2t)],解得:t=7.5;当MN=2AM时,t﹣(20﹣2t)=2(20﹣2t),解得:t= ;答:t为7.5或8或时,点M是线段AN的“二倍点”.【解析】【解答】解:(1)因为线段的中点把该线段分成相等的两部分,该线段等于2倍的中点一侧的线段长.所以一条线段的中点是这条线段的“二倍点”故答案为:是【分析】(1)由中点可知,这条线段等于中点分出的线段的2倍,进而得出结论;(2)分三种情况:当AM=2BM时,当AB=2AM时,当BM=2AM时,分别列出方程解答即可;(3)分三种情况:当AN=2MN时,当AM=2NM时,当MN=2AM时,分别列出方程解答即可.7.定义:从一个角的顶点出发,在角的内部引两条射线,如果这两条射线所成的角等于这个角的一半,那么这两条射线所成的角叫做这个角的内半角.如图1,若∠COD= ∠AOB,则∠COD是∠AOB的内半角.(1)如图1,已知∠AOB=70°,∠AOC=25°,∠COD是∠AOB的内半角,则∠BOD=________.(2)如图2,已知∠AOB=60°,将∠AOB绕点O按顺时针方向旋转一个角度口(0<a<60°)至∠COD,当旋转的角度a为何值时,∠COB是∠AOD的内半角.(3)已知∠AOB=30°,把一块含有30°角的三角板如图3叠放,将三角板绕顶点O以3度/秒的速度按顺时针方向旋转(如图4),问:在旋转一周的过程中,射线OA,OB,OC,OD 能否构成内半角,若能,请求出旋转的时间;若不能,请说明理由.【答案】(1)10°(2)解:∵∠AOB绕点O按顺时针方向旋转一个角度口(0<a<60°)至∠COD,∴∠AOB=∠COD=60°∴∠AOC=∠BOD=a∴a+∠COB=60°∵∠COB是∠AOD的内半角∴∠COB=∠AOD∴2∠COB=∠COB+2a∴∠COB=2a∴a+2a=60°解之:a=20°即当旋转的角度a为20°时,∠COB是∠AOD的内半角。