七年级数学全册单元测试卷测试卷(解析版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学全册单元测试卷测试卷(解析版)
一、初一数学上学期期末试卷解答题压轴题精选(难)
1.数轴上A, B, C, D四点表示的有理数分别为1, 3, -5, -8
(1)计算以下各点之间的距离:①A、B两点, ②B、C两点,③C、D两点,
(2)若点M、N两点所表示的有理数分别为m、n,求M、N两点之间的距离.
【答案】(1)AB=3-1=2;BC=3-(-5)=8;CD=-5-(-8)=-5+8=3.
(2)MN=
【解析】【分析】(1)数轴上两点间的距离等于数值较大的数减去数值较小的数,据此计算即可;
(2)因为m、n的大小未知,则M、N两点间的距离为它们所表示的有理数之差的绝对值.
2.在数轴上、两点分别表示有理数和,我们用表示到之间的距离;例如表示7到3之间的距离.
(1)当时,的值为________.
(2)如何理解表示的含义?
(3)若点、在0到3(含0和3)之间运动,求的最小值和最大值.
【答案】(1)5或-3
(2)解:∵ = ,
∴表示到-2的距离
(3)解:∵点、在0到3(含0和3)之间运动,
∴0≤a≤3, 0≤b≤3,
当时, =0+2=2,此时值最小,
故最小值为2;
当时, =2+5=7,此时值最大,
故最大值为7
【解析】【解答】(1)∵,
∴a=5或-3;
故答案为:5或-3;
【分析】(1)此题就是求表示数a的点与表示数1的点之间的距离是4,根据表示数a的点在表示数1的点的右边与左边两种情况考虑即可得出答案;
(2)此题就是求表示数b的点与表示数-2的点之间的距离;
(3)此题就是求表示数a的点与表示数2的点之间的距离及表示数b的点与表示数-2的点之间的距离和,而0≤a≤3, 0≤b≤3, 借助数轴当时,的
值最小;当时,的值最大.
3.如图,直线SN与直线WE相交于点O,射线ON表示正北方向,射线OE表示正东方向.已知射线OB的方向是南偏东m°,射线OC的方向是北偏东n°,且m+n=90°.
(1)①若m=50,则射线OC的方向是________,
②图中与∠BOE互余的角有________,与∠BOE互补的角有________.
(2)若射线OA是∠BON的角平分线,则∠SOB与∠AOC是否存在确定的数量关系?如果存在,请写出你的结论以及计算过程;如果不存在,请说明理由.
【答案】(1)北偏东40°;∠BOS,∠EOC;∠BOW
(2)解:∠AOC= ∠SOB.理由如下:
∵OA平分∠BON,
∴∠NOA= ∠NOB,
又∵∠BON=180°-∠SOB,
∴∠NOA= ∠BON=90°- ∠SOB,
∵∠NOC=90°-∠EOC,
由(1)知∠BOS=∠EOC,
∴∠NOC=90°-∠SOB,
∠AOC=∠NOA-∠NOC=90°- ∠SOB-(90°-∠SOB),
即∠AOC= ∠SOB.
【解析】【解答】解:(1)①∵m+n=90°,m=50°,
∴n=40°,
∴射线OC的方向是北偏东40°;
②∵∠BOE+∠BOS=90°,∠BOE+∠EOC=90°,
∴图中与∠BOE互余的角有∠BOS,∠EOC;
∠BOE+∠BOW=180°,
∴图中与∠BOE互补的角有∠BOW,
故答案为:①北偏东40°;②∠BOS,∠EOC;∠BOW.
【分析】(1)①由m+n=90°,m=50°可求得n值,从而可得射线OC的方向.
②根据余角定义可知∠BOE+∠BOS=90°,∠BOE+∠EOC=90°,从而可得图中与∠BOE互余的角;由补角定义可得∠BOE+∠BOW=180°,从而可得图中与∠BOE互补的角.
(2)∠AOC=∠SOB.理由如下:由角平分线定义和领补角定义可得∠NOA= ∠BON=90°-
∠SOB,结合(1)中条件可得∠NOC=90°-∠SOB;由
∠AOC=∠NOA-∠NOC即可求得它们之间的数量关系.
4.如图,两个形状、大小完全相同的含有30。角的直角三角板如图1放置,PA、PB与直线MN重合,且三角板PAC和三角板PBD均可以绕点P逆时针旋转.
(1)如图1.则∠DPC为多少度?
(2)如图2,若三角板PAC的边PA从PN处开始绕点P逆时针旋转的角度为α,PF平分∠APD,PE平分∠CPD,求∠EPF的度数;
(3)如图3,若三角板PAC的边PA从PN处开始绕点P逆时针旋转,转速为3。/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速为2。/秒,在两个三角板旋转过程中,当PC转到与PM重合时,两个三角板都停止转动.设两个三角板旋转时间为t
秒,请问是定值吗?若是定值,请求出这个定值;若不是定值,请说明理由。
【答案】(1)解:∵∠DPC=180°-∠CPA-∠DPB,∠CPA=60°,∠DPB=30°,
∴∠DPC=180゜-30゜-60゜=90゜
(2)
(3)解:是定值,理由如下:
设运动时间为t秒,则∠NPA=3t,∠MPB=2t,
∴∠BPN=1800-2t,
∠CPD=3600-∠DPB-∠BPN-∠NPA-∠CPA=900-t,
∴
【解析】【分析】(1)利用含有30゜、60゜的三角板得出∠DPC=180°-∠CPA-∠DPB,代入计算即可;
(2)根据角平分线的定义得出∠DPF=∠APD,∠DPE=∠CPD ,根据角的和差得出APD=180°−30°−α=150°−α ,∠CPD=180°−30°−60°−α=90°−α ,从而得出∠DPF及,∠DPE的度数,最后根据EPF=∠DPF−∠DPE算出结果;
(3)首先得出是一个定值,设运动时间为t秒,则∠BPM=2t,∠NPA=3t ,∠BPN=1800-2t ,∠CPD=3600-∠DPB-∠BPN-∠NPA-∠CPA=900-t ,即可得出答案.
5.如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°,将有一30度角的直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(图中∠OMN=30°,∠NOM=90°)
(1)将图1中的三角板绕点O逆时针旋转至图2,使OM在∠BOC的内部,且恰好平分∠BOC,问直线ON是否平分∠AOC?请说明理由;
(2)将图1中的三角板绕点O按每秒6°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,求t;
(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究:∠AOM与∠NOC之间的数量关系,并说明理由.
【答案】(1)解:直线ON平分∠AOC;
理由:
设ON的反向延长线为OD,
∵OM平分∠BOC,