高考数学专题08 三角形与平面向量结合问题(第一篇)(解析版)

合集下载

平面向量的应用三角形问题

平面向量的应用三角形问题

平面向量的应用三角形问题在数学中,平面向量是一种代表大小和方向的量,它广泛应用于解决各种三角形问题。

平面向量的应用可以帮助我们更好地理解和分析三角形的性质和关系。

本文将介绍平面向量在三角形问题中的应用,包括向量的表示、向量的运算以及向量在解决三角形问题中的具体应用。

一、向量的表示和运算在讨论向量的应用之前,我们首先需要了解向量的表示和运算。

平面向量通常用有序数对表示,比如向量$\textbf{a}=(a_x,a_y)$,其中$a_x$表示向量在$x$轴上的分量,$a_y$表示向量在$y$轴上的分量。

向量的大小可以用向量的模来衡量,记作$||\textbf{a}||$,其计算公式为$||\textbf{a}||=\sqrt{a_x^2+a_y^2}$。

向量的方向可以用它的单位向量来表示,单位向量的计算公式为$\textbf{u}=\frac{\textbf{a}}{||\textbf{a}||}$。

向量的运算包括加法和减法。

向量的加法定义为$\textbf{a}+\textbf{b}=(a_x+b_x,a_y+b_y)$,向量的减法定义为$\textbf{a}-\textbf{b}=(a_x-b_x,a_y-b_y)$。

此外,向量还可以与标量进行乘法运算,即$\lambda\cdot\textbf{a}=(\lambda\cdot a_x,\lambda\cdot a_y)$,其中$\lambda$为实数。

二、向量在三角形问题中的应用1. 三角形的形状和面积使用向量表示三角形的顶点坐标可以方便地计算三角形的形状和面积。

设三角形的顶点为$A(x_1,y_1)$,$B(x_2,y_2)$,$C(x_3,y_3)$,则根据向量的定义,我们可以得到向量$\textbf{AB}=(x_2-x_1,y_2-y_1)$和向量$\textbf{AC}=(x_3-x_1,y_3-y_1)$。

利用向量的模可以得到三角形的边长,分别为$AB=||\textbf{AB}||$,$AC=||\textbf{AC}||$。

2013高考数学试题分类汇编:专题08 平面向量(解析版)

2013高考数学试题分类汇编:专题08 平面向量(解析版)

专题08 平面向量一、选择题:1. (山东省济南市2013年1月高三上学期期末理10)非零向量,a b 使得||||||a b a b +=-成立的一个充分非必要条件是A. //a bB. 20a b +=C. ||||a ba b =D. a b =2.(山东省德州市2013年1月高三上学期期末校际联考理11)若12,e e是平面内夹角为60的两个单位向量,则向量12122,32a e e b e e =+=-+的夹角为( )A .30B .60C .90D .1203. (山东省烟台市2013年1月高三上学期期末理6)在△ABC 中,AB=3,AC=2,1,2BD BC =uu u r uu u r则AD BD ⋅uuu r uu u r的值为A.52-B.52C.54-D.54【答案】C【解析】因为1,2BD BC =uu u r uu u r 所以点D 是BC 的中点,则1()2AD AB AC =+,11()22BD BC AC AB ==- ,所以11()()22AD BD AB AC AC AB ⋅=+⋅-2222115()(23)444AC AB =-=-=- ,选C.4. (山东省济宁市2013届高三1月份期末测试理8)已知点P 是ABC ∆所在平面内一点,则PA PB PC AB ++=是点P 在线段AC 上的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.(山东省诸城市2013届高三12月月考理)已知a 、b 、c 是共起点的向量,a 、b不共线,且存在m ,n∈R 使c ma nb =+ 成立,若a 、b 、c的终点共线,则必有A .m+n=0B .m -n= 1C .m+n =1D .m+ n=-16. (山东省诸城市2013届高三12月月考理)若向量(1,2),(4,)a x b y =-= 相互垂直,则93x y +的最小值为 A .6B .23C .32D .127.(山东省青岛一中2013届高三1月调研理)已知两点(1,0),3),A B O 为坐标原点,点C 在第二象限,且120=∠AOC ,设2,(),OC OA OB λλλ=-+∈R则等于A .1-B .2C .1D .2-8.(山东省诸城市2013届高三12月月考理)已知各项均不为零的数列{a n },定义向量*1(,),(,1),n n n n c a a b n n n N +==+∈。

-三角函数三角形平面向量高考常考14种题型解题方法

-三角函数三角形平面向量高考常考14种题型解题方法

三角函数三角形平面向量高考常考题型解题方法本专题要特别小心: 1.平面向量的几何意义应用 2. 平面向量与三角形的综合 3. 三角形的边角互化4.向量的数量积问题等综合问题5. 向量夹角为锐角、钝角时注意问题6.三角形中角的范围7.正余弦定理综合。

【题型方法】(一)考查平面向量基本定理例1. 设D 为ABC ∆所在平面内一点,若3BC CD =,则下列关系中正确的是( ) A .1433AD AB AC =-+ B .1433AD AB AC =- C .4133AD AB AC =+ D .4133AD AB AC =-【解析】∵3BC CD = ∴AC −−AB =3(AD −−AC ) ∴AD =43AC −−13AB . 选C练习1.设四边形ABCD 为平行四边形,,.若点M ,N 满足,,则( )A .20B .15C .9D .6【解析】不妨设该平行四边形为矩形,以为坐标原点建立平面直角坐标系 则,故练习2. 如图,在ABC 中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是_____【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 中点,知BF =FE =EA ,AO =OD()()()3632AO EC AD AC AE AB AC AC AE =-=+-()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭得2213,22AB AC =即3,AB AC =故3AB AC=(二)考察数形结合思想(如:向量与圆等图形的结合) 例2. 已知点A ,B ,C 在圆上运动,且ABBC ,若点P 的坐标为(2,0),则的最大值为( )A .6B .7C .8D .9 【解析】由题意,AC 为直径,所以当且仅当点B 为(-1,0)时,取得最大值7选B练习1. 在平面内,定点A ,B ,C ,D 满足==, = = =–2,动点P ,M 满足=1,=,则的最大值是( )A .B .C .D .【解析】甴已知易得以为原点,直线为轴建立平面直角坐标系,如图所示则设由已知,得又,它表示圆上的点与点的距离的平方的,选B练习2. 在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λAB +μAD ,则λ+μ的最大值为( ) A .3 B .22 C .5 D .2 【解析】如图,建立平面直角坐标系设()()()()0,1,0,0,2,1,,A B D P x y 根据等面积公式可得圆的半径是25,即圆的方程是()22425x y -+=()()(),1,0,1,2,0AP x y AB AD =-=-=若满足AP AB AD λμ=+,即21x y μλ=⎧⎨-=-⎩ ,,12x y μλ==- ,所以12xy λμ+=-+设12x z y =-+ ,即102xy z -+-= 点(),P x y 在圆()22425x y -+=上,所以圆心到直线的距离d r ≤,即221514z -≤+ ,解得13z ≤≤ 所以z 的最大值是3,即λμ+的最大值是3,选A(三).考查向量的数量积 例3. 已知向量,则ABC =( )A .30B .45C .60D .120 【解析】由题意,得,所以,选A【小结】(1)平面向量与的数量积为,其中是与的夹角,要注意夹角的定义和它的取值范围:;(2)由向量的数量积的性质知,,,因此,利用平面向量的数量积可以解决与长度、角度、垂直等有关的问题练习1. 已知是边长为4的等边三角形,为平面内一点,则的最小值是A .B .C .D .【解析】以BC 中点为坐标原点,建立如图所示的坐标系则A (0,2),B (﹣2,0),C (2,0),设P (x ,y )则=(﹣x ,2﹣y ),=(﹣2﹣x ,﹣y ),=(2﹣x ,﹣y )所以•(+)=﹣x •(﹣2x )+(2﹣y )•(﹣2y )=2x 2﹣4y +2y 2=2[x 2+(y ﹣)2﹣3]所以当x =0,y =时,•(+)取得最小值为2×(﹣3)=﹣6,选D练习2.在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠= ,动点E 和F 分别在线段BC 和DC 上,且,1,,9BE BC DF DC λλ==则AE AF ⋅的最小值为 . 【解析】因为1,9DF DC λ=12DC AB = 119199918CF DF DC DC DC DC AB λλλλλ--=-=-==;AE AB BE AB BC λ=+=+19191818AF AB BC CF AB BC AB AB BC λλλλ-+=++=++=+ ()221919191181818AE AF AB BC AB BC AB BC AB BC λλλλλλλλλ+++⎛⎫⎛⎫⋅=+⋅+=+++⋅⋅ ⎪ ⎪⎝⎭⎝⎭19199421cos1201818λλλλ++=⨯++⨯⨯⨯︒21172117299218921818λλλλ=++≥⋅+= 当且仅当2192λλ=即23λ=时AE AF ⋅的最小值为2918BAD C E(四)考查三角形中的边角互化例 4. 在ABC ∆中,角,,A B C 的对边分别为a , b , c .若ABC ∆为锐角三角形,且满足()sin 12cos 2sin cos cos sin B C A C A C +=+,则下列等式成立的是( )A .2a b =B .2b a =C .2A B =D .2B A = 【解析】()sin 2sin cos 2sin cos cos sin A C B C A C A C ++=+所以2sin cos sin cos 2sin sin 2B C A C B A b a =⇒=⇒=,选A练习1. 在中,角,,所对应的边分别为,,.已知,则()A.一定是直角三角形B.一定是等腰三角形C.一定是等腰直角三角形D.是等腰或直角三角形【解析】由题,已知,由正弦定理可得:即又因为所以即由余弦定理:,即所以所以三角形一定是等腰三角形,选B练习2. 在中,,为边上的一点,且,若为的角平分线,则的取值范围为()A.B.C.D.【解析】因为,为的角平分线,所以在中,,因为,所以在中,,因为,所以,所以则因为,所以所以,则即的取值范围为,选A练习3. 在锐角三角形ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知,,,则的面积( ) A .B .C .D .【解析】由题,,所以所以 又因为锐角三角形ABC ,所以 由题,即根据代入可得,,即再根据正弦定理: 面积故选D练习4. 在锐角ABC ∆中,角AB C ,,的对边分别为a b c ,,.且cos cos A B a b +=33Ca,23b =a c +的取值范围为_____.【解析】cos cos 33A B C a b a +=23cos cos sin 3b A a B C ∴+= ∴由正弦定理可得: 23sin cos sin cos sin 3B A A B BC +=,可得:23sin()sin sin A B C B C +==,3sin B ∴=, 又ABC ∆为锐角三角形,3B π∴=,∴可得:sin sin 24(sin sin )4sin 4sin sin sin 3b A b C a c A C A A B B π⎛⎫+=+=+=+- ⎪⎝⎭33A π⎛⎫=- ⎪⎝⎭ 2,3A A π-均为锐角,可得:,62636A A πππππ<<-<-<,(6,43]a c ∴+∈.练习5. 在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin cos cos sin sin sin ab Ca Bb A a A b Bc C+=+-,且3a b +=,则c 的取值范围为________________. 【解析】因为()sin sin sin cos cos sin C A B A B A B =+=+ 所以由正弦定理可得cos cos a B b A c +=, 又因为sin cos cos sin sin sin ab C a B b A a A b B c C+=+-,所以由正弦定理可得222abcc a b c =+- 即222a b c ab +-=,所以222c a b =+-2()3ab a b ab =+-, 因为3a b +=,所以293c ab =-,因为29()24a b ab +≤=, 当且仅当23==b a 时取等号,所以27304ab -≤-<, 所以99394ab ≤-<,即2994c ≤<,所以332c ≤<,故c 的取值范围为3[,3)2(五)三角形与向量综合 例5. 在△中,为边上的中线,为的中点,则( )A .B .C .D .【分析】首先将图画出来,接着应用三角形中线向量的特征,求得,之后应用向量的加法运算法则-------三角形法则,得到,之后将其合并,得到,下一步应用相反向量,求得,从而求得结果.【解析】根据向量的运算法则,可得,所以,故选A .练习1. 已知中,为的重心,则()A.B.C.D.【解析】因为中,为的重心,所以,由余弦定理可得:且所以=练习2. 下列命题中,①在中,若,则为直角三角形;②若,则的最大值为;③在中,若,则;④在中,,若为锐角,则的最大值为.正确的命题的序号是______【解析】①在中,若,可得或,则为直角或钝角三角形,故①错;②若时,即,即垂直,则的最大值为,故②正确;③在中,若,,即,即,,即为,由,可得,故③正确;④在中,,即为,即为,可得,即,可得锐角,可得时,的最大值为,故④正确故答案为:②③④练习3. 在ABC 中, 60A ∠=︒, 3AB =, 2AC =. 若2BD DC =, ()AE AC AB R λλ=-∈,且4AD AE ⋅=-,则λ的值为______________. 【解析】01232cos603,33AB AC AD AB AC ⋅=⨯⨯==+ 则()1221233493433333311AD AE AB AC AC AB λλλλ⎛⎫⋅=+-=⨯+⨯-⨯-⨯=-⇒= ⎪⎝⎭(六)向量与三角函数综合例6. 自平面上一点O 引两条射线OA ,OB ,点P 在OA 上运动,点Q 在OB 上运动且保持PQ 为定值a (点P ,Q 不与点O 重合),已知3AOB π∠=,7a =,则3||||PQ PO QP QOPO QO ⋅⋅+的取值范围为( )A .1,72⎛⎤⎥⎝⎦B .7,72⎛⎤⎥ ⎝⎦C .1,72⎛⎤- ⎥⎝⎦D .7,72⎛⎤- ⎥ ⎝⎦【解析】设OPQ α∠=,则23PQO πα∠=- 322cos 3cos 7cos 3cos 33PQ PO QP QO PQ QP POQO ππαααα⋅⋅⎫⎛⎫⎛⎫+=+-=+- ⎪ ⎪⎪⎝⎭⎝⎭⎭()3331337cos cos 7cos 7sin 22ααααααϕ⎫⎫=-=-+=-⎪⎪⎪⎪⎭⎭其中3tan 9ϕ=,则7sin 14ϕ=20,3πα⎛⎫∈ ⎪⎝⎭,∴当()sin 1αϕ-=时,原式取最大值7 ()()7sin sin 0sin 14αϕϕϕ->-=-=-,∴()77sin 2αϕ->- 37,72PQ PO QP QO PO QO ⎛⎤⋅⋅+∈- ⎥ ⎝⎦∴,选D练习1. 在同一个平面内,向量的模分别为与的夹角为,且与的夹角为,若,则_________.【解析】以为轴,建立直角坐标系,则, 由的模为与与的夹角为,且知,,可得,,由可得 ,(七)三角形中的最值 例7. 在中,内角所对的边分别为.已知,,,设的面积为,,则的最小值为_______. 【解析】在中,由得, 因为利用正弦定理得,再根据,可得,,,由余弦定理得,求得,所以,所以 ,所以,当且仅当,即时取等,所以 的最小值为。

高考数学大二轮复习专题一平面向量、三角函数与解三角形第一讲平面向量课件理

高考数学大二轮复习专题一平面向量、三角函数与解三角形第一讲平面向量课件理

-b)⊥b,则 a 与 b 的夹角为( )
π
π
A.6
B.3
C.23π
D.56π
解析:由(a-b)⊥b,可得(a-b)·b=0,∴a·b=b2.
∵|a|=2|b|,∴cos〈a,b〉=|aa|··|bb|=2bb22=12.
∵0≤〈a,b〉≤π,∴a 与 b 的夹角为π3.故选 B. 答案:B
4.(2019·恩施州模拟)已知向量 a=(1, 3),b=-12, 23,则
3.(2019·河北衡水中学模拟)已知 O 是平面上一定点,A,B,
C
是平面上不共线的三点,动点
P


→ OP

O→B+O→C 2

λ
→ AB →


AC →
,λ∈[0,+∞),则点 P 的轨迹经过△
|AB|cos B |AC|cos C
ABC 的( )
A.外心
B.内心
C.重心
D.垂心
解析:设
答案:A
4.(2018·高考全国卷Ⅲ)已知向量 a=(1,2),b=(2,-2),c= (1,λ).若 c∥(2a+b),则 λ=________.
解析:2a+b=(4,2),因为 c∥(2a+b),所以 4λ=2,得 λ=12. 答案:12
[类题通法] 1.应用平面向量基本定理表示向量的实质是利用 平行四边形法则或三角形法则进行向量的加、减或数乘运 算.一般将向量归结到相关的三角形中,利用三角形法则列出 三个向量之间的关系. 2.用平面向量基本定理解决问题的一般思路:先选择一组基 底,并运用该组基底将条件和结论表示成向量的形式,再通过 向量的运算来解决.注意同一个向量在不同基底下的分解是不 同的,但在每组基底下的分解都是唯一的.

解三角形与平面向量问题(含解析)

解三角形与平面向量问题(含解析)

解三角形与平面向量一、选择题(本大题共12小题,每小题4分,共48分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020·内蒙古自治区集宁一中)在ABC ∆中,已知4,1AB AC ==,ABC ∆则•AB AC =( ) A .2±B .4±C .2D .42.(2020·山东省滕州市第一中学)ABC 的三内角A ,B ,C 所对边的长分别为a ,b ,c .设向量(),p a c b =+,(),q b a c a =--.若//p q ,则C 等于().A .6πB .3π C .2π D .23π 3.(2020·嘉祥县第一中学)在ABC 中,边a ,b ,c 分别是角A ,B ,C 的对边,且满足()cos 3cos b C a c B =-,若4BC BA ⋅=,则ac 的值为 ( ) A .12B .11C .10D .94.(2020·山西省平遥中学校)在ABC ∆中,a ,b ,c 分别为三个内角A ,B ,C 所对的边,设向量(),(,)m b c c a n b c a =--=+,,若m n ⊥,则角A 的大小为( )A .6πB .3π C .2π D .23π 5.(2020·四川省北大附中成都为明学校高二)ABC 中,角A ,B ,C 的对边分别为,,a b c .若向量(),cos m a A =-,()cos n C c =-,且0m n ⋅=,则角A 的大小为()A .6πB .4π C .3π D .2π 6.(2020·浙江省高二期中)已知平面向量AC 在AB 上的投影是1-,1,7AB BC ==,则AC 的值为( )AB .C .1D .27.(2020·湖南省高二月考)已知a ,b ,c 分别为ABC 内角A ,B ,C 的对边,sin 1sin sin b Ca c A B+=++,4AB AC ⋅=,则ABC 的面积为( )AB .2C .D .8.(2020·四川省三台中学)在ABC ∆中,已知8AB =,4BC =,6CA =,则AB BC ⋅的值为( ) A .22B .19C .-19D .-229.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量(,)m a b =与(cos ,sin )=n A B 平行.若a =b =c =A .1B .2C .D .310.(2020·广西壮族自治区南宁三中高二)在ABC 中,设内角A 、B 、C 的对边分别是a 、b 、c ,(cos m A =,(2,sin )n A =-,且5m n +=.则角A 的大小为( )A .3πB .4π C .32π D .43π 11.(2020·嘉祥县第一中学)已知ABC ∆的角A 、B 、C 所对的边分别是a 、b 、c ,设向量(,)m a b =,(2,2)p b a =--,若m p ⊥,边长2c =,角π3C =,则ABC ∆的面积为( ).A .3B .2CD12.(2020·凌海市第三高级中学)在ABC ∆中,角,,A B C 的对边分别为,,a b c .已知向量m =2cos,sin 22A A ⎛⎫ ⎪⎝⎭,n =cos ,2sin 22A A ⎛⎫- ⎪⎝⎭,.1m n ⋅=-,若a =2b =, 则c 的值为( )A .1B .2C .3D .4二、填空题(本大题共4小题,每小题4分,共16分.不需写出解答过程,请把答案直接填写在横线上) 13.(2020·广西壮族自治区南宁三中高二)在ABC 中,三个内角A ,B ,C 所对的边分别为a ,b ,c ,已知(sin sin ,sin sin )=--m B C C A ,(sin sin ,sin )=+n B C A ,且m n ⊥,角B =________.14.(2020·江西省奉新县第一中学)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且满足cos25A =,3AB AC ⋅=,则ABC ∆的面积为_______;15.(2020·安徽省潜山第二中学高二)在△ABC 中,3AB =,2AC =,BC =则AB AC ⋅=________ 16.(2020·衡水中学实验学校)已知O 为ABC ∆的外心,且3A π=,cos cos 2sin sin B CAB AC mAO C B+=,则实数m =_____三、解答题(本大题共4小题,每题9分,共36分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(2020·杭州市西湖高级中学高二)在ABC 中,已知向量cos,12A B m +⎛⎫= ⎪⎝⎭,且254m =,记角,,A B C 的对边依次为,,a b c .若2c =,且ABC 是锐角三角形,求22a b +的范围。

特色专题--平面向量与解三角形

特色专题--平面向量与解三角形

【编者按】平面向量既有代数表达,又有几何表达,因此平面向量与解三角形在高考中已成常态.这类试题要求考生对相关数学概念要非常清楚,考查学生的数学推理和数学运特色专题--平面向量与解三角形算能力,同时还要掌握基本的数学思想方法.题型一运用平面向量计算三角形的边长【例1】(1)在△ABC 中,AC =9,∠A =60°,D 点满足CD →=2DB →,AD =37,则BC 的长为()A .37B .36C .33D .6解析:选A .因为CD →=2DB →,所以AD →=AB →+BD →=AB →+13BC →=AB →+13(AC →-AB →)=23AB →+13AC →,设AB =x ,则AD →2+13AC 得37=49x 2+49×x ×9cos 60°+19×92,即2x 2+9x -126=0,因为x >0,故解得x =6,即AB =6,所以BC =AB 2+AC 2-2AB ·AC cos 60°=62+92-2×6×9×12=37.(2)(2013·天津卷)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,则AB 的长的为________.解析:如图所示,在平行四边形ABCD 中,AC →=AB →+AD →,BE →=BC →+CE →=-12AB →+AD →.所以AC →·BE →=(AB →+AD →-12AB →+=-12|AB →|2+|AD →|2+12AB →·AD →=-12|AB →|2+14|AB →|+1=1,解方程得|AB →|=12(舍去|AB →|=0).所以线段AB 的长为12.答案:12【名师点评】本题解题关键是利用向量的线性运算表示出向量,然后平方把向量的模转化为数量积的运算,即利用数量积求线段长.题型二运用平面向量计算三角形的内角【例2】(1)设G 是△ABC 的重心,且满足等式7sin A ·GA →+3sin B ·GB →+37sin C ·GC →=0,则∠B =()A .45°B .60°C .90°D .120°解析:选B .∵G 是△ABC 的重心,∴GA →+GB →+GC →=0,∵7sin A ·GA →+3sin B ·GB →+37sin C ·GC →=0,∴观察类比得7sin A =3sin B =37sin C .由正弦定理知,7a =3b =37c ,则a =3c ,b =7c ,即得cos B =a 2+c 2-b 22ac =10c 2-7c 26c 2=3c 26c 2=12,∴B =60°(2)已知在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且b =4,点O 为其外接圆的圆心.已知CO →·BA →=6,则角A 的最大值为()A .π6B .π3C .π4D .π2解析:选A .取AB 的中点D ,则CO →·BA →=(CD →+DO →)·BA →=CD →·BA →=12(CA →+CB →)·(CA →-CB →)=12(16-a 2)=6,∴a =2,又∵cos A =c 2+b 2-a 22bc =c 2+12=≥32,当且仅当c =23时等号成立,∴0<A ≤π6.【名师点评】本题考查了向量的相关知识和正余弦定理,同时考查了考生观察、联想、类比、化归和推理运算求解能力,这体现了数学等价转化、直观想象等核心素养.题型三运用平面向量计算三角形的面积【例3】已知点O 是△ABC 内部一点,且满足OA →+OB →+OC →=0,又AB →·AC →=2,∠BAC =60°,则△OBC 的面积为()A .33B .32C .1D .3解析:选A .∵OA →+OB →+OC →=0,∴OA →+OB →=-OC →,∴O 为三角形的重心,∴△OBC 的面积为△ABC 面积的13,∵AB →·AC →=2,∠BAC =60°,∴|AB →|·|AC →|=4,∴|AB →|·|AC →|cos ∠BAC =2,△ABC 面积为12|AB →|·|AC →|sin ∠BAC =3,∴△OBC 的面积为33.【名师点评】本题考查向量的平行四边形法则,向量的数量积公式及三角形的面积公式,特别注意已知O 是△ABC 内部一点,OA →+OB →+OC →=0⇔O 为△ABC 的重心,以及灵活应用知识分析解决问题的能力和计算能力.题型四运用平面向量判断三角形的形状【例4】若O 为△ABC 所在平面内任一点,且满足(OB →-OC →)·(OB →+OC →-2OA →)=0,则△ABC 的形状为()A .等腰三角形B .直角三角形C .正三角形D .等腰直角三角形解析:选A .∵(OB →-OC →)·(OB →+OC →-2OA →)=0,∴CB →·(AB →+AC →)=0,∴CB →⊥(AB →+AC →),∴△ABC 的中线和底边垂直,∴△ABC 是等腰三角形.【名师点评】本题考查向量的运算和利用向量的方法判断空间线线之间的垂直关系,知识点较为基础,考查了学生对向量相乘相关基本知识的掌握程度.题型五运用平面向量判断三角形的四心【例5】(1)已知△ABC 的外接圆的圆心是M ,若PA →+PB →+PC →=2PM →,则P 是△ABC 的()A .内心B .外心C .重心D .垂心解析:选D .如图,D ,F 分别是AB ,PC 的中点,连PD ,DM ,FM ,则有PA →+PB →=2PD →,而PA →+PB →+PC →=2PM →,∴PC →=2(PM →-PD →)=2DM →,即有DM →=PF →=PC →2,有DM →与PF →共线,∵△ABC 的外接圆的圆心是M ,有MD ⊥AB ,则PC ⊥AB ,同理有PB ⊥AC ,PA ⊥BC ,∴P 是△ABC 的垂心.(2)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,点P 满足OP →=OA →+P 的轨迹一定通过△ABC 的()A .重心B .外心C .垂心D .内心解析:选C .OP →-OA →=λ(AB →|AB →|cos B +AC →|AC →|cos C ),AP →=BC →·AP →=BC →·AP →=λ(-|BC →|+|BC →|)=0,所以BC →⊥AP →,动点P 在BC 的高线上,动点P 的轨迹一定通过△ABC 的垂心.【名师点评】三角形“四心”向量形式的充要条件设O 为△ABC 所在平面上一点,角A ,B ,C 所对的边长分别为a ,b ,c ,则(1)O 为△ABC 的外心⇔|OA →|=|OB →|=|OC →|=a2sin A .(2)O 为△ABC 的重心⇔OA →+OB →+OC →=0.(3)O 为△ABC 的垂心⇔OA →·OB →=OB →·OC →=OC →·OA →.(4)O 为△ABC 的内心⇔aOA →+bOB →+cOC →=0.题型六运用平面向量解三角形综合题【例6】(2022·北京卷)在△ABC 中,AC =3,BC =4,∠C =90˚.P 为△ABC 所在平面内的动点,且PC =1,则PA →·PB →的取值范围是()A .[-5,3]B .[-3,5]C .[-6,4]D .[-4,6]解析:选D .依题意如图建立平面直角坐标系,则C (0,0),A (3,0),B (0,4),因为PC =1,所以P 在以C 为圆心,1为半径的圆上运动,设P (cos θ,sin θ),θ∈[0,2π],所以PA →=(3-cos θ,-sin θ),PB →=(-cos θ,4-sin θ),所以PA →·PB →=(-cos θ)×(3-cos θ)+(4-sin θ)×(-sin θ)=cos 2θ-3cos θ-4sin θ+sin 2θ=1-3cos θ-4sin θ=1-5sin (θ+φ),其中sin φ=35,cos φ=45,因为-1≤sin (θ+φ)≤1,所以-4≤1-5sin (θ+φ)≤6,即PA →·PB →∈[-4,6],故选D .【名师点评】求两个向量的数量积有三种方法:(1)利用定义;(2)利用向量的坐标运算;(3)利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.本题着重考查了逻辑推理及数学运算素养.。

高考专题强化8三角函数与平面向量相结合问题-学生版

高考专题强化8三角函数与平面向量相结合问题-学生版

15.(1) C (2)
2
SABC
min 16
16.(1)
A
π 3
(2)
6
17.(1) (2)3
h
答案第 1页,总 1页
(Ⅰ)若 AB 8 3, AC 12 ,求 ABC 的面积;
(II)若 AB 4, BM MN NC, AN 2 3BM ,求 AM 的长.
试卷第 6页,总 8页
13.设函数
f
x
2sin
x
3
cosx
3. 2
( Ⅰ ) 求 f x 的单调增区间;
(
Ⅱ)
已知 ABC
的内角分别为
A,B,C,若
f
A 2
3 ,且 ABC 能够盖住的最大圆面积为 ,求 2
AB AC 的最大值.
14.已知函数 f (x) 2 3 sin x cos x 2 cos2 x 1, (x R)
(1)当
x
[0,
]
时,求函数
f
(x)
的最小值和最大值;
2
(2)设 ABC 的内角 A, B,C 的对应边分别为 a, b, c ,且 c
试卷第 8页,总 8页
本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
1.(Ⅰ) 3 ;(Ⅱ) 3 3
参考答案
9
2.(1)0;(2)
10 3.(1) B ;(2)-1
3
4.(1) ;(2) 4 3 .
3
7
5.(1) C
3

c
6.(1) a 7 (2)
3 ;(2)11 2
AD
2
3
3
7.(1) A ;(2) 3

专题复习解三角形与平面向量

专题复习解三角形与平面向量

1.三角形的有关公式:(1)在△ABC 中:sin(A +B )= ,sinA +B2= (2)正弦定理:(3)余弦定理: _____________________________________________________________________ (4)面积公式:S =12ah a =12ab sin C =12r (a +b +c )(其中r 为三角形内切圆半径).2.平面向量的数量积a ·b = .特别地,a 2=a·a =|a|2,|a|=a 2.当θ为锐角时,a ·b >0,且a·b >0是θ为锐角的必要非充分条件;当θ为钝角时,a·b <0,且a·b <0是θ为钝角的必要非充分条件.3.b 在a 上的射影为|b |cos_θ. 4.平面向量坐标运算设a =(x 1,y 1),b =(x 2,y 2),且a≠0,b≠0,则:(1)a·b = ;(2)|a |= ,a 2=|a |2= ; (3)a ∥b ⇔a =λb ⇔ =0;(4)a ⊥b ⇔a ·b =0⇔|a +b |=|a -b |⇔ =0.(5)若a 、b 的夹角为θ,则cos θ= = . 5.△ABC 中向量常用结论(1)PA →+PB →+PC →=0⇔P 为△ABC 的 ; (2)PA →·PB →=PB →·PC →=PC →·PA →⇔P 为△ABC 的 ;(3)向量λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|(λ≠0)所在直线过△ABC 的 ;(4)|PA →|=|PB →|=|PC →|⇔P 为△ABC 的 . 考点一 解三角形例 1-1设△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,若b =2,B =π3,C =π4,则△ABC 的面积为( )A .1+33 +1 C .1-33-1 例 1-2△ABC 中,已知3b =23a sin B ,角A ,B ,C 成等差数列,则△ABC 的形状为( ) A .直角三角形 B .等腰三角形 C .等边三角形 D .等腰直角三角形 例 1-3若△ABC 的三个内角满足sin A ∶sin B ∶sin C =5∶11∶13,则△ABC ( ) A .一定是锐角三角形 B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形变式训练【1-1】设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =23,cos A =32,且b <c ,则【1-2】设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .不确定 【1-3】在锐角△ABC 中,AB =3,AC =4,S △ABC =33,则BC =( ) A .5 或37例 1-4已知A 、B 、C 分别为△ABC 的三边a 、b 、c 所对的角,向量m =(sin A ,sin B ),n =(cos B ,cos A ),且m ·n = sin 2C . (1)求角C 的大小;(2)若sin A ,sin C ,sin B 成等差数列,且CA →·(AB →-AC →)=18,求边c 的长.变式训练 【1-4】 (2015·兰州诊断)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a3cos A=csin C .(1)求A 的大小; (2)若a =6,求b +c 的取值范围.【1-5】 (2014·黄冈模拟)△ABC 的外接圆的直径为1,三个内角A 、B 、C 的对边为a 、b 、c ,m =(a ,cos B ),n =(cos A ,-b ),a ≠b ,已知m ⊥n .(1)求sin A +sin B 的取值范围;(2)若abx =a +b ,试确定实数x 的取值范围.例 1-5如图,渔船甲位于岛屿A 的南偏西60°方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;(2)求sin α的值.变式训练【1-6】如图,游客从某旅游景区的景点A C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50 m/min.在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C .假设缆车匀速直线运行的速度为130 m/min ,山路AC 长为1 260 m ,经测量,cos A =1213,cos C =35.(1)求索道AB 的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短(3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内考点二 平面向量例 2-1已知正三角形ABC 的顶点A (3,1),B (33,1),顶点C 在第一象限,若点M (x ,y )在△ABC 的内部或边界,则z =OA →·OM →取最大值时,3x 2+y 2有( )A .定值52B .定值82C .最小值52D .最小值50例 2-2如图所示,在平行四边形ABCD 中,已知AB =8,AD =5,CP →=3PD →,AP →·BP →=2,则AB →·AD →的值是________.例 2-3如图在等腰直角△ABC 中,点O 是斜边BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M 、N ,若AB →=mAM →,AC →=nAN →,则mn 的最大值为( )B .1C .2D .3变式训练【2-1】设a =(a 1,a 2),b =(b 1,b 2),定义一种向量积a ·b =(a 1,a 2)·(b 1,b 2)=(a 1b 1,a 2b 2).已知m =⎝ ⎛⎭⎪⎫2,12,n =⎝ ⎛⎭⎪⎫π3,0,点P (x ,y )在y =sinx 的图象上运动,点Q 在y =f (x )的图象上运动,且满足OQ →=m ·OP →+n (其中O 为坐标原点),则y =f (x )的最大值为________.【2-2】在△ABC 中,∠ACB 为钝角,AC =BC =1,CO →=xCA →+yCB →且x +y =1,函数f (m )=|CA →-mCB →|的最小值为32,则|CO →|的最小值为______.易错题在△ABC 中,sin A +cos A =22,AC =2,AB =3,求tan A 的值和△ABC 的面积.练习题1.向量a =(1,-1),b =(-1,2),则(2a +b )·a =( ) A .-1 B .0 C .1 D .2 2.在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .不能确定 3.在△ABC 中,AB =2,AC =3,AB →·BC →=1,则BC =( ) C .2 24.锐角△ABC 中,若A =2B ,则a b的取值范围是( )A .(1,2)B .(1,3)C .(2,2)D .(2,3) 5.如图,在△ABC 中,D 是边AC 上的点,且AB =AD ,2AB =3BD ,BC =2BD ,则sin C 的值为( )6.如图,从气球A 上测得正前方的河流的两岸B 、C 的俯角分别为75°、30°,此时气球的高是60 m ,则河流的宽度BC 等于( )A .240(3-1) mB .180(2-1) mC .120(3-1) mD .30(3+1) m7.记max{x ,y }=⎩⎪⎨⎪⎧x ,x ≥y ,y ,x <y ,min{x ,y }=⎩⎪⎨⎪⎧y ,x ≥y ,x ,x <y ,设a ,b 为平面向量,则( ) A .min{|a +b |,|a -b |}≤min{|a |,|b |} B .min{|a +b |,|a -b |}≥min{|a |,|b |} C .max{|a +b |2,|a -b |2}≤|a |2+|b |2D .max{|a +b |2,|a -b |2}≥|a |2+|b |28.如图为函数f (x )=3sin(ωx +φ)(ω>0)的部分图象,B ,C 分别为图象的最高点和最低点,若AB →·BC →=|AB →|2,则ω=( )9.设△ABC 的内角A 、B 、C 所对的边长分别为a 、b 、c ,且a cos B -b cos A =35c ,则tan Atan B 的值为______.10.在△ABC 中,内角A 、B 、C 所对的边分别为a ,b ,c ,已知△ABC 的面积为315,b -c =2,cos A =-14,则a 的值为________.11.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为 30°,则此山的高度CD =________m.12.△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =3,cos A =63,B =A +π2. (1)求b 的值; (2)求△ABC 的面积.13.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,向量m =(a ,3b )与n =(cos A ,sin B )平行. (1)求A ; (2)若a =7,b =2,求△ABC 的面积.14.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知tan ⎝⎛⎭⎪⎫π4+A =2. (1)求sin 2A sin 2A +cos 2A 的值; (2)若B =π4,a =3,求△ABC 的面积.15.已知向量m =(cos x ,-1),n =⎝ ⎛⎭⎪⎫sin x ,-32,f (x )=(m -n )·m . (1)求函数f (x )的单调递增区间; (2)锐角△ABC 中角A ,B ,C 的对边分别为a ,b ,c ,其面积S =3,f ⎝⎛⎭⎪⎫A -π8=-24,a =3,求b +c 的值.。

平面向量的极化恒等式(解析版)

平面向量的极化恒等式(解析版)

专题八 平面向量的极化恒等式利用向量的极化恒等式可以快速对共起点(终点)的两向量的数量积问题数量积进行转化,体现了向量的几何属性,让“秒杀”向量数量积问题成为一种可能,此恒等式的精妙之处在于建立了向量的数量积与几何长度(数量)之间的桥梁,实现向量与几何、代数的巧妙结合.对于不共起点和不共终点的问题可通过平移转化法等价转化为对共起点(终点)的两向量的数量积问题,从而用极化恒等式解决.1.极化恒等式:a ·b =14[(a +b )2-(a -b )2]几何意义:向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的14.2.平行四边形模式:如图(1),平行四边形ABCD ,O 是对角线交点.则:(1)AB →·AD →=14[|AC |2-|BD |2].3.三角形模式:如图(2),在△ABC 中,设D 为BC 的中点,则AB →·AC →=|AD |2-|BD |2. 三角形模式是平面向量极化恒等式的终极模式,几乎所有的问题都是用它解决. 记忆:向量的数量积等于第三边的中线长与第三边长的一半的平方差. 考点一 平面向量数量积的定值问题 【方法总结】利用极化恒等式求数量积的定值问题的步骤(1)取第三边的中点,连接向量的起点与中点;(2)利用积化恒等式将数量积转化为中线长与第三边长的一半的平方差; (3)求中线及第三边的长度,从而求出数量积的值.积化恒等式适用于求对共起点(终点)的两向量的数量积,对于不共起点和不共终点的问题可通过平移转化法等价转化为对共起点(终点)的两向量的数量积,从而用极化恒等式解决.在运用极化恒等式求数量积时,关键在于取第三边的中点,找到三角形的中线,再写出极化恒等式,难点在于求中线及第三边的长度,通常用平面几何方法或用正余弦定理求解,从而得到数量的值.【例题选讲】[例1] (1)(2014·全国Ⅱ)设向量a ,b 满足|a +b |=10,|a -b |=6,则a ·b =( ) A .1 B .2 C .3 D .5答案 A 解析 通法 由条件可得,(a +b )2=10,(a -b )2=6,两式相减得4a·b =4,所以a ·b =1.极化恒等式 a ·b =14[(a +b )2-(a -b )2]=14(10-6)=1.(2) (2012·浙江)在△ABC 中,M 是BC 的中点,AM =3,BC =10,则AB →·AC →=________.AABC图(2)答案 -16 解析 因为M 是BC 的中点,由极化恒等式得:AB →·AC →=|AM |2-14|BC |2=9-14×100=-16.(3)如图所示,AB 是圆O 的直径,P 是AB 上的点,M ,N 是直径AB 上关于点O 对称的两点,且AB =6,MN =4,则PM →·PN →=( )A .13B .7C .5D .3答案 C 解析 连接AP ,BP ,则PM →=P A →+AM →,PN →=PB →+BN →=PB →-AM →,所以PM →·PN →=(P A →+AM →)·(PB →-AM →)=P A →·PB →-P A →·AM →+AM →·PB →-|AM →|2=-P A →·AM →+AM →·PB →-|AM →|2=AM →·AB →-|AM →|2=1×6-1=5.(4)如图,在平行四边形ABCD 中,AB =1,AD =2,点E ,F ,G ,H 分别是AB ,BC ,CD ,AD 边上的中点,则EF →·FG →+GH →·HE →=________.答案 32 解析 连结EG ,FH ,交于点O ,则EF →·FG →=EF →·EH →=EO →2-OH →2=1-⎝⎛⎭⎫122=34,GH →·HE →=GH →·GF →=GO →2-OH →2=1-⎝⎛⎭⎫122=34,因此EF →·FG →+GH →·HE →=32.(5) (2016·江苏)如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点.BA →·CA →=4,BF →·CF →=-1,则BE →·CE →的值为________.答案 78 解析 极化恒等式法 设BD =DC =m ,AE =EF =FD =n ,则AD =3n .根据向量的极化恒等式,有AB →·AC →=AD →2-DB →2=9n 2-m 2=4, FB →·FC →=FD →2-DB →2=n 2-m 2=-1.联立解得n 2=58,m 2=138.因此EB →·EC →=ED →2-DB →2=4n 2-m 2=78.即BE →·CE →=78.坐标法 以直线BC 为x 轴,过点D 且垂直于BC 的直线为y 轴,建立如图所示的平面直角坐标系xoy ,如图:设A (3a ,3b ),B (-c ,0),C (-c ,0),则有E (2a ,2b ),F (a ,b ) BA →·CA →=(3a +c ,3b )·(3a -c ,3b )=9a 2-c 2+9b 2=4 BF →·CF →=(a +c ,b )·(a -c ,b )=a 2-c 2+b 2=-1,则a 2+b 2=58,c 2=138BE →·CE →=()2a -c ,2b ·()2a -c ,2b =4a 2-c 2+4b 2=78.基向量 BA →·CA →=(DA →-DB →)(DA →-DC →)=4AD →2-BC →24=36FD →2-BC →24=4,BF →·CF →=(DF →-DB →)(DF →-DC →)=4FD →2-BC →24=-1,因此FD →2=58,BC →=132,BE →·CE →=(DE →-DB →)(DE →-DC →)=4ED →2-BC →24=16FD →2-BC →24=78.(6)在梯形ABCD 中,满足AD ∥BC ,AD =1,BC =3,AB →·DC →=2,则AC →·BD →的值为________.BC答案 4 解析 过A 点作AE 平行于DC ,交BC 于E ,取BE 中点F ,连接AF ,过D 点作DH 平行于AC ,交BC 延长线于H ,E 为BH 中点,连接DE ,22212AB DC AB AE AF BF AF ⋅=⋅=-=-=,AC ⋅ 2224BD DB DH BE DE DE =-⋅=-=-,又1FE BE BF =-=,AD ∥BC ,则四边形ADEF 为平行四边形,AF DE =,1AC BD ∴⋅=.B【对点训练】1.已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·DA →的值为________.1.答案 1 解析 取AE 中点O ,设|AE |=x (0≤x ≤1),则|AO |=12x ,∴DE →·DA →=|DO |2-|AO |2=12+⎝⎛⎭⎫12x 2 -14x 2=1. 2.如图,△AOB 为直角三角形,OA =1,OB =2,C 为斜边AB 的中点,P 为线段OC 的中点,则AP →·OP →= ( )A .1B .116C .14D .-122.答案 B 解析 取AO 中点Q ,连接PQ ,AP →·OP →=P A →·PO →=PQ 2-AQ 2=516-14=116.3.如图,在平面四边形ABCD 中,O 为BD 的中点,且OA =3,OC =5,若AB →·AD →=-7,则BC →·DC →的值 是________.3.答案 9 解析 因为AB →·AD →=AO →2-OD →2=9-OD →2=-7⇒OD →2=16,所以BC →·DC →=CO →2-OD →2=25 -16=9.4.已知点A ,B 分别在直线x =3,x =1上,|OA →-OB →|=4,当|OA →+OB →|取最小值时,OA →·OB →的值是_____. A .0 B .2 C .3 D .64.答案 C 解析 如图,点A ,B 分别在直线x =1,x =3上,|AB →|=4,当|OA →+OB →|取最小值时,AB 的 中点在x 轴上,OA →·OB →=OM →2-BM →2=4-4=0.5.在边长为1的正三角形ABC 中,D ,E 是边BC 的两个三等分点(D 靠近点B ),则AD →·AE →等于( ) A .16 B .29 C .1318 D .135.答案 C 解析 解法一:因为D ,E 是边BC 的两个三等分点,所以BD =DE =CE =13,在△ABD 中,AD 2=BD 2+AB 2-2BD ·AB ·cos60°=⎝⎛⎭⎫132+12-2×13×1×12=79,即AD =73,同理可得AE =73,在△ADE 中,由余弦定理得cos ∠DAE =AD 2+AE 2-DE 22AD ·AE =79+79-⎝⎛⎭⎫1322×73×73=1314,所以AD →·AE →=|AD →|·|AE →|cos ∠DAE =73×73×1314=1318. 解法二:如图,建立平面直角坐标系,由正三角形的性质易得A ⎝⎛⎭⎫0,32,D ⎝⎛⎭⎫-16,0,E ⎝⎛⎭⎫16,0,所以AD →=(-16,-32),AE →=⎝⎛⎭⎫16,-32,所以AD →·AE →=⎝⎛⎭⎫-16,-32·⎝⎛⎭⎫16,-32=-136+34=1318.极化恒等式法 取DE 中点F ,连接AF ,则AD →·AE →=|AF |2-|DF |2=34-136=1318.6.在△ABC 中,|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 的三等分点,则AE →·AF →等于( )A .89B .109C .259D .2696.答案 B 解析 坐标法 由|AB →+AC →|=|AB →-AC →|,化简得AB →·AC →=0,又因为AB 和AC 为三角形的两 条边,它们的长不可能为0,所以AB 与AC 垂直,所以△ABC 为直角三角形.以A 为原点,以AC 所在直线为x 轴,以AB 所在直线为y 轴建立平面直角坐标系,如图所示,则A (0,0),B (0,2),C (1,0).不妨令E 为BC 的靠近C 的三等分点,则E ⎝⎛⎭⎫23,23,F ⎝⎛⎭⎫13,43,所以AE →=⎝⎛⎭⎫23,23,AF →=⎝⎛⎭⎫13,43,所以AE →·AF →=23×13+23×43=109.极化恒等式法 取EF 中点M ,连接AM ,则AE →·AF →=|AM |2-|EM |2=54-536=109.7.如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP →=3PD →,AP →·BP →=2,则AB →·AD →的值是( )A .44B .22C .24D .727.答案 B 解析 如图,取AB 中点E ,连接EP 并延长,交AD 延长线于F ,AP →·BP →=EP 2-AE 2=EP 2-16=2,∴EP =32,又∵CP →=3PD →,AE →=EB →,AB →=DC →,∴AE =2DP ,即△F AE 中,DP 为中位线,AF =2AD =10,AE =12AB =4,FE =2PE =62,AP 2=40,AD →·AB →=AF →·AE →=AP 2-EP 2=40-(32)2=22.8.如图,在△ABC 中,已知AB =4,AC =6,∠A =60°,点D ,E 分别在边AB ,AC 上,且AB →=2AD →,AC →=2AE →,若F 为DE 的中点,则BF →·DE →的值为________.A BD CE F8.答案 4 解析 取BD 的中点N ,连接NF ,EB ,则BE ⊥AE ,∴BE =23.在△DEB 中.FN ∥12EB .∴FN=3.BF →·DE →=2FB →·FD →=2(FN 2-DN 2)=4.AB DCE FN9.如图,在△ABC 中,已知AB =3,AC =2,∠BAC =120°,D 为边BC 的中点,若CD ⊥AD ,垂足为E , 则EB →·EC →=________.9.答案 -277 解析 由余弦定理得,BC 2=AB 2+AC 2-2 AB ·AC ·cos120°=19,即BC =19,因为AB →·AC →AD 2-CD 2=|AB |·|AC |·cos120°=-3,所以|AD |=72,因为S △ABC =2S △ADC ,则12|AB |·|AC |·sin120°=2·12|AD ||CE |,解得|CE |=3217,在Rt △DEC 中,|DE |=CD 2-CE 2=5714,所以EB →·EC →=|ED |2-|CD |2=-277.B10.在平面四边形ABCD 中,点E ,F 分别是边AD ,BC 的中点,且AB =1,EF =2,CD =5,若AD →·BC →=15.则AC →·BD →的值为________.10.答案 解析 极化恒等式 如图,取, , , AB AC CD BD 中点, , , H I J K ,四边形ABCD 中,易知, , EF KI HJ 三线共点于O ,2215154AD BC HK HI HO IO ⋅=⇒⋅==-,又4AC BD HE HF ⋅=⋅=()224HO FO -,在EFI ∆中,12,2EF EI FI ===,由中线长公式知214IO =,从而24HO =,AC BD ⋅=14(4)142-=.基向量法2EF AB DC =+,22242EF AB DC AB DC ∴=++⋅, 5, 2AB DC EF =又=1,=, 1AB DC ∴⋅=,15 ()()15AD BC AC CD BD DC ⋅=∴+⋅+=,,则2AC BD AC DC CD BD DC ⋅+⋅+⋅-15=,可化为()()515AC BD AB BC DC CD BC CD ⋅++⋅+⋅+-=,15, AC BD AB DC ⋅+⋅= AC BD ⋅故=14.BCADE O考点二 平面向量数量积的最值(范围)问题 【方法总结】利用极化恒等式求数量积的最值(范围)问题的步骤(1)取第三边的中点,连接向量的起点与中点;(2)利用积化恒等式将数量积转化为中线长与第三边长的一半的平方差; (3)求中线长的最值(范围),从而得到数量的最值(范围).积化恒等式适用于求对共起点(终点)的两向量的数量积的最值(范围)问题,利用极化恒等式将多变量转变为单变量,再用数形结合等方法求出单变量的范围.对于不共起点和不共终点的问题可通过平移转化法等价转化为对共起点(终点)的两向量的数量积的最值(范围)问题,从而用极化恒等式解决.在运用极化恒等式求数量积的最值(范围)时,关键在于取第三边的中点,找到三角形的中线,再写出极化恒等式,难点在于求中线长的最值(范围),通过观察或用点到直线的距离最小或用三角形两边之和大于等于第三边,两边之差小于第三边或用基本不等式等求得中线长的最值(范围),从而得到数量的最值(范围).【例题选讲】[例1](1)若平面向量a ,b 满足|2a -b |≤3,则a ·b 的最小值为________.答案 -98 解析 a ·b =18[(2a +b )2-(2a -b )2]=18[|2a +b |2-|2a -b |2]≥02-328=-98.当且仅当|2a +b |=0,|2a -b |=3,即|a |=34,|b |=32,< a ,b >=π时,a ·b 取最小值-98.(2)如图,在同一平面内,点A 位于两平行直线m ,n 的同侧,且A 到m ,n 的距离分别为1,3,点B ,C 分别在m ,n 上,|AB →+AC →|=5,则AB →·AC →的最大值是________.答案214解析 坐标法 以直线n 为x 轴,过点A 且垂直于n 的直线为y 轴,建立如图所示的平面直角坐标系xOy ,如图:则A ()0,3,C ()c ,0,B ()b ,2,则AB →=()b ,-1,AC →=()c ,-3,从而()b +c 2+()-42=52,即()b +c 2=9,又AC →·AB →=bc +3≤()b +c 24+3=214,当且仅当b =c 时,等号成立.极化恒等式 连接BC ,取BC 的中点D ,AB →·AC →=AD 2-BD 2,又AD =12||AB →+AC →=52,故AB →·AC →=254-BD 2=254-14BC 2,又因为BC min =3-1=2,所以(AB →·AC →) max =214.(3)(2017·全国Ⅱ)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则P A →·(PB →+PC →)的最小值是( )A .-2B .-32C .-43D .-1答案 B 解析 方法一 (解析法) 建立坐标系如图①所示,则A ,B ,C 三点的坐标分别为A (0,3),B (-1,0),C (1,0).设P 点的坐标为(x ,y ),图①则P A →=(-x ,3-y ),PB →=(-1-x ,-y ),PC →=(1-x ,-y ),∴P A →·(PB →+PC →)=(-x ,3-y )·(-2x ,-2y )=2(x 2+y 2-3y )=2⎣⎡⎦⎤x 2+⎝⎛⎭⎫y -322-34≥2×⎝⎛⎭⎫-34=-32.当且仅当x =0,y =32时,P A →·(PB →+PC →)取得最小值,最小值为-32.故选B .方法二 (几何法) 如图②所示,PB →+PC →=2PD →(D 为BC 的中点),则P A →·(PB →+PC →)=2P A →·PD →.图②要使P A →·PD →最小,则P A →与PD →方向相反,即点P 在线段AD 上,则(2P A →·PD →)min =-2|P A →||PD →|,问题转化为求|P A →||PD →|的最大值.又当点P 在线段AD 上时,|P A →|+|PD →|=|AD →|=2×32=3,∴|P A →||PD →|≤⎝ ⎛⎭⎪⎫|P A →|+|PD →|22=⎝⎛⎭⎫322=34,∴[P A →·(PB →+PC →)]min =(2P A →·PD →)min =-2×34=-32.故选B .极化恒等式法 设BC 的中点为D ,AD 的中点为M ,连接DP ,PM ,∴P A →·(PB →+PC →)=2PD →·P A →=2|PM→|2-12|AD →|2=2|PM →|2-32≥-32.当且仅当M 与P 重合时取等号.BC(4)已知正三角形ABC 内接于半径为2的圆O ,点P 是圆O 上的一个动点,则P A →·PB →的取值范围是________.答案 [-2,6] 解析 取AB 的中点D ,连接CD ,因为三角形ABC 为正三角形,所以O 为三角形ABC 的重心,O 在CD 上,且OC =2OD =2,所以CD =3,AB =23.又由极化恒等式得:P A →·PB →=|PD |2-14|AB |2=|PD |2-3,因为P 在圆O 上,所以当P 在点C 处时,|PD |max =3,当P 在CO 的延长线与圆O 的交点处时,|PD |min =1,所以P A →·PB →∈[-2,6].(5)如图,已知P 是半径为2,圆心角为π3的一段圆弧AB 上的一点,若AB →=2BC →,则PC →·P A →的最小值为_____.答案 5-213 解析 通法 以圆心为坐标原点,平行于AB 的直径所在直线为x 轴,AB 的垂直平分线所在的直线为y 轴,建立平面直角坐标系(图略),则A (-1,3),C (2,3),设P (2cos θ,2sin θ)⎝⎛⎭⎫π3≤θ≤2π3,则PC →·P A →=(2-2cos θ,3-2sin θ)·(-1-2cos θ,3-2sin θ)=5-2cos θ-43sin θ=5-213sin(θ+φ),其中0<tan φ=36<33,所以0<φ<π6,当θ=π2-φ时,PC →·P A →取得最小值,为5-213. 极化恒等式法 设圆心为O ,由题得AB =2,∴AC =3.取AC 的中点M ,由极化恒等式得PC →·P A →=PM →2-AM →2=PM →2-94,要使PC →·P A →取最小值,则需PM 最小,当圆弧AB ︵的圆心与点P ,M 共线时,PM 最小.易知DM =12,∴OM =⎝⎛⎭⎫122+(3)2=132,所以PM 有最小值为2-132,代入求得PC →·P A →的最小值为5-213.(6)在面积为2的△ABC 中,E ,F 分别是AB ,AC 的中点,点P 在直线EF上,则PC →·PB →+BC →2的最小值是________.答案 23 解析 取BC 的中点为D ,连接PD ,则由极化恒等式得PC →·PB →+BC →2=PD →2-BC →24+BC→2=PD →2+3BC →24≥AD →24+3BC →24,此时当且仅当AD →⊥BC →时取等号,PC →·PB →+BC →2≥AD →24+3BC →24≥2AD →24·3BC →24=23.另解 取BC 边的中点M ,连接PM ,设点P 到BC 边的距离为h .则S △ABC =12·||BC →·2h =2⇒||BC→=2h,PM ≥h ,所以PB →·PC →+BC →2=⎝⎛⎭⎫PM →2-14BC →2+BC →2=PM →2+34BC →2=PM →2+3h 2≥h 2+3h2≥23(当且仅当||PM →=h ,h 2=3时,等号成立)【对点训练】1.已知AB 是圆O 的直径,AB 长为2,C 是圆O 上异于A ,B 的一点,P 是圆O 所在平面上任意一点, 则(P A →+PB →)·PC →的最小值为( )A .-14B .-13C .-12D .-11.答案 C 解析 P A →+PB →=2PO →,∴(P A →+PB →)·PC →=2PO →·PC →,取OC 中点D ,由极化恒等式得,PO →·PC →=|PD |2-|CD |2=|PD |2-14,又|PD |2min =0,∴(P A →+PB →)·PC →的最小值为-12.2.如图,设A ,B 是半径为2的圆O 上的两个动点,点C 为AO 中点,则CO →·CB →的取值范围是( )A .[-1,3]B .[1,3]C .[-3,-1]D .[-3,1]2.答案 A 解析 建立平面直角坐标系如图所示,可得O (0,0),A (-2,0),C (-1,0),设B (2cos θ, 2sin θ).θ∈[0,2π).则CO →·CB →=(1,0)·(2cos θ+1,2sinθ)=2cos θ+1∈[-1,3].故选A .极化恒等式法 连接OB ,取OB 的中D ,连接CD ,则CO →·CB →=|CD |2-|BD |2=CD 2-1,又|CD |2min =0,∴CO →·CB →的最小值为-1.|CD |2max =2,∴CO →·CB →的最大值为3.3.如图,在半径为1的扇形AOB 中,∠AOB =π3,C 为弧上的动点,AB 与OC 交于点P ,则OP →·BP →的最小值为________.3.答案 -116 解析 取OB 的中点D ,连接PD ,则OP →·BP →=|PD →|2-|OD →|2=|PD →|2-14,于是只要求求PD 的最小值即可,由图可知,当PD ⊥AB ,时,PD =34,即所求最小值为-116.4.(2020·天津)如图,在四边形ABCD 中,∠B =60°,AB =3,BC =6,且AD →=λBC →,AD →·AB →=-32,则实数λ的值为________,若M ,N 是线段BC 上的动点,且|MN →|=1,则DM →·DN →的最小值为________.4.答案 16 132 解析 第1空 因为AD →=λBC →,所以AD ∥BC ,则∠BAD =120°,所以AD →·AB →=|AD →|·|AB →|·cos 120°=-32,解得|AD →|=1.因为AD →,BC →同向,且BC =6,所以AD →=16BC →,即λ=16.第2空 通法 在四边形ABCD 中,作AO ⊥BC 于点O ,则BO =AB ·cos 60°=32,AO =AB ·sin 60°=332.以O 为坐标原点,以BC 和AO 所在直线分别为x ,y 轴建立平面直角坐标系.如图,设M (a ,0),不妨设点N 在点M 右侧,则N (a +1,0),且-32≤a ≤72.又D ⎝⎛⎭⎫1,332,所以DM →=⎝⎛⎭⎫a -1,-332,DN →=⎝⎛⎭⎫a ,-332,所以DM →·DN→=a 2-a +274=⎝⎛⎭⎫a -122+132.所以当a =12时,DM →·DN →取得最小值132. 极化恒等式法 如图,取MN 的中点P ,连接PD ,则DM →·DN →=PD →2-MP →2=PD →2-14,当PD →⊥BC →时,|PD→|2取最小值274,所以DM →·DN →的最小值为132.BC5.在△ABC 中,AC =2BC =4,∠ACB 为钝角,M ,N 是边AB 上的两个动点,且MN =1,若CM CN ⋅的 最小值为34,则cos ∠ACB =________.5.答案解析 取MN 的中点P ,则由极化恒等式得2221144CM CN CP MN CP ⋅=-=-,∵ CM CN ⋅的最小值为34,∴min 1CP =,由平几知识知:当CP ⊥AB 时,CP 最小,如图,作CH ⊥AB ,H 为垂足,则CH =1,又AC =2BC =4,所以∠B =30o ,sin A =14,所以cos ∠ACB =cos (150o -A )6.已知AB 为圆O 的直径,M 为圆O 的弦CD 上一动点,AB =8,CD =6,则MA →·MB →的取值范围是________. 6.答案 [-9,0] 解析 如图,MA →·MB →=MO →2-AO →2=MO →2-16,∵|OG →|≤|OM →|≤|OC →|,∴7≤|OM →|≤4,∴MA →·MB →的取值范围是[-9,0].7.如图,设正方形ABCD 的边长为4,动点P 在以AB 为直径的弧APB 上,则PC →·PD →的取值范围为______. 7.答案 [0,16] 解析 如图取CD 的中点E ,连接PE ,PC →·PD →=PE →2-DE →2=OE →2-2,2≤|PE →|≤25, 所以PC →·PD →的取值范围为[0,16].8.已知正△ABC 内接于半径为2的圆O ,AE 交圆O 于点F ,则F A →·FB →的取值范围是________.8.答案 [0,6] 解析 取AB 的中点D 为正三角形,所以O 为三角形ABC 的重心,O 在CD 上,且OC =2OD =2,所以CD =3,AB =23.又由极化恒等式得:F A →·FB →=|FD |2-|AD |2=|FD |2-3,因为F 在劣弧BC 上,所以当F 在点C 处时,|FD |max =3,当F 在点B 处时, |PD |min =3,所以P A →·PB →∈[0,6].9.已知AB 是半径为4的圆O 的一条弦,圆心O 到弦AB 的距离为1,P 是圆O 上的动点,则P A →·PB →的取 值范围为_________.9.答案 [-6,10] 解析 极化恒等式法 设AB 的中点为C ,连接CP ,则P A →·PB →=|PC →|2-|AC →|2=|PC →|2-15.|PC →|2-15≥25-15=10,|PC →|2-15≤9-15=-6.10.矩形ABCD 中,AB =3,BC =4,点M ,N 分别为边BC ,CD 上的动点,且MN =2,则AM →·AN →的最小值为________.10.答案 15 解析 取K 为MN 中点,由极化恒等式,AM →·AN →=|AK |2-1,显然K 的轨迹是以点C 为圆心,1为半径的圆周在矩形内部的圆弧,所以|AK |min =5-1=4,所以AM →·AN →的最小值为15.AD11.在△ABC 中,已知AB =3,C =π3,则CA →·CB →的最大值为________.11.答案 32解析 设D 是AB 的中点,连接CD ,点O 是△ABC 的外心,连接DO 并延长交圆O 于C ´,由△ABC ´是等边三角形,∵AD =32,∴C ´D =32,则CA →·CB →=|CD →|2-|DA →|2=|CD →|2-(32)2≤|C ´D →|2-34=(32)2-34=32.∴(CA →·CB →)max =32.12.已知在△ABC 中,P 0是边AB 上一定点,满足P 0B =14AB ,且对于边AB 上任一点P ,恒有PB →·PC →≥P 0B →·P 0C →,则( )A .∠ABC =90°B .∠BAC =90° C .AB =ACD .AC =BC12.答案 D 解析 如图所示,取AB 的中点E ,因为P 0B =14AB ,所以P 0为EB 的中点,取BC 的中点D ,则DP 0为△CEB 的中位线,DP 0∥CE .根据向量的极化恒等式,有PB →·PC →=PD →2-DB →2,P 0B →·P 0C →=P 0D →2-DB →2.又PB →·PC →≥P 0B →·P 0C →,则|PD→|≥|P 0D →|恒成立,必有DP 0⊥AB .因此CE ⊥AB ,又E 为AB 的中点,所以AC =BC .13.在正方形ABCD 中,AB =1,A ,D 分别在x ,y 轴的非负半轴上滑动,则OC →·OB →的最大值为______.13.答案 2 解析 如图取BC 的中点E ,取AD 的中点F ,OC →·OB →=OE →2-BE →2=OE →2-14,而|OE →|≤|OF →|+|FE →|=12||AD →|+|FE →||=12+1=32,当且仅当O ,F ,E 三点共线时取等号.,所以OC →·OB →的最大值为2.14.在三角形ABC 中,D 为AB 中点,∠C =90°,AC =4,BC =3,E ,F 分别为BC ,AC 上的动点,且EF =1,则DE →·DF →最小值为________. 14.答案154 解析 设EF 的中点为M ,连接CM ,则|CM →|=12,即点M 在如图所示的圆弧上,则DE →·DF → =|DM →|2-|EM →|2=|DM →|2-14≥||CD |-12|2-14=154.ABC DE FM15.在Rt ABC 中,∠C =90°,AC =3,AB =5,若点A ,B 分别在x ,y 轴的非负半轴上滑动,则OA →·OC →的最大值为________.15.答案 18 解析 如图取AC 的中点M ,取AB 的中点N ,则OA →·OC →=OM →2-AM →2=OM →2-(32)2≤(ON →2-NM →2)-(32)2=(2+52)2-(32)2=18.16.已知正方形ABCD 的边长为2,点F 为AB 的中点,以A 为圆心,AF 为半径作弧交AD 于E ,若P 为劣弧EF 上的动点,则PC →·PD →的最小值为______.16.答案 5-25 解析 如图取CD 的中点M ,PC →·PD →=PM 2-DM 2=PM 2-1,而|PM |+1=|PM |+|AP |≥|AM |=5,当且仅当P ,Q 重合时等号成立,所以PC →·PD →的最小值为(5-1)2-1=5-25.17.如图,已知B ,D 是直角C 两边上的动点,AD ⊥BD ,|AD →|=3,∠BAD =π6,CM →=12(CA →+CB →),CN →=12(CD →+CA →),则CM →·CN →的最大值为________. ABCDMN17.答案13+44 解析 设MN 的中点为G ,BD 的中点为H ,CM →·CN →=|CG →|2-|GN →|2=|CG →|2-116, ∵|CG →|≤|CH →|+|HG →|=12+134,∴CM →·CN →≤(12+134)2-116=13+44.所以CM →·CN →的最大值为13+44.AB CD MNG H18.如图,在平面四边形ABCD 中,AB ⊥BC ,AD ⊥CD ,∠BCD =60°,CB =CD =23.若点M 为边BC上的动点,则AM →·DM →的最小值为________.B18.答案214解析 设E 是AD 的中点,作EN ⊥BC 于N ,延长CB 交DA 的延长线于F ,由题意可得: FD =3CD =6,FC =2CD =43,∴BF =23,∴AB =2,F A =4,∴AD =2,EN AB =EF F A =54,EN =52.则AM →·DM →=MA →·MD →=|ME →|2-|EA →|2=|ME →|2-1≥EN 2-1=(52)2-1=214.∴AM →·DM →=214.另解 设E 是AD 的中点,作EF ⊥BC 于F ,作AG ⊥EF 于G ,∵AB ⊥BC ,AD ⊥CD ,∴四边形ABCD 共圆,如图,由圆的对称性及∠BCD =60°,CB =CD =23,可知∠BCA =∠DCA =30°,∴AB =2,∵∠GAE =30°,∴GE =12,∴EF =2+12=52,则AM →·DM →=MA →·MD →=|ME →|2-|EA →|2=|ME →|2-1≥EN 2-1=(52)2-1=214.∴AM →·DM →=214.C19.(2018·天津)如图,在平面四边形ABCD 中,AB ⊥BC ,AD ⊥CD ,∠BAD =120°,AB =AD =1.若点E为边CD 上的动点,则AE →·BE →的最小值为________.19.答案2116解析 通法 如图,以D 为坐标原点建立直角坐标系.连接AC ,由题意知∠CAD =∠CAB =60°,∠ACD =∠ACB =30°,则D (0,0),A (1,0),B ⎝⎛⎭⎫32,32,C (0,3).设E (0,y )(0≤y ≤3),则AE →=(-1,y ),BE →=⎝⎛⎭⎫-32,y -32,所以AE →·BE →=32+y 2-32y =⎝⎛⎭⎫y -342+2116,所以当y =34时,AE →·BE→有最小值2116.极化恒等式法 如图,取AB 的中点P ,连接PE ,则AE →·BE →=PE →2-AP →2=PE →2-14,当PE →⊥CD →时,|PE→|取最小值,由几何关系可知,此时,PE →2=2516,所以DM →·DN →的最小值为2116.20.如图,圆O 为Rt △ABC 的内切圆,已知AC =3,BC =4,C =π2,过圆心O 的直线l 交圆于P ,Q 两点,则BP →·CQ →的取值范围为________.20.答案 [-7,1] 解析 易知,圆的半径为1,BP →·CQ →=(BC →+CP →)·CQ →=BC →·CQ →+CP →·CQ →=CP →·CQ →-CB →·CQ →,CP →·CQ →=CO →2-OP →2=2-1=1.CB →·CQ →=|CB →||CQ →|cos ∠BCQ =2|CQ →|cos ∠BCQ ,(|CQ →|cos ∠BCQ )min =0,(|CQ →|cos ∠BCQ )max =4.所以BP →·CQ →的取值范围为[-7,1].21.在三棱锥S -ABC 中,SA ,SB ,SC 两两垂直,且SA =SB =SC =2,点M 为三棱锥S -ABC 的外接球面上任意一点,则MA →·MB →的最大值为________.21.答案 23+2 解析 如图,MA →·MB →=MO 1→2-2.当M ,A ,B 在同一个大圆上且MO 1⊥AB ,点M 与线段AB 在球心的异侧时,|MO 1→|最大,又2R =22+22+22=23,所以R =3.|MO 1→|max =3+1,MO 1→2-2的最大值为23+2.A22.如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为2,MN 是它的内切球的一条弦(我们把球面上任意两点之间的线段称为球的弦),P 为正方体表面上的动点,当弦MN 的长度最大时,PM →·PN →的取值范围是________.22.答案 [0,2] 解析 由正方体的棱长为2,得内切球的半径为1,正方体的体对角线长为23.当弦MN 的长度最大时,MN 为球的直径.设内切球的球心为O ,则PM →·PN →=PO →2-ON →2=PO →2-1.由于P 为正方体表面上的动点,故OP ∈[1,3],所以PM →·PN →∈[0,2].23.已知线段AB 的长为2,动点C 满足CA →·CB →=λ(λ为常数),且点C 总不在以点B 为圆心,12为半径的圆内,则负数λ的最大值为________.23.答案 -34解析 如图取AB 的中点为D ,连接CD ,则CA →·CB →=|CD →|2-1=λ,|CD →|=1+λ,()-1≤λ<0, 又由点C 总不在以点B 为圆心,12为半径的圆内,故1+λ≤12,则负数λ的最大值为-34.24.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( )A .2B .3C .6D .824.答案 C 解析 如图,由已知|OF |=1,取FO 中点E ,连接PE ,由极化恒等式得:OP →·FP →=|PE |2-14|OF |2=|PE |2-14,∵|PE |2max =254,∴OP →·FP →的最大值为6.。

提优专题(2.2)——平面向量和解三角形(解答题)(含答案)

提优专题(2.2)——平面向量和解三角形(解答题)(含答案)

平面向量与解三角形(解答题)1. 记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且8a =,.3A π=(1)若2B π≠,求2cos c bB−的值; (2)求||AB AC AB AC +−⋅的最小值.2.ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且1sin cos .1cos 2sin 2A AB B+=+(1)求证:2;2A B π+=(2)若2223a c b ac +−,试求sin a cB b+⋅的取值范围.3.如图,某公园改建一个三角形池塘,90C ︒∠=,2AB =百米,1BC =百米,现准备养一批观赏鱼供游客观赏.(1)若在ABC 内部取一点P ,建造连廊供游客观赏,方案一如图①,使得点P 是等腰三角形PBC 的顶点,且23CPB π∠=,求连廊AP PC PB ++的长(单位为百米); (2)若分别在AB ,BC ,CA 上取点D ,E ,F ,并建造连廊,使得DEF 变成池中池,放养更名贵的鱼类供游客观赏:方案二如图②,使得DEF 为正三角形,设2S 为图②中DEF 的面积,求2S 的最小值;方案三如图③,使得EF 平行于AB ,且EF 垂直于DE ,设3S 为图③中DEF 的面积,求3S 的取值范围.4.在ABC 中,点P 为ABC 内一点.(1)若点P 为ABC 的重心,用AB ,AC 表示AP ;(2)记PBC ,PAC ,PAB 的面积分别为A S ,B S ,C S ,求证:0A B C S PA S PB S PC ++=; (3)若点P 为ABC 的垂心,且230PA PB PC ++=,求cos .APB ∠5.已知向量(),u a b =,(),v c d =,其中(),,,0,.a b c d ∈+∞(1)若u v u v ⋅=,写出a ,b ,c ,d 之间应满足的关系式;(2)求证:()()()22222a b c d ac bd +++;(3)+的最大值,并求其取得最大值时x 的值.6. 平面多边形中,三角形具有稳定性,而四边形不具有这一性质.如图所示,四边形ABCD 的顶点在同一平面上,已知2,AB BC CD AD ====(1)当BD cos A C −是否为一个定值?若是,求出这个定值;否则,说明理由.(2)记ABD 与BCD 的面积分别为1S 和2S ,请求出2212S S +的最大值.7. 我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微,数形结合百般好,隔离分家万事休”.数学中,数和形是两个最主要的研究对象,它们之间有着十分密切的联系,在一定条件下,数和形之间可以相互转化,相互渗透.而向量正是数与形“沟通的桥梁”.在ABC ∆中,试解决以下问题:(1)G 是三角形的重心(三条中线的交点),过点G 作一条直线分别交,AB AC 于点,.M N()i 记a,b AB AC ==,请用a,b 表示AG ;(),ii AM mAB AN nAC ==,求4m n +的最小值.(2)已知点O 是ABC ∆的外心,且1143AO AB AC =+,求cos .BAC ∠8. 在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,3.cos cos cos cos cos b c a aB C A B C+=+ (1)求tan tan B C ;(2)若3bc =,求ABC 面积S 的最小值.9. 已知梯形ABCD 中,2AB DC =,AB BC 2,60ABC ︒==∠=,E 为BC 的中点,连接.AE(1)若4AF FE =,求证:B ,F ,D 三点共线; (2)求AE 与BD 所成角的余弦值;(3)若P 为以B 为圆心、BA 为半径的圆弧AC(包含A ,)C 上的任意一点,当点P 在圆弧AC(包含A ,)C 上运动时,求PA PC ⋅的的最小值.10.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且223.222()C B bc bsincsin b c a +=++ (1)求角A 的大小;(2)若c a >,求a bm c+=的取值范围.11.对于给定的正整数n ,记集合123j {|(,,,,),,1,2,3,,}nn R x x x x x R j n αα==⋅⋅⋅∈=⋅⋅⋅,其中元素α称为一个n 维向量.特别地,0(0,0,,0)=⋅⋅⋅称为零向量.设k R ∈,12(,,,)n n a a a R α=⋅⋅⋅∈,12(,,,)n n b b b R β=⋅⋅⋅∈,定义加法和数乘:1122(,,,)n n a b a b a b αβ+=++⋅⋅⋅+,12(,,,).n k ka ka ka α=⋅⋅⋅对一组向量1α,2α,…,(,2)s s N s α+∈,若存在一组不全为零的实数1k ,2k ,…,s k ,使得11220s s k k k ααα++⋅⋅⋅+=,则称这组向量线性相关.否则,称为线性无关. (Ⅰ)对3n =,判断下列各组向量是线性相关还是线性无关,并说明理由. ①(1,1,1)α=,(2,2,2)β=;②(1,1,1)α=,(2,2,2)β=,(5,1,4)γ=;③(1,1,0)α=,(1,0,1)β=,(0,1,1)γ=,(1,1,1).δ=(Ⅱ)已知向量α,β,γ线性无关,判断向量αβ+,βγ+,αγ+是线性相关还是线性无关,并说明理由.(Ⅲ)已知(2)m m 个向量1α,2α,…,m α线性相关,但其中任意1m −个都线性无关,证明下列结论:(ⅰ)如果存在等式11220(,1,2,3,,)m m i k k k k R i m ααα++⋅⋅⋅+=∈=⋅⋅⋅,则这些系数1k ,2k ,…,m k 或者全为零,或者全不为零;(ⅱ)如果两个等式11220m m k k k ααα++⋅⋅⋅+=,11220(,,1,2,3,,)m m i i l l l k R l R i m ααα++⋅⋅⋅+=∈∈=⋅⋅⋅同时成立,其中10l ≠,则1212.m m k k k l l l ==⋅⋅⋅=12.已知OAB ,OA a =,OB b =,||2a =,||3b =,1a b ⋅=,边AB 上一点1P ,这里1P 异于,.A B 由1P 引边OB 的垂线111,PQ Q 是垂足,再由1Q 引边OA 的垂线111,Q R R 是垂足,又由1R 引边AB 的垂线122,R P P 是垂足.同样的操作连续进行,得到点n P ,n Q ,()*.n R n N ∈设()(01)n n n AP t b a t =−<<,如图所示.(1)某同学对上述已知条件的研究发现如下结论:112(1)3BQ t b =−−⋅,问该同学这个结论是否正确并说明理由; (2)用n t 表示1.n t +13.射影几何学中,中心投影是指光从一点向四周散射而形成的投影,如图,O 为透视中心,平面内四个点E ,F ,G ,H 经过中心投影之后的投影点分别为A ,B ,C ,.D 对于四个有序点A ,B ,C ,D ,定义比值CA CB x DADB=叫做这四个有序点的交比,记作().ABCD (1)证明:()()EFGH ABCD =;(2)已知3()2EFGH =,点B 为线段AD的中点,3AC =,sin 3sin 2ACO AOB ∠=∠,求cos .A14.如图1所示,在ABC 中,点D 在线段BC 上,满足2BD DC =,G 是线段AB 上的点,且满足32AG GB =,线段CG 与线段AD 交于点.O (1)若AO t AD =,求实数t ;(2)如图2所示,过点O 的直线与边AB ,AC 分别交于点E ,F ,设EB AE λ=,(0,0)FC AF μλμ=>>;()i 求λμ的最大值;()ii 设AEF 的面积为1S ,四边形BEFC 的面积为2S ,求21S S的取值范围.15.如图:在斜坐标系xOy 中,x 轴、y 轴相交成60︒角,1e 、2e 分别是与x 轴、y 轴正方向同向的单位向量,若向量12OP xe ye =+,则称有序实数对⟨,x y ⟩为向量OP 的坐标,记作OP =⟨,x y ⟩.在此斜坐标系xOy 中,已知ABC 满足:OA =⟨0,2⟩、OB =⟨2,1−⟩.(1)求OA OB ⋅的值;(2)若坐标原点O 为ABC 的重心(注:在斜坐标系下,若G 为ABC 的重心,依然有0GA GB GC ++=成立).①求ABC 的面积;②求满足方程11tan tan tan mA B C+=的实数m 的值.16.法国著名军事家拿破仑⋅波拿巴最早提出的一个几何定理:“以任意三角形的三条边为边向外构造三个等边三角形,则这三个三角形的外接圆圆心恰为另一个等边三角形的顶点”.如图,在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,以AB ,BC ,AC 为边向外作三个等边三角形,其外接圆圆心依次为1O ,2O ,3.O(1)证明:123O O O 为等边三角形; (2)若123O O O ABCSmS= ,求m 的最小值.平面向量与解三角形1. 记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且8a =,.3A π=(1)若2B π≠,求2cos c bB−的值; (2)求||AB AC AB AC +−⋅的最小值.【答案】(1)因为8a =,3A π=,所以sin sin sin b c a B C A ===所以b B =,)8cos c C A B B B =+=,则216.cos c b B −== (2)由222222cos a b c bc A b c bc =+−=+−, 得2264.b c bc +=+因为222b c bc +,所以22642b c bc bc +=+, 所以64bc ,当且仅当8b c ==时,取等号, 2||()AB AC AB AC +=+222AB AC AB AC ++⋅22b c bc =++=,12AB AC bc ⋅=,令t 883t <,则21322bc t =−,则2211||16(2)1744AB AC AB AC t tt +−⋅=−+=−−+,因为883t <,所以2132(2)1784t −−−+<,所以||AB AC AB AC +−⋅的最小值为32.【解析】本题考查利用正弦定理解三角形,利用余弦定理解决范围问题.(1)先利用正弦定理分别求出b ,c ,再根据三角形内角和定理将C 用B 表示,再将所求化简即可得解;(2)利用余弦定理结合可得2264b c bc +=+,结合基本不等式求出bc的范围,计算可得1||64.2AB AC AB AC bc +−⋅=令t =.2.ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且1sin cos .1cos 2sin 2A AB B+=+(1)求证:2;2A B π+=(2)若2223a c b ac +−,试求sin a cB b+⋅的取值范围. 【答案】证明:(1)原式化简得:21sin cos sin sin sin cos cos 2cos 2sin cos A AB A B A B B B B+=⇔+=,即sin cos()B A B =+,cos()cos()2B A B π∴−=+,(0,)2A B π+∈,(0,)22B ππ−∈, 2B A B π∴−=+,即2.2A B π+=(2)由22222A B A B A B C C B ππππ⎧=−⎧⎪+=⎪⎪⇒⎨⎨⎪⎪++==+⎩⎪⎩且04B π<<,由余弦定理,2223a c b ac +−变为223cos 22a cb B ac+−=, 62B ππ∴<, 又04B π<<,;64B ππ∴<由正弦定理,sin sin sin sin sin a c A CB B b B++⋅=⋅ 2219sin sin cos 2cos 2cos cos 12(cos )48A C B B B B B =+=+==+−=+−,cos (2B ∈∴由二次函数值域,可得sina c B b+⋅的范围为【解析】本题考查利用正余弦定理解三角形,三角恒等变换的应用,余弦型函数的值域,二次函数的性质等知识点,属于较难题.3.如图,某公园改建一个三角形池塘,90C ︒∠=,2AB =百米,1BC =百米,现准备养一批观赏鱼供游客观赏.(1)若在ABC 内部取一点P ,建造连廊供游客观赏,方案一如图①,使得点P 是等腰三角形PBC的顶点,且23CPB π∠=,求连廊AP PC PB ++的长(单位为百米);(2)若分别在AB ,BC ,CA 上取点D ,E ,F ,并建造连廊,使得DEF 变成池中池,放养更名贵的鱼类供游客观赏:方案二如图②,使得DEF 为正三角形,设2S 为图②中DEF 的面积,求2S 的最小值;方案三如图③,使得EF 平行于AB ,且EF 垂直于DE,设3S 为图③中DEF 的面积,求3S 的取值范围.【答案】(1)解:因为点 P 是等腰三角形 PBC 的顶点,且 23CPB π∠= , 1BC = , 所以 6PCB π∠=,PC PB =,由余弦定理可得, 222cos C 2PB PC BC PB PB PC +−∠=⋅ ,解得PC = , 又因为 2ACB π∠=,故 3ACP π∠=, 在 Rt ACB 中, 2AB = , 1BC = ,所以AC == ,在 ACP 中,由余弦定理可得, 2222cos3AP AC PC AC PC π=+−⋅⋅ ,解得3AP =, 故AP PC PB ++=+=, 所以连廊 AP PC PB ++ 的长为百米. (2)解:设图②中的正 DEF 的边长为 a , (0)2CEF παα∠=<< ,则 sin CF a α= ,sin AF a α=− , 设 1EDB ∠=∠ , 则 213B DEB DEB ππ∠=−∠−∠=−∠ , 233DEB DEB ππαπ=−−∠=−∠ ,所以 2133ADF πππα∠=−−∠=− , 在 ADF 中,由正弦定理可得,sin sin DF AFA ADF=∠∠ ,即sin 2sinsin()63aa αππα−=− , 即21sin()sin 32a a παα−=−, 即32177a ===(其中 θ 为锐角,且tan θ= ,所以 222133sin 60247Sa =︒⨯=, 即 ()2min S = ; 图③中,设 BE x = , (0,1)x ∈ , 因为 //EF AB ,且 EF DE ⊥ ,所以 3FEC π∠= , 6DEB π∠= , 2EDB π∠= ,所以 cos 62DE x x π== ,222cos3CE EF CE xπ===− ,所以22111(22)))222DEFSEF DE x x x x =⋅⋅=⋅−=−+=−+, 所以当 12x = 时, DEF S 取得最大值8 ,无最小值,即DEF S ⎛∈ ⎝⎦, 故3.S ⎛∈ ⎝⎦【解析】本题考查利用正弦定理、余弦定理解决距离问题、利用正弦定理解决范围与最值问题,属于较难题.(1)先由 PBC 中的余弦定理求出 PC ,再由 APC 中的余弦定理求出 AP ,即可得到答案;(2)设图②中的正 DEF 的边长为 a , (0)2CEF παα∠=<<,图③中,设 BE x = , (0,1)x ∈ ,分别表示出方案②和方案③中的面积,利用三角函数的性质以及二次函数的性质求解最值即可.4.在ABC 中,点P 为ABC 内一点.(1)若点P 为ABC 的重心,用AB ,AC 表示AP ;(2)记PBC ,PAC ,PAB 的面积分别为A S ,B S ,C S ,求证:0A B C S PA S PB S PC ++=; (3)若点P 为ABC 的垂心,且230PA PB PC ++=,求cos .APB ∠【答案】解:(1)由题意,不妨设BC 边上的中点为点D ,所以23AP AD =,又1()2AD AB AC =+,所以,11.33AP AB AC =+(2)证明:令A B C S S S S =++,则B CS S AP AD S +=||||||||C B B C B C S S DC DB AD AB AC AB AC S S S S BC BC =+=+++()()C B S SAP AP PB AP PC S S=+++,则0B C A S PB S PC S AP +−=,所以0A B C S PA S PB S PC ++=;(3)因为P 是ABC 的垂心,230PA PB PC ++=, 所以由(2)易知,::1:2:3.A B C S S S =记ABC 的三个内角分别为A ,B ,C ,则1tan 2:1tan 2A B FC PC BFBF A AF S S FC AF B PC AF BF⋅====⋅,同理:tan :tan B C S S B C =,所以,tan :tan :tan 1:2:3A B C =,又tan tan tan tan()1tan tan A B C A B A B −−=−+=−,所以,2tan 2tan 3tan 12tan A AA A−−=−, 即tan 1A =或1−,又tan A ,tan B ,tan C 同号,所以tan 1A =,所以tan 3C = 又四边形CDPE 中,因为P 是ABC 的垂心,所以90CDP CEP ∠=∠=︒, 所以,180DPE C ∠+∠=︒,又DPE APB ∠=∠,所以,180APB C ∠+∠=︒,所以,tan tan 3APB C ∠=−=−,即cos 10APB ∠=−【解析】本题考查向量的线性运算,向量的几何应用,属于难题. (1)根据向量的线性运算化简即可;(2)利用面积与边长的比例关系化简整理即可;(3)利用(2)的结论得出A ,B ,C 的关系,结合正切的和差角公式计算即可. 5.已知向量(),u a b =,(),v c d =,其中(),,,0,.a b c d ∈+∞(1)若uv u v ⋅=,写出a ,b ,c ,d 之间应满足的关系式; (2)求证:()()()22222a b c d ac bd +++;(3)23x −的最大值,并求其取得最大值时x 的值. 【答案】解:(1)由向量(),u a b =,(),v c d =,得2222,,u v ac bd u a b v c d ⋅=+=+=+, 因为u v u v ⋅=,所以()()()22222ac bd a b c d +=++,即2222222222222a c abcd b d a c a d b c b d ++=+++,所以22222abcd a d b c =+,即()20ad bc −=, 所以0ad bc −=;(2)因为cos ,u v ac bd u v u v ⋅=+=, 而cos ,1u v,所以()222222,ac bd u v cos u vu v +=,当且仅当cos ,1u v =,即//u v 时取等号,所以()()()22222a b c d ac bd +++;(3)由413030x x +⎧⎨−⎩可得1334x −,当3x =5==,当134x =−5+==, 当1334x −<<时,由(2)可得,()11x=+=⎡⎣,,即18x =−时,取等号,+的最大值为1.8x =−【解析】本题考查向量数量积的坐标运算,向量模的坐标表示,利用向量的数量积证明等式. (1)根据数量积得坐标运算及平面向量的模的坐标公式计算即可得出结论; (2)根据cos ,u v ac bd u v u v ⋅=+=,结合余弦函数的值域即可得证;(3)利用(2)中的结论即可得出答案.6. 平面多边形中,三角形具有稳定性,而四边形不具有这一性质.如图所示,四边形ABCD 的顶点在同一平面上,已知2,AB BC CD AD ====(1)当BD cos A C −是否为一个定值?若是,求出这个定值;否则,说明理由.(2)记ABD 与BCD 的面积分别为1S 和2S ,请求出2212S S +的最大值.【答案】解:(1)法一:在ABD 中,由余弦定理得222cos 2AD AB BD A AD AB+−=⋅,即222cosA =2168BD A −=①,同理,在BCD 中,22222cos 222BD C +−=⨯⨯,即28cos 8BD C −=②,①-cos 1A C −=,所以当BD cos A C −为定值,定值为1;法二:在ABD 中,由余弦定理得2222cos BD AD AB AD AB A =+−⋅即222222cos BD A =+−⨯⨯,即216BD A =−, 同理,在BCD 中,2222cos 88cos BD CD CB CD CB C C =+−⋅=−,所以1688cos A C −=−,1cos A C −=,即cos 1A C −=,所以当BD cos A C −为定值,定值为1;222222221211(2)44S S AB AD sin A BC CD sin C +=⋅⋅+⋅⋅ 22221241244sin A sin C sin A cos C =+=+−221241)sin A A =+−−22412cos A A =−++, 令)cos ,1,1A t t =∈−,所以2224122414y t t ⎛=−++=−+ ⎝⎭,所以6t =,即cos A =时,2212S S +有最大值为14.【解析】本题考查余弦定理,考查三角形面积公式,属于较难题.(1)法一:在ABD 2168BD A −=,在BCD 中由余弦定理得28cos 8BD C −=,两式相减可得答案;法二:在ABD 中由余弦定理得216BD A =−,在BCD 中由余弦定理得288cos BD C =−,两式相减可得答案;(2)由三角形面积公式可得222122412S S cos A A +=−++,令()cos ,1,1A t t =∈−转化为二次函数配方求最值即可.7. 我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微,数形结合百般好,隔离分家万事休”.数学中,数和形是两个最主要的研究对象,它们之间有着十分密切的联系,在一定条件下,数和形之间可以相互转化,相互渗透.而向量正是数与形“沟通的桥梁”.在ABC ∆中,试解决以下问题:(1)G 是三角形的重心(三条中线的交点),过点G 作一条直线分别交,AB AC 于点,.M N()i 记a,b AB AC ==,请用a,b 表示AG ; (),ii AM mAB AN nAC ==,求4m n +的最小值.(2)已知点O 是ABC ∆的外心,且1143AO AB AC =+,求cos .BAC ∠ 【答案】解:(1)()i 设D 是BC 中点,则1()2AD a b =+,重心是中线靠近边的三等分点,21()33AG AD a b ∴==+;1111()3333ii AG AB AC AM AN m n=+=+,M ,G ,N 三点共线,G 在线段MN 上,则111(0,0)33m n m n+=>>, 1111414(4)()(5)(523333m n m n m n m n n m ∴+=++=+++=,当且仅当21n m ==时取等号,4m n ∴+的最小值为3; (2)由1143AO AB AC =+可知点O 在ABC 的内部,如图所示,取AB 的中点P ,AC 的中点Q ,由外心性质可知OP AB ⊥,OQ AC ⊥,从而212AO AB AP AB c ⋅=⋅=,即2111()432AB AC AB c +⋅=,所以22111cos 432c bc BAC c +⋅∠=,故11cos 34b BACc ⋅∠=, 同理,由212AO AC AQ AC b ⋅=⋅=可得11cos 46c BAC b ⋅∠=,联立11cos ,3411cos ,46b BAC c c BAC b ⎧⋅∠=⎪⎪⎨⎪⋅∠=⎪⎩得cos 2BAC ∠=【解析】本题考查了平面向量基本定理,余弦定理,基本不等式的应用,属于综合题. (1)()i 根据重心的定义以及平面向量基本定理可表示AG ;()ii 平面向量基本定理结合基本不等式可得结果;(2)由外心性质可得关于cos BAC ∠的方程,解方程可得cos .BAC ∠8. 在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,3.cos cos cos cos cos b c a aB C A B C+=+ (1)求tan tan B C ;(2)若3bc =,求ABC 面积S 的最小值.【答案】解:3(1)cos cos cos cos cos b c a aB C A B C+=+, ()()cos cos cos cos cos 3cos .b C c B A a B C A ∴+=+由正弦定理得(sin cos cos sin )cos sin (cos cos 3cos ).B C B C A A B C A +=+ ()()sin cos sin cos cos 3cos .B C A A B C A ∴+=+ 因为0A π<<,则sin 0A >,A B C π++=,()sin sin B C A ∴+=,则()cos cos sin sin cos cos A B C B C B C =−+=−,所以,cos cos cos 3cos A B C A =+,即2cos cos cos 0A B C +=, 所以,()2sin sin cos cos cos cos 0B C B C B C −+=,2sin sin cos cos B C B C ∴=,即1tan tan .2B C =(2)由(1)得1tan tan .2B C =若tan 0tan 0B C <⎧⎨<⎩,则B 、C 均为钝角,则B C π+>,矛盾, 所以,tan 0B >,tan 0C >,此时B 、C 均为锐角,合乎题意,tan tan tan tan ()2(tan tan )4tan tan tan1B CA B C B C B C +∴=−+==−+−−=−当且仅当tan tan 2B C ==时,等号成立,且A 为钝角. tan 22A −,则()tan 22A π−,且A π−为锐角,由()()()()()()()22sin tan 22cos 1cos 0sin 0A A A sin A cos A A A πππππππ−⎧−=⎪−⎪⎪−+−=⎨⎪−>⎪⎪−>⎩,解得()22sin 3A π−,即22sin 3A ,当且仅当tan tan 2B C ==时,等号成立, 3bc =,13322sin sin 2223S bc A A ∴==⨯=因此,ABC【解析】本题主要考查正弦定理,两角和与差的三角函数公式,三角形面积公式,属于较难题. (1)利用正弦定理结合两角和的余弦公式化简可得出2sin sin cos cos B C B C =,即可求得tan tan B C 的值;(2)分析可知B 、C 均为锐角,利用两角和的正切公式结合基本不等式可得出tan 22A −,求出sin A 的最小值,即可求得S 的最小值.9. 已知梯形ABCD 中,2AB DC =,AB BC 2,60ABC ︒==∠=,E 为BC 的中点,连接.AE(1)若4AF FE =,求证:B ,F ,D 三点共线; (2)求AE 与BD 所成角的余弦值;(3)若P 为以B 为圆心、BA 为半径的圆弧AC(包含A ,)C 上的任意一点,当点P 在圆弧AC(包含A ,)C 上运动时,求PA PC ⋅的的最小值.【答案】解:(1)如图1,12BD BC CD BC BA =+=+1111111()()2525252BF BE EF BC EA BC EB BA BC BC BA =+=+=++=+−+2155BC BA =+25BF BD ∴=又点B 是公共点,B ∴,F ,D 三点共线.(2)如图1,2222211||()422cos601724BD BD BC BA BC BC BA BA ︒==+=+⋅+=+⨯⨯+= ||7BD ∴=12AE AB BE BC BA =+=− 2222211||()122cos604324AE AE BC BA BC BC BA BA ︒∴==−=−⋅+=−⨯⨯+=||3AE ∴=2211113()()22224AE BD BC BA BC BA BC BA BC BA ⋅=−⋅+=−−⋅11334422cos602242︒=⨯−⨯−⨯⨯⨯=− cos AE ∴<,3||||37AE BD BD AE BD −⋅>===⋅⨯(3)如图2,PA BA BP =−,PC BC BP =−2()()()PA PC BA BP BC BP BA BC BP BA BP BC BP ∴⋅=−⋅−=⋅+−⋅+⋅ 设ABP θ∠=,[0,]3πθ∈,则3CBPπθ∠=−,22cos 422cos 22cos()33PA PC ππθθ⋅=⨯⨯+−⨯⨯−⨯⨯− 64cos 4(coscos sinsin )6)333πππθθθθ=−−+=−+[0,]3πθ∈,∴当6πθ=时,min ()6PA PC ⋅=−【解析】本题考查平面向量和三角函数的综合应用,属于拔高题.(1)利用平面向量的线性运算求得25BF BD =,即可求证三点共线;(2)求出||BD 、||AE 和AE BD ⋅,由夹角公式即可求解;(3)设ABP θ∠=,[0,]3πθ∈,求出6)3PA PC πθ⋅=−+,利用三角函数的性质即可求解.10.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且223.222()C B bc bsincsin b c a +=++ (1)求角A 的大小;(2)若c a >,求a bm c+=的取值范围. 【答案】解:(1)由22(1cos )(1cos )cos cos 222222C B b C c B b c b C c B bsincsin −−+++=+=− 22222212222222b c a b c a c b b c a b c aa a⎛⎫++−+−++−=−+=−= ⎪⎝⎭, 所以322()b c a bcb c a +−=++,可得22()3b c a bc +−=, 则222b c a bc +−=,由余弦定理得2221cos 222b c a bc A bc bc +−===,又(0,)A π∈,解得3A π=;(2)由正弦定理得21sin ()cos sin sin sin 23222sin sin sin C C C A B m C C Cπ+−+++===2cos )1111222sin 22222sin cos 2sin2tan 2222C C C C C C C C +=+=+=+=+,因为c a >,所以3C π>,又23B C π+=,所以233C ππ<<,所以623C ππ<<tan 2C<<1tan2C<<, 所以12m <<,则a bm c+=的取值范围为(1,2).【解析】本题,考查利用余弦定理解三角形,利用正弦定理解决范围问题,三角恒等变换,考查了运算能力,属于中档题.(1)利用降幂公式化简,再根据余弦定理即可求解;(2)根据正弦定理及三角恒等变换将a b m c +=可化为122tan 2m C =+,结合233C ππ<<即可求出m 的取值范围. 11.(本小题12分)对于给定的正整数n ,记集合123j {|(,,,,),,1,2,3,,}nn R x x x x x R j n αα==⋅⋅⋅∈=⋅⋅⋅,其中元素α称为一个n维向量.特别地,0(0,0,,0)=⋅⋅⋅称为零向量.设k R ∈,12(,,,)n n a a a R α=⋅⋅⋅∈,12(,,,)n n b b b R β=⋅⋅⋅∈,定义加法和数乘:1122(,,,)n n a b a b a b αβ+=++⋅⋅⋅+,12(,,,).n k ka ka ka α=⋅⋅⋅对一组向量1α,2α,…,(,2)s s N s α+∈,若存在一组不全为零的实数1k ,2k ,…,s k ,使得11220s s k k k ααα++⋅⋅⋅+=,则称这组向量线性相关.否则,称为线性无关. (Ⅰ)对3n =,判断下列各组向量是线性相关还是线性无关,并说明理由. ①(1,1,1)α=,(2,2,2)β=;②(1,1,1)α=,(2,2,2)β=,(5,1,4)γ=;③(1,1,0)α=,(1,0,1)β=,(0,1,1)γ=,(1,1,1).δ=(Ⅱ)已知向量α,β,γ线性无关,判断向量αβ+,βγ+,αγ+是线性相关还是线性无关,并说明理由.(Ⅲ)已知(2)m m 个向量1α,2α,…,m α线性相关,但其中任意1m −个都线性无关,证明下列结论:(ⅰ)如果存在等式11220(,1,2,3,,)m m i k k k k R i m ααα++⋅⋅⋅+=∈=⋅⋅⋅,则这些系数1k ,2k ,…,m k 或者全为零,或者全不为零;(ⅱ)如果两个等式11220m m k k k ααα++⋅⋅⋅+=,11220(,,1,2,3,,)m m i i l l l k R l R i m ααα++⋅⋅⋅+=∈∈=⋅⋅⋅同时成立,其中10l ≠,则1212.m m k k k l l l ==⋅⋅⋅= 【答案】(Ⅰ)解:对于①,设120k k αβ+=,则可得1220k k +=,所以,αβ线性相关; 对于②,设1230k k k αβγ++=,则可得{12312312325020240k k k k k k k k k ++=++=++=,所以1220k k +=,30k =,所以,,αβγ线性相关;对于③,设12340k k k k αβγδ+++=,则可得{124134234000k k k k k k k k k ++=++=++=,解得123412k k k k ===−,所以,,,αβγδ线性相关;(Ⅱ)解:设123()()()0k k k αββγαγ+++++=,则131223()()()0k k k k k k αβγ+++++=,因为向量α,β,γ线性无关,所以{131223000k k k k k k +=+=+=,解得1230k k k ===, 所以向量αβ+,βγ+,αγ+线性无关,(Ⅲ)证明:(ⅰ1122)0m m k k k ααα++⋅⋅⋅+=,如果某个0i k =,1i =,2,⋯,m ,则112211110i i i i m m k k k k k ααααα−−+++++++⋅⋅⋅+=,因为任意1m −个都线性无关,所以1k ,2k ,⋯1i k −,1i k +,⋅⋅⋅,m k 都等于0, 所以这些系数1k ,2k ,⋅⋅⋅,m k 或者全为零,或者全不为零,(ⅱ)因为10l ≠,所以1l ,2l ,⋅⋅⋅,m l 全不为零,所以由11220m m l l l ααα++⋅⋅⋅+=可得21211m m l l l l ααα=−−⋅⋅⋅−,代入11220m m k k k ααα++⋅⋅⋅+=可得2122211()0m m m m l l k k k l l αααα−−⋅⋅⋅−++⋅⋅⋅+=,所以2122111()()0m m m l l k k k k l l αα−++⋅⋅⋅+−+=, 所以21210l k k l −+=,⋯,110m m l k k l −+=,所以1212.m mk k k l l l ==⋅⋅⋅= 【解析】本题主要考查平面向量的综合运用,新定义概念的理解与应用等知识,属于较难题. (Ⅰ)根据定义逐一判断即可;(Ⅱ)设123()()()0k k k αββγαγ+++++=,则131223()()()0k k k k k k αβγ+++++=,然后由条件得到1230k k k ===即可;(Ⅲ)(ⅰ)如果某个0i k =,1i =,2,⋯,m ,然后证明1k ,2k ,⋯1i k −,1i k +,⋅⋅⋅,m k 都等于0即可;(ⅱ)由11220m m l l l ααα++⋅⋅⋅+=可得21211m m l ll l ααα=−−⋅⋅⋅−,然后代入11220m m k k k ααα++⋅⋅⋅+=证明即可.12.(本小题12分)已知OAB ,OA a =,OB b =,||2a =,||3b =,1a b ⋅=,边AB 上一点1P ,这里1P 异于,.A B 由1P 引边OB 的垂线111,PQQ 是垂足,再由1Q 引边OA 的垂线111,Q R R 是垂足,又由1R 引边AB 的垂线122,R P P 是垂足.同样的操作连续进行,得到点n P ,n Q ,()*.n R n N ∈设()(01)n n n AP t b a t =−<<,如图所示.(1)某同学对上述已知条件的研究发现如下结论:112(1)3BQ t b =−−⋅,问该同学这个结论是否正确并说明理由;(2)用n t 表示1.n t +【答案】解:(1)该同学的结论正确,证明如下:由已知,得||3AB =,||3OB =,||2OA =,由余弦定理知222||||||2cos 32||||2OB AB OA ABO OB AB+−∠===, 又111||||3AP t b a t =−=,则111||||||33BP AB AP t =−=−,11112||||cos )(1)||3BQ BP ABO t t b ∴=⋅∠=−=−, 即112(1)3BQ tb =−−⋅;(2)由已知1cos ||||2a b AOB a b ⋅∠===⋅⨯,||||3OB AB ==,cos BAO ∴∠=1||||cos (2||)n n nAP AR BAO OR +∴=⋅∠=−|cosn OQ AOB =⋅∠1||)6n BQ =−⋅1||cos 66n BP ABO =+⋅∠1||)69n AP =+⋅ 1||9n AP =⋅, 即151||3||189n n t b at b a +−=−−1n +=, 115.918n n t t +∴=−+【解析】本题考查了向量的数量积、向量的夹角,涉及余弦定理及数列的递推关系,属于较难题. (1)由余弦定理结合向量条件求出cos ABO ∠即可证得.(2)由向量的夹角先求出cos AOB ∠,再求出151||3||189n n AP AP +=−⋅,即可解答.13.(本小题12分)射影几何学中,中心投影是指光从一点向四周散射而形成的投影,如图,O 为透视中心,平面内四个点E ,F ,G ,H 经过中心投影之后的投影点分别为A ,B ,C ,.D 对于四个有序点A ,B ,C ,D ,定义比值CACB x DA DB=叫做这四个有序点的交比,记作().ABCD(1)证明:()()EFGH ABCD =;(2)已知3()2EFGH =,点B 为线段AD 的中点,3AC =,sin 3sin 2ACO AOB ∠=∠,求cos .A【答案】解:(1)由题意,在AOC ,AOD ,BOC ,BOD 中,1sin sin 21sin sin 2AOC BOC OA OC AOCS CA OA AOCCB S OB BOCOB OC BOC ⋅⋅⋅∠⋅∠===⋅∠⋅⋅⋅∠, 1sin sin 21sin sin 2AOD BOD OA OD AODS DA OA AODDB S OB BODOB OD BOD ⋅⋅⋅∠⋅∠===⋅∠⋅⋅⋅∠,则sin sin sin sin ()sin sin sin sin OA AOC OB BOD AOC BODCB ABCD DA OB BOC OA AOD BOC AOD DB⋅∠⋅∠∠⋅∠==⋅=⋅∠⋅∠∠⋅∠①又,在EOG ,EOH ,FOG ,FOH 中,1sin sin 21sin sin 2EOG FOG OE OG EOGS GE OE EOGGF S OF FOGOF OG FOG ⋅⋅⋅∠⋅∠===⋅∠⋅⋅⋅∠, 1sin sin 21sin sin 2EOH FOH OE OH EOHS HE OE EOHHF S OF FOHOF OH FOH ⋅⋅⋅∠⋅∠===⋅∠⋅⋅⋅∠, 则sin sin sin sin ()sin sin sin sin GEOE EOG OF FOH EOG FOHGF EFGH HE OF FOG OE EOH FOG EOH HF⋅∠⋅∠∠⋅∠==⋅=⋅∠⋅∠∠⋅∠②,又EOG AOC ∠=∠,FOH BOD ∠=∠,FOG BOC ∠=∠,EOH AOD ∠=∠,由①②可得,sin sin sin sin sin sin sin sin AOC BOD EOG FOHBOC AOD FOG EOH∠⋅∠∠⋅∠=∠⋅∠∠⋅∠,即()()EFGH ABCD =(2)由题意3()2EFGH =,由(1)可知,3()2ABCD =,则32CACB DA DB =,即3.2CA DB CB DA =,又点B 为线段AD 的中点,即12DB DA =, 故3CACB=,又3AC =,则2AB =,1BC =, 设OA x =,OC y =,且OB =,由ABO CBO π∠=−∠可知,coscos 0ABO CBO ∠+∠=, 2222220=,解得22215x y +=③,又在AOB 中,利用正弦定理可知,sin sin AB xAOB ABO =∠∠④,在BOC 中,利用正弦定理可知,sin sin OByBCO CBO=∠∠⑤,且sin sin ABO CBO ∠=∠,则④⑤可得,sin 3sin 2x AB BCOy AOB OB ∠=⋅==∠,即x =⑥, 由③⑥解得,3x=,y =,即3OA =,OC =,则222222325cos .22326OA AB OB A OA AB +−+−===⋅⨯⨯【解析】本题考查新定义问题,正,余弦定理的综合应用,三角形面积公式,属于较难题.(1)由题意,结合新定义可得sin sin ()sin sin CAAOC BODCB ABCD DA BOC AOD DB∠⋅∠==∠⋅∠①,同理sin sin ()sin sin EOG FOHGF EFGH HE FOG EOH HF∠⋅∠==∠⋅∠②,再利用角相等,即可证明;(2)结合(1)中的结论,利用正余弦定理,逐步分析求解即可. 14.(本小题12分)如图1所示,在ABC 中,点D 在线段BC 上,满足2BD DC =,G 是线段AB 上的点,且满足32AG GB =,线段CG 与线段AD 交于点.O(1)若AO t AD =,求实数t ;(2)如图2所示,过点O 的直线与边AB ,AC 分别交于点E ,F ,设EB AE λ=,(0,0)FC AF μλμ=>>;()i 求λμ的最大值;()ii 设AEF 的面积为1S ,四边形BEFC 的面积为2S ,求21S S 的取值范围. 【答案】解:(1)依题意,因为2BD DC =,所以1121()3333AD AB BD AB BC AB BA AC AB AC =+=+=++=+,因为G 、O 、C 三点共线所以存在实数m 使得GO mOC =,所以111m AO AC AG m m=+++, 因为32AG GB =,所以11211115m m AO AC AG AC AB m m m m =+=+⨯++++, 又因为AO t AD =,所以22135(1)31mt t m m ⎧==⎨++⎩,解得:12t =,15m =综上所述,1.2t =(2)证明:()i 根据题意(1)AB AE EB AE AE AE λλ=+=+=+,同理可得:(1)AC AF μ=+,由(1)可知,111236AO AD AB AC ==+,所以1136AO AE AF λμ++=+, 因为E ,O ,F 三点共线,所以存在实数n ,使得EO nEF =所以(1)AO n AE nAF =−+ 所以11136n n λμ++⎧−==⎨⎩, 化简得23λμ+=, 又因为0λ>,0μ>所以21129(2)()2228λμλμλμ+==,当且仅当322λμ==,即34λ=,32μ=时等号成立. ()ii 根据题意,11||||sin 2S AE AF BAC =∠,211(1)||(1)||sin ||||sin 22S AE AF BAC AE AF BAC λμ=++∠−∠,所以2111(1)||(1)||sin ||||sin 22(1)(1)11||||sin 2AE AF BAC AE AF BAC S S AE AF BAC λμλμ++∠−∠==++−∠, 由()i 可知23λμ+=,则320μλ=−>,所以302λ<<,所以2221172232()22S S λλλ=−++=−−+,易知,当12λ=时,21S S 有最大值7.2则2137(,].22S S ∈ 【解析】本题主要考查平面向量的基本定理,考查三角形的面积,考查二次函数的最值,利用基本不等式求最值,属于较难题.(1)由题知2133AD AB AC =+,12115m AO AC AB m m =+⨯++,根据AO t AD =,化简即可;(2)()i 根据题意(1)AB AE λ=+,(1)AC AF μ=+,根据E ,O ,F 三点共线,存在实数n ,使得EO nEF =,有(1)AO n AE nAF =−+,化简可得23λμ+=,利用基本不等式即可得解;()ii 根据题意,11||||sin 2S AE AF BAC =∠,211(1)||(1)||sin ||||sin 22S AE AF BAC AE AF BAC λμ=++∠−∠,所以221172()22S S λ=−−+,利用二次函数的最值即可得解. 15.(本小题12分)如图:在斜坐标系xOy 中,x 轴、y 轴相交成60︒角,1e 、2e 分别是与x 轴、y 轴正方向同向的单位向量,若向量12OP xe ye =+,则称有序实数对⟨,x y ⟩为向量OP 的坐标,记作OP =⟨,x y ⟩.在此斜坐标系xOy中,已知ABC 满足:OA =⟨0,2⟩、OB =⟨2,1−⟩.(1)求OA OB ⋅的值;(2)若坐标原点O 为ABC 的重心(注:在斜坐标系下,若G 为ABC 的重心,依然有0GA GB GC ++=成立).①求ABC 的面积;②求满足方程11tan tan tan mA B C+=的实数m 的值. 【答案】解:(1)由题知,22OA e =,122OB e e =−,则22121222(2)424cos6020;OAOB e e e e e e ︒⋅=⋅−=⋅−=−=(2)①由题知,O 为ABC 的重心,则OAB 的面积为ABC 面积的13,由(1)知OA OB ⊥,又||2OA =,212||(2)4OB e e =−==则ABC 面积为1322ABCS=⨯⨯=②由①知,2,1OC OA OB =−−=<−−>,则2,3BA OA OB =−=<−>,4,0BC OC OB =−=<−>,2,3AC OC OA =−=<−−>,则212||(23)4BA e e =−+==||4BC =,212||(23)4AC e e =−−=设AB c =,AC b =,BC a =, 则由11tan tan tan mA B C+=,结合正弦、余弦定理化简得: 11sin cos cos tan ()()tan tan cos sin sin C A Bm C A B C A B=+=+ sin cos sin cos sin sin sin()cos sin sin cos sin sin C A B B A C A B C A B C A B ++=⋅=⋅ 22222sin 12sin sin cos C c ab A B C ab a b c =⋅=⋅+− 22222271161972c a b c ⨯===+−+−, 故1.2m =【解析】本题考查了余弦定理、三角形面积公式和向量的数量积,属于较难题.(1)先得出OA =⟨0,2⟩22e =,OB =⟨2,1−⟩122e e =−,由向量的数量积计算可得结果;(2)①OA =⟨0,2⟩,OB =⟨2,1−⟩,O 为ABC 的重心,则OAB 的面积为ABC 面积的13,计算面积即可;②易得11()tan tan tan m C A B=+⋅,由三角恒等变换和余弦定理化简可得结果. 16.(本小题12分)法国著名军事家拿破仑⋅波拿巴最早提出的一个几何定理:“以任意三角形的三条边为边向外构造三个等边三角形,则这三个三角形的外接圆圆心恰为另一个等边三角形的顶点”.如图,在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,以AB ,BC ,AC 为边向外作三个等边三角形,其外接圆圆心依次为1O ,2O ,3.O(1)证明:123O O O 为等边三角形;(2)若123O O O ABCSmS= ,求m 的最小值.【答案】解:(1)如图,连接 1AO , 3AO ,则13AO =,33AO =, 133O AO A π∠=+在 13O AO 中,由余弦定理得: 222131313132cos O O AO AO AO AO O AO =+−⋅⋅∠ , 即22222132cos 32cos 33333b c bc A b c bc O O A ππ⎛⎫+−+ ⎪⎛⎫⎝⎭=+−⋅⋅+= ⎪⎝⎭2212cos 23b c bc A A ⎛⎫+−⨯ ⎪ ⎪⎝⎭==22222222sin 2sin 363b c a b c Aa b c A+−+−+++==+ 同理可得222212sin 6a b c O O B ++= ,sin sin a bA B= , sin sin a B b A ∴= , 1213O O O O ∴= .同理: 1223O O O O = ,即 123O O O为等边三角形.12322213cos sin (2)sin 4432O O O b c bc A A m SO O bc A +−+=⨯=⨯=)()21sin cos sin b c m A A A c bϕ∴+−+=+,(其中sin ϕ=,cos ϕ=,22b c b c c b cb+⨯= , )max21sin cos m A A ⎤−+=⎦, 12 ,解得: 1m当且仅当 3A π=, b c = 时 m 取到最小值1.【解析】本题考查利用正弦定理、余弦定理判定三角形的形状,考查三角形的面积公式,属于难题.(1)连接 1AO , 3AO ,在 13O AO 中,由余弦定理可求出 13O O,同理可得 12O O ,再结合正弦定理即可证明 1213O O O O = ,同理可得 1223OO O O = ;(2)由 123O O O ABCSmS= 化简可得 ()sin b c A c b ϕ+=+ ,再由基本不等式求出 b c c b+ 的最小值,即可求出m 的最小值.。

【2020高考数学】三角函数与平面向量结合问题解题指导(含答案)

【2020高考数学】三角函数与平面向量结合问题解题指导(含答案)

【2020高考数学】三角函数与平面向量结合问题解题指导第一篇 三角函数与解三角形专题04 三角函数与平面向量结合问题【典例1】如图,在平面直角坐标系中,已知点()2,0A 和单位圆上的两点()10B ,,34,55C ⎛⎫- ⎪⎝⎭,点P 是劣弧BC 上一点,BOC α∠=,BOP β∠=.(1)若OC OP ⊥,求()()sin sin παβ-+-的值;(2)设()f t OA tOP =+,当()f t 的最小值为1时,求OP OC ⋅的值. 【思路引导】(1)根据任意角三角函数定义可求得sin ,cos αα,利用2πβα=-可求得sin cos βα=-,结合诱导公式可化简求出结果;(2)利用向量坐标表示可得到()2cos ,sin OA tOP t t ββ+=+,可求得224cos 4OA tOP t t β+=++,根据二次函数性质可求得22min44cos OA tOPβ+=-,从而利用()f t 的最小值构造方程可求得2cos β,根据角的范围可求得sin β和cos β,进而根据数量积的坐标运算可求得结果.【典例2】【江苏省启东中学2020届高三上学期期初考试数学试题】在平面直角坐标系xOy 中,设向量()cos sin a αα=,,()sin cos b ββ=-,,()12c =-. (1)若a b c +=,求sin ()αβ-的值; (2)设5π6α=,0πβ<<,且()//a b c +,求β的值. 【思路引导】(1)利用向量的数量积转化求解两角差的三角函数即可; (2)通过向量平行,转化求解角的大小即可.【典例3】【2014年全国普通高等学校招生统一考试理科数学(山东卷】已知向量a m x (,cos 2)=,b x n (sin 2,)=,设函数()f x a b =⋅,且()y f x =的图象过点(12π和点2(,2)3π-. (Ⅰ)求,m n 的值; (Ⅱ)将()y f x =的图象向左平移ϕ(0ϕπ<<)个单位后得到函数()y g x =的图象.若()y g x =的图象上各最高点到点(0,3)的距离的最小值为1,求()y g x =的单调增区间. 【思路引导】(Ⅰ)利用向量的数量积坐标运算公式代入函数式整理化简,将函数过的点(12π和点2(,2)3π-代入就可得到关于,m n 的方程,解方程求其值;(Ⅱ)利用图像平移的方法得到()y g x =的解析式,利用最高点到点(0,3)的距离的最小值为1求得ϕ角,得()2cos2g x x =,求减区间需令[]22,2x k k πππ∈+解x 的范围【典例4】【河南省信阳市2019-2020学年高三第一次教学质量检测】已知函数()()f x a b c =+,其中向量()sin ,cos a x x =-,()sin ,3cos b x x =-,()cos ,sin c x x =-,x ∈R .(Ⅰ)若()52f α=,588ππα-<<-,求cos2α的值; (Ⅱ)不等式()2f x m -<在,82x ππ⎡⎤∈⎢⎥⎣⎦上恒成立,求实数m 的取值范围. 【思路引导】(Ⅰ)利用向量数量积公式得到()f x 后,再用二倍角公式以及两角和的正弦公式的逆用公式化成辅助角的形式,根据已知条件及同角公式解得3cos 244πα⎛⎫+= ⎪⎝⎭,再将所求变成33cos 2cos 244ππαα⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦后,利用两角差的余弦公式求得;(Ⅱ)将不等式恒成立转化为最大最小值可解得.【典例5】【陕西省宝鸡市宝鸡中学2019-2020学年高三上学期期中】已知向量()a cos x cos x ωω=-,,()b sin x x ωω=(ω>0),且函数()f x a b =⋅的两个相邻对称中心之间的距离是4π. (1)求6f π⎛⎫⎪⎝⎭;(2)若函数()()1g x m x =+在04π⎡⎤⎢⎥⎣⎦,上恰有两个零点,求实数m 的取值范围. 【思路引导】(1)首先利用平面向量的数量积的应用求出函数的关系式,进一步把函数的关系式变形成正弦型函数,进一步利用函数的性质的应用求出结果.(2)利用函数的零点和方程之间的转换的应用,利用函数的定义域和值域之间的关系求出m 的范围.【典例6】【辽宁省鞍山市第一中学2019-2020学年高三上学期11月月考】已知实数0θπ≤≤,()cos ,sin a θθ=,()0,1j =,若向量b 满足()0a b j +⋅=,且0a b ⋅=. (1)若2a b -=,求b ;(2)若()()f x b x a b =+-在1,2⎡⎫+∞⎪⎢⎣⎭上为增函数,求实数θ的取值范围.【思路引导】(1)设出b 的坐标,结合0a b ⋅=、2a b -=、()0a b j +⋅=,解方程,先求得θ的值,再求得b 的坐标. (2)利用向量模的运算、数量积的运算化简()f x 表达式,结合二次函数的性质列不等式,解不等式求得b 的取值范围.设出b 的坐标,结合()0a b j +⋅=、0a b ⋅=,解方程,用θ表示出2b ,根据b 的取值范围列不等式,解不等式求得cos θ的取值范围,进而求得θ的取值范围.【典例7】【江西省南昌市第二中学2018届高三上学期第五次月考】在平面直角坐标系xOy 中,已知向量()cos ,sin e αα=,设,(0)OA e λλ=>,向量ππcos ,sin 22OB ββ⎛⎫⎛⎫⎛⎫=+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)若π6βα=-,求向量OA 与OB 的夹角; (2)若2AB OB ≥ 对任意实数,αβ都成立,求实数λ的取值范围. 【思路引导】(1)由题意结合平面向量的坐标表示,结合平面向量的数量积运算法则可得1cos sin 62πθ==. 则向量OA 与OB 的夹角为3π. (2)原问题等价于2230OA OB λ-⋅-≥任意实数,αβ都成立.分离参数可得()23sin 2λαβλ-≥-任意实数,αβ都成立.结合三角函数的性质求解关于实数λ的不等式可得3λ≥.1. .【河北省唐山市第一中学2019-2020学年高三上学期10月月考】已知向量()2cos 1,2sin a x x ωω=+,()()6cos 0b x x ωωω=>.(1)当2x k πωπ≠+,k Z ∈时,若向量()1,0c =,()3,0d =,且()()//a c b d -+,求224sin cos x x ωω-的值;(2)若函数()f x a b =⋅的图象的相邻两对称轴之间的距离为4π,当,86x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()f x 的最大值和最小值.2. 已知向量(sin ,1),(3cos ,cos 2)(0)2Am x n A x x A ==>,函数()f x m n =⋅的最大值为6. (Ⅰ)求A ;(Ⅱ)将函数()y f x =的图象向左平移12π个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数()y g x =的图象.求()g x 在5[0,]24π上的值域. 3. 【河南省郑州市第一中学2019-2020学年高三上学期期中】已知点()2,0A ,()0,2B -,()2,0F -,设AOC α∠=,[)0,2απ∈,其中O 为坐标原点.(1)设点C 在x 轴上方,到线段AF 3AFC π∠=,求α和线段AC 的大小;(2)设点D 为线段OA 的中点,若2OC =,且点C 在第二象限内,求)3cos y DC OB BC OA α=⋅+⋅的取值范围.4. 【河北省衡水市深州市2019-2020学年高三上学期12月月考】已知向量()()2,22=+a x ωϕ,2,22⎛=- ⎝⎭b ,其中0>ω,02πϕ<<,函数()f x a b =⋅的图像过点()1,2B ,点B 与其相邻的最高点的距离为4. (1)求函数()f x 的单调递减区间;(2)计算()()()122019f f f ++⋅⋅⋅+的值. 5. 【河北省衡水中学2017届高三下学期二调考试】 已知向量()()23sin ,1,cos ,cos 1m x n x x ωωω==+,设函数()f x m n b =⋅+.(1)若函数()f x 的图象关于直线6x π=对称,[]0,3ω∈,求函数()f x 的单调递增区间;(2)在(1)的条件下,当70,12x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 有且只有一个零点,求实数b 的取值范围. 6. 已知(sin ,cos ),(sin ,sin )a x x b x x ==,函数()f x a b =⋅. (1)求()f x 的对称轴方程; (2)若对任意实数[,]63x ππ∈,不等式()2f x m -<恒成立,求实数m 的取值范围.7. 【江苏省淮安市淮阴中学2019-2020学年高三期中数学试题】在如图所示的平面直角坐标系中,已知点(1,0)A 和点(1,0)B -,1OC =,且AOC=x ∠,其中O 为坐标原点.(1)若34x π=,设点D 为线段OA 上的动点,求||OC OD +的最小值; (2)若0,2x π⎡⎤∈⎢⎥⎣⎦,向量m BC =,(1cos ,sin 2cos )n x x x =--,求m n ⋅的最小值及对应的x 值. 8. 已知向量(1,3p =,()cos ,sin q x x =. (1)若//p q ,求2sin 2cos x x -的值;(2)设函数()f x p q =⋅,将函数()f x 的图象上所有的点的横坐标缩小到原来的12(纵坐标不变),再把所得的图象向左平移3π个单位,得到函数()g x 的图象,求()g x 的单调增区间.9. 已知向量(3sin ,cos )x x =m ,(cos )x x =-n ,()f x =⋅-m n .(1)求函数()f x 的最大值及取得最大值时x 的值; (2)若方程()f x a =在区间0,2π⎡⎤⎢⎥⎣⎦上有两个不同的实数根,求实数a 的取值范围. 10. 【黑龙江省大庆实验中学2019届高三上学期第一次月考】已知O 为坐标原点,()22cos ,1OA x =,()1,OB x a =+ ()R,R x a a ∈∈且为常数,若()•f x OA OB =. (Ⅰ)求函数()f x 的最小正周期和单调递减区间; (Ⅱ)若0,2x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 的最小值为2,求实数a 的值.【参考答案部分】【典例1】如图,在平面直角坐标系中,已知点()2,0A 和单位圆上的两点()10B ,,34,55C ⎛⎫- ⎪⎝⎭,点P 是劣弧BC 上一点,BOC α∠=,BOP β∠=.(1)若OC OP ⊥,求()()sin sin παβ-+-的值;(2)设()f t OA tOP =+,当()f t 的最小值为1时,求OP OC ⋅的值. 【思路引导】(1)根据任意角三角函数定义可求得sin ,cos αα,利用2πβα=-可求得sin cos βα=-,结合诱导公式可化简求出结果;(2)利用向量坐标表示可得到()2cos ,sin OA tOP t t ββ+=+,可求得224cos 4OA tOP t t β+=++,根据二次函数性质可求得22min44cos OA tOP β+=-,从而利用()f t 的最小值构造方程可求得2cos β,根据角的范围可求得sin β和cos β,进而根据数量积的坐标运算可求得结果.解:(1)由34,55C ⎛⎫- ⎪⎝⎭可知:4sin 5α,3cos 5α=- OC OP ⊥ 2πβα∴=-3sin sin cos 25πβαα⎛⎫∴=-=-= ⎪⎝⎭ ()()431sin sin sin sin 555παβαβ∴-+-=-=-= (2)由题意得:()cos ,sin P ββ ()2,0OA ∴=,()cos ,sin OP ββ=()2cos ,sin OA tOP t t ββ∴+=+()()22222cos sin 4cos 4OA tOP t t t t βββ∴+=++=++当2cos t β=-时,22min44cos OA tOPβ+=-()min 1f t ∴==,解得:23cos 4β=1sin 2β∴==0βα<< 6πβ∴=cos β∴= 12P ⎫∴⎪⎪⎝⎭3414525210OP OC -⎛⎫∴⋅=-⨯+⨯=⎪⎝⎭【典例2】【江苏省启东中学2020届高三上学期期初考试数学试题】在平面直角坐标系xOy 中,设向量()cos sin a αα=,,()sin cos b ββ=-,,()12c =-.(1)若a b c +=,求sin ()αβ-的值; (2)设5π6α=,0πβ<<,且()//a b c +,求β的值. 【思路引导】(1)利用向量的数量积转化求解两角差的三角函数即可;(2)通过向量平行,转化求解角的大小即可.解:(1)因为()cos sin a αα=,,()sin cos b ββ=-,,()12c =-,所以1a b c ===,且()cos sin sin cos sin a b αβαβαβ⋅=-+=-.因为a b c +=,所以22a bc +=,即2221a a b b +⋅+=,所以12sin ()11αβ+-+=,即1sin ()2αβ-=-.(2)因为5π6α=,所以3122a ⎛⎫=- ⎪ ⎪⎝⎭,.依题意,1sin cos 2b c ββ⎛⎫+=-- ⎪ ⎪⎝⎭,.因为()//a b c +,所以)()11cos sin 022ββ-+--=.化简得,11sin 22ββ-=,所以()π1sin 32β-=.因为0πβ<<,所以ππ2π333β-<-<.所以ππ36β-=,即π2β=.【典例3】【2014年全国普通高等学校招生统一考试理科数学(山东卷】已知向量a m x (,cos 2)=,b x n (sin 2,)=,设函数()f x a b =⋅,且()y f x =的图象过点(12π和点2(,2)3π-. (Ⅰ)求,m n 的值; (Ⅱ)将()y f x =的图象向左平移ϕ(0ϕπ<<)个单位后得到函数()y g x =的图象.若()y g x =的图象上各最高点到点(0,3)的距离的最小值为1,求()y g x =的单调增区间.试题思路引导:(Ⅰ)利用向量的数量积坐标运算公式代入函数式整理化简,将函数过的点(12π和点2(,2)3π-代入就可得到关于,m n 的方程,解方程求其值;(Ⅱ)利用图像平移的方法得到()y g x =的解析式,利用最高点到点(0,3)的距离的最小值为1求得ϕ角,得()2cos2g x x =,求减区间需令[]22,2x k k πππ∈+解x 的范围试题解析:(1)由题意知.()y f x =的过图象过点(12π和2(,2)3π-,所以sincos,66{442sin cos ,33m n m n ππππ=+-=+即1,2{12,2m n n =-=-解得{1.m n == (2)由(1)知.由题意知()()2sin(22)6g x f x x πϕϕ=+=++.设()y g x =的图象上符合题意的最高点为0(,2)x ,由题意知2011x +=,所以,即到点(0,3)的距离为1的最高点为(0,2).将其代入()y g x =得sin(2)16πϕ+=,因为0ϕπ<<,所以6πϕ=,因此()2sin(2)2cos 22g x x x π=+=.由222,k x k k πππ-+≤≤∈Z 得,2k x k k πππ-+≤≤∈Z ,所以函数()y f x =的单调递增区间为[,],2k k k Z πππ-+∈【典例4】【河南省信阳市2019-2020学年高三第一次教学质量检测】已知函数()()f x a b c =+,其中向量()sin ,cos a x x =-,()sin ,3cos b x x =-,()cos ,sin c x x =-,x ∈R .(Ⅰ)若()52f α=,588ππα-<<-,求cos2α的值; (Ⅱ)不等式()2f x m -<在,82x ππ⎡⎤∈⎢⎥⎣⎦上恒成立,求实数m 的取值范围. 【思路引导】(Ⅰ)利用向量数量积公式得到()f x 后,再用二倍角公式以及两角和的正弦公式的逆用公式化成辅助角的形式,根据已知条件及同角公式解得3cos 244πα⎛⎫+= ⎪⎝⎭,再将所求变成33cos 2cos 244ππαα⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦后,利用两角差的余弦公式求得;(Ⅱ)将不等式恒成立转化为最大最小值可解得. 解:()()f x a b c =+()()sin ,cos sin cos ,sin 3cos x x x x x x =---222 sin2sin cos3cos1sin22cos x x x x x x =-+=-+32cos2sin2224x x xπ⎛⎫=+-=++⎪⎝⎭(Ⅰ)若()52fα=,则352242πα⎛⎫+=⎪⎝⎭,即3sin(2)44πα+=,由588ππα-<<-∴544ππα-<2<-,即3242πππα-<2+<,则3cos244πα⎛⎫+=⎪⎝⎭则333333cos2cos2cos2cos sin2sin444444ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=+-=+++⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦142424⎛=-+=⎝⎭.(Ⅱ)∵不等式()2f x m-<在,82xππ⎡⎤∈⎢⎥⎣⎦上恒成立,∴()22f x m-<-<,即()()22f x m f x-<<+在,82xππ⎡⎤∈⎢⎥⎣⎦上恒成立,当,82xππ⎡⎤∈⎢⎥⎣⎦,则2,4xππ⎡⎤∈⎢⎥⎣⎦,372,44xπππ⎡⎤+∈⎢⎥⎣⎦,则当324xππ+=,即8xπ=时,()f x取得最大值,最大值为()max2f x=,当33242xππ+=,即38xπ=时,()f x取得最小值,最小值为()min322f xπ=+2=-则2222mm>-⎧⎪⎨<⎪⎩,得04m<<,即实数m的取值范围是(0,4-.【典例5】【陕西省宝鸡市宝鸡中学2019-2020学年高三上学期期中】已知向量()a cos x cos xωω=-,,()b sin x xωω=(ω>0),且函数()f x a b=⋅的两个相邻对称中心之间的距离是4π.(1)求6f π⎛⎫⎪⎝⎭; (2)若函数()()1g x m x =+在04π⎡⎤⎢⎥⎣⎦,上恰有两个零点,求实数m 的取值范围. 【思路引导】(1)首先利用平面向量的数量积的应用求出函数的关系式,进一步把函数的关系式变形成正弦型函数,进一步利用函数的性质的应用求出结果.(2)利用函数的零点和方程之间的转换的应用,利用函数的定义域和值域之间的关系求出m 的范围. 解:(1)向量()a cos x cos x ωω=-,,()b sin x x ωω=, 所以()f x a b =⋅=sinωx •cosωx 2ωx)1212223sin x cos x sin x πωωω⎛⎫=+=- ⎪⎝⎭. 函数的两个相邻对称中心之间的距离是4π. 所以函数的最小正周期为2π, 由于ω>0,所以242πωπ==,所以f (x )=sin (4x 3π-).则f (6π)4632sin ππ⎛⎫=⋅--= ⎪⎝⎭sin 3π=0. (2)由于f (x )=sin (4x 3π-).则()()1g x m x =+在04π⎡⎤⎢⎥⎣⎦,上恰有两个零点,即31432m x π⎛⎫+--= ⎪⎝⎭0,即m 1432x π⎛⎫=-+ ⎪⎝⎭,由于04x π⎡⎤∈⎢⎥⎣⎦,,所以24333x πππ⎡⎤-∈-⎢⎥⎣⎦,,在24333x πππ⎡⎤-∈-⎢⎥⎣⎦,时,函数的图象与y =m 有两个交点,最高点除外.当433x ππ-=时,m 31222=+=,当432x ππ-=时,m 12=,所以当m 122⎡⎫∈⎪⎢⎣⎭时,函数的图象在在04π⎡⎤⎢⎥⎣⎦,上恰有两个零点.【典例6】【辽宁省鞍山市第一中学2019-2020学年高三上学期11月月考】已知实数0θπ≤≤,()cos ,sin a θθ=,()0,1j =,若向量b 满足()0a b j +⋅=,且0a b ⋅=. (1)若2a b -=,求b ;(2)若()()f x b x a b =+-在1,2⎡⎫+∞⎪⎢⎣⎭上为增函数,求实数θ的取值范围.【思路引导】(1)设出b 的坐标,结合0a b ⋅=、2a b -=、()0a b j +⋅=,解方程,先求得θ的值,再求得b 的坐标. (2)利用向量模的运算、数量积的运算化简()f x 表达式,结合二次函数的性质列不等式,解不等式求得b 的取值范围.设出b 的坐标,结合()0a b j +⋅=、0a b ⋅=,解方程,用θ表示出2b ,根据b 的取值范围列不等式,解不等式求得cos θ的取值范围,进而求得θ的取值范围. 解:(1)设()00,b x y =,则()00cos ,sin b x a y θθ=+++,∵0a b ⋅=, 由2a b -=得()24a b -=,得2224a a b b -⋅+=,得2104b -+=,得3b =,∵()0a b j +⋅=,∴0sin 0y θ+=,∴0sin y θ=-,∵0a b ⋅=,∴00cos sin 0x y θθ+=,∴20sin cos x θθ=,∴()22222002sin 3sin cos x y b θθθ⎛⎫=+=⇒+- ⎪⎝⎭3tan θ=⇒= ∵[]0,θπ∈,∴3πθ=,或23πθ=,∴当3πθ=时,032x =,0y = 当23πθ=时,032x =-,02y =-,所以3,22b ⎛=-⎝⎭或3,22b ⎛=-- ⎝⎭.(2)()()()1f x b x a b xa x b =+-=+-()()2222121a x b x x a b =+-+-⋅()2222212b b x bx b ==+-+,∵()f x 在1,2⎡⎫+∞⎪⎢⎣⎭上为增函数,所以对称轴()2221221b b--≤+,即1b ≤, 设()00,b x y =,则()00cos ,sin b x a y θθ=+++,又∵()0a b j +⋅=,且0a b ⋅=,∴0sin y θ=-,20sin cos x θθ=. ∴22222020sin sin 1cos x b y θθθ⎛⎫=+=+≤ ⎪⎝⎭,即22sin cos θθ≤,21cos 2θ≥, ∴21,22cos θ⎤⎡∈--⎢⎥⎢⎣⎦⎣⎦,∴30,,44ππθπ⎡⎤⎡⎤∈⎢⎥⎢⎥⎣⎦⎣⎦. 【典例7】【江西省南昌市第二中学2018届高三上学期第五次月考】在平面直角坐标系xOy 中,已知向量()cos ,sin e αα=,设,(0)OA e λλ=>,向量ππcos ,sin 22OB ββ⎛⎫⎛⎫⎛⎫=+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)若π6βα=-,求向量OA 与OB 的夹角; (2)若2AB OB ≥ 对任意实数,αβ都成立,求实数λ的取值范围. 【思路引导】(1)由题意结合平面向量的坐标表示,结合平面向量的数量积运算法则可得1cos sin62πθ==. 则向量OA 与OB 的夹角为3π. (2)原问题等价于2230OA OB λ-⋅-≥任意实数,αβ都成立.分离参数可得()23sin 2λαβλ-≥-任意实数,αβ都成立.结合三角函数的性质求解关于实数λ的不等式可得3λ≥.解析:(1)由题意, ()cos ,sin (0)OA λαλαλ=>, ()sin ,cos OB ββ=-, 所以 OA λ=, 1OB =, 设向量OA 与OB 的夹角为θ, 所以()()cos sin sin cos cos sin 1OA OB OA OBλαβλαβθαβλ-+⋅===-⋅⋅.因为6πβα=-,即6παβ-=,所以1cos sin62πθ==.又因为[]0,θπ∈,所以3πθ=,即向量OA 与OB 的夹角为3π.(2)因为2AB OB ≥对任意实数,αβ都成立,而1OB =, 所以24AB ≥,即()24OB OA-≥任意实数,αβ都成立. .因为OA λ=,所以2230OA OB λ-⋅-≥任意实数,αβ都成立. 所以()22sin 30λλαβ---≥任意实数,αβ都成立.因为0λ>,所以()23sin 2λαβλ-≥-任意实数,αβ都成立.所以2312λλ-≥,即2230λλ--≥,又因为0λ>,所以3λ≥1. .【河北省唐山市第一中学2019-2020学年高三上学期10月月考】已知向量()2cos 1,2sin a x x ωω=+,()()6cos 0b x x ωωω=->.(1)当2x k πωπ≠+,k Z ∈时,若向量()1,0c =,()3,0d =,且()()//a c b d -+,求224sin cos x x ωω-的值;(2)若函数()f x a b =⋅的图象的相邻两对称轴之间的距离为4π,当,86x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()f x 的最大值和最小值. 【思路引导】(1)先将a c -和b d +用坐标形式表示出来,然后根据向量平行对应的坐标表示得到tan x ω的值,然后利用22sin cos 1x x ωω+=将224sin cos x x ωω-进行变形即可求值; (2)计算并化简()f x ,根据相邻两对称轴之间的距离为4π求解出ω的值,然后根据x 范围即可求解出()f x 的最大值和最小值.解:(1)因为()2cos ,2sin a c x x ωω-=,()6cos ,cos b d x x ωω+=,又因为()()//a cb d -+,2cos x x x ωωω=,又因为()2xk k Z πωπ≠+∈,所以tan x ω=,所以22222222114sin cos 4tan 1834sin cos 1sin cos tan 113112x x x x x x x x ωωωωωωωω----====-+++; (2)()())2cos 112sin cos f x a b ωx ωx ωx ωx =⋅=+-+)22cos 1sin 2sin 222sin 23x x x x x πωωωωω⎛⎫=-+==+ ⎪⎝⎭,因为相邻两对称轴之间的距离为4π,所以242T ππ=⨯=,所以224Tπω==,所以2ω=, 所以()2sin 43πf x x ⎛⎫=+⎪⎝⎭,因为,86x ππ⎡⎤∈-⎢⎥⎣⎦,所以4,36ππx π⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦, 所以()max 2sin22f x π==,此时24x π=,()min 2sin 16f x π⎛⎫=-=- ⎪⎝⎭,此时8x π=-. 2. 已知向量(sin ,1),(3cos ,cos 2)(0)2Am x n A x x A ==>,函数()f x m n =⋅的最大值为6. (Ⅰ)求A ;(Ⅱ)将函数()y f x =的图象向左平移12π个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数()y g x =的图象.求()g x 在5[0,]24π上的值域. 【解析】(Ⅰ)()(sin ,1)cos ,cos 2)sin 2.26A f x m n x x x A x π⎛⎫=⋅=⋅=+ ⎪⎝⎭ 因为()f x m n =⋅的最大值为6,所以 6.A = (Ⅱ)将函数()y f x =的图象向左平移12π个单位, 得到()6sin 26sin 2.1263t x x x πππ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变, 得到()6sin 4.3g x x π⎛⎫=+ ⎪⎝⎭因为5[0,],24x π∈所以74,336x πππ≤+≤ ()6sin 43g x x π⎛⎫=+ ⎪⎝⎭的最小值为76sin 3,6π⨯=-最大值为6sin 6,2π⨯=所以()g x 在5[0,]24π上的值域为[]3,6.- 3. 【河南省郑州市第一中学2019-2020学年高三上学期期中】已知点()2,0A ,()0,2B -,()2,0F -,设AOC α∠=,[)0,2απ∈,其中O 为坐标原点.(1)设点C 在x 轴上方,到线段AF 3AFC π∠=,求α和线段AC 的大小;(2)设点D 为线段OA 的中点,若2OC =,且点C 在第二象限内,求)3cos y DC OB BC OA α=⋅+⋅的取值范围. 【思路引导】(1)过点C 作AF 的垂线,垂足为点E ,可得出CE =2CF =,可得出OCF ∆为等边三角形,可求出α的值,然后在ACF ∆中利用余弦定理求出AC ;(2)由题中条件求出DC 、OB 、OA 的坐标,化简)cos y OB BC OA α=⋅+⋅的解析式为4cos 223y πα⎛⎫=++ ⎪⎝⎭,再根据α的取值范围,结合余弦函数的定义域与基本性质可求出y 的取值范围.解:(1)过C 作AF 的垂线,垂足为E ,则CE =在直角三角形FCE 中,2sin CEFC CFE==∠,又2OF =,3OFC π∠=,所以OFC ∆为正三角形.所以3FOC π∠=,从而23FOC παπ=-∠=.在AFC ∆中,AC ==; (2)()2,0A ,点D 为线段OA 的中点,()1,0D ∴,2OC =且点C 在第二象限内,()2cos ,2sin C αα∴,,2παπ⎛⎫∈ ⎪⎝⎭,从而()2cos 1,2sin DC αα=-,()2cos ,2sin 2BC αα=+,()2,0OA =,()0,2OB =-,则)2cos cos 4cos y OB BC OA αααα=⋅+⋅=-+()221cos 24cos 223πααα⎛⎫=-++=++ ⎪⎝⎭,因为,2παπ⎛⎫∈⎪⎝⎭,所以472,333πππα⎛⎫+∈ ⎪⎝⎭,从而1cos 2123πα⎛⎫-<+≤ ⎪⎝⎭, 04cos 2263πα⎛⎫∴<++≤ ⎪⎝⎭,因此,)cos y OB BC OA α=⋅+⋅的取值范围为(]0,6.4. 【河北省衡水市深州市2019-2020学年高三上学期12月月考】已知向量()()2,22=+a x ωϕ,2,⎛= ⎝⎭b ,其中0>ω,02πϕ<<,函数()f x a b =⋅的图像过点()1,2B ,点B 与其相邻的最高点的距离为4. (1)求函数()f x 的单调递减区间;(2)计算()()()122019f f f ++⋅⋅⋅+的值. 【思路引导】(1)先求出()1cos2()f x x ωϕ=-+,则()1,2B 为函数()f x 的图象的一个最高点,又点B 与其相邻的最高点的距离为4,所以242πω=,可得4πω=,再将点()1,2B 代入求出4πϕ=即可求出()1sin 2f x x π=+,最后令322222k x k πππππ+≤≤+解之即可求出函数()f x 的单调递减区间;(2)根据函数()f x 的最小正周期4,则()()()()()()()()()()1220195041234123f f f f f f f f f f ++⋅⋅⋅+=++++++⎡⎤⎣⎦求出()1f 、()2f 、()3f 、()4f 的值代入计算即可.解:(1)因为()()2,22=+a x ωϕ,2,22⎛=- ⎝⎭b()22()1cos 2()22∴=⋅=⋅-+=-+f x a b x x ωϕωϕ ()max 2∴=f x ,则点()1,2B 为函数()f x 的图象的一个最高点.点B 与其相邻的最高点的距离为4,242∴=πω,得4πω=. 函数()f x 的图象过点()1,2B ,1cos 222⎛⎫∴-+=⎪⎝⎭πϕ即sin 21=ϕ. 02πϕ<<,4πϕ∴=.()1cos 21sin 442⎛⎫∴=-+=+ ⎪⎝⎭f x x x πππ,由322222k x k πππππ+≤≤+,得4143k x k +≤≤+,k Z ∈.()f x ∴的单调递减区间是[]41,43++k k ,k Z ∈.(2)由(1)知,()1sin2=+f x x π,()f x ∴是周期为4的周期函数,且()12f =,()21f =,()30f =,()41f =()()()()12344∴+++=f f f f而201945043=⨯+,()()()12201945042102019∴++⋅⋅⋅+=⨯+++=f f f5. 【河北省衡水中学2017届高三下学期二调考试】 已知向量()()23sin ,1,cos ,cos 1m x n x x ωωω==+,设函数()f x m n b =⋅+.(1)若函数()f x 的图象关于直线6x π=对称,[]0,3ω∈,求函数()f x 的单调递增区间;(2)在(1)的条件下,当70,12x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 有且只有一个零点,求实数b 的取值范围. 思路引导:(1)根据平面向量数量积运算求解出函数()•f x m n b =+,利用函数()f x 的图象关于直线6x π=对称,且[]0,3ω∈可得1ω=,结合三角函数的性质可得其单调区间;(2)当70,12x π⎡⎤∈⎢⎥⎣⎦时,求出函数()f x 的单调性,函数()f x 有且只有一个零点,利用其单调性求解求实数b 的取值范围. 试题解析: 解:向量()3sin ,1m x ω=, ()cos ,cos21n x x ωω=+,()2•3sin cos cos 1f x m n b x x x b ωωω=+=+++133cos2sin 222262x x b x b πωωω⎛⎫=+++=+++ ⎪⎝⎭ (1)∵函数()f x 图象关于直线6x π=对称,∴()2?662k k Z πππωπ+=+∈,解得: ()31k k Z ω=+∈,∵[]0,3ω∈,∴1ω=,∴()3sin 262f x x b π⎛⎫=+++ ⎪⎝⎭,由222262k x k πππππ-≤+≤+,解得: ()36k x k k Z ππππ-≤≤+∈,所以函数()f x 的单调增区间为(),36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦.(2)由(1)知()3sin 262f x x b π⎛⎫=+++ ⎪⎝⎭,∵70,12x π⎡⎤∈⎢⎥⎣⎦, ∴42,663x πππ⎡⎤+∈⎢⎥⎣⎦, ∴2,662x πππ⎡⎤+∈⎢⎥⎣⎦,即0,6x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 单调递增; 42,663x πππ⎡⎤+∈⎢⎥⎣⎦,即7,612x ππ⎡⎤∈⎢⎥⎣⎦时,函数()f x 单调递减. 又()03f f π⎛⎫=⎪⎝⎭, ∴当70312f f ππ⎛⎫⎛⎫>≥ ⎪ ⎪⎝⎭⎝⎭或06f π⎛⎫= ⎪⎝⎭时函数()f x 有且只有一个零点. 即435sinsin326b ππ≤--<或3102b ++=,所以满足条件的52b ⎛⎧⎫∈-⋃- ⎨⎬ ⎩⎭⎝⎦. 6. 已知(sin ,cos ),(sin ,sin )a x x b x x ==,函数()f x a b =⋅. (1)求()f x 的对称轴方程; (2)若对任意实数[,]63x ππ∈,不等式()2f x m -<恒成立,求实数m 的取值范围. 【思路引导】(I )利用平面向量数量积的坐标表示、二倍角公式以及两角和与差的正弦公式将函数()f x 化为12242x π⎛⎫-+ ⎪⎝⎭,利用242x k k Z πππ-=+∈,可得对称轴方程;(II )原不等式化为sin 24x π⎛⎫-≥⎪⎝⎭,利用3222444k x k k Z πππππ+≤-≤+∈,可得结果;(Ⅲ)2f x m -()<恒成立,等价于2max m f x ->(),利用63x ππ⎡⎤∈⎢⎥⎣⎦,,求得5212412x πππ≤-≤,可得max f x (),从而可得结果.【详解】(I )()21cos21sin sin cosx sin222x f x a b x x x -=⋅=+⋅=+ 1sin 2242x π⎛⎫=-+ ⎪⎝⎭,令242x k k Z πππ-=+∈,,解得328k x k Z ππ=+∈,. ∴f x ()的对称轴方程为328k x k Z ππ=+∈,.(II )由1f x ()≥得121242x π⎛⎫-+≥ ⎪⎝⎭,即sin 242x π⎛⎫-≥⎪⎝⎭, ∴3222444k x k k Z πππππ+≤-≤+∈,. 故x 的取值集合为42xk x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭,.(Ⅲ)∵63x ππ⎡⎤∈⎢⎥⎣⎦,,∴5212412x πππ≤-≤, 又∵sin y x =在02π⎡⎤⎢⎥⎣⎦,上是增函数,∴5sin sin 212412x sin πππ⎛⎫≤-≤ ⎪⎝⎭,又5sinsin 12644πππ⎛⎫=+=⎪⎝⎭,∴()f x 在63x ππ⎡⎤∈⎢⎥⎣⎦,时的最大值是()122max f x =+=,∵2f x m -()<恒成立,∴2max m f x ->(),即54m >,∴实数m 的取值范围是⎫+∞⎪⎪⎝⎭.7. 【江苏省淮安市淮阴中学2019-2020学年高三期中数学试题】在如图所示的平面直角坐标系中,已知点(1,0)A 和点(1,0)B -,1OC =,且AOC=x ∠,其中O 为坐标原点.(1)若34x π=,设点D 为线段OA 上的动点,求||OC OD +的最小值; (2)若0,2x π⎡⎤∈⎢⎥⎣⎦,向量m BC =,(1cos ,sin 2cos )n x x x =--,求m n ⋅的最小值及对应的x 值. 【思路引导】(1)设D (t ,0)(0≤t ≤1),利用二次函数的性质求得它的最小值.(2)由题意得⋅=m n 1sin (2x 4π+),再利用正弦函数的定义域和值域 求出它的最小值.解:(I )设(,0)(01)D t t ≤≤,又22C ⎛⎫- ⎪ ⎪⎝⎭所以22OC OD t ⎛+=-+ ⎝⎭所以22211||122OC OD t t +=++=-+ 21(01)22t t ⎛⎫=-+≤≤ ⎪ ⎪⎝⎭所以当2t =时,||OC OD +最小值为2. (II )由题意得(cos ,sin )C x x ,(cos 1,sin )m BC x x ==+ 则221cos sin 2sin cos 1cos2sin 2m n x x x x x x ⋅=-+-=--124x π⎛⎫=-+ ⎪⎝⎭因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以52444x πππ≤+≤ 所以当242x ππ+=时,即8x π=时,sin 24x π⎛⎫+⎪⎝⎭取得最大值1所以8x π=时,1224m n x π⎛⎫⋅=-+ ⎪⎝⎭取得最小值1所以m n ⋅的最小值为1,此时8x π=8. 已知向量(1,3p =,()cos ,sin q x x =. (1)若//p q ,求2sin 2cos x x -的值;(2)设函数()f x p q =⋅,将函数()f x 的图象上所有的点的横坐标缩小到原来的12(纵坐标不变),再把所得的图象向左平移3π个单位,得到函数()g x 的图象,求()g x 的单调增区间. 【思路引导】(1)由//p q ,可得出tan x =2sin 2cos x x -的值;(2)利用平面向量数量积的坐标运算以及辅助角公式可得出()2sin 6f x x π⎛⎫=+⎪⎝⎭,利用三角函数图象变换规律得出()52sin 26g x x π⎛⎫=+⎪⎝⎭,然后解不等式()5222262k x k k Z πππππ-+≤+≤+∈,可得出函数()y g x =的单调递增区间. 解:(1)(1,3p =,()cos ,sin q x x =,且//p q ,sin x x ∴=,则tan x =222222sin cos cos 2tan 1sin 2cos sin cos tan 1x x x x x x x x x --∴-===++;(2)()cos 2sin 6f x p q x x x π⎛⎫=⋅=+=+ ⎪⎝⎭,由题意可得()52sin 22sin 2366g x x x πππ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 由()5222262k x k k Z πππππ-+≤+≤+∈,得()236k x k k Z ππππ-+≤≤-+∈. ∴函数()y g x =的单调递增区间为()2,36k k k Z ππππ⎡⎤-+-+∈⎢⎥⎣⎦.9. 已知向量(3sin ,cos )x x =m ,(cos )x x =-n ,()f x =⋅m n . (1)求函数()f x 的最大值及取得最大值时x 的值; (2)若方程()f x a =在区间0,2π⎡⎤⎢⎥⎣⎦上有两个不同的实数根,求实数a 的取值范围. 【思路引导】(1)先通过数量积求出5()26f x x π⎛⎫=+⎪⎝⎭,再根据三角函数即可求出最大值.(2)方程()f x a =在区间0,2π⎡⎤⎢⎥⎣⎦上有两个不同的实数根表示()f x a =与y 在区间0,2π⎡⎤⎢⎥⎣⎦上有两个不同的交点,画出()f x 在0,2π⎡⎤⎢⎥⎣⎦的图像易得a 的取值范围. 【详解】(1)23()3sin cos sin 22f x x x x x =⋅=-=-+m n35cos 2)sin 22222226x x x x π⎛⎫+-=-+=+ ⎪⎝⎭.当52262x k πππ+=+,即6x k ππ=-,k ∈Z 时,函数f (x(2)由于0,2x π⎡⎤∈⎢⎥⎣⎦时,55112,666x πππ⎡⎤+∈⎢⎥⎣⎦.而函数()g x x =在区间53,62ππ⎡⎤⎢⎥⎣⎦上单调递减,在区间311,26ππ⎡⎤⎢⎥⎣⎦上单调递增.又11362g g ππ⎛⎫⎛⎫==⎪⎪⎝⎭⎝⎭56g π⎛⎫=⎪⎝⎭结合图象(如图),所以方程()f x a =在区间0,2π⎡⎤⎢⎥⎣⎦上有两个不同的实数根时,a ⎛∈ ⎝⎦.故实数a 的取值范围为⎛ ⎝⎦. 10. 【黑龙江省大庆实验中学2019届高三上学期第一次月考】已知O 为坐标原点,()22cos ,1OA x =,()1,OB x a =+ ()R,R x a a ∈∈且为常数,若()•f x OA OB =. (Ⅰ)求函数()f x 的最小正周期和单调递减区间; (Ⅱ)若0,2x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 的最小值为2,求实数a 的值. 【思路引导】(1)通过向量的数量积,把OA ,OB 的坐标,代入函数解析式,利用向量积的运算求得函数解析式,进而得到函数()f x 的最小正周期和单调递减区间; (2)通过x ∈[0,2π],求出相位的范围,然后求出函数的最大值,利用最大值为2,直接求得a . 解:(1)由题意()()22cos ,1,1,3sin2(,,OA x OB x a x R a R a ==-∈∈是常数)所以()22cos cos212sin 216f x x x a x x a x a π⎛⎫=++=+++=+++ ⎪⎝⎭, ∴()f x 的最小正周期为22ππ=, 令3222,262k x k k Z πππππ+≤+≤+∈,得2,63k x k k Z ππππ+≤≤+∈, 所以()f x 的单调递减区间为2,,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. (2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,72,666x πππ⎡⎤+∈⎢⎥⎣⎦, ∴当7266x ππ+=,即2x π=时,()f x 有最小值a ,所以2a = .。

【2020高考数学】三角形中的最值问题解题指导(一) (含答案)

【2020高考数学】三角形中的最值问题解题指导(一) (含答案)

1 / 26【2020年高考数学】三角形中的最值问题解题指导(一)第一篇 三角函数与解三角形专题06 三角形中的最值问题【典例1】【湖南省益阳市、湘潭市2020届高三9月调研考试】已知锐角三角形ABC 中,内角,,A B C 的对边分别为,,a b c ,且2cos cos a b Bc C-= (1)求角C 的大小.(2)求函数sin sin y A B =+的值域. 【思路引导】 (1)由2cos cos a b Bc C-=利用正弦定理得2sin cos sin cos sin cos A C B C C B -=,根据两角和的正弦公式及诱导公式可得1cos 2C =,可求出C 的值;(2)对函数的关系式进行恒等变换,利用两角和与差的正弦公式及辅助角公式把函数的关系式变形成同一个角正弦型函数,进一步利用定义域求出函数的值域.2 / 26【典例2】【2020届海南省高三第二次联合考试】在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,且22cos a c b C -=. (1)求sin 2A C B +⎛⎫+⎪⎝⎭的值; (2)若b =c a -的取值范围.【思路引导】(1)利用正弦定理边化角,结合两角和差正弦公式可整理求得cos B ,进而求得B 和A C +,代入求得结果;(2)利用正弦定理可将c a -表示为2sin 2sin C A -,利用两角和差正弦公式、辅助角公式将其整理为2sin 3C π⎛⎫- ⎪⎝⎭,根据正弦型函数值域的求解方法,结合C 的范围可求得结果.3 / 26【典例3】【山西省平遥中学2020届高三上学期11月质检】 已知△ABC 的内角A ,B ,C 满足sin sin sin sin sin sin sin sin A B C BC A B C-+=+-.(1)求角A ;(2)若△ABC 的外接圆半径为1,求△ABC 的面积S 的最大值. 【思路引导】(1)利用正弦定理将角化为边可得222a b c bc =+-,再由余弦定理即可得A ; (2)由正弦定理2aR sinA=,可得a ,由基本不等式利用余弦定理可得222b c bc bc bc bc +-≥-=,从而由12S bscinA =可得解.4 / 26【典例4】【2020届河北省保定市高三上学期期末】已知ABC ∆的三个内角A ,B ,C 所对的边分别为,,a b c ,设(sin ,1cos )m B B =-,(2,0)n =. (1)若23B π=,求m 与n 的夹角θ; (2)若||1,m b ==,求ABC ∆周长的最大值.【思路引导】 (1)将23B π=代入可求得m .根据平面向量数量积的坐标运算求得m n ⋅,由数量积的定义即可求得cos θ,进而得夹角θ.(2)根据||1m =及向量模的坐标表示,可求得B .再由余弦定理可得22()4a cb +=.结合基本不等式即可求得a c +的最大值,即可求得周长的最大值;或由正弦定理,用角表示出a c +,结合辅助角公式及角的取值范围,即可求得a c +的取值范围,进而求得周长的最大值.5 / 26【典例5】【2020届吉林省长春市东北师大附中等六校高三联合模拟】 如图,在矩形ABCD 中,1AB =,BC =,点E 、F 分别在边BC 、CD 上,3FAE π∠=,06EAB πθθ⎛⎫∠=<< ⎪⎝⎭..(1)求AE ,AF (用θ表示); (2)求EAF ∆的面积S 的最小值. 【思路引导】(1)根据1AB =,BC =,分别在Rt ABE ∆和Rt ADF ∆中,利用锐角三角函数的定义求出AE 和AF即可;(2)由条件知13sin 232sin 23S AE AF ππθ=⋅⋅=⎛⎫+ ⎪⎝⎭,然后根据θ的范围,利用正弦函数的图象和性质求出S 的最小值.6 / 26【典例6】【2020届重庆市康德卷高考模拟调研卷理科数学(一)】已知ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且()sin ()(sin sin )a c C a b A B -=+-. (1)求B ; (2)设b =ABC 的面积为S ,求2sin 2S C -的最大值.【思路引导】(1)用正弦定理化角为边后,再用余弦定理可求得角B ;(2)用正弦定理把边用角表示,即2sin a A =,2sin c C =,这样2sin 2sin sin 2S C ac B C-=-2sin 2sin sin 2A C C =⋅,又sin sin()sin()3A B C C π=+=+,2sin 2S C -就表示为C 的三角函数,由三角函数恒等变换化为一个角的一个三角函数形式,结合正弦函数性质可得最大值.7 / 26【典例7】【福建省宁德市2019-2020学年高三上学期第一次质量检查(期末)】ABC ∆的内角A ,B ,C 的对边分别为a ,b ,ccos c C -=⋅,c =(1)求A ;(2)若ABC ∆为锐角三角形,D 为BC 中点,求AD 的取值范围. 【思路引导】(1cos c C -⋅中的边化成角得到cos A =A 的值; (2)由(1)知4A π=,可得C 的范围,再将b 表示成关于tan C 的函数,从而求得b 的取值范围.8 / 261. 【陕西省2019年高三第三次教学质量检测】在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,且()()3a b c a b c ab +++-=. (1)求角C 的值;(2)若2c =,且ABC ∆为锐角三角形,求+a b 的取值范围.2. 【辽宁省葫芦岛市六校协作体2019-2020学年高三上学期11月月考】,,a b c 分别为ABC 的内角,,A B C 的对边.已知()sin 4sin 8sin a A B A +=.(1)若1,6b A π==,求sin B ; (2)已知3C π=,当ABC 的面积取得最大值时,求ABC 的周长.3. 【2019年云南省师范大学附属中学高三上学期第一次月考】在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且满足sin cos 6b A a B π⎛⎫=- ⎪⎝⎭. (1)求角B 的大小;(2)若D 为AC 的中点,且1BD =,求ABC S ∆的最大值. 4. 【2020届湖南省常德市高三上学期期末】ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知cos cos 2cos +=ac B b C A.(1)求A ; (2)若a =b c +的最大值.5. 【2020届江西省吉安市高三上学期期末】在ABC ∆中,a ,b ,c 分别是角A ,B ,C 的对边,已知向量(2cos ,)m C b =-,(1,cos cos )n a C c A =+,且//m n .(1)求角C 的大小;9 / 26(2)若c =ABC ∆的周长的取值范围.6. 【2020届重庆市康德卷高考模拟调研卷理科数学(二)】如图,在四边形ABCD 中,A为锐角,2cos sin()6A A C C π⎛⎫+=-⎪⎝⎭.(1)求A C +;(2)设ABD △、CBD 的外接圆半径分别为1,r 2r ,若1211m r r DB+≤恒成立,求实数m 的最小值. 7. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.已知2(tan A +tan B)=tan tan cos cos A BB A+. (1)证明:a +b =2c ; (2)求cos C 的最小值.8. 【重庆市西南大学附属中学校2019届高三上学期第三次月考】 在ABC △中,内角A B C ,,的对边分别为a b c ,,,已知1cos 2b a Cc =+. (1)求角A ;(2)若·3AB AC =,求a 的最小值.9. 【吉林省吉林市普通中学2019-2020学年度高三第二次调研测】 已知ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,2A π≠,且满足()sin 220cos 0bc A B C ++=.(1)求ABC ∆的面积S ; (2)若24a S =,求c bb c+的最大值. 10. 【湖南省长沙市浏阳市第一中学2019-2020学年高三上学期第六次月考】 已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且tan (sin 2cos )cos 2222A C A C a b a +=. (1)求角B 的值; (2)若△ABC的面积为D 为边AC 的中点,求线段BD 长的最小值.10 / 2611. ABC ∆中,60,2,B AB ABC ==∆的面积为 (1)求AC ;(2)若D 为BC 的中点,,E F 分别为边,AB AC 上的点(不包括端点),且120EDF ∠=,求DEF ∆面积的最小值.备战2020年高考数学大题精做之解答题题型全覆盖高端精品【参考答案部分】【典例1】【湖南省益阳市、湘潭市2020届高三9月调研考试】已知锐角三角形ABC 中,内角,,A B C 的对边分别为,,a b c ,且2cos cos a b Bc C-=(1)求角C 的大小.(2)求函数sin sin y A B =+的值域. 【思路引导】 (1)由2cos cos a b Bc C-=利用正弦定理得2sin cos sin cos sin cos A C B C C B -=,根据两角和的正弦公式及诱导公式可得1cos 2C =,可求出C 的值;(2)对函数的关系式进行恒等变换,利用两角和与差的正弦公式及辅助角公式把函数的关系式变形成同一个角正弦型函数,进一步利用定义域求出函数的值域. 解:(1)由2cos cos a b Bc C-=, 利用正弦定理可得2sin cos sin cos sin cos A C B C C B -=, 可化为()2sin cos sin A C sin C B A =+=,1sin 0,cos 2A C ≠∴=0,,23C C ππ⎛⎫∈∴= ⎪⎝⎭.(2)sin sin 3y A sinB A sin A ππ⎛⎫=+=+-- ⎪⎝⎭1sin sin 226A A A A π⎛⎫=++=+ ⎪⎝⎭,11 / 262,032A B A ππ+=<<,62A ππ∴<<,2,3636A sin A ππππ⎤⎛⎫∴<+<∴+∈⎥ ⎪⎝⎭⎝⎦,32y ⎛∴∈⎝. 【典例2】【2020届海南省高三第二次联合考试】在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,且22cos a c b C -=. (1)求sin 2A C B +⎛⎫+⎪⎝⎭的值; (2)若b =c a -的取值范围.【思路引导】(1)利用正弦定理边化角,结合两角和差正弦公式可整理求得cos B ,进而求得B 和A C +,代入求得结果;(2)利用正弦定理可将c a -表示为2sin 2sin C A -,利用两角和差正弦公式、辅助角公式将其整理为2sin 3C π⎛⎫- ⎪⎝⎭,根据正弦型函数值域的求解方法,结合C 的范围可求得结果.解:(1)由正弦定理可得:2sin sin 2sin cos A C B C -=A B C π++= ()sin sin A B C ∴=+()2sin sin 2sin cos 2cos sin sin 2sin cos B C C B C B C C B C ∴+-=+-=即2cos sin sin B C C =()0,C π∈ sin 0C ∴≠ 1cos 2B ∴=()0,B π∈ 3B π∴= 23AC π∴+=2sin sin 232A C B π+⎛⎫∴+==⎪⎝⎭(2)由(1)知:sin sin 3B π==2sin sin sin a c bA CB ∴==== 2sin cC ∴=,2sin a A =()2sin 2sin 2sin 2sin 2sin 2sin cos 2cos sin c a C A C B C C B C B C∴-=-=-+=--12 / 262sin sin sin 2sin 3C C C C C C π⎛⎫=-==- ⎪⎝⎭23A C π+=203C π∴<< ,333C πππ⎛⎫∴-∈- ⎪⎝⎭(2sin 3C π⎛⎫∴-∈ ⎪⎝⎭,即c a -的取值范围为(【典例3】【山西省平遥中学2020届高三上学期11月质检】 已知△ABC 的内角A ,B ,C 满足sin sin sin sin sin sin sin sin A B C BC A B C-+=+-.(1)求角A ;(2)若△ABC 的外接圆半径为1,求△ABC 的面积S 的最大值. 【思路引导】(1)利用正弦定理将角化为边可得222a b c bc =+-,再由余弦定理即可得A ; (2)由正弦定理2aR sinA=,可得a ,由基本不等式利用余弦定理可得222b c bc bc bc bc +-≥-=,从而由12S bscinA =可得解. 解:(1)设内角A ,B ,C 所对的边分别为a ,b ,c . 根据sin sin sin sin sin sin sin sin A B C BC A B C-+=+-,可得222a b c ba b c bc c a b c-+=⇒=+-+-, 所以2221cos 222b c a bc A bc bc +-===,又因为0A π<<,所以3A π=.(2)22sin 2sin sin 3a R a R A A π=⇒=== 所以2232b c bc bc bc bc =+-≥-=,所以11sin 322S bc A =≤⨯=(b c =时取等号). 【典例4】【2020届河北省保定市高三上学期期末】已知ABC ∆的三个内角A ,B ,C 所对的边分别为,,a b c ,设(sin ,1cos )m B B =-,(2,0)n =.13 / 26(1)若23B π=,求m 与n 的夹角θ; (2)若||1,m b ==,求ABC ∆周长的最大值.【思路引导】 (1)将23B π=代入可求得m .根据平面向量数量积的坐标运算求得m n ⋅,由数量积的定义即可求得cos θ,进而得夹角θ.(2)根据||1m =及向量模的坐标表示,可求得B .再由余弦定理可得22()4a cb +=.结合基本不等式即可求得a c +的最大值,即可求得周长的最大值;或由正弦定理,用角表示出a c +,结合辅助角公式及角的取值范围,即可求得a c +的取值范围,进而求得周长的最大值.解:(1)23B π=,所以33,22m ⎛⎫= ⎪ ⎪⎝⎭,因为(2,0)n =, 202m n ⋅=⨯+=∴ ,又||22m ⎛== ⎝⎭⎭||2n =,31cos 2||||23m n m n θ⋅==⋅∴,3πθ∴=,(2)因为||1m =,即2||sin 1m B ===,所以3B π=,方法1.由余弦定理,得2222cos b a c ac B =+-.2222()()3()324a ca c a c ac a c ++⎛⎫=+-≥+-⋅=⎪⎝⎭,即2()34a c +≥,即a c +≤(当且仅当a c =时取等号) 所以ABC ∆周长的最大值为方法2.由正弦定理可知,2sin sin sin a c bA C B===,14 / 262sin ,2sin a A c C ==∴,23A C π+=,所以22sin 2sin 3sin 36a c A A A A A ππ⎛⎫⎛⎫+=+-==+⎪ ⎪⎝⎭⎝⎭,又203A π<<,5666A πππ<+<,1sin ,162A π⎛⎫⎛⎤∴+∈ ⎪ ⎥⎝⎭⎝⎦,a c +∈∴,所以当3A π=时,a c +取最大值所以ABC ∆周长的最大值为【典例5】【2020届吉林省长春市东北师大附中等六校高三联合模拟】 如图,在矩形ABCD 中,1AB =,BC =,点E 、F 分别在边BC 、CD 上,3FAE π∠=,06EAB πθθ⎛⎫∠=<< ⎪⎝⎭..(1)求AE ,AF (用θ表示); (2)求EAF ∆的面积S 的最小值. 【思路引导】(1)根据1AB =,BC =,分别在Rt ABE ∆和Rt ADF ∆中,利用锐角三角函数的定义求出AE 和AF即可;(2)由条件知13sin 232sin 23S AE AF ππθ=⋅⋅=⎛⎫+ ⎪⎝⎭,然后根据θ的范围,利用正弦函数的图象和性质求出S 的最小值.解:(1)在Rt ABE ∆中,1AB =,所以1cos cos AB AE EAB θ==∠,在Rt ADF ∆中,AD =236DAF EAB πππθ∠=--∠=-,15 / 260cos 6cos 6ADAF DAFπθθ⎫∴==<<⎪∠⎝⎭- ⎪⎝⎭; (2)13sin 234cos cos 6S AE AF ππθθ=⋅==⎛⎫- ⎪⎝⎭⎝⎭32sin 23πθ===⎛⎫++ ⎪⎝⎭,因为06πθ<<,所以22333πππθ<+<2sin 223πθ⎛⎫<+≤ ⎪⎝⎭,当232ππθ+=时,即当12πθ=时,S取最小值(32.【典例6】【2020届重庆市康德卷高考模拟调研卷理科数学(一)】已知ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且()sin ()(sin sin )a c C a b A B -=+-. (1)求B ; (2)设b =ABC 的面积为S ,求2sin 2S C -的最大值.【思路引导】(1)用正弦定理化角为边后,再用余弦定理可求得角B ;(2)用正弦定理把边用角表示,即2sin a A =,2sin c C =,这样2sin 2sin sin 2S C ac B C-=-2sin 2sin sin 2A C C=⋅,又sin sin()sin()3A B C C π=+=+,2sin 2S C -就表示为C 的三角函数,由三角函数恒等变换化为一个角的一个三角函数形式,结合正弦函数性质可得最大值. 解:(1)由正弦定理()()()a c c a b a b -=+-,222a c b ac +-=,由余弦定理2221cos 22a c b B ac +-==,3B π=;(2)由正弦定理2sin sin sin a c bA C B====,2sin a A =,2sin c C =, 2sin 2sin sin 2S C ac B C -=-16 / 262sin 2sin sin 2sin sin 2A C C A C C =⋅=-2)sin sin 23sin cos sin 2C B C C C C C C =+-=+-31cos 2sin 2sin 22sin 2222222C C C C C =-+-=-+sin 213C π⎛⎫=-≤ ⎪⎝⎭当且仅当512C π=时等号成立,故最大值为1. 【典例7】【福建省宁德市2019-2020学年高三上学期第一次质量检查(期末)】ABC ∆的内角A ,B ,C 的对边分别为a ,b ,ccos c C -=⋅,c =(1)求A ;(2)若ABC ∆为锐角三角形,D 为BC 中点,求AD 的取值范围. 【思路引导】(1cos c C -⋅中的边化成角得到cos A =A 的值; (2)由(1)知4A π=,可得C 的范围,再将b 表示成关于tan C 的函数,从而求得b 的取值范围.解:(1cos c C -=⋅sin cos B C A C -=,又sin sin[()]sin()B A C A C =π-+=+,cos cos sin )sin cos A C A C C A C +-=sin sin 0A C C -=, 因为0C π<<,所以sin 0C ≠,所以cos A =0A π<<,所以4A π=. (2)由(1)知4A π=,根据题意得0242C C πππ⎧<<⎪⎪⎨⎪+>⎪⎩,,解得42C ππ<<. 在ABC ∆中,由正弦定理得sin sin c b C B=,所以)2sin 2cos 242sin sin tan C C C b CC Cπ++===+,因为()42C ππ∈,,所以tan (1,)C ∈+∞,所以(24)b ∈,.17 / 26因为D 为BC 中点,所以1()2AD AC AB =+, 所以221()4AD AC AB =+21(48)4b b =++21(2)14b =++,因为(24)b ∈,,所以AD的取值范围为.1. 【陕西省2019年高三第三次教学质量检测】在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,且()()3a b c a b c ab +++-=. (1)求角C 的值;(2)若2c =,且ABC ∆为锐角三角形,求+a b 的取值范围. 【思路引导】(1)根据题意,由余弦定理求得1cos 2C =,即可求解C 角的值; (2)由正弦定理和三角恒等变换的公式,化简得到4sin 6a b A π⎛⎫+=+ ⎪⎝⎭,再根据ABC ∆为锐角三角形,求得62A ππ<<,利用三角函数的图象与性质,即可求解.解:(1)由题意知()()3a b c a b c ab +++-=,∴222a b c ab +-=,由余弦定理可知,222cos 122a b c C ab +-==,又∵(0,)C π∈,∴3C π=.(2)由正弦定理可知,2sin sin sin 3ab A Bπ===,a Ab B == ∴sin )a b A B +=+2sin sin 3A A π⎤⎛⎫=+-⎪⎥⎝⎭⎦ 2cos A A =+4sin 6A π⎛⎫=+ ⎪⎝⎭,18 / 26又∵ABC ∆为锐角三角形,∴022032A B A πππ⎧<<⎪⎪⎨⎪<=-<⎪⎩,即,则2363A πππ<+<,所以4sin 46A π⎛⎫<+≤ ⎪⎝⎭,综上+a b的取值范围为.2. 【辽宁省葫芦岛市六校协作体2019-2020学年高三上学期11月月考】,,a b c 分别为ABC 的内角,,A B C 的对边.已知()sin 4sin 8sin a A B A +=.(1)若1,6b A π==,求sin B ; (2)已知3C π=,当ABC 的面积取得最大值时,求ABC 的周长.【思路引导】(1)根据正弦定理,将()sin 4sin 8sin a A B A +=,化角为边,即可求出a ,再利用正弦定理即可求出sin B ;(2)根据3C π=,选择in 12s S ab C =,所以当ABC 的面积取得最大值时,ab 最大,结合(1)中条件48a b +=,即可求出ab 最大时,对应的,a b 的值,再根据余弦定理求出边c ,进而得到ABC 的周长.解:(1)由()sin 4sin 8sin a A B A +=,得()48a a b a +=, 即48a b +=.因为1b =,所以4a =.由41sin sin6B=π,得1sin 8B =. (2)因为48a b +=≥=, 所以4ab ≤,当且仅当44a b ==时,等号成立. 因为ABC的面积11sin 4sin 223S ab C π=≤⨯⨯= 所以当44a b ==时,ABC 的面积取得最大值, 此时22241241cos 133c π=+-⨯⨯⨯=,则c =, 所以ABC的周长为519 / 263. 【2019年云南省师范大学附属中学高三上学期第一次月考】在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且满足sin cos 6b A a B π⎛⎫=- ⎪⎝⎭. (1)求角B 的大小;(2)若D 为AC 的中点,且1BD =,求ABC S ∆的最大值. 【思路引导】(1)利用正弦定理边角互化思想得出sin cos 6B B π⎛⎫=- ⎪⎝⎭,再利用两角差的余弦公式可得出tan B 的值,结合角B 的范围可得出角B 的大小;(2)由中线向量得出2BD BA BC =+,将等式两边平方,利用平面向量数量积的运算律和定义,并结合基本不等式得出ac 的最大值,再利用三角形的面积公式可得出ABC ∆面积的最大值. 解:(1)由正弦定理及sin cos 6b A a B π⎛⎫=- ⎪⎝⎭得sin sin sin cos 6B A A B π⎛⎫=-⎪⎝⎭, 由()0,A π∈知sin 0A >,则1sin cos sin 62B B B B π⎛⎫=-=+ ⎪⎝⎭,化简得sin B B =,tan B ∴=. 又()0,B π∈,因此,3B π=;(2)如下图,由1sin 2ABC S ac B ∆==,又D 为AC 的中点,则2BD BA BC =+, 等式两边平方得22242BD BC BC BA BA =+⋅+, 所以2222423a c BA BC a c ac ac =++⋅=++≥,20 / 26则43ac ≤,当且仅当a c =时取等号,因此,ABC ∆43=4. 【2020届湖南省常德市高三上学期期末】ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知cos cos 2cos +=ac B b C A.(1)求A ; (2)若a =b c +的最大值.【思路引导】(1)根据正弦定理即正弦的和角公式,将表达式化为角的表达式.即可求得A .(2)利用正弦定理,表示出b c +,结合三角函数的辅助角公式及角的取值范围,即可求得b c +的最大值. 解:(1)∵cos cos 2cos +=ac B b C A,由正弦定理得sin sin cos sin cos 2cos +=AC B B C A从而有()sin sin sin sin 2cos 2cos +=⇒=A AB C A A A , ∵sin 0A ≠,∴1cos 2A =,∵0A π<<,∴3A π=;(2)由正弦定理得:2sin sin sin a b cA B C===, ∴2sin ,2sin b B c C ==,则()22sin sin 2sin 2sin 3⎛⎫+=+=+-⎪⎝⎭b c B C B B π3sin 6B B B π⎛⎫==+ ⎪⎝⎭,∵203B π<<,∴5666B πππ<+<, ∴当3B π=时,b c +取得最大值5. 【2020届江西省吉安市高三上学期期末】在ABC ∆中,a ,b ,c 分别是角A ,B ,C 的对边,已知向量(2cos ,)m C b =-,(1,cos cos )n a C c A =+,且//m n .(1)求角C 的大小; (2)若c =ABC ∆的周长的取值范围.21 / 26【思路引导】(1)根据向量平行列出方程,再利用正弦定理进行边角转化,然后求出角C 的大小; (2)根据余弦定理求出+a b 的取值范围,再根据三角形边的几何性质求出周长的取值范围. 解:(1)由//m n 得22cos 2cos cos a C c A C b +=-, 由正弦定理sin sin sin a b cA B C==, 得2cos (sin cos sin cos )sin C A C C A B +=-, 即2cos sin()sin C A C B +=-,因为在三角形中sin()sin 0A C B +=≠,则1cos 2C =-,又(0,)C π∠∈,故23C π∠=; (2)在ABC ∆中,因c =23C π∠=,由余弦定理得2223c a b ab =++=, 即22()332a b a b ab +⎛⎫+=+≤+ ⎪⎝⎭,当且仅当a b =时取等号,解得2a b +≤,又由三角形性质得a b c +>=2a b +≤,则2a b c <++≤,即ABC ∆的周长的取值范围为(+. 6. 【2020届重庆市康德卷高考模拟调研卷理科数学(二)】如图,在四边形ABCD 中,A为锐角,2cos sin()6A A C C π⎛⎫+=-⎪⎝⎭.(1)求A C +;(2)设ABD △、CBD 的外接圆半径分别为1,r 2r ,若1211mr r DB+≤恒成立,求实数m 的最小值. 【思路引导】(1)根据三角函数的和差角公式与三角函数值求解即可. (2)根据正弦定理参变分离,再利用A 的取值范围求解 解:(1)由题, 2cos sin()A A C +=22 / 263sin[()]sin[()]sin(2)sin sin 2A A C A A C A C C C C ++--+=++=-,即1sin(2)sin 22A C C C +=-sin(2)sin 3A C C π⎛⎫⇒+=- ⎪⎝⎭,因为23A C C π+>-.故23A C C π+≠-.所以2233A C C A C πππ++-=⇒+=. (2)122sin 2sin BD BD m A C r r ≥+=+22sin 2sin 3A A π⎛⎫=+- ⎪⎝⎭12sin 2cos 2sin 22A A A ⎛⎫=+⨯-⨯- ⎪⎝⎭3sin A A =6A π⎛⎫=+ ⎪⎝⎭,因为0,2A π⎛⎫∈ ⎪⎝⎭,故当62A ππ+=时6A π⎛⎫+ ⎪⎝⎭有最大值所以m ≥即实数m的最小值为7. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.已知2(tan A +tan B)=tan tan cos cos A BB A+. (1)证明:a +b =2c ; (2)求cos C 的最小值. 【思路引导】(1)根据三角函数的基本关系式,可化简得2(sin cos sin cos )sin sin A B B A A B +=+,再根据A B C π++=,即可得到sin sin 2sin A B C +=,利用正弦定理,可作出证明;(2)由(1)2a bc +=,利用余弦定理列出方程,再利用基本不等式,可得cos C 的最小值. 解:(1)由题意知,sin sin sin sin 2()cos cos cos cos cos cos A B A BA B A B A B+=+, 化简得:2(sin cos sin cos )sin sin A B B A A B +=+ 即2sin()sin sin A B A B +=+,因为A B C π++=, 所以sin()sin()sin A B C C π+=-=,从而sin sin 2sin A B C +=,由正弦定理得2a b c +=. (2)由(1)知,2a bc +=,23 / 26所以222222()3112cos ()22842a b a b a b c b a C ab ab a b ++-+-===+-≥, 当且仅当a b =时,等号成立,故cos C 的最小值为12.8. 【重庆市西南大学附属中学校2019届高三上学期第三次月考】 在ABC △中,内角A B C ,,的对边分别为a b c ,,,已知1cos 2b a Cc =+. (1)求角A ;(2)若·3AB AC =,求a 的最小值. 【思路引导】(Ⅰ)利用正弦定理、诱导公式、两角和差的三角公式求出cosA 的值,可得A 的值.解:(1) ∵ABC 中,cos 2cb a C -=, ∴由正弦定理知,1sin sin cos sin 2B AC C -=,∵πA B C ++=,∴()sin sin sin cos cos sin B A C A C A C =+=+, ∴1sin cos cos sin sin cos sin 2A C A C A C C +-=, ∴1cos sin sin 2A C C =, ∴1cos 2A =,∴π3A =.(2) 由 (1)及·3AB AC =得6bc =,所以222222cos 6266a b c bc A b c bc =+-=+--= 当且仅当b c =时取等号,所以a9. 【吉林省吉林市普通中学2019-2020学年度高三第二次调研测】 已知ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,2A π≠,且满足()sin 220cos 0bc A B C ++=.(1)求ABC ∆的面积S ; (2)若24a S =,求c bb c+的最大值. 【思路引导】24 / 26(1)由诱导公式和二倍角公式可得sin bc A ,从而得三角形面积;(2)由余弦定理得2222cos 2sin b c bc A a bc A +-==,从而可把22c b b c b c bc++=用角A 表示出来,由三角函数性质求得最大值.解:(1)在ABC ∆中,A B C π++=,∴B C A +=π-∵()sin 220cos 0bc A B C ++=∴2sin cos 20cos 0bc A A A ⋅-= ∵2A π≠,∴cos 0A ≠∴1sin 52S bc A == (2)∵24a S =∴222cos 2sin b c bc A bc A +-= ∴222sin 2cos b c bc A bc A +=+∴222sin 2cos 4c b b c A A A b c bc π+⎛⎫+==+=+ ⎪⎝⎭ ∴当4A π=时,c bb c+取最大值 10. 【湖南省长沙市浏阳市第一中学2019-2020学年高三上学期第六次月考】 已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且tan (sin 2cos )cos 2222A C A Ca b a +=. (1)求角B 的值; (2)若△ABC的面积为D 为边AC 的中点,求线段BD 长的最小值.【思路引导】 (1)根据tan(sin 2cos )cos 2222A C A C a b a +=,化简可得cos sin 2A C a b A +=,进一步得到1cos 22B =,然后求出B 的值;(2)由(1)的角B 及三角形面积公式可得ac 的值,因为D 为边AC 的中点,所以1()2BD BA BC =+,利用向量的模和基本不等式可求BD 的取值范围,即可得到BD 的最小值. 解:(1)由tan(sin 2cos )cos 2222A C A C a b a +=,得sin (sin 2cos )cos cos 22222A C A A Ca b a +=,25 / 26即(coscos sin sin )2sin cos 222222A C A C A A a b -=,即cos sin 2A Ca b A +=. 由正弦定理得sin cossin sin 2A C AB A +=,因0,sin 0,sin 02BA A π<<≠≠, 所以cossin 2A C A +=,则sin sin 2sin cos 222B B BB ==, 所以1cos (0)2222B B π=<<, 所以23B π=,即23B π=. (2)由△ABC的面积为1sin 2ac B =12ac =.因为D 为边AC 的中点,所以1()2BD BA BC =+,所以2221(2)4BD BA BC BA BC =++,即222111(2cos )(2)3444BD c a ac B ac ac ac =++≥-==,当且仅当a c ==“=”,所以3BD ≥,即线段BD. 11. ABC ∆中,60,2,B AB ABC ==∆的面积为 (1)求AC(2)若D 为BC 的中点,,E F 分别为边,AB AC 上的点(不包括端点),且120EDF ∠=,求DEF ∆面积的最小值. 【思路引导】 (1)利用1sin 2ABCAB B SBC =⋅⋅⋅求出BC ,再利用余弦定理求AC 即可; (2)设(),0,60BDE θθ︒︒∠=∈,在BDE 中,利用正弦定理表示出DE ,在CDF 中,利用正弦定理表示出DF ,再将DEF的面积表示出来,利用三角函数的性质求其最小值. 解:(1)因为60,2,B AB ==所以11sin 222ABCAB BC B BC B S C =⋅⋅⋅=⨯=, 又ABCS=4BC =,由余弦定理得:2222212cos 24224122ACAB BC AB BC B =+-⋅⋅=+-⨯⨯⨯=, 所以AC =26 / 26(2)设(),0,60BDE θθ︒︒∠=∈,则60CDF θ︒∠=-,在BDE 中,由正弦定理得:sin sin BD DEBED B=∠,即()2sin 60θ︒=+,所以()sin 60DE θ︒=+, 在CDF 中,由正弦定理得:sin sin CD DFCFD C=∠,由(1)可得22260,,30B BC AC AB C ︒=∴=+=,则()21sin 902DFθ︒+=,所以1cos DF θ=,所以()13sin 24sin 60cos DEFSDE DF EDF θθ︒=⋅⋅⋅∠=+⋅==,当15θ︒=时,()()min sin 2601,6DEP S θ︒+===-故DEF 的面积的最小值为6-.。

2008江苏高考数学试卷含答案(校正精确版)

2008江苏高考数学试卷含答案(校正精确版)

2008年普通高等学校招生全国统一考试(江苏卷)一、填空题1.若函数cos()(0)6y x πωω=->最小正周期为5π,则ω= ▲ . 【解析】2105T ππωω==⇒=2.若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷两次,则出现向上的点数之和为4的概率是 ▲ .【解析】本小题考查古典概型.基本事件共6×6 个,点数和为4 的有(1,3)、(2,2)、(3,1)共3个,故316612P ==⨯ 3.若将复数11ii+-表示为(,,a bi a b R i +∈是虚数单位)的形式,则a b += ▲ .【解析】因()21112i i i i ++==-,故a =0,b =1,因此1a b += 4.若集合2{|(1)37,}A x x x x R =-<+∈,则A Z I 中有 ▲ 个元素【解析】由2(1)37x x -<+得2560x x --<,(1,6)A =-∴,因此}{0,1,2,3,4,5A Z =I ,共有6个元素.5.已知向量a r 和b r 的夹角为0120,||1,||3a b ==r r ,则|5|a b -=r r ▲ . 【解析】22222|5|(5)25||10||251a b a b a a b b -=-=-⋅+=⨯-r r r r r r r r 211013()3492⨯⨯⨯-+=,故|5|7a b -=r r .6.在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则所投点在E 中的概率是 ▲【解析】如图:区域D 表示边长为4 的正方形的内部(含边界),区域E 表示单位圆及其内部,因此214416P ππ⨯==⨯7.某地区为了解7080-岁的老人的日平均睡眠时间(单位:h ),随机选择了50位老人进行调查,下表是这50位老人睡眠时间的频率分布表:在上述统序号i 分组 (睡眠时间) 组中值(i G ) 频数 (人数) 频率(i F ) 1 [4,5) 4.5 6 0.12 2 [5,6) 5.510 0.20 3 [6,7) 6.520 0.40 4 [7,8) 7.510 0.20 5 [8,9] 8.54 0.08 开始 S ←0 输入G i ,F ii ←1 S ← S +G i ·F ii ≥5 i ← i +1NY计数据的分析中一部分计算见算法流程图,则输出的S 的值为 ▲ 【解析】由流程图1122334455S G F G F G F G F G F =++++4.50.125.50.206.50.407.50.28.50.08=⨯+⨯+⨯+⨯+⨯ 6.42=8.设直线b x y +=21是曲线)0(ln >=x x y 的一条切线,则实数b 的值是 ▲【解析】'1y x =,令112x =得2x =,故切点(2,ln2),代入直线方程,得,故b =ln2-1.9.如图,在平面直角坐标系xoy 中,设三角形ABC 的顶点分别为)0,(),0,(),,0(c C b B a A ,点(0,)P p 在线段AO 上的一点(异于端点),这里p c b a ,,,均为非零实数,设直线CP BP ,分别与边AB AC ,交于点F E ,,某同学已正确求得直线OE 的方程为1111()()0x y b c p a -+-=,请你完成直线OF 的方程:( ▲ )11()0x y p a+-=. 【解析】画草图,由对称性可猜想填11c b-.事实上,由截距式可得直线AB :1x yb a+=,直线CP :1x y c p += ,两式相减得1111()()0x y b c p a -+-=,显然直线AB 与CP 的交点F 满足此方程,又原点O 也满足此方程,故为所求直线OF 的方程.10.将全体正整数排成一个三角形数阵:按照以上排列的规律,第n 行(3≥n )从左向右的第3个数为 ▲【解析】前n -1 行共有正整数1+2+…+(n -1)个,即22n n-个,因此第n 行第3 个数是全体正整数中第22n n -+3个,即为262n n -+.11.设,,x y z 为正实数,满足230x y z -+=,则2y xz的最小值是 ▲【解析】由230x y z -+=得32x zy +=,代入2y xz 得229666344x z xz xz xz xz xz +++≥=,当且仅当x =3z 时取“=”.12 34 5 67 8 9 1011 12 13 14 15………………12.在平面直角坐标系xOy 中,椭圆)0(12222>>=+b a b y a x 的焦距为2c ,以O 为圆心,a 为半径作圆M ,若过2(0)a P c,作圆M 的两条切线相互垂直,则椭圆的离心率为 ▲【解析】设切线PA 、PB 互相垂直,又半径OA 垂直于PA ,故△OAP 是等腰直角三角形,故22a a c=,解得22c e a ==.13.若AB =2,AC =2BC ,则S △ABC 的最大值为解析 设BC =x ,则AC =2x .根据三角形的面积公式, 得S △ABC =12·AB ·BC sin B =x 1-cos 2B .①根据余弦定理,得cos B =AB 2+BC 2-AC 22AB ·BC =4+x 2-2x 24x =4-x 24x .②将②代入①,得 S △ABC =x1-⎝⎛⎭⎫4-x 24x 2=128-x 2-12216.由三角形的三边关系,得⎩⎨⎧2x +x >2,x +2>2x ,解得22-2<x <22+2,故当x =23时,S △ABC 取得最大值22,故选A.14.f (x )=ax 3-3x +1对于x ∈[-1,1],总有f (x )≥0成立,则a =【解】若x =0,则不论a 取何值,f (x )≥0显然成立;当x >0即x ∈(0,1]时,f (x )=ax 3-3x +1≥0可化为a ≥3x 2-1x 3.设g (x )=3x 2-1x3,则g ′(x )=3(1-2x )x 4,所以g (x )在区间(0,12]上单调递增,在区间[12,1]上单调递减,因此g (x )max =g (12)=4,从而a ≥4.当x <0即x ∈[-1,0)时,f (x )=ax 3-3x +1≥0可化为a ≤3x 2-1x 3,设g (x )=3x 2-1x 3,且g (x )在区间[-1,0)上单调递增,因此g (x )min =g (-1)=4,从而a ≤4,综上a =4.二如图,在平面直角坐标系xOy 中,以Ox 轴为始边作两个锐角α,β,它们的终边分别交单位圆于A ,B 两点.已知A ,B 两点的横坐标分别是210,255. ⑴.求tan(α+β)的值; ⑵.求α+2β的值.【解】⑴.由已知条件即三角函数的定义可知225cos ,cos αβ==,因α为锐角,故ABC DEF Bsin 0α>,从而sin 10α==,同理可得sin 5β==,故1tan 7,tan 2αβ==.故tan()αβ+=17tan tan 2311tan tan 172αβαβ++==---⨯g ; ⑵.132tan(2)tan[()]111(3)2αβαββ-++=++==---⨯,又0,022ππαβ<<<<,故3022παβ<+<,从而由 tan(2)1αβ+=-得,324παβ+=. 16.如图,在四面体ABCD 中,CB CD AD BD =⊥,,点E F ,分别是AB BD ,的中点.求证: ⑴.直线//EF 面ACD ; ⑵.平面EFC ⊥面BCD .【标准答案】证明:⑴.因E ,F 分别是AB BD ,的中点.故EF 是△ABD的中位线,故EF ∥AD ,因EF ∥⊄面ACD ,AD ⊂面ACD ,故直线EF ∥面ACD ;⑵.因AD ⊥BD ,EF ∥AD ,故EF ⊥BD ,因CB=CD ,F 是BD的中点,故CF ⊥BD ,又EF∩CF=F ,故BD ⊥面EFC ,因BD ⊂面BCD ,故面EFC ⊥面BCD 17.如图,某地有三家工厂,分别位于矩形ABCD 的两个顶点A ,B 及CD 的中点P 处.AB =20km ,BC =10km .为了处理这三家工厂的污水,现要在该矩形区域上(含边界)且与A ,B 等距的一点O 处,建造一个污水处理厂,并铺设三条排污管道AO ,BO ,PO .记铺设管道的总长度为y km . ⑴.按下列要求建立函数关系式:(i )设BAO θ∠=(rad ),将y 表示成θ的函数; (ii )设OP x =(km ),将y 表示成x 的函数;⑵.请你选用⑴中的一个函数关系确定污水处理厂的位置,使铺设的污水管道的总长度最短. 【解】⑴.①.由条件知PQ 垂直平分AB ,若∠BAO=θ(rad),则10cos cos AQ OA θθ==, 故10cos OB θ=,又OP =1010tan θ-,故10101010tan cos cos y OA OB OP θθθ=++=++-,所求函数关系式为2010sin 10(0)cos 4y θπθθ-=+≤≤;②.若OP=x (km),则OQ =10-x,故OA OB ===数关系式为10)y x x =+≤≤.⑵.选择函数模型①,'2210cos cos (2010)(sin )10(2sin 1)cos cos sin y θθθθθθθ-⋅----==,令'y =0 得sin 12θ=,因04πθ<<,故θ=6π,当(0,)6πθ∈时,'0y <,y 是θ的减函数;当(,)64ππθ∈时,'0y >,y 是θ的增函数,故当θ=6π时,min 10y =+.这时点P 位于线段AB 的中垂线上,在矩形区域内且距离ABkm 处. 18.在平面直角坐标系xOy 中,记二次函数2()2f x x x b =++(x ∈R )与两坐标轴有三个交点.经过三个交点的圆记为C .⑴.求实数b 的取值范围; ⑵.求圆C 的方程;⑶.问圆C 是否经过定点(其坐标与b 的无关)?请证明你的结论.【解】⑴.令0x =,得抛物线与y 轴交点是(0,b );令2()20f x x x b =++=,由题意b ≠0且Δ>0,解得b <1 且b ≠0.⑵.设所求圆的一般方程为2x 20y Dx Ey F ++++=,令y =0得,20x Dx F ++=这与22x x b ++=0是同一个方程,故D =2,F =b .令x =0 得2y Ey +=0,此方程有一个根为b ,代入得出E =―b ―1.故圆C 的方程为222(1)0x y x b y b ++-++=. ⑶.圆C 必过定点,证明如下:假设圆C 过定点0000(,)(,)x y x y b 不依赖于,将该点的坐标代入圆C 的方程,并变形为22000002(1)0x y x y b y ++-+-=(*),为使(*)式对所有满足1(0)b b <≠的b 都成立,必须有010y -=,结合(*)式得,2200020x y x y ++-=,解得000002 11x x y y ==⎧⎧⎨⎨==⎩⎩,-,或,,,经 检验知,点(0,1),(2,1)-均在圆C 上,因此圆C 过定点.19.⑴.设12,,,n a a a L 是各项均不为零的等差数列(4n ≥),且公差0d ≠,若将此数列删去某一项得到的数列(按原来的顺序)是等比数列: ①.当4n =时,求1a d的数值;②.求n 的所有可能值; ⑵.求证:对于一个给定的正整数(4)n n ≥,存在一个各项及公差都不为零的等差数列12,,,n b b b L ,其中任意三项(按原来的顺序)都不能组成等比数列.【解】⑴.①.当4n =时, 1234,,,a a a a 中不可能删去首项或末项,否则等差数列中连续三项成等比数列,则推出0d =.若删去2a ,则2314a a a =⋅,即2111(2)(3)a d a a d +=⋅+化简得140a d +=,得14a d=-; 若删去3a ,则2214a a a =⋅,即2111()(3)a d a a d +=⋅+化简得10a d -=,得11a d=; 综上,得14a d =-或11ad=.②.当5n =时,12345,,,,a a a a a 中同样不可能删去1245,,,a a a a ,否则出现连续三项.若删去3a ,则1524a a a a ⋅=⋅,即1111(4)()(3)a a d a d a d +=+⋅+化简得230d =,因0≠d ,故3a 不能删去;当6n ≥时,不存在这样的等差数列.事实上,在数列12321,,,,,,n n n a a a a a a --L 中,由于不能删去首项或末项,若删去2a ,则必有132n n a a a a -⋅=⋅,这与0≠d 矛盾;同样若删去1n a -也有132n n a a a a -⋅=⋅,这与0≠d 矛盾;若删去32,,n a a -L 中任意一个,则必有121n n a a a a -⋅=⋅,这与0≠d 矛盾.(或者说:当n ≥6时,无论删去哪一项,剩余的项中必有连续的三项)综上所述,4n =.⑵假设对于某个正整数n ,存在一个公差为d 的n 项等差数列12,,...,n b b b ,其中111,,x y z b b b +++(01x y z n ≤<<≤-)为任意三项成等比数列,则2111yx z b b b +++=⋅,即2111()()()b yd b xd b zd +=+⋅+,化简得221()(2)y xz d x z y b d -=+-(*),由10b d ≠知,2y xz-与2x z y +-同时为0或同时不为0;当2y xz -与2x z y +-同时为0时,有x y z ==与题设矛盾.故2y xz -与2x z y +-同时不为0,故由(*)得212b y xz d x z y-=+-,因01x y z n ≤<<≤-,且x 、y 、z为整数,故上式右边为有理数,从而1b d 为有理数.于是,对于任意的正整数)4(≥n n ,只要1bd为无理数,相应的数列就是满足题意要求的数列.例如n 项数列1,11+……,1(n +-满足要求.20.已知函数11()3x p f x -=,22()23x p f x -=⋅(12,,x R p p ∈为常数).函数()f x 定义为:对每个给定的实数x ,112212(),()()()(),()()f x f x f x f x f x f x f x ≤⎧=⎨>⎩若若⑴.求1()()f x f x =对所有实数x 成立的充分必要条件(用12,p p 表示);⑵.设,a b 是两个实数,满足a b <,且12,(,)p p a b ∈.若()()f a f b =,求证:函数()f x 在区间[,]a b 上的单调增区间的长度之和为2b a-(闭区间[,]m n 的长度定义为n m -) 【解】⑴.由()f x 的定义可知,1()()f x f x =(对所有实数x )等价于12()()f x f x ≤(对所有实数x )这又等价于12||||323x p x p --≤⋅,即312log 2||||332x p x p ---≤=对所有实数x 均成立.(*)由于121212|||||()()|||()x p x p x p x p p p x R ---≤---=-∈的最大值为12||p p -,故(*)等价于12||32p p -≤,即123||log 2p p -≤,这就是所求的充分必要条件⑵.分两种情形讨论(i )当123||log 2p p -≤时,由⑴知,1()()f x f x =(对所有实数[,]x a b ∈)则由()()f a f b =及1a p b <<易知12a bp +=,再111113,()3,p x x px p f x x p --⎧<⎪=⎨≥⎪⎩的单调性可知,函数()f x 在区间[,]a b 上的单调增区间的长度为22a b b ab +--=(参见示意图1) (ii )123||log 2p p ->时,不妨设12,p p <,是当1x p ≤时,有1212()33()p xp x f x f x --=<<,从1()()f x f x =;当2x p ≥时,312122122log 212()333333(x p p p x p p p x p x p f x f --+----===>=g g 2当12p x p <<时,11()3x p f x -=,及22()23p xf x -=⋅,由方程12323x p p x --=⋅,解得12()()f x f x 与图象交点的横坐标为12031log 222p p x +=+⑴,显然10221321[()log 2]2p x p p p p <=---<,这表明0x 在1p 与2p 之间.由⑴知,101022(),()(),p x x f x f x x x p f x ≤≤⎧=⎨<≤⎩综上可知,在区间[,]a b 上,0102(),()(),a x x f x f x x x bf x ≤≤⎧=⎨<≤⎩ (参见示意图2),故由函数1()f x 及2()f x 的单调性可知,()f x 在区间[,]a b 上的单调增区间的长度之和为012()()x p b p -+-,由于()()f a f b =,即12323p a b p --=⋅,得123log 2p p a b +=++⑵,故由⑴、⑵得0121231()()[log 2]22b ax p b p b p p --+-=-+-=综合(i )(ii )可知,()f x 在区间[,]a b 上的单调增区间的长度和为2ab -.2008年普通高等学校招生全国统一考试(江苏卷)B .选修4—2 矩阵与变换在平面直角坐标系xOy 中,设椭圆2241x y +=在矩阵⎣⎡⎦⎤2 00 1对应的变换作用下得到曲线F ,求F的方程.解:设00(,)P x y 是椭圆上任意一点,点00(,)P x y 在矩阵A 对应的变换下变为点,'''00(,)P x y 则有'0'0020 01x x y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即'00'002x x y y ⎧=⎪⎨=⎪⎩,故'0'002x x y y ⎧=⎪⎨⎪=⎩又因为点P 在椭圆上,故220041x y +=,从而'2'200()()1x y +=,故曲线F 的方程是 221x y +=C .选修4—4 参数方程与极坐标在平面直角坐标系xOy 中,点()P x y ,是椭圆2213x y +=上的一个动点,求S x y =+的最大值. 解:因椭圆2213x y +=的参数方程为 (sin x y φφφ⎧=⎪⎨=⎪⎩为参数),故可设动点P的坐标为,sin φφ),其中02φπ≤<,故1sin 2(cos sin )2sin()223S x y πφφφφφ=+=+=+=+,故当6πφ=时,S 取最大值222.【必做题】记动点P 是棱长为1的正方体1111-ABCD A B C D 的对角线1BD 上一点,记11D PD Bλ=.当APC ∠为钝角时,求λ的取值范围.解:由题设可知,以DA u u u r 、DC u u ur 、1DD u u u u r 为单位正交基底,建立如图所示的空间直角坐标系D xyz -,则有(1,0,0)A ,(1,1,0)B ,(0,1,0)C ,(0,0,1)D ,由1(1,1,1)D B =-u u u u r,得11(,,)D P D B λλλλ==-u u u u r u u u u r ,故11(,,)(1,0,1)(1,,1)PA PD D A λλλλλλ=+=--+-=---u u u r u u u u r u u u u r11(,,)(0,1,1)(,1,1)PC PD DC λλλλλλ=+=--+-=---u u u r u u u u r u u u u r ,显然APC ∠不是平角,故APC ∠为钝角等价于cos cos ,0||||PA PCAPC PA PC PA PC ∠=<>=<⋅u u u r u u u ru u u r u u u r g u u u r u u u r ,则等价于0PA PC <u u u r u u u r g ,即2(1)()()(1)(1)(1)(31)0λλλλλλλ--+--+-=--<,得113λ<<,故λ的取值范围是1(,1)323.在等式2cos 22cos 1x x =-(x ∈R )的两边求导,得:2(cos 2)(2cos 1)x x ''=-,由求导法则,得(sin 2)24cos (sin )x x x -=-g g ,化简得等式:sin 22cos sin x x x =g .⑴.利用上题的想法(或其他方法),结合等式0122(1)C C C C n n n n n n n x x x x +=++++L (x ∈R ,正整数2n ≥),证明:112[(1)1]C nn k k n k n x k x --=+-=∑.⑵.对于正整数3n ≥,求证:①.1(1)C 0nkknk k =-=∑; ②.21(1)C 0nkk nk k =-=∑; ③.11121C 11n nkn k k n +=-=++∑.【解】⑴.在等式0122(1+x)=C C C C n n nn n n n x x x ++++L 两边对x 求导得112121(1)2(1)n n n n n n n nnn x C C x n Cx nC x----+=+++-+L 移项得112[(1)1]nn k k n k n x kC x --=+-=∑(*)⑵.①.在(*)式中,令1x =-,整理得,11(1)0nk knk kC -=-=∑故1(1)0nk kn k kC =-=∑ ②.由⑴知,112121(1)2(1),3n n n n n n n n n n x C C x n C x nC x n ----+=+++-+≥L 两边对x 求导,得2232(1)(1)232(1)n n n n n n n n x C C x n n C x---+=+++-g L 在上式中,令1x =-23220232(1)(1)(1)n n n nC C n n C -=+-++--g L 即22(1)(1)0nkk nk k k C-=--=∑,亦即22(1)()0nkknk k k C =--=∑(1)又由(i )知1(1)0nkknk kC =-=∑(2)由(1)+(2)得21(1)C 0nk kn k k =-=∑ ③.将等式0122(1+x)=C C C C n n nn n n n x x x ++++L 两边在[0,1]上对x 积分1101220(1)(C C C C )n n nn n n n x dx x x x dx+=++++⎰⎰L 由微积分基本定理,得11110011(1)()11nn k k n k x C x n k ++=+=++∑,故1012111n nk n k C k n +=-=++∑。

含解析高中数学《平面向量》专题训练30题(精)

含解析高中数学《平面向量》专题训练30题(精)

含解析高中数学《平面向量》专题训练30题(精)含解析高中数学《平面向量》专题训练30题(精)1.已知向量.(1)若,求x的值;(2)记,求函数y=f(x)的最大值和最小值及对应的x的值.【答案】(1)(2)时,取到最大值3;时,取到最小值.【解析】【分析】(1)根据,利用向量平行的充要条件建立等式,即可求x的值.(2)根据求解求函数y=f(x)解析式,化简,结合三角函数的性质即可求解最大值和最小值及对应的x的值.【详解】解:(1)∵向量.由,可得:,即,∵x∈[0,π]∴.(2)由∵x∈[0,π],∴∴当时,即x=0时f(x)max=3;当,即时.【点睛】本题主要考查向量的坐标运用以及三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.2.已知中,点在线段上,且,延长到,使.设.(1)用表示向量;(2)若向量与共线,求的值.【答案】(1),;(2)【解析】【分析】(1)由向量的线性运算,即可得出结果;(2)先由(1)得,再由与共线,设,列出方程组求解即可.【详解】解:(1)为BC的中点,,可得,而(2)由(1)得,与共线,设即,根据平面向量基本定理,得解之得,.【点睛】本题主要考查向量的线性运算,以及平面向量的基本定理,熟记定理即可,属于常考题型.3.(1)已知平面向量、,其中,若,且,求向量的坐标表示;(2)已知平面向量、满足,,与的夹角为,且(+)(),求的值.【答案】(1)或;(2)【解析】【分析】(1)设,根据题意可得出关于实数、的方程组,可求得这两个未知数的值,由此可得出平面向量的坐标;(2)利用向量数量积为零表示向量垂直,化简并代入求值,可解得的值.【详解】(1)设,由,可得,由题意可得,解得或.因此,或;(2),化简得,即,解得4.已知向量,向量.(1)求向量的坐标;(2)当为何值时,向量与向量共线.【答案】(1)(2)【解析】【详解】试题分析:(1)根据向量坐标运算公式计算;(2)求出的坐标,根据向量共线与坐标的关系列方程解出k;试题解析:(1)(2),∵与共线,∴∴5.已知向量与的夹角,且,.(1)求,;(2)求与的夹角的余弦值.【答案】(1),;(2).【解析】【分析】(1)利用平面向量数量积的定义可计算得出的值,利用平面向量数量积的运算性质计算得出的值;(2)计算出的值,利用平面向量夹角的余弦公式可求得与的夹角的余弦值.【详解】(1)由已知,得,;(2)设与的夹角为,则,因此,与的夹角的余弦值为.6.设向量,,记(1)求函数的单调递减区间;(2)求函数在上的值域.【答案】(1);(2).【解析】【详解】分析:(1)利用向量的数量积的坐标运算式,求得函数解析式,利用整体角的思维求得对应的函数的单调减区间;(2)结合题中所给的自变量的取值范围,求得整体角的取值范围,结合三角函数的性质求得结果.详解:(1)依题意,得.由,解得故函数的单调递减区间是.(2)由(1)知,当时,得,所以,所以,所以在上的值域为.点睛:该题考查的是有关向量的数量积的坐标运算式,三角函数的单调区间,三角函数在给定区间上的值域问题,在解题的过程中一是需要正确使用公式,二是用到整体角思维.7.在中,内角,,的对边分别是,,,已知,点是的中点.(Ⅰ)求的值;(Ⅱ)若,求中线的最大值.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(1)由正弦定理,已知条件等式化边为角,结合两角和的正弦公式,可求解;(2)根据余弦定理求出边的不等量关系,再用余弦定理把用表示,即可求解;或用向量关系把用表示,转化为求的最值.【详解】(Ⅰ)由已知及正弦定理得.又,且,∴,即.(Ⅱ)方法一:在中,由余弦定理得,∵,当且仅当时取等号,∴.∵是边上的中线,∴在和中,由余弦定理得,,①.②由①②,得,当且仅当时,取最大值.方法二:在中,由余弦定理得,∵,当且仅当时取等号,∴.∵是边上的中线,∴,两边平方得,∴,当且仅当时,取最大值.【点睛】本题考查正弦定理、余弦定理在三角形中应用,考查基本不等式和向量的模长公式的灵活运用,是一道综合题.8.已知平面向量,.(1)若,求的值;(2)若,与共线,求实数m的值.【答案】(1);(2)4.【解析】(1)求出,即可由坐标计算出模;(2)求出,再由共线列出式子即可计算.【详解】(1),所以;(2),因为与共线,所以,解得m=4.9.已知向量.(Ⅰ)若,求的值;(Ⅱ)若,求向量与夹角的大小.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(Ⅰ)首先求出的坐标,再根据,可得,即可求出,再根据向量模的坐标表示计算可得;(Ⅱ)首先求出的坐标,再根据计算可得;【详解】解:(Ⅰ)因为,所以,由,可得,即,解得,即,所以;(Ⅱ)依题意,可得,即,所以,因为,所以与的夹角大小是.10.如图,在中,,,,,.(1)求的长;(2)求的值.【答案】(1);(2).【解析】(1)将用和表示,利用平面向量数量积的运算律和定义计算出的值,即可得出的长;(2)将利用和表示,然后利用平面向量数量积的运算律和定义计算出的值.【详解】(1),,,,,,.;(2),,,.【点睛】本题考查平面向量模与数量积的计算,解题的关键就是选择合适的基底将题中所涉及的向量表示出来,考查计算能力,属于中等题.11.如图所示,在中,,,,分别为线段,上一点,且,,和相交于点.(1)用向量,表示;(2)假设,用向量,表示并求出的值.【答案】(1);(2),.【解析】【分析】(1)把放在中,利用向量加法的三角形法则即可;(2)把,作为基底,表示出,利用求出.【详解】解:由题意得,,所以,(1)因为,,所以.(2)由(1)知,而而因为与不共线,由平面向量基本定理得解得所以,即为所求.【点睛】在几何图形中进行向量运算:(1)构造向量加、减法的三角形法则和平行四边形法则;(2)树立“基底”意识,利用基向量进行线性运算.12.已知向量与的夹角为,且,.(1)若与共线,求k;(2)求,;(3)求与的夹角的余弦值【答案】(1);(2),;(3).【解析】【分析】(1)利用向量共线定理即可求解.(2)利用向量数量积的定义:可得数量积,再将平方可求模.(3)利用向量数量积即可夹角余弦值.【详解】(1)若与共线,则存在,使得即,又因为向量与不共线,所以,解得,所以.(2),,(3).13.已知.(1)当为何值时,与共线(2)当为何值时,与垂直?(3)当为何值时,与的夹角为锐角?【答案】(1);(2);(3)且.【解析】【分析】(1)利用向量共线的坐标表示:即可求解.(2)利用向量垂直的坐标表示:即可求解.(3)利用向量数量积的坐标表示,只需且不共线即可求解.【详解】解:(1).与平行,,解得.(2)与垂直,,即,(3)由题意可得且不共线,解得且.14.如图,在菱形ABCD中,,.(1)若,求的值;(2)若,,求.(3)若菱形ABCD的边长为6,求的取值范围.【答案】(1);(2);(3).【解析】【分析】(1)由向量线性运算即可求得值;(2)先化,再结合(1)中关系即可求解;(3)由于,,即可得,根据余弦值范围即可求得结果.【详解】解:(1)因为,,所以,所以,,故.(2)∵,∴∵ABCD为菱形∴∴,即.(3)因为,所以∴的取值范围:.【点睛】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算;(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.15.已知,,与夹角是.(1)求的值及的值;(2)当为何值时,?【答案】(1);(2)【解析】【分析】(1)利用数量积定义及其向量的运算性质,即可求解;(2)由于,可得,利用向量的数量积的运算公式,即可求解.【详解】(1)由向量的数量积的运算公式,可得,.(2)因为,所以,整理得,解得.即当值时,.【点睛】本题主要考查了数量积定义及其运算性质、向量垂直与数量积的关系,其中解答中熟记向量的数量积的运算公式,以及向量垂直的坐标运算是解答的关键,着重考查了推理能力与计算能力,属于中档题.16.设向量(I)若(II)设函数【答案】(I)(II)【解析】【详解】(1)由=(sinx)2+(sinx)2=4sin2x,=(cosx)2+(sinx)2=1,及,得4sin2x=1.又x∈,从而sinx=,所以x=.(2)sinx·cosx+sin2x=sin2x-cos2x+=sin+,当x∈时,-≤2x-≤π,∴当2x-=时,即x=时,sin取最大值 1.所以f(x)的最大值为.17.化简.(1).(2).【答案】(1);(2).【解析】(1)利用平面向量加法的三角形法则化简可得所求代数式的结果;(2)利用平面向量加法的三角形法则化简可得所求代数式的结果.【详解】(1);(2).18.已知点,,,是原点.(1)若点三点共线,求与满足的关系式;(2)若的面积等于3,且,求向量.【答案】(1)(2)或【解析】【分析】(1)由题意结合三点共线的充分必要条件确定m,n满足的关系式即可;(2)由题意首先求得n的值,然后求解m的值即可确定向量的坐标.【详解】(1),,由点A,B,C三点共线,知∥,所以,即;(2)由△AOC的面积是3,得,,由,得,所以,即,当时,,?解得或,当时,,方程没有实数根,所以或.【点睛】本题主要考查三点共线的充分必要条件,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.19.如图,在直角梯形中,为上靠近B的三等分点,交于为线段上的一个动点.(1)用和表示;(2)求;(3)设,求的取值范围.【答案】(1);(2)3;(3).【解析】【分析】(1)根据给定条件及几何图形,利用平面向量的线性运算求解而得;(2)选定一组基向量,将由这一组基向量的唯一表示出而得解;(3)由动点P设出,结合平面向量基本定理,建立为x的函数求解.【详解】(1)依题意,,,;(2)因交于D,由(1)知,由共起点的三向量终点共线的充要条件知,,则,,;(3)由已知,因P是线段BC上动点,则令,,又不共线,则有,,在上递增,所以,故的取值范围是.【点睛】由不共线的两个向量为一组基底,用该基底把相关条件和结论表示成向量的形式,再通过向量的运算来解决.20.设向量满足,且.(1)求与的夹角;(2)求的大小.【答案】(1);(2)【解析】【分析】(1)由已知得,展开求得,结合夹角公式即可求解;(2)由化简即可求解.【详解】(1)设与的夹角为θ由已知得,即,因此,得,于是,故θ=,即与的夹角为;(2)由.21.已知,,(t∈R),O是坐标原点.(1)若点A,B,M三点共线,求t的值;(2)当t取何值时,取到最小值?并求出最小值.【答案】(1)t;(2)当t时,?的最小值为.【解析】【分析】(1)求出向量的坐标,由三点共线知与共线,即可求解t的值.(2)运用坐标求数量积,转化为函数求最值.【详解】(1),,∵A,B,M三点共线,∴与共线,即,∴,解得:t.(2),,,∴当t时,?取得最小值.【点睛】关键点点睛:(1)由三点共线,则由它们中任意两点构成的向量都共线,求参数值.(2)利用向量的数量积的坐标公式得到关于参数的函数,即可求最值及对应参数值.22.设向量,,.(1)求;(2)若,,求的值;(3)若,,,求证:A,,三点共线.【答案】(1) 1(2)2(3)证明见解析【解析】【分析】(1)先求,进而求;(2)列出方程组,求出,进而求出;(3)求出,从而得到,得到结果.(1),;(2),所以,解得:,所以;(3)因为,所以,所以A,,三点共线.23.在平面直角坐标系中,已知,.(Ⅰ)若,求实数的值;(Ⅱ)若,求实数的值.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)求出向量和的坐标,然后利用共线向量的坐标表示得出关于的方程,解出即可;(Ⅱ)由得出,利用向量数量积的坐标运算可得出关于实数的方程,解出即可.【详解】(Ⅰ),,,,,,解得;(Ⅱ),,,解得.【点睛】本题考查平面向量的坐标运算,考查利用共线向量和向量垂直求参数,考查计算能力,属于基础题.24.在中,,,,点,在边上且,.(1)若,求的长;(2)若,求的值.【答案】(1);(2).【解析】【分析】(1)先设,,根据题意,求出,,再由向量模的计算公式,即可得出结果;(2)先由题意,得到,,再由向量数量积的运算法则,以及题中条件,得到,即可求出结果.【详解】(1)设,,则,,因此,所以,,(2)因为,所以,同理可得,,所以,∴,即,同除以可得,.【点睛】本题主要考查用向量的方法求线段长,考查由向量数量积求参数,熟记平面向量基本定理,以及向量数量积的运算法则即可,属于常考题型.25.已知向量,,,且.(1)求,;(2)求与的夹角及与的夹角.【答案】(1),;(2),.【解析】【分析】(1)由、,结合平面向量数量积的运算即可得解;(2)记与的夹角为,与的夹角为,由平面向量数量积的定义可得、,即可得解.【详解】(1)因为向量,,,且,所以,所以,又,所以;(2)记与的夹角为,与的夹角为,则,所以.,所以.【点睛】本题考查了平面向量数量积的运算与应用,考查了运算求解能力,属于基础题.26.平面内给定三个向量,,.(1)求满足的实数,;(2)若,求实数的值.【答案】(1),;(2).【解析】【分析】(1)依题意求出的坐标,再根据向量相等得到方程组,解得即可;(2)首先求出与的坐标,再根据向量共线的坐标表示计算可得;【详解】解:(1)因为,,,且,,,,.,解得,.(2),,,.,,,.,解得.27.如图,已知中,为的中点,,交于点,设,.(1)用分别表示向量,;(2)若,求实数t的值.【答案】(1),;(2).【解析】(1)根据向量线性运算,结合线段关系,即可用分别表示向量,;(2)用分别表示向量,,由平面向量共线基本定理,即可求得t的值.【详解】(1)由题意,为的中点,,可得,,.∵,∴,∴(2)∵,∴∵,,共线,由平面向量共线基本定理可知满足,解得.【点睛】本题考查了平面向量的线性运算,平面向量共线基本定理的应用,属于基础题.28.已知,向量,.(1)若向量与平行,求k的值;(2)若向量与的夹角为钝角,求k的取值范围【答案】(1)或;(2).【解析】(1)利用向量平行的坐标表示列式计算即得结果;(2)利用,且不共线,列式计算即得结果.【详解】解:(1)依题意,,,又,得,即解得或;(2)与的夹角为钝角,则,即,即,解得或.由(1)知,当时,与平行,舍去,所以.【点睛】思路点睛:两向量夹角为锐角(或钝角)的等价条件:(1)两向量夹角为锐角,等价于,且不共线;(2)两向量夹角为钝角,等价于,且不共线.29.已知.(1)若,求的值;(2)若,求向量在向量方向上的投影.【答案】(1)(2)【解析】【分析】(1)先得到,根据可得,即可求出m;(2)根据求出m=2,再根据求在向量方向上的投影.【详解】;;;;;;;在向量方向上的投影为.【点睛】本题主要考查了向量坐标的加法和数量积的运算,向量垂直的充要条件及向量投影的计算公式,属于中档题.30.平面内给定三个向量.(1)求;(2)求满足的实数m和n;(3)若,求实数k.【答案】(1)6;(2);(3).【解析】(1)利用向量加法的坐标运算得到,再求模长即可;(2)先写的坐标,再根据使对应横纵坐标相等列方程组,解方程组即得结果;(3)利用向量垂直则数量积为零,再利用数量积的坐标运算列关系求出参数即可.【详解】解:(1)由,得,;(2),,,,故,解得;(3),,,,,,即,解得.【点睛】结论点睛:若,则等价于;等价于.试卷第1页,共3页试卷第1页,共3页。

2023年新高考数学大一轮复习专题二平面向量与三角函数第1讲平面向量(含答案)

2023年新高考数学大一轮复习专题二平面向量与三角函数第1讲平面向量(含答案)

新高考数学大一轮复习专题:第1讲 平面向量[考情分析] 1.平面向量是高考的热点和重点,命题突出向量的基本运算与工具性,在解答题中常与三角函数、直线和圆锥曲线的位置关系问题相结合,主要以条件的形式出现,涉及向量共线、数量积等.2.常以选择题、填空题形式考查平面向量的基本运算,中低等难度;平面向量在解答题中一般为中等难度. 考点一 平面向量的线性运算 核心提炼1.平面向量加减法求解的关键是:对平面向量加法抓住“共起点”或“首尾相连”.对平面向量减法应抓住“共起点,连两终点,指向被减向量的终点”,再观察图形对向量进行等价转化,即可快速得到结果.2.在一般向量的线性运算中,只要把其中的向量当作一个字母看待即可,其运算方法类似于代数中合并同类项的运算,在计算时可以进行类比.例1 (1)如图所示,AD 是△ABC 的中线,O 是AD 的中点,若CO →=λAB →+μAC →,其中λ,μ∈R ,则λ+μ的值为( )A .-12B.12 C .-14D.14答案 A解析 由题意知,CO →=12(CD →+CA →)=12×⎝ ⎛⎭⎪⎫12CB →+CA →=14(AB →-AC →)+12CA →=14AB →-34AC →, 则λ=14,μ=-34,故λ+μ=-12.(2)已知e 1,e 2是不共线向量,a =m e 1+2e 2,b =n e 1-e 2,且mn ≠0.若a ∥b ,则m n=________. 答案 -2解析 ∵a ∥b ,∴m ×(-1)=2×n ,∴m n=-2.(3)A ,B ,C 是圆O 上不同的三点,线段CO 与线段AB 交于点D ,若OC →=λOA →+μOB →(λ∈R ,μ∈R ),则λ+μ的取值范围是________.答案 (1,+∞)解析 由题意可得,OD →=kOC →=kλOA →+kμOB →(0<k <1),又A ,D ,B 三点共线,所以kλ+kμ=1,则λ+μ=1k>1,即λ+μ的取值范围是(1,+∞).易错提醒 在平面向量的化简或运算中,要根据平面向量基本定理恰当地选取基底,变形要有方向,不能盲目转化.跟踪演练1 (1)如图,在平行四边形ABCD 中,E ,F 分别为边AB ,BC 的中点,连接CE ,DF ,交于点G .若CG →=λCD →+μCB →(λ,μ∈R ),则λμ=________.答案 12解析 由题意可设CG →=xCE →(0<x <1), 则CG →=x (CB →+BE →)=x ⎝ ⎛⎭⎪⎫CB →+12CD →=x 2CD →+xCB →.因为CG →=λCD →+μCB →,CD →与CB →不共线,所以λ=x 2,μ=x ,所以λμ=12.(2)如图,在扇形OAB 中,∠AOB =π3,C 为弧AB 上的一个动点,若OC →=xOA →+yOB →,则x +3y的取值范围是________.答案 [1,3]解析 设扇形的半径为1,以OB 所在直线为x 轴,O 为坐标原点建立平面直角坐标系(图略), 则B (1,0),A ⎝ ⎛⎭⎪⎫12,32,C (cos θ,sin θ)⎝ ⎛⎭⎪⎫其中∠BOC =θ,0≤θ≤π3.则OC →=(cos θ,sin θ)=x ⎝ ⎛⎭⎪⎫12,32+y (1,0),即⎩⎪⎨⎪⎧x 2+y =cos θ,32x =sin θ,解得x =23sin θ3,y =cos θ-3sin θ3,故x +3y =23sin θ3+3cos θ-3sin θ=3cos θ-33sin θ,0≤θ≤π3. 令g (θ)=3cos θ-33sin θ, 易知g (θ)=3cos θ-33sin θ在⎣⎢⎡⎦⎥⎤0,π3上单调递减,故当θ=0时,g (θ)取得最大值为3, 当θ=π3时,g (θ)取得最小值为1,故x +3y 的取值范围为[1,3].考点二 平面向量的数量积 核心提炼1.若a =(x ,y ),则|a |=a ·a =x 2+y 2. 2.若A (x 1,y 1),B (x 2,y 2),则|AB →|=x 2-x 12+y 2-y 12.3.若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角, 则cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22. 例2 (1)(2020·全国Ⅲ)已知向量a ,b 满足|a |=5,|b |=6,a ·b =-6,则cos 〈a ,a +b 〉等于( )A .-3135B .-1935C.1735D.1935答案 D解析 ∵|a +b |2=(a +b )2=a 2+2a ·b +b 2=25-12+36=49, ∴|a +b |=7,∴cos〈a ,a +b 〉=a ·a +b |a ||a +b |=a 2+a ·b|a ||a +b |=25-65×7=1935. (2)已知扇形OAB 的半径为2,圆心角为2π3,点C 是弧AB 的中点,OD →=-12OB →,则CD →·AB →的值为( )A .3B .4C .-3D .-4 答案 C解析 如图,连接CO ,∵点C 是弧AB 的中点, ∴CO ⊥AB ,又∵OA =OB =2,OD →=-12OB →,∠AOB =2π3,∴CD →·AB →=(OD →-OC →)·AB →=-12OB →·AB →=-12OB →·(OB →-OA →)=12OA →·OB →-12OB →2=12×2×2×⎝ ⎛⎭⎪⎫-12-12×4=-3. (3)已知在直角梯形ABCD 中,AB =AD =2CD =2,∠ADC =90°,若点M 在线段AC 上,则|MB →+MD →|的取值范围为________________.答案 ⎣⎢⎡⎦⎥⎤255,22 解析 以A 为坐标原点,AB ,AD 所在直线分别为x 轴,y 轴, 建立如图所示的平面直角坐标系,则A (0,0),B (2,0),C (1,2),D (0,2),设AM →=λAC →(0≤λ≤1),则M (λ,2λ), 故MD →=(-λ,2-2λ),MB →=(2-λ,-2λ), 则MB →+MD →=(2-2λ,2-4λ), ∴|MB →+MD →|=2-2λ2+2-4λ2=20⎝⎛⎭⎪⎫λ-352+45,0≤λ≤1, 当λ=0时,|MB →+MD →|取得最大值为22, 当λ=35时,|MB →+MD →|取得最小值为255,∴|MB →+MD →|∈⎣⎢⎡⎦⎥⎤255,22.易错提醒 两个向量的夹角的范围是[0,π],在使用平面向量解决问题时要特别注意两个向量的夹角可能是0或π的情况,如已知两个向量的夹角为钝角时,不仅要求其数量积小于零,还要求不能反向共线.跟踪演练2 (1)(2019·全国Ⅰ)已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为( )A.π6B.π3C.2π3D.5π6 答案 B解析 方法一 设a 与b 的夹角为θ,因为(a -b )⊥b ,所以(a -b )·b =a ·b -|b |2=0, 又因为|a |=2|b |,所以2|b |2cos θ-|b |2=0, 即cos θ=12,又θ∈[0,π],所以θ=π3,故选B. 方法二 如图,令OA →=a ,OB →=b ,则BA →=OA →-OB →=a -b .因为(a -b )⊥b ,所以∠OBA =π2,又|a |=2|b |,所以∠AOB =π3,即a 与b 的夹角为π3,故选B.(2)(2020·新高考全国Ⅰ)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP →·AB →的取值范围是( ) A .(-2,6) B .(-6,2) C .(-2,4) D .(-4,6)答案 A解析 如图,取A 为坐标原点,AB 所在直线为x 轴建立平面直角坐标系,则A (0,0),B (2,0),C (3,3),F (-1,3). 设P (x ,y ),则AP →=(x ,y ),AB →=(2,0),且-1<x <3. 所以AP →·AB →=(x ,y )·(2,0)=2x ∈(-2,6).(3)设A ,B ,C 是半径为1的圆O 上的三点,且OA →⊥OB →,则(OC →-OA →)·(OC →-OB →)的最大值是( ) A .1+ 2 B .1- 2 C.2-1 D .1答案 A解析 如图,作出OD →,使得OA →+OB →=OD →.则(OC →-OA →)·(OC →-OB →)=OC →2-OA →·OC →-OB →·OC →+OA →·OB →=1-(OA →+OB →)·OC →=1-OD →·OC →,由图可知,当点C 在OD 的反向延长线与圆O 的交点处时,OD →·OC →取得最小值,最小值为-2,此时(OC →-OA →)·(OC →-OB →)取得最大值,最大值为1+ 2.故选A.专题强化练一、单项选择题1.已知四边形ABCD 是平行四边形,点E 为边CD 的中点,则BE →等于( )A .-12AB →+AD →B.12AB →-AD →C.AB →+12AD →D.AB →-12AD →答案 A解析 由题意可知,BE →=BC →+CE →=-12AB →+AD →.2.(2020·广州模拟)加强体育锻炼是青少年生活学习中非常重要的组成部分,某学生做引体向上运动,处于如图所示的平衡状态时,若两只胳膊的夹角为π3,每只胳膊的拉力大小均为400 N ,则该学生的体重(单位:kg)约为(参考数据:取重力加速度大小为g =10 m/s 2,3≈1.732)( )A .63B .69C .75D .81 答案 B解析 设该学生的体重为m ,重力为G ,两臂的合力为F ′,则|G |=|F ′|,由余弦定理得|F ′|2=4002+4002-2×400×400×cos 2π3=3×4002,∴|F ′|=4003,∴|G |=mg =4003,m =403≈69kg.3.已知向量a =(1,2),b =(2,-2),c =(λ,-1),若c ∥(2a +b ),则λ等于( ) A .-2B .-1C .-12D.12答案 A解析 ∵a =(1,2),b =(2,-2),∴2a +b =(4,2),又c =(λ,-1),c ∥(2a +b ),∴2λ+4=0,解得λ=-2,故选A.4.(2020·潍坊模拟)在平面直角坐标系xOy 中,点P (3,1),将向量OP →绕点O 按逆时针方向旋转π2后得到向量OQ →,则点Q 的坐标是( )A .(-2,1)B .(-1,2)C .(-3,1)D .(-1,3) 答案 D解析 由P (3,1),得P ⎝⎛⎭⎪⎫2cos π6,2sin π6,∵将向量OP →绕点O 按逆时针方向旋转π2后得到向量OQ →,∴Q ⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π6+π2,2sin ⎝ ⎛⎭⎪⎫π6+π2, 又cos ⎝⎛⎭⎪⎫π6+π2=-sin π6=-12,sin ⎝ ⎛⎭⎪⎫π6+π2=cos π6=32,∴Q (-1,3).5.(2020·泰安模拟)如图,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB →=mAM →,AC →=nAN →,则m +n 等于( )A .0B .1C .2D .3 答案 C解析 如图,连接AO ,由O 为BC 的中点可得,AO →=12(AB →+AC →)=m 2AM →+n 2AN →, ∵M ,O ,N 三点共线, ∴m 2+n2=1. ∴m +n =2.6.在同一平面中,AD →=DC →,BE →=2ED →.若AE →=mAB →+nAC →(m ,n ∈R ),则m +n 等于( ) A.23B.34C.56D .1 答案 A解析 由题意得,AD →=12AC →,DE →=13DB →,故AE →=AD →+DE →=12AC →+13DB →=12AC →+13(AB →-AD →)=12AC →+13⎝ ⎛⎭⎪⎫AB →-12AC →=13AB →+13AC →,所以m =13,n =13,故m +n =23.7.若P 为△ABC 所在平面内一点,且|PA →-PB →|=|PA →+PB →-2PC →|,则△ABC 的形状为( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .等腰直角三角形答案 C解析 ∵|PA →-PB →|=|PA →+PB →-2PC →|,∴|BA →|=|(PA →-PC →)+(PB →-PC →)|=|CA →+CB →|,即|CA →-CB →|=|CA →+CB →|,两边平方整理得,CA →·CB →=0,∴CA →⊥CB →,∴△ABC 为直角三角形.故选C. 8.已知P 是边长为3的等边三角形ABC 外接圆上的动点,则||PA →+PB →+2PC →的最大值为( )A .23B .33C .43D .5 3 答案 D解析 设△ABC 的外接圆的圆心为O , 则圆的半径为332×12=3,OA →+OB →+OC →=0, 故PA →+PB →+2PC →=4PO →+OC →.又||4PO →+OC→2=51+8PO →·OC →≤51+24=75, 故||PA →+PB →+2PC →≤53, 当PO →,OC →同向共线时取最大值.9.如图,圆O 是边长为23的等边三角形ABC 的内切圆,其与BC 边相切于点D ,点M 为圆上任意一点,BM →=xBA →+yBD →(x ,y ∈R ),则2x +y 的最大值为( )A.2B.3C .2D .2 2 答案 C解析 方法一 如图,连接DA ,以D 点为原点,BC 所在直线为x 轴,DA 所在直线为y 轴,建立如图所示的平面直角坐标系.设内切圆的半径为r ,则圆心为坐标(0,r ),根据三角形面积公式,得12×l △ABC ×r =12×AB ×AC ×sin60°(l △ABC 为△ABC 的周长),解得r =1.易得B (-3,0),C (3,0),A (0,3),D (0,0), 设M (cos θ,1+sin θ),θ∈[0,2π),则BM →=(cos θ+3,1+sin θ),BA →=(3,3),BD →=(3,0), 故BM →=(cos θ+3,1+sin θ)=(3x +3y ,3x ),故⎩⎨⎧cos θ=3x +3y -3,sin θ=3x -1,则⎩⎪⎨⎪⎧x =1+sin θ3,y =3cos θ3-sin θ3+23,所以2x +y =3cos θ3+sin θ3+43=23sin ⎝⎛⎭⎪⎫θ+π3+43≤2.当θ=π6时等号成立.故2x +y 的最大值为2.方法二 因为BM →=xBA →+yBD →,所以|BM →|2=3(4x 2+2xy +y 2)=3[(2x +y )2-2xy ]. 由题意知,x ≥0,y ≥0, |BM →|的最大值为232-32=3,又2x +y 24≥2xy ,即-2x +y 24≤-2xy ,所以3×34(2x +y )2≤9,得2x +y ≤2,当且仅当2x =y =1时取等号. 二、多项选择题10.(2020·长沙模拟)已知a ,b 是单位向量,且a +b =(1,-1),则( ) A .|a +b |=2 B .a 与b 垂直C .a 与a -b 的夹角为π4D .|a -b |=1 答案 BC解析 |a +b |=12+-12=2,故A 错误;因为a ,b 是单位向量,所以|a |2+|b |2+2a ·b =1+1+2a ·b =2,得a ·b =0,a 与b 垂直,故B 正确;|a -b |2=a 2+b 2-2a ·b =2,|a -b |=2,故D 错误;cos 〈a ,a -b 〉=a ·a -b |a ||a -b |=a 2-a ·b 1×2=22,所以a 与a -b 的夹角为π4,故C 正确. 11.设向量a =(k,2),b =(1,-1),则下列叙述错误的是( )A .若k <-2,则a 与b 的夹角为钝角B .|a |的最小值为2C .与b 共线的单位向量只有一个为⎝ ⎛⎭⎪⎫22,-22 D .若|a |=2|b |,则k =22或-2 2 答案 CD解析 对于A 选项,若a 与b 的夹角为钝角,则a ·b <0且a 与b 不共线,则k -2<0且k ≠-2,解得k <2且k ≠-2,A 选项正确;对于B 选项,|a |=k 2+4≥4=2,当且仅当k =0时等号成立,B 选项正确;对于C 选项,|b |=2,与b 共线的单位向量为±b |b |,即与b 共线的单位向量为⎝⎛⎭⎪⎫22,-22或⎝ ⎛⎭⎪⎫-22,22,C 选项错误;对于D 选项,∵|a |=2|b |=22,∴k 2+4=22,解得k =±2,D 选项错误.12.已知△ABC 是边长为2的等边三角形,D ,E 分别是AC ,AB 上的两点,且AE →=EB →,AD →=2DC →,BD 与CE 交于点O ,则下列说法正确的是( )A.AB →·CE →=-1B.OE →+OC →=0C .|OA →+OB →+OC →|=32D.ED →在BC →方向上的投影为76答案 BCD解析 因为AE →=EB →,△ABC 是等边三角形,所以CE ⊥AB ,所以AB →·CE →=0,选项A 错误;以E 为坐标原点,EA →,EC →的方向分别为x 轴,y 轴正方向建立平面直角坐标系,如图所示,所以E (0,0),A (1,0),B (-1,0),C (0,3),D ⎝ ⎛⎭⎪⎫13,233, 设O (0,y ),y ∈(0,3),则BO →=(1,y ),DO →=⎝ ⎛⎭⎪⎫-13,y -233, 又BO →∥DO →,所以y -233=-13y ,解得y =32, 即O 是CE 的中点,OE →+OC →=0,所以选项B 正确;|OA →+OB →+OC →|=|2OE →+OC →|=|OE →|=32, 所以选项C 正确;ED →=⎝ ⎛⎭⎪⎫13,233,BC →=(1,3),ED →在BC →方向上的投影为ED →·BC →|BC →|=13+22=76,所以选项D 正确. 三、填空题13.(2020·全国Ⅱ)已知单位向量a ,b 的夹角为45°,k a -b 与a 垂直,则k =________. 答案 22解析 由题意知(k a -b )·a =0,即k a 2-b ·a =0.因为a ,b 为单位向量,且夹角为45°,所以k ×12-1×1×22=0,解得k =22. 14.在△ABC 中,AB =1,∠ABC =60°,AC →·AB →=-1,若O 是△ABC 的重心,则BO →·AC →=________.答案 5解析 如图所示,以B 为坐标原点,BC 所在直线为x 轴,建立平面直角坐标系.∵AB =1,∠ABC =60°,∴A ⎝ ⎛⎭⎪⎫12,32.设C (a,0). ∵AC →·AB →=-1,∴⎝ ⎛⎭⎪⎫a -12,-32·⎝ ⎛⎭⎪⎫-12,-32 =-12⎝ ⎛⎭⎪⎫a -12+34=-1,解得a =4. ∵O 是△ABC 的重心,延长BO 交AC 于点D ,∴BO →=23BD →=23×12()BA →+BC → =13⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12,32+4,0=⎝ ⎛⎭⎪⎫32,36. ∴BO →·AC →=⎝ ⎛⎭⎪⎫32,36·⎝ ⎛⎭⎪⎫72,-32=5. 15.(2020·石家庄模拟)在锐角三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,点O为△ABC 的外接圆的圆心,A =π3,且AO →=λAB →+μAC →,则λμ的最大值为________. 答案 19解析 ∵△ABC 是锐角三角形,∴O 在△ABC 的内部,∴0<λ<1,0<μ<1.由AO →=λ(OB →-OA →)+μ(OC →-OA →), 得(1-λ-μ)AO →=λOB →+μOC →,两边平方后得,(1-λ-μ)2AO →2=(λOB →+μOC →)2=λ2OB →2+μ2OC →2+2λμOB →·OC →,∵A =π3,∴∠BOC =2π3,又|AO →|=|BO →|=|CO →|. ∴(1-λ-μ)2=λ2+μ2-λμ,∴1+3λμ=2(λ+μ),∵0<λ<1,0<μ<1,∴1+3λμ≥4λμ,设λμ=t ,∴3t 2-4t +1≥0,解得t ≥1(舍)或t ≤13, 即λμ≤13⇒λμ≤19,∴λμ的最大值是19.16.(2020·浙江)已知平面单位向量e 1,e 2满足|2e 1-e 2|≤2,设a =e 1+e 2,b =3e 1+e 2,向量a ,b 的夹角为θ,则cos 2θ的最小值是________. 答案 2829解析 设e 1=(1,0),e 2=(x ,y ),则a =(x +1,y ),b =(x +3,y ).由2e 1-e 2=(2-x ,-y ),故|2e 1-e 2|=2-x 2+y 2≤2,得(x -2)2+y 2≤2.又有x 2+y 2=1,得(x -2)2+1-x 2≤2,化简,得4x ≥3,即x ≥34,因此34≤x ≤1.cos 2θ=⎝ ⎛⎭⎪⎫a ·b|a |·|b |2=⎣⎢⎡⎦⎥⎤x +1x +3+y 2x +12+y 2x +32+y 22=⎝ ⎛⎭⎪⎫4x +42x +26x +102=4x +12x +13x +5=4x +13x +5=433x +5-833x +5=43-833x +5,。

平面向量痛点问题之三角形“四心”问题(解析版)--高一数学微专题

平面向量痛点问题之三角形“四心”问题(解析版)--高一数学微专题

平面向量痛点问题之三角形“四心”问题【题型归纳目录】题型一:重心定理题型二:内心定理题型三:外心定理题型四:垂心定理【知识点梳理】一、四心的概念介绍:(1)重心:中线的交点,重心将中线长度分成2:1.(2)内心:角平分线的交点(内切圆的圆心),角平分线上的任意点到角两边的距离相等.(3)外心:中垂线的交点(外接圆的圆心),外心到三角形各顶点的距离相等.(4)垂心:高线的交点,高线与对应边垂直.二、三角形四心与推论:(1)O 是△ABC 的重心:S △BOC :S △COA :S △A 0B =1:1:1⇔OA +OB +OC =0.(2)O 是△ABC 的内心:S △B 0C :S △COA :S △AOB =a :b :c ⇔aOA +bOB +cOC =0.(3)O 是△ABC 的外心:S △B 0C :S △COA :S △AOB =sin2A :sin2B :sin2C ⇔sin2AOA +sin2BOB +sin2COC =0 .(4)O 是△ABC 的垂心:S △B 0C :S △COA :S △AOB =tan A :tan B :tan C ⇔tan AOA +tan BOB +tan COC =0.【方法技巧与总结】(1)内心:三角形的内心在向量AB AB +ACAC所在的直线上.AB ⋅PC +BC ⋅PC +CA⋅PB =0 ⇔P 为△ABC 的内心.(2)外心:PA =PB =PC⇔P 为△ABC 的外心.(3)垂心:PA ⋅PB =PB ⋅PC =PC ⋅PA⇔P 为△ABC 的垂心.(4)重心:PA +PB +PC =0⇔P 为△ABC 的重心.【典型例题】题型一:重心定理1(2024·重庆北碚·高一西南大学附中校考阶段练习)如图所示,已知点G 是△ABC 的重心,过点G 作直线分别与AB ,AC 两边交于M ,N 两点(点N 与点C 不重合),设AM =xAB ,AN =yAC ,则1x +1y的值为()A.3B.4C.5D.6【答案】A【解析】设MG =λMN ,则AG =AM +MG =AM +λMN =AM +λAN -AM=1-λ AM +λAN =x 1-λ AB +yλAC,又因为G 是△ABC 的重心,故AG =13AB +13AC,所以有x 1-λ =13yλ=13⇒1x +1y =31-λ +3λ=3.故选:A2(2024·全国·高一随堂练习)已知△ABC 中,点G 为△ABC 所在平面内一点,则“AB +AC -3AG=0”是“点G 为△ABC 重心”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C【解析】依题意AB +AC -3AG =AG +GB +AG +GC -3AG =GA +GB +GC =0,则G 是△ABC 重心,即充分性成立;若G 是△ABC 重心时,GA +GB +GC =0,可得GA +GB +GC =AG +GB +AG +GC -3AG =AB +AC -3AG =0所以AB +AC -3AG =0 ,必要性成立,故选:C .3(2024·全国·高一专题练习)已知O 是三角形ABC 所在平面内一定点,动点P 满足OP =OA+λAB AB sin B +AC AC sin C λ≥0 ,则P 点轨迹一定通过三角形ABC 的()A.内心 B.外心C.垂心D.重心【答案】D【解析】记E 为BC 的中点,连接AE ,作AD ⊥BC ,如图,则AB sin B =AC sin C =AD ,AB +AC =12AE ,因为OP =OA +λAB AB sin B +ACAC sin C,所以AP =OP -OA =λAB AB sin B +ACACsin C=λ|AD |(AB +AC )=λ2|AD |AE,所以点P 在三角形的中线AE 上,则动点P 的轨迹一定经过△ABC 的重心.故选:D .题型二:内心定理1(2024·全国·高一专题练习)在△ABC 中,cos ∠BAC =13,若O 为内心,且满足AO =xAB +yAC ,则x +y 的最大值为.【答案】3-32【解析】延长AO 交BC 于D ,设BC 与圆O 相切于点E ,AC 与圆O 相切于点F ,则OE =OF ,则OE ≤OD ,设AD =λAO =λxAB +λyAC ,因为B 、C 、D 三点共线,所以λx +λy =1,即x +y =1λ=AO AD =AO AO +OD ≤AO AO +OE =11+OE OA=11+OF OA =11+sin A 2,因为cos A =1-2sin 2A 2=13,0<A <π,0<A 2<π2,所以sin A 2=33,所以x +y ≤11+33=3-32.故答案是:3-322(2024·江苏南通·高一如皋市第一中学期末)已知点P 为△ABC 的内心,∠BAC =23π,AB =1,AC =2,若AP =λAB +μAC,则λ+μ=.【答案】9-372【解析】在△ABC ,由余弦定理得BC =AC 2+AB 2-2AC ⋅AB cos ∠BAC =7,设O ,Q ,N 分别是边AB ,BC ,AC 上的切点,设AN =AO =x ,则NC =QC =2-x ,BO =BQ =1-x ,所以BC =BQ +QC =1-x +2-x =7⇒x =3-72,由AP =λAB +μAC 得,AP ⋅AB =λAB +μAC ⋅AB ,即AO ⋅AB =λAB 2+μAC ⋅AB ⇒AO =λ-μ,①同理由AP ⋅AC =λAB +μAC ⋅AC⇒2AN =-λ+4μ,②联立①②以及AN =AO =x 即可解得:λ+μ=3x =3×3-72=9-372,故答案为:9-3723(2024·广西柳州·高一统考期末)设O 为△ABC 的内心,AB =AC =5,BC =8,AO =mAB +nBCm ,n ∈R ,则m +n =【答案】56【解析】取BC 中点D ,连接AD ,作OE ⊥AB ,垂足分别为E ,∵AB =AC ,∴AD 为∠BAC 的角平分线,∴O ∈AD ;又AB =5,BD =12BC =4,∴sin ∠BAD =45,则tan ∠BAD =43;∵△ABC 周长L =5+5+8=18,面积S =12BC ⋅AD =12×8×52-42=12,∴△ABC 内切圆半径r =OE =2S L =2418=43,∴AE =rtan ∠BAD=1,又OA =12+r 2=53,∴AO =59AD ,∵AD =AB +BD =AB +12BC ,∴AO =59AD =59AB +518BC ,∴m =59,n =518,∴m +n =59+518=56.故答案为:56.题型三:外心定理1(2024·吉林长春·高一东北师大附中校考阶段练习)已知点O 是△ABC 的外心,AB =4,AC =2,∠BAC 为钝角,M 是边BC 的中点,则AM ⋅AO=.【答案】5【解析】如图所示,取AB 的中点E ,连接OE ,因为O 为△ABC 的外心,则OE ⊥AB ,所以AB ⋅AO =|AB ||AO |cos <AB ,AO >=|AB |×12|AB |=12×42=8,同理:AC ⋅AO =12|AC |2=12×22=2,所以AM ⋅AO =12(AB +AC )⋅AO =12AB ⋅AO +12AC ⋅AO =12×8+12×2=5.故答案为:5.2(2024·安徽六安·高一六安市裕安区新安中学校考期末)已知O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足OP =OA +OB 2+λCA CA cos A +CBCB cos B ,λ∈R ,则P 的轨迹一定经过△ABC 的.(从“重心”,“外心”,“内心”,“垂心”中选择一个填写)【答案】外心【解析】如图所示:D 为AB 中点,连接CD ,CA CA cos A +CB CB cos B⋅BA =CA ⋅BA CA cos A +CB ⋅BACB cos B=BA -BA =0,OP -OA +OB 2=OP -OD =DP ,故DP ⋅BA =λCA CA cos A +CB CBcos B ⋅BA =0,即DP ⊥BA ,故P 的轨迹一定经过△ABC 的外心.故答案为:外心3(2024·四川遂宁·高一射洪中学校考阶段练习)已知△ABC 中,∠A =60°,AB =6,AC =4,O 为△ABC 的外心,若AO =λAB +μAC,则λ+μ的值为()A.1 B.2C.1118D.12【答案】C【解析】由题意可知,O 为△ABC 的外心,设外接圆半径为r ,在圆O 中,过O 作OD ⊥AB ,OE ⊥AC ,垂足分别为D ,E ,则D ,E 分别为AB ,AC 的中点,因为AO =λAB +μAC ,两边乘以AB ,即AO ⋅AB =λAB 2+μAC ⋅AB ,AO ,AB 的夹角为∠OAD ,而cos ∠OAD =AD AO=62r =3r ,则r ×6×3r =36λ+μ×4×6×12,得6λ+2μ=3①,同理AO =λAB +μAC 两边乘AC ,即AO ⋅AC =λAB ⋅AC +μAC 2,cos ∠OAC =2r,则r ×4×2r =λ×6×4×12+16μ,得3λ+4μ=2②,①②联立解得λ=49,μ=16,所以λ+μ=49+16=1118.故选:C .题型四:垂心定理1(2024·江苏泰州·高一统考期末)已知△ABC 的垂心为点D ,面积为15,且∠ABC =45°,则BD ⋅BC=;若BD =12BA +13BC ,则BD=.【答案】 3025【解析】如图,AH 是△ABC 的BC 边上的高,则AH ⋅BC =0;设AD =λAH ,因为∠ABC =45°,面积为15,所以12BABC sin45°=15,即BA BC =302;BD ⋅BC =BA +AD ⋅BC =BA +λAH ⋅BC =BA ⋅BC +λAH ⋅BC =BA BCcos45°=30.由第一空可知BD ⋅BC =30,所以BD ⋅BC =12BA+13BC ⋅BC =12BA ⋅BC +13BC 2=30;所以BC 2=45,由BA BC =302可得BA =210,即BA 2=40;因为BD =12BA +13BC ,所以BD 2=14BA 2+19BC 2+13BA ⋅BC =14BA 2+19BC2+10=10+5+10=25;故答案为:30 25.2(2024·湖北黄冈·高一校联考期末)若O 为△ABC 的垂心,2OA +3OB +5OC =0 ,则S△AOB S △AOC=,cos ∠BOC =.【答案】 53-217/-1721【解析】因为2OA +3OB +5OC =0,所以2OA +OC =-3OB +OC ,设M 为AC 的中点,N 为BC 的中点,则OA +OC =2OM ,OB +OC =2ON,所以2OM =-3ON ,所以MN 为△ABC 的中位线,且OM ON=32,所以O 为CD 的中点,所以S △AOC =S △AOD ,又OM AD =12,ON DB =12,所以AD DB =32,所以S △AOD S △BOD =32,所以S △AOB S △AOC=53,同理可得S △BOC S △AOC=23,所以S △AOB S △ABC =12,S △AOC S △ABC =310,又O 为△ABC 的垂心,OD =OC ,设OD =x ,OB =y ,则OC =x ,OE =3y7,所以cos ∠BOD =x y =cos ∠COE =3y7x ,即x 2=37y 2,所以x 2y 2=37,则x y =217所以cos ∠BOD =217,所以cos ∠BOC =cos π-∠BOD =-217,故答案为:53;-2173(2024·山西·高一校联考阶段练习)已知H 为△ABC 的垂心(三角形的三条高线的交点),若AH=13AB+25AC ,则sin ∠BAC =.【答案】63/136【解析】因为AH =13AB +25AC,所以BH =BA +AH =-23AB+25AC ,同理CH =CA +AH =13AB -35AC ,由H 为△ABC 的垂心,得BH ⋅AC =0,即-23AB+ 25AC ⋅AC =0,可知25AC 2=23ACAB cos ∠BAC ,即cos ∠BAC =3AC5AB ,同理有CH ⋅AB =0,即13AB - 35AC ⋅AB =0,可知13AB 2=35ACAB cos ∠BAC ,即cos ∠BAC =5AB 9AC,所以cos 2∠BAC =13,sin 2∠BAC =1-cos 2∠BAC =1-13=23,又∠BAC ∈0,π ,所以sin ∠BAC =63.故答案为:63.【过关测试】一、单选题1(2024·全国·高一专题练习)在直角三角形ABC 中,A =90°,△ABC 的重心、外心、垂心、内心分别为G 1,G 2,G 3,G 4,若AG i =λi AB +μi AC(其中i =1,2,3,4),当λi +μi 取最大值时,i =()A.1 B.2C.3D.4【答案】B【解析】直角三角形ABC 中,A =90°,D 为BC 中点,△ABC 的重心为G 1,如图所示,AG 1 =23AD =23×12AB +AC =13AB+13AC ,则λ1=μ1=13,λ1+μ1=23;直角三角形ABC 中,A =90°,△ABC 的外心为G 2,则G 2为BC 中点,如图所示,AG 2 =12AB +AC ,则λ2=μ2=12,λ2+μ2=1;直角三角形ABC 中,A =90°,△ABC 的垂心为G 3,则G 3与A 点重合,AG 3 =0,则λ3=μ3=0,λ3+μ3=0;直角三角形ABC 中,A =90°,△ABC 的内心为G 4,则点G 4是三角形内角平分线交点,直角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,设内切圆半径为r ,则S △ABC =12bc =12a +b +c r ,得r =bca +b +c,AG 4 =bc a +b +c ⋅AB AB +bc a +b +c ⋅AC AC =bc a +b +c ⋅AB c +bc a +b +c ⋅ACb =b a +b +cAB +ca +b +cAC ,λ=b a +b +c ,μ=c a +b +c ,λ+μ=b a +b +c +c a +b +c =b +ca +b +c <1.λ2+μ2=1最大,所以当λi +μi 取最大值时,i =2.故选:B .2(2024·黑龙江牡丹江·高一牡丹江一中校考阶段练习)若O 是△ABC 所在平面上一定点,H ,N ,Q 在△ABC 所在平面内,动点P 满足OP =OA +λAB AB +ACAC,λ∈0,+∞ ,则直线AP 一定经过△ABC 的心,点H 满足HA = HB = HC ,则H 是△ABC 的心,点N 满足NA +NB +NC=0,则N 是△ABC 的心,点Q 满足QA ·QB =QB ·QC =QC ·QA ,则Q 是△ABC 的心,下列选项正确的是()A.外心,内心,重心,垂心B.内心,外心,重心,垂心C.内心,外心,垂心,重心D.外心,重心,垂心,内心【答案】B【解析】OP =OA +λAB AB +AC AC ,变形得到AP =λAB AB +ACAC,其中AB AB ,ACAC 分别代表AB ,AC 方向上的单位向量,故AB AB +ACAC所在直线一定为∠BAC 的平分线,故直线AP 一定经过△ABC 的内心,HA = HB = HC,即点H 到△ABC 三个顶点相等,故点H 是△ABC 的外心,因为NA +NB +NC =0 ,所以NA +NB =-NC ,如图,取AB 的中点D ,连接ND ,则NA +NB =2ND ,所以NC =-2ND ,故C ,N ,D 三点共线,且CN =2ND ,所以N 是△ABC 的重心,由QA ·QB =QB ·QC 可得QA ·QB -QB ·QC =QA -QC ·QB =CA ·QB=0,故CA ⊥QB ,同理可得CB ⊥QA ,BA ⊥QC ,故Q 为△ABC 三条高的交点,Q 为△ABC 的垂心.故选:B 二、多选题3(2024·河南郑州·高一校联考期末)点O 为△ABC 所在平面内一点,则()A.若OA +OB +OC =0 ,则点O 为△ABC 的重心B.若OA ⋅AC AC -AB AB =OB ⋅BC BC -BABA=0,则点O 为△ABC 的垂心C.若OA +OB ⋅AB =OB +OC ⋅BC=0.则点O 为△ABC 的垂心D.在△ABC 中,设AC 2 -AB 2 =2AO ⋅BC,那么动点O 的轨迹必通过△ABC 的外心【答案】AD【解析】A .由于OA =-OB +OC =-2OD ,其中D 为BC 的中点,可知O 为BC 边上中线的三等分点(靠近线段BC ),故O 为△ABC 的重心;选项A 正确.B .向量AC AC ,ABAB,分别表示在边AC 和AB 上取单位向量AC 和AB ,它们的差是向量B C,当OA ⋅AC AC-AB AB =0,即OA ⊥B C 时,则点O 在∠BAC 的平分线上,同理由OB ⋅BC BC -BABA =0,知点O 在∠ABC 的平分线上,故O 为△ABC 的内心;选项B 错误.C .OA +OB 是以OA ,OB 为边的平行四边形的一条对角线的长,而AB 是该平行四边形的另一条对角线的长,OA +OB ⋅AB =0表示这个平行四边形是菱形,即OA =OB ,同理有OB =OC,故O 为△ABC 的外心.选项C 错误.对于D ,设M 是BC 的中点,AC 2-AB 2=AC +AB ⋅AC -AB =2AO ⋅BC =2AM ⋅BC,即AO -AM ⋅BC =MO ⋅BC =0,所以MO ⊥BC ,所以动点O 在线段BC 的中垂线上,故动点O 的轨迹必通过△ABC 的外心.选项D 正确.故选:AD .4(2024·内蒙古呼和浩特·高一呼市二中校考阶段练习)设点M 是△ABC 所在平面内一点,则下列说法正确的是()A.若AM =12AB +12AC ,则点M 是边BC 的中点B.若AM =2AB -AC ,则点M 是边BC 的三等分点C.若AM =-BM -CM ,则点M 是边△ABC 的重心D.若AM =xAB +yAC ,且x +y =13,则△MBC 的面积是△ABC 面积的23【答案】ACD【解析】对于A 中,根据向量的平行四边形法则,若AM =12AB +12AC =12(AB +AC),则点M 是边BC 的中点,所以A 正确;对于B 中,由AM =2AB -AC ,则AM -AB =AB -AC ,即BM =CB,则B 为CM 的中点,所以B 错误;对于C 中,如图所示,由AM =-BM -CM ,可得AM +BM +CM =0,取BC 的中点D ,可得MA =-2MD,则点M 为△ABC 的重心,所以C 正确;对于D 中,由AM =xAB +yAC ,且x +y =13,所以3AM =3xAB +3yAC且3x +3y =1,设AN =3AM ,可得AN =3xAB +3yAC ,且3x +3y =1,所以N ,B ,C 三点共线,因为AN =3AM ,所以M 为AN 的一个三等分点(靠近A ),如图所示,所以S △MBC =23S △ABC ,即则△MBC 的面积是△ABC 面积的23,所以D 正确.故选:ACD .5(2024·山东枣庄·高一校考阶段练习)数学家欧拉在1765年发表的《三角形的几何学》一书中提出定理:三角形的外心、重心、垂心依次位于同一条直线上,且重心到外心的距离是重心到垂心距离的一半,此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O 、G 、H 分别是△ABC 的外心、重心、垂心,且M 为BC 的中点,则()A.OH =OA +OB +OCB.S △ABG =S △BCG =S △ACGC.AH =3OMD.AB +AC =4OM +2HM【答案】ABD【解析】A . ∵OG =12GH ,∴OG =13OH ,∵G 为重心,所以GA +GB +GC =0,所以OA -OG +OB -OG +OC -OG =0 ,所以OG =13(OA +OB +OC ),∴13OH=13(OA +OB +OC ),所以OH =OA +OB +OC ,所以该选项正确.B .S △BCG =12×BC ×h 1,S △ABC =12×BC ×h 2,由于G 是重心,所以h 1=13h 2,所以S △BCG =13S △ABC ,同理S △ABG =13S △ABC ,S △ACG =13S △ABC ,所以S △ABG =S △BCG =S △ACG ,所以该选项正确.C .AH =AG +GH =2GM +2OG =2(OG +GM )=2OM,所以该选项错误.D .OH =3OG ,∴MG =23MO +13MH ,∴GM =23OM +13HM ,所以AB +AC =2AM =6GM =623OM +13HM =4OM +2HM ,所以该选项正确.故选:ABD6(2024·安徽池州·高一统考期末)已知△ABC 的重心为O ,边AB ,BC ,CA 的中点分别为D ,E ,F ,则下列说法正确的是()A.OA +OB =2ODB.若△ABC 为正三角形,则OA ⋅OB +OB ⋅OC +OC ⋅OA=0C.若AO ⋅AB -AC=0,则OA ⊥BC D.OD +OE +OF =0【答案】ACD【解析】对于A ,因为D 为△OAB 中AB 的中点,所以OA +OB =2OD ,所以A 正确;对于B ,因为△ABC 为正三角形,所以OA ⋅OB =OA 2cos120°=-12OA 2,所以OA ⋅OB +OB ⋅OC +OC ⋅OA =-32OA2,所以B 不正确;对于C ,因为AO ⋅AB -AC =AO ⋅CB=0,所以OA ⊥BC ,所以C 正确;对于D ,因为O 为△ABC 的重心,D ,E ,F 分别为边AB ,BC ,CA 的中点,所以CO =2OD ,即2OD +OC =0 ,所以OD +OE +OF =12OA +OB +12OB +OC +12OA+OC=OA +OB +OC =2OD +OC =0 ,所以D 正确.故选:ACD .7(2024·广东广州·高一校考期末)下列命题正确的是()A.若A ,B ,C ,D 四点在同一条直线上,且AB =CD ,则AB =CDB.在△ABC 中,若O 点满足OA +OB +OC =0,则O 点是△ABC 的重心C.若a =(1,1),把a 右平移2个单位,得到的向量的坐标为(3,1)D.在△ABC 中,若CP =λCA |CA |+CB|CB |,则P 点的轨迹经过△ABC 的内心【答案】BD【解析】对于A ,依题意如图,但AB ≠CD,故选项A 错误;对于B ,设BC 的中点为D ,由于OA +OB +OC =0 ,即OA =-(OB +OC ),所以OA =-2OD ,所以O 点是△ABC 的重心,故选项B 正确;对于C ,向量平移后不改变方向和模,为相等向量,故选项C 错误;对于D ,根据向量加法的几何意义知,以CA |CA |和CB|CB |为邻边的平行四边形为菱形,点P 在该菱形的对角线上,由菱形的对角线平分一组对角,故P 点的轨迹经过△ABC 的内心,故选项D 正确.故选:BD8(2024·新疆·高一兵团第三师第一中学校考阶段练习)点O 在△ABC 所在的平面内,则下列结论正确的是()A.若OA ⋅OB =OB ⋅OC =OC ⋅OA ,则点O 为△ABC 的垂心B.若OA +OB +OC =0 ,则点O 为△ABC 的外心C.若2OA +OB +3OC =0,则S △AOB :S △BOC :S △AOC =3:2:1D.若AO ⋅AB AB =AO ⋅AC AC 且CO ⋅CA CA =CO ⋅CB CB ,则点O 是△ABC 的内心【答案】ACD【解析】对A :如图所示,OA ⋅OB =OB ⋅OC =OC ⋅OA,则(OA -OC )⋅OB =CA ⋅OB =0,(OB -OC )⋅OA =CB ⋅OA =0,(OB -OA )⋅OC =AB ⋅OC =0,∴OB ⊥CA ,OA ⊥CB ,OC ⊥AB ,∴O 为△ABC 的垂心,A 正确;对B :如图,取AB 的中点D ,连接OD ,由OA +OB +OC =0 ,则OA +OB =2OD =-OC ,∴O ,D ,C 三点共线,又CD 是△ABC 的中线,且|OC |=2|OD |,∴O 为△ABC 的重心,B 错误;对C :如图:D ,E 分别是AC ,BC 的中点,由2OA +OB +3OC =0 ,∴2(OA +OC )+(OB +OC )=0 ,∴4OD +2OE =0 ,∴OE =-2OD ,∴OD =13DE =16AB ,OE =23DE =13AB ,则S △AOC =16S △ABC ,S △BOC =13S △ABC ,S △AOB =12S △ABC ,则S △AOB :S △BOC :S △AOC =3:2:1,C 正确;对D :如图,∵AO ⋅AB |AB |=AO ⋅AC|AC |,∴|AO ||AB |cos ∠BAO |AB |=|AO ||AC |cos ∠CAO |AC|,∴cos ∠BAO =cos ∠CAO ,∴∠BAO =∠CAO ,即AO 为∠BAC 的平分线,同理由CO ⋅CA |CA |=CO ⋅CB|CB|得∠ACO =∠BCO ,即CO 为∠ACB 的平分线,∴O 为△ABC 的内心,D 正确.故选:ACD 三、填空题9(2024·甘肃武威·高一校联考期末)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若O 为△ABC 的重心,OB ⊥OC ,3b =4c ,则cos A =.【答案】56【解析】连接AO ,延长AO 交BC 于D ,由题意得D 为BC 的中点,OB ⊥OC ,所以OD =BD =CD =12a ,AD =32a .因为∠ADB +∠ADC =π,所以cos ∠ADB +cos ∠ADC =94a 2+14a 2-c 22×32a ×12a +94a 2+14a 2-b 22×32a ×12a =0,得b 2+c 2=5a 2.故cos A =b 2+c 2-a 22bc=b 2+c 2-15b 2-15c 22bc=25b c +c b=25×34+43 =56.故答案为:56.10(2024·全国·高一专题练习)点O 是平面上一定点,A 、B 、C 是平面上△ABC 的三个顶点,∠B 、∠C 分别是边AC 、AB 的对角,以下命题正确的是(把你认为正确的序号全部写上).①动点P 满足OP =OA +PB +PC,则△ABC 的重心一定在满足条件的P 点集合中;②动点P 满足OP =OA +λAB |AB |+AC|AC |(λ>0),则△ABC 的内心一定在满足条件的P 点集合中;③动点P 满足OP =OA +λAB |AB |sin B +AC|AC|sin C(λ>0),则△ABC 的重心一定在满足条件的P 点集合中;④动点P 满足OP =OA+λAB |AB |cos B +AC|AC|cos C(λ>0),则△ABC 的垂心一定在满足条件的P 点集合中;⑤动点P 满足OP =OB +OC 2+λAB |AB |cos B +AC|AC|cos C(λ>0),则△ABC 的外心一定在满足条件的P 点集合中.【答案】①②③④⑤【解析】对于①,因为动点P 满足OP =OA +PB +PC,∴AP =PB +PC ,则点P 是△ABC 的重心,故①正确;对于②,因为动点P 满足OP =OA+λAB |AB |+AC |AC |(λ>0),∴AP =λAB |AB |+AC |AC |(λ>0),又AB |AB |+AC |AC |在∠BAC 的平分线上,∴AP与∠BAC 的平分线所在向量共线,所以△ABC 的内心在满足条件的P 点集合中,②正确;对于③,动点P 满足OP =OA +λAB |AB |sin B +AC|AC|sin C(λ>0),∴AP =λAB |AB |sin B +AC|AC|sin C,(λ>0),过点A 作AD ⊥BC ,垂足为D ,则|AB |sin B =|AC|sin C =AD ,AP =λAD(AB +AC ),向量AB +AC 与BC 边的中线共线,因此△ABC 的重心一定在满足条件的P 点集合中,③正确;对于④,动点P 满足OP =OA +λAB |AB |cos B +AC|AC|cos C(λ>0),∴AP =λAB |AB |cos B +AC|AC|cos C(λ>0),∴AP ⋅BC =λAB |AB |cos B +AC|AC|cos C⋅BC =λ(|BC |-|BC |)=0,∴AP ⊥BC ,所以△ABC 的垂心一定在满足条件的P 点集合中,④正确;对于⑤,动点P 满足OP =OB +OC 2+λAB |AB |cos B +AC|AC|cos C(λ>0),设OB +OC2=OE,则EP =λAB |AB |cos B +AC|AC|cos C,由④知AB |AB |cos B +AC|AC|cos C⋅BC =0,∴EP ⋅BC=0,∴EP ⊥BC ,∴P 点的轨迹为过E 的BC 的垂线,即BC 的中垂线;所以△ABC 的外心一定在满足条件的P 点集合,⑤正确.故正确的命题是①②③④⑤.故答案为:①②③④⑤.11(2024·辽宁·高一校联考期末)某同学在学习和探索三角形相关知识时,发现了一个有趣的性质:将锐角三角形三条边所对的外接圆的三条圆弧(劣弧)沿着三角形的边进行翻折,则三条圆弧交于该三角形内部一点,且此交点为该三角形的垂心(即三角形三条高线的交点).如图,已知锐角△ABC外接圆的半径为2,且三条圆弧沿△ABC三边翻折后交于点P.若AB=3,则sin∠PAC=;若AC:AB:BC=6:5: 4,则PA+PB+PC的值为.【答案】74234/5.75【解析】设外接圆半径为R,则R=2,由正弦定理,可知ABsin∠ACB=3sin∠ACB=2R=4,即sin∠ACB=34,由于∠ACB是锐角,故cos∠ACB=74,又由题意可知P为三角形ABC的垂心,即AP⊥BC,故∠PAC=π2-∠ACB,所以sin∠PAC=cos∠ACB=7 4;设∠CAB=θ,∠CBA=α,∠ACB=β,则∠PAC=π2-β,∠PBA=π2-θ,∠PAB=π2-α,由于AC:AB:BC=6:5:4,不妨假设AC=6,AB=5,BC=4,由余弦定理知cosθ=62+52-422×6×5=34,cosα=42+52-622×4×5=18,cosβ=42+62-522×4×6=916,设AD,CE,BF为三角形的三条高,由于∠ECB+∠EBC=π2,∠PCD+∠CPD=π2,故∠EBC=∠CPD ,则得∠APC=π-∠CPD=π-∠EBC=π-∠ABC,所以PCsinπ2-β=PAsinπ2-θ=ACsin∠APC=ACsin∠ABC=2R=4,同理可得PBsinπ2-α=ABsin∠APB=ABsin∠ACB=2R=4,所以PA+PB+PC=4cosθ+cosα+cosβ=434+18+916=234,故答案为:74;23412(2024·宁夏银川·高一银川唐徕回民中学校考期末)已知P 为△ABC 所在平面内一点,有下列结论:①若P 为△ABC 的内心,则存在实数λ使AP =λAB |AB |+AC|AC |;②若PA +PB +PC =0 ,则P 为△ABC 的外心;③若PA =PB =PC ,则P 为△ABC 的内心;④若AP =13AB +23AC ,则△ABC 与△ABP 的面积比为2:3.其中正确的结论是.(写出所有正确结论的序号)【答案】①【解析】设AB 中点D ,对于①若P 为△ABC 的内心,所以P 在∠BAC 的角平分线上,因为AB |AB |为AB 方向上的单位向量,AC|AC |为AC 方向上的单位向量,令AE =AB |AB |+AC|AC |,所以AE 在∠BAC 的角平分线上,即AE 与AP共线,所以存在实数λ使AP =λAE ,即AP =λAB |AB |+AC|AC |,故①正确;对于②,若PA +PB +PC =0,则2PD +PC =0 ,所以P 在中线CD 上且CP =2PD ,即P 为三角形重心,故②错误;对于③,PA =PB =PC,所以P 为△ABC 的外心,故③错误;若AP =13AB +23AC ,则13(AB -AP )+23(AC -AP )=0 ,即PB +2PC =0 ,所以P 为BC 上靠近C 的三等分点,所以BP =2PC ,故△ABC 与△ABP 的面积比为3:2,故④错误.故答案为:①13(2024·广西河池·高一校联考阶段练习)在△ABC 中,已知AB =5,AC =3,A =2π3,I 为△ABC 的内心,CI 的延长线交AB 于点D ,则△ABC 的外接圆的面积为,CD =.【答案】 49π3/493π;372/327.【解析】由余弦定理得BC 2=25+9-2×5×3×-12=49,∴BC =7.设三角形的外接圆的半径为R , 所以732=2R ,∴R =733,所以△ABC 的外接圆的面积为π×7332=493π.由余弦定理得cos ∠ACB =49+9-252×7×3=1114=1-2sin 2∠ACD ,所以sin ∠ACD =2114,cos ∠ACD =5714.所以sin ∠ADC =sin (∠A +∠ACD )=32×5714-12×2114=217.由正弦定理得3217=CD 32,∴CD =327.故答案为:49π3;372.14(2024·四川遂宁·高一遂宁中学校考阶段练习)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足OP =OB +OC 2+λAB AB cos B +ACAC cos C ,λ∈0,+∞ ,则动点P 的轨迹一定通过△ABC 的(填序号).①内心 ②垂心 ③ 重心 ④外心【答案】④【解析】设BC 的中点为D ,∵OP =OB +OC 2+λAB AB cos B +AC AC cos C,∴OP =OD +λAB AB cos B +ACAC cos C ,即DP =λAB AB cos B +ACAC cos C,两端同时点乘BC ,∵DP ⋅BC =λAB ⋅BC AB cos B +AC ⋅BCAC cos C =λAB ⋅BC cos π-B AB cos B +AC ⋅BC cos C ACcos C=λ-BC +BC=0,所以DP ⊥BC ,所以点P 在BC 的垂直平分线上,即P 经过△ABC 的外心故答案为:④.15(2024·高一课时练习)已知O 为△ABC 的内心,∠BAC =π3,且满足AO =xAB +yAC ,则x +y 的最大值为.【答案】23【解析】如图,延长AO 交BC 于D ,设BC ,AC 分别与圆切于点E ,F ,则OE =OF ,OE ≤OD ,设AD =λAO ,则AD =λxAB +λyAC ,因为B ,D ,C 三点共线,所以λx +λy =1,x +y =1λ=AO AD =AO AO +OD ≤AO AO +OE =11+OE AO =11+OF AO =11+sin A 2=11+sin π6=23,当且仅当D ,E 重合时等号成立.所以x +y 的最大值为23.故答案为:23.16(2024·高一课时练习)已知A ,B ,C 是平面内不共线的三点,O 为ΔABC 所在平面内一点,D 是AB 的中点,动点P 满足OP =132-2λ OD +1+2λ OCλ∈R ,则点P 的轨迹一定过△ABC 的(填“内心”“外心”“垂心”或“重心”).【答案】重心【解析】根据已知条件判断P ,C ,D 三点共线,结合重心的定义,判断出P 的轨迹过三角形ABC 的重心.∵点P 满足OP =132-2λ OD +1+2λ OC λ∈R ,且132-2λ +131+2λ =1,∴P ,C ,D 三点共线.又D 是AB 的中点,∴CD 是边AB 上的中线,∴点P 的轨迹一定过ΔABC 的重心.故答案为:重心17(2024·高一课时练习)已知点O 是ΔABC 的内心,若AO =37AB +17AC,则cos ∠BAC =.【答案】16【解析】因为-OA =37OB -OA +17OC-OA ,即OC =-3OA +OB ,取AB 中点D ,连接OD ,则OA +OB =2OD ,故OC =-6OD,故点C ,O ,D 共线,又∠ACO =∠BCO ,故AC =BC ,且CD ⊥AB ,所以cos ∠BAC =DA CA=OD OC =16.故答案为:16.18(2024·四川成都·高一成都市锦江区嘉祥外国语高级中学校考阶段练习)已知点O 是△ABC 的外心,AB =6,BC =8,B =2π3,若BO =xBA +yBC ,则3x +4y =.【答案】7【解析】如图,∵AB =6,BC =8,B =2π3,且BO =xBA +yBC ,∴BO ⋅BA =|BO |⋅|BA |⋅cos ∠ABO =12|BA |2=18,BO ⋅BC =|BO ||BC |⋅cos ∠CBO =12|BC |2=32,BA ⋅BC =6×8×-12 =-24,∴BO ⋅BA =xBA 2+yBA ⋅BC BO ⋅BC =xBA ⋅BC +yBC2 ,∴18=36x -24y 32=-24x +64y ,整理得,6x -4y =38y -3x =4 ,∴(6x -4y )+(8y -3x )=3x +4y =7.故答案为:719(2024·湖北武汉·高一期末)△ABC 中,AB =2,BC =26,AC =4,点O 为△ABC 的外心,若AO =mAB +nAC ,则实数m =.【答案】45/0.8【解析】由BC =AC -AB 可得BC 2=AC -AB 2=AC 2+AB 2-2AB ⋅AC =4+16-2AB ⋅AC =24,所以,AB ⋅AC =-2,同理可得BA ⋅BC =6,CA ⋅CB =18,故AB AC cos A <0即cos A <0,而A ∈0,π ,故A 为钝角.如下图所示:取线段AC 的中点E ,连接OE ,由垂径定理可得OE ⊥AC ,则AO ⋅AC =AE +EO ⋅AC =AE ⋅AC +EO ⋅AC =12AC 2,同理可得AO ⋅AB =12AB 2,因为AO =mAB +nAC ,则AO ⋅AC =mAB +nAC ⋅AC =mAB ⋅AC +nAC 2=-2m +16n =12AC 2=8;AO ⋅AB =mAB +AC ⋅AB =mAB 2+nAB ⋅AC =12AB 2,即4m -2n =2,故m =45故答案为:45.20(2024·湖北·高一校联考阶段练习)在△ABC 中,已知AB =2,AC =5,∠BAC =60°,P 是△ABC 的外心,则∠APB 的余弦值为.【答案】1319【解析】BC 2=AB 2+AC 2-2AB ⋅AC cos60°=4+25-10=19,故BC =19,设△ABC 的外接圆半径为R ,则R =BC 2sin60°=573,△APB 中,cos ∠APB =R 2+R 2-42R 2=1-2R 2=1319.故答案为:1319.21(2024·四川达州·高一达州中学校考阶段练习)设O 为△ABC 的外心a ,b ,c 分别为角A ,B ,C 的对边,若b =3,c =5,则OA ⋅BC =.【答案】8【解析】如图所示,因为O 为△ABC 的外心,取AB 中点E ,则OE ⊥AB ,则AO ⋅AB =OA AB cos ∠OAB =AB OA cos ∠OAC =AB ⋅12AB =12c 2=252,同理AO ⋅AC =12b 2=92,所以OA ⋅BC =OA ⋅AC -AB =-AO ⋅AC -AB =-AO ⋅AC +AO ⋅AB =-92+252=8.故答案为:822(2024·广东汕头·高一金山中学校考期末)已知O 为△ABC 的外心,若AO ⋅BC =4BO ⋅AC ,则cos A 最小值.【答案】34【解析】∵O 为△ABC 的外心,若AO ⋅BC =4BO ⋅AC ,∴AO ⋅AC -AB =4BO ⋅BC -BA ,∴AO ⋅AC -AO ⋅AB =4BO ⋅BC -4BO ⋅BA ,∴12AC 2-12AB 2=4×12BC 2-4×12BA 2,即b 2-c 2=4a 2-4c 2,即b 2+3c 2=4a 2,∴cos A =b 2+c 2-a 22bc =b 2+c 2-b 2+3c 242bc=3b 2+c 28bc ≥23bc 8bc=34,当且仅当3b =c 时取等号,∴cos A 的最小值为34.故答案为:34.23(2024·重庆渝中·高一重庆巴蜀中学校考期末)某同学在查阅资料时,发现一个结论:已知O 是△ABC 内的一点,且存在x ,y ,z ∈R ,使得xOA +yOB +zOC =0 ,则S △AOB :S △AOC :S △COB =z :y :x .请以此结论回答:已知在△ABC 中,∠A =π4,∠B =π3,O 是△ABC 的外心,且AO =λAB +μAC λ,μ∈R ,则λ+μ=.【答案】33/133【解析】如图,因为O 是△ABC 的外心,所以∠BOC =2∠BAC =π2,∠AOC =2∠ABC =2π3,∠BOA =2∠BCA =5π6,由结论可得S △BOC ⋅OA +S △AOC ⋅OB +S △BOA ⋅OC =0 ,即12R 2sin ∠BOC ⋅OA +12R 2sin ∠AOC ⋅OB +12R 2sin ∠BOA ⋅OC =0 ,可得sin π2⋅OA +sin 2π3⋅OB +sin 5π6⋅OC =0 ,即OA +32OB +12OC =0 .因为AO =λAB +μAC =λ(OB -OA )+μ(OC -OA ),所以(1-λ-μ)OA +λOB +μOC =0 ,所以λ1-λ-μ=32μ1-λ-μ=12 ,即λ+μ1-λ-μ=3+12,即1-(λ+μ)λ+μ=3-1,解得λ+μ=33.故答案为:33.24(2024·辽宁大连·高一育明高中校考期末)已知点P 在△ABC 所在的平面内,则下列各结论正确的有①若P 为△ABC 的垂心,AB ⋅AC =2,则AP ⋅AB =2②若△ABC 为边长为2的正三角形,则PA ⋅PB +PC 的最小值为-1③若△ABC 为锐角三角形且外心为P ,AP =xAB +yAC 且x +2y =1,则AB =BC④若AP =1AB cos B +12 AB +1AC cos C +12AC ,则动点P 的轨迹经过△ABC 的外心【答案】①③④【解析】对于①,若P 为△ABC 的垂心,则AB ⋅PC =0,又AB ⋅AC =2,所以AP ⋅AB =AB ⋅AC +PC =AB ⋅AC +AB ⋅PC =2+0=2,①正确;对于②,取CB 的中点O ,连接OA ,以O 为坐标原点,BC ,OA 所在直线分别为x 轴,y 轴,建立空间直角坐标系,则B -1,0 ,C 1,0 ,A 0,3 ,设P m ,n ,则PA ⋅PB +PC =-m ,3-n ⋅-2m ,-2n =2m 2+2n 2-23n =2m 2+2n -32 2-32,故当m =0,n =32时,PA ⋅PB +PC =2m 2+2n -32 2-32取得最小值,最小值为-32,②错误;对于③,有题意得AP =xAB +yAC =1-2y AB +yAC ,则AP -AB =y -2AB +AC ,即BP =y BA +BC ,如图,设D 为AC 的中点,则BA +BC =2BD ,故BP =2yBD ,故B ,P ,D 三点共线,因为P 是△ABC 的外心,所以BD 垂直平分AC ,所以AB =BC ,③正确;对于④,AP =AB AB cos B +AC AC cos C +12AB +AC ,AP ⋅BC =AB ⋅BC AB cos B +AC ⋅BC AC cos C +12AB +AC ⋅BC=AB ⋅BC cos π-B AB cos B +AC ⋅BC cos C AC cos C +12AB +AC ⋅BC =-BC +BC +12AB +AC ⋅BC =12AB +AC ⋅BC ,所以2AP ⋅BC =AB +AC ⋅BC ,如图,设E 是BC 的中点,则AB +AC =2AE ,故2AP ⋅BC =2AE ⋅BC ,即AP -AE ⋅BC =EP ⋅BC =0,故则动点P 的轨迹经过△ABC 的外心,④正确.故答案为:①③④25(2024·全国·高一专题练习)(1)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP =OA +λ(AB +AC ),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的(填“内心”“外心”“重心”或“垂心” ).(2)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP =OA +λAB |AB |+AC |AC |,λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的.(填“内心”“外心”“重心”或“垂心” )【答案】 重心内心【解析】空1:由已知,AP =λ(AB +AC ),根据平行四边形法则,设△ABC 中BC 边的中点为D ,知AB +AC =2AD ,∴AP =2λAD ,∴AP ⎳AD ,则A ,P ,D 三点共线,∴点P 的轨迹必过△ABC 的重心;空2:由已知,AP =λAB |AB |+AC |AC |,而AB |AB |表示与AB 同向的单位向量,AC |AC |表示与AC 同向的单位向量,∴AP 在∠BAC 的角平分线上,∴点P 的轨迹一定通过△ABC 的内心.故答案为:重心;内心.四、解答题26(2024·全国·高一专题练习)已知△ABC 中,过重心G 的直线交边AB 于P ,交边AC 于Q ,设△APQ 的面积为S 1,△ABC 的面积为S 2,AP =pPB ,AQ =qQC .(1)求GA +GB +GC ;(2)求证:1p +1q=1.(3)求S 1S 2的取值范围.【解析】(1)延长AG 交BC 于D ,则D 为BC 中点,∴GB +GC =2GD ,∵G 是重心,∴GA =-2GD ,∴GA +GB +GC =-2GD +2GD =0 ;(2)设AB =a ,AC =b ,∵AP =pPB ,∴AP =p 1+p a ,∴a =1+p p AP ∵AQ =qQC ,∴AQ =q 1+q b ,∴b =1+q q AQ ∵AG =23AD =23⋅12(AB +AC )=13a +b =13⋅1+p p AP +13⋅1+q qAQ 且P ,G ,Q 三点共线,∴13⋅1+p p +13⋅1+q q =1,∴1p +1 +1q+1 =3即1p +1q =1;(3)由(2)AP =p 1+p AB ,AQ =q 1+q AC ,∴S 1S2=12AP ⋅AQ ⋅sin ∠BAC 12AB ⋅AC ⋅sin ∠BAC =AP ⋅AQ AB ⋅AC =p 1+p ⋅q 1+q ,∵1 p +1q=1,q=pp-1,可知p>1,∴S1S2=p1+p⋅q1+q=p1+p⋅p2p-1=p22p2+p-1=1-1p2+1p+2=1-1p-122+94,∵p>1,∴0<1p<1,则当1p=12时,S1S2取得最小值49,当1p=1时,S1S2取得最大值12,∵1 p ≠1,则S1S2的取值范围为49,12.。

高考数学必做解答题——平面向量与解三角形

高考数学必做解答题——平面向量与解三角形

高考数学必做解答题——平面向量与解三角形作者:汤小梅来源:《数学金刊·高考版》2014年第08期1 平面向量与平面几何和解析几何()必做1 在平行四边形OABC中,已知过点C的直线与线段OA,OB分别相交于点M,N,若=sinθ· ,=cosθ· ,其中θ∈0, .(1)求sin2θ的值;(2)记△OMN的面积为S ,平行四边形OABC的面积为S,试求的值.破解思路此题既涉及向量的加减运算,又综合了三角公式化简,是向量与三角、解三角形的交汇题,彰显向量在解平面几何问题时的工具价值.精妙解法(1)由题意可得 = = - ,所以 = - = -(1+sinθ)· .又 = - =cosθ· -sinθ· ,M,N,C三点共线,所以 = ,则sinθ-cosθ=sinθ·cosθ ①.①式两边平方,得1-2sinθ·cosθ=sin2θ·cos2θ,即sin22θ+4sin2θ-4=0.解得sin2θ=2 -2或-2 -2(舍去).(2)由题意得S = · ·sin∠AOB= sin2θ·S = S,即 = .极速突击重视平面向量体现出的数形结合的思想方法,体验向量在解题过程中的工具性特点.()必做2 如图1,已知椭圆C: + =1的左、右顶点分别为A,B,右焦点为F,直线l 为椭圆的右准线,N为l上一动点,且在x轴上方,直线AN与椭圆交于点M,若AM=MN,求∠AMB的余弦值.破解思路先由解析几何的知识得到向量的坐标,进而借助向量的数量积的坐标运算完成解答.精妙解法由已知可得A(-4,0),B(4,0),F(2,0),直线l的方程为x=8.设N(8,t)(t>0),因为AM=MN,所以M2, .由M在椭圆上,得t=6,故点M的坐标为M(2,3).所以 =(-6,-3), =(2,-3), · =-12+9=-3,所以cos∠AMB= = =- ,即∠AMB的余弦值为- (用余弦定理也可求得).?摇极速突击用向量法解决解析几何问题思路清晰,过程简洁,有意想不到的神奇效果,值得同学们重视.金刊提醒向量兼具代数的抽象与严谨和几何的直观与形象,向量本身是一个数形结合的产物,在利用向量解决问题时要注意数与形的结合、代数与几何的结合、形象思维与逻辑思维的结合. 注意变换思维方式,能从不同角度看问题,要善于应用向量可转换性解决问题.2 平面向量与三角函数()必做1?摇已知向量a=(2cos2x,), b=(1,sin2x),且函数f(x)=a·b-1,g (x)=b2-1.(1)求方程g(x)=0的解集;(2)求函数y=f(x)的最小正周期及单调增区间.破解思路(1)利用平面向量的模长公式,求出函数g(x),解三角方程,得方程g (x)=0的解集.(2)利用平面向量的数量积公式,求出函数f(x),利用倍角公式与辅助角公式,化简函数f(x),再利用正弦函数的性质,即可得结论.精妙解法(1)g(x)=b2-1=sin22x,由g(x)=0得sin2x=0,所以2x=kπ(k∈Z),即x= (k∈Z),故方程g(x)=0的解集为xx= (k∈Z).(2)f(x)=a·b-1=(2cos2x,)·(1,sin2x)-1=2cos2x+ sin2x-1=cos2x+sin2x=2sin2x+ ,所以函数f(x)的最小周期T= =π.由- +2kπ≤2x+ ≤ +2kπ(k∈Z),得- +kπ≤x≤ +kπ(k∈Z). 所以函数f(x)的单调增区间为- +kπ,+kπ(k∈Z).极速突击本题把平面向量与三角函数自然融合. 平面向量的数量积、模、坐标表示是解题的突破口,有关三角函数的恒等变换是求解的桥梁.三角函数的图象和性质的应用是求解的关键,如y=Asin(ωx+φ)(Aω≠0)的单调区间的探求,一般先考虑A,ω的符号,再将ωx+φ视为一个整体,利用y=sinx的单调区间,整体运算,解出x的取值范围即可.()必做2 已知函数f(x)=2cos2x+2 sinxcosx(x∈R).(1)当x∈0,时,求函数f(x)的单调递增区间;(2)设△ABC的内角A,B,C的对应边分别为a,b,c,且c=3, f(C)=2,若向量m=(1,sinA)与向量n=(2,sinB)共线,求a,b的值.破解思路(1)利用倍角公式与辅助角公式,化简函数f(x),再利用正弦函数的单调性,求函数的单调递增区间.(2)利用f(C)=2,得角C的三角方程,求出角C的值;由向量m与向量n共线,得sinA与sinB的关系式,利用正弦定理,转化为边a,b的方程;再利用余弦定理,得边a,b 的方程,从而联立方程可求出边a,b的值.精妙解法(1)f(x)=2cos2x+ sin2x=cos2x+ sin2x+1=2sin2x+ +1. 令- +2kπ≤2x+ ≤ +2kπ(k∈Z),解得kπ- ≤x≤kπ+ (k∈Z). 因为x∈0,,所以f(x)的递增区间为0, .(2)由f(C)=2sin2C+ +1=2,得sin2C+ = . 而C∈(0,π),所以2C+ ∈,,所以2C+ = π,得C= .因为向量m与向量n共线,所以 = ,由正弦定理得 = ①;由余弦定理得c2=a2+b2-2abcos ,即a2+b2-ab=9 ②.联立方程①②,解得a= ,b=2 .极速突击有关平面向量、解三角形、三角函数相融问题的求解关键:一是活用诱导公式、同角三角函数的基本关系式、倍角公式、辅助角公式等对三角函数进行化简;二是平面向量的坐标是数形转化的载体,会利用“方程的思想”破解向量共线(或垂直)求参问题. 有关解三角形的关键是正确分析边角关系,由于边与角可谓形影不离的“好姐妹”,在正、余弦定理的帮助下,边角互化,即可妙解三角形.金刊提醒三角形中的综合题涉及的知识点多,综合性强,解题时对知识和能力都有较高的要求. 在解题时要注意分析题目的已知和求解目标之间的关系,确定合理的解题方案,防止漫无目的进行解答. 三角形的三个内角是与三角形的内角和联系在一起的,当由其中的一个角的三角函数值求另外角的三角函数值时,就要受到三角形内角和的范围的制约,在解题中要充分注意这个制约条件,不要出现扩大角的范围的现象.3 解三角形与实际问题()必做1 如图1,景点A在景点B的正北方向2千米处,景点C在景点B的正东方向2 千米处.图1(1)游客甲沿CA从景点C出发行至与景点B相距千米的点P处,记∠PBC=α,求sinα的值;(2)游客甲沿CA从景点C出发前往景点A,乙沿AB从景点A出发前往景点B,甲、乙同时出发,甲的速度为1千米/时,乙的速度为2千米/时. 若甲、乙两人之间通过对讲机联系,对讲机在该景区内的最大通话距离为3千米,问:有多长时间两人不能通话?(精确到0.1小时,参考数据:≈2.2,≈3.9 )破解思路(1)在Rt△ABC中,AB=2,BC=2 ,从而可求出角C;在△PBC中,利用余弦定理求出PC的值,再利用正弦定理求sinα的值.(2)把时间分为两类:0≤t精妙解法(1)在Rt△ABC中,因为AB=2,BC=2 ,所以∠C=30°.在△PBC中,由余弦定理得BC2+PC2-2BC·PC·cos30°=BP 2,即12+PC2-2×2 ×PC× =7,化简得PC2-6PC+5=0,解得PC=1或PC=5(舍).在△PBC中,由正弦定理得 = ,即 = ,所以sinα= .(2)Rt△ABC中,BA=2,BC=2 ,AC= =4. 设甲出发后的时间为t小时,则由题意可知0≤t≤4,设甲在线段CA上的位置为点M,则AM=4-t.①当0≤t图2在△AMQ中,由余弦定理得MQ2=(4-t)2+(2t)2-2×2t×(4-t)×cos60°=7t2-16t+16. 令MQ>3即MQ2>9,得7t2-16t+7>0,解得t< 或t> ,所以0≤t< .②当1≤t≤4时,乙在景点B处,如图3所示.图3在△ABM中,由余弦定理得MB2=(4-t)2+4-2×2×(4-t)×cos60°=t2-6t+12. 令BM>3即BM2>9,得t2-6t+3>0,解得t3+ . 而1≤t≤4时,不合题意.综上所述,当0≤t< 时,甲、乙间的距离大于3千米.又≈0.6,故两人不能通话的时间大约为0.6小时.极速突击破解此类以实际应用为背景的三角形问题的关键:一是准确理解题意,分清已知与所求,关注应用题中的有关专业名词、术语,如方位角、俯角等;二是根据题意画出其示意图,示意图起着关键的作用;三是将要求解的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识建立数学模型,然后正确求解,演算过程要简练,计算要准确,最后作答.误点警示求解第(2)问时没有对时间t进行分类讨论,想当然只做了第一种情形,虽然最终答案正确,但解题过程出错.()必做2 如图4,在路边安装路灯,灯柱AB与地面垂直,灯杆BC与灯柱AB所在平面与道路垂直,且∠ABC=120°,路灯C采用锥形灯罩,射出的光线如图中阴影部分所示. 已知∠ACD=60°,路宽AD=24 m,设灯柱高AB=h m,∠ACB=θ(30°≤θ≤45°).(1)求灯柱的高h(用θ表示);(2)若灯杆BC与灯柱AB所用材料相同,记所用材料长度和为S,求S关于θ的函数表达式,并求出S的最小值.精妙解法(1)因为∠ABC=120°,∠ACB=θ,所以∠BAC=60°-θ,因为∠BAD=90°,所以∠CAD=30°+θ.因为∠ACD=60°,所以∠ADC=90°-θ.在△ACD中,因为 = ,所以AC= =16 ·cosθ.在△ABC中, = ,所以AB= =16sin2θ,即h=16sin2θ.(2)在△ABC中,因为 = ,所以可得BC= =32cosθsin(60°-θ)=8 +8 ·cos2θ-8sin2θ,则S=AB+BC=8 +8 ·cos2θ+8sin2θ=8 +16sin(2θ+60°).因为30°≤θ≤45°,所以120°≤2θ+60°≤150°. 所以当θ=45°时,S取得最小值为(8 +8)m.金刊提醒正弦定理、余弦定理是揭示三角形边角关系的重要定理,高考对其考查重点是在解三角形中的工具性作用及结合三角公式进行恒等变形的技能及运算能力.其得分秘籍:一是脱掉应用的外衣. 解三角形在实际生活中的应用,应能脱掉应用外衣,把所求的问题转化为在两个或者三个三角形中根据两个定理求解三角形的一些元素,把求解的目标归入到一个可解的三角形中.二是适时进行转化. 对三角形与其他知识相交汇的问题,需要我们理解题意,能从各种相交汇的问题中“抽取”出它们之间的数量关系,在解题过程中要注意三角恒等变换公式的多样性和灵活性,注意题目中隐含的各种限制条件,选择合理的解决方法,灵活地实现问题的转化.。

用平面向量解三角形问题

用平面向量解三角形问题

第五编 平面向量、解三角形§5.1 平面向量的概念及线性运算基础自测 1.下列等式正确的是 (填序号).①a +0=a ②a +b =b +a ③+≠0 ④=++答案 ①②④2.如图所示,在平行四边行ABCD 中,下列结论中正确的是 . ①= ②+= ③-= ④+=0答案 ①②④3.(2008²广东理,8)在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若=a ,=b ,则= . 答案 32a +31b 4.若ABCD 是正方形,E 是DC 边的中点,且AB =a ,AD =b ,则= . 答案 b -21a 5.设四边形ABCD 中,有=21,且||=||,则这个四边形是 . 答案 等腰梯形例1 给出下列命题①向量的长度与向量的长度相等;②向量a 与向量b 平行,则a 与b 的方向相同或相反;③两个有共同起点并且相等的向量,其终点必相同;④两个有共同终点的向量,一定是共线向量;⑤向量与向量是共线向量,则点A 、B 、C 、D 必在同一条直线上;⑥有向线段就是向量,向量就是有向线段.其中假命题的个数为 .答案 4例2 如图所示,若四边形ABCD 是一个等腰梯形, AB ∥DC ,M 、N 分别是DC 、AB 的中点,已知=a ,=b,=c,试用a 、b 、c 表示,,+.C D∵MN =MD ++AN ,∴=-21,=-,=21, ∴MN =21a -b -21c . +CN =+MN +CM +MN =2MN =a -2b -c .例3 设两个非零向量a 与b 不共线,(1)若=a +b ,=2a +8b ,=3(a -b ),求证:A 、B 、D 三点共线;(2)试确定实数k ,使k a +b 和a +k b 共线.(1)证明 ∵=a +b ,=2a +8b ,=3(a -b ),∴=+=2a +8b +3(a -b )=2a +8b +3a -3b=5(a +b )=5.∴、共线,又∵它们有公共点B ,∴A 、B 、D 三点共线.(2)解 ∵k a +b 与a +k b 共线,∴存在实数λ,使k a +b =λ(a +k b ), 即k a +b =λa +λk b .∴(k -λ)a =(λk -1)b .∵a 、b 是不共线的两个非零向量,∴k -λ=λk -1=0,∴k 2-1=0.∴k =±1.例4 (14分)如图所示,在△ABO 中,=41, =21,AD 与BC 相交于点M ,设=a ,=b .试 用a 和b 表示向量.解 设OM =m a +n b , 则=-=m a +n b -a =(m -1)a +n b .=-=21-=-a +21b . 又∵A 、M 、D 三点共线,∴AM 与AD 共线.∴存在实数t ,使得=t ,即(m -1)a +n b =t (-a +21b ). 4分 ∴(m -1)a +n b =-t a +21t b . ⎪⎩⎪⎨⎧=-=-21t n t m ,消去t 得:m -1=-2n . 即m +2n =1. ① 6分∴又∵CM =-=m a +n b -41a =(m -41)a +n b . =-=b -41a =-41a +b . 又∵C 、M 、B 三点共线,∴与共线. 10分∴存在实数t 1,使得=t 1,∴(m -41)a +n b =t 1⎪⎭⎫ ⎝⎛+-41, ∴⎪⎩⎪⎨⎧=-=-114141t n t m ,消去t 1得,4m +n =1 ② 12分由①②得m =71,n =73, ∴OM =71a +73b . 14分1.下列命题中真命题的个数为 .①若|a |=|b |,则a =b 或a =-b ;②若=,则A 、B 、C 、D 是一个平行四边形的四个顶点;③若a =b ,b =c ,则a =c ;④若a ∥b ,b ∥c ,则a ∥c . 答案 12.在△OAB 中,延长BA 到C ,使AC =BA ,在OB 上取点D ,使DB =31OB .DC 与OA 交于E ,设=a ,=b ,用a , b 表示向量,. 解 因为A 是BC 的中点,所以=21(+),即=2-=2a -b ; =-=-32=2a -b -32b =2a -35b . 3.若a ,b 是两个不共线的非零向量,a 与b 起点相同,则当t 为何值时,a ,t b ,31(a +b )三向量的终点在同一条直线上? 解 设=a ,=t b ,=31(a +b ), ∴=-=-32a +31b ,=-=t b -a . 要使A 、B 、C 三点共线,只需AC =λ即-32a +31b =λt b -λa a b∴有 ⎪⎪⎩⎪⎪⎨⎧=-=-t λλ3132,∴⎪⎪⎩⎪⎪⎨⎧==2132t λ ∴当t =21时,三向量终点在同一直线上. 4.如图所示,在△ABC 中,点M 是BC 的中点,点N 在AC 上,且AN =2NC ,AM 与BN 相交于点P ,求AP ∶PM 的值.解 方法一 设e 1=BM ,e 2=, 则=+CM =-3e 2-e 1,=+=2e 1+e 2.=λ=-3λe 2-λe 1,因为A 、P 、M 和B 、P 、N 分别共线,所以存在实数μ、λ,使=μ=2μe 1+μe 2,∴=-=(λ+2μ)e 1+(3λ+μ)e 2, 另外=+=2e 1+3e 2,⎩⎨⎧=+=+3322μλμλ,∴⎪⎪⎩⎪⎪⎨⎧==5354μλ, ∴=54,=53,∴AP ∶PM =4∶1. 方法二 设=λAM , ∵=21(+)=21+43, ∴=2λ+43λ. ∵B 、P 、N 三点共线,∴-=t (-),∴=(1+t )-t ∴⎪⎪⎩⎪⎪⎨⎧-=+=t t λλ4312∴2λ+43λ=1,λ=54,∴AP ∶PM =4∶1.一、填空题1.下列算式中正确的是 (填序号).①++=0 ②-= ③0²=0 ④λ(μa )=λ²μ²a 答案 ①③④2.(2008²全国Ⅰ理)在△ABC 中,=c ,=b ,若点D 满足=2,则= (用b ,c 表示). 答案 32b +31c11是 .答案 等腰梯形4.如图所示,平面内的两条相交直线OP 1和OP 2将该平面分割成四个部分Ⅰ、Ⅱ、Ⅲ、Ⅳ(不包括边界).若=a 1+b 2,且点P 落在第Ⅲ部分,则实数a ,b 满足a 0,b 0.(用“>”,“<”或“=”填空)答案 > <5.设=x +y ,且A 、B 、C 三点共线(该直线不过端点O ),则x +y = .答案 16.已知平面内有一点P 及一个△ABC ,若++=,则点P 在线段 上.答案 AC7.在△ABC 中,=a ,=b ,M 是CB 的中点,N 是AB 的中点,且CN 、AM 交于点P ,则可用a 、b 表示为 . 答案 -32a +31b 8.在△ABC 中,已知D 是AB 边上一点,若=2,=31+λ,则λ= . 答案 32 二、解答题9.如图所示,△ABC 中,=32,DE ∥BC 交AC 于E ,AM 是BC 边上中线,交DE 于N .设=a ,=b ,用a ,b 分别表示向量,,,,,. 解 ⎪⎭⎪⎬⎫=BC DE 32//⇒=32=32b . BC =AC -=b -a .由△ADE ∽△ABC ,得=32=32(b -a ). 由AM 是△ABC 的中线,DE ∥BC ,得=21DE =31(b -a ). 而且=+=a +21=a +21(b -a ) =21(a +b ). ⎪⎭⎪⎬⎫=∆∆ABM ADN 32⇒=32=31(a +b ). 10.如图所示,在△ABC 中,D 、F 分别是BC 、AC 的中点,=32,=a ,=b . (1)用a 、b 表示向量、、、、;(2)求证:B 、E 、F 三点共线.(1)解 延长AD 到G ,使=21, 连接BG 、CG ,得到 ABGC , ∽AD =21=21(a +b ), =32=31(a +b ). =21=21b , =-=31(a +b )-a =31(b -2a ). =-=21b -a =21(b -2a ). (2)证明 由(1)可知=32BF ,所以B 、E 、F 三点共线. 11.已知:任意四边形ABCD 中,E 、F 分别是AD 、BC 的中点,求证:=21(+). 证明 方法一 如图,∵E 、F 分别是AD 、BC 的中点,∴+=0,FB +=0,又∵+++=0, ∴=++ ① 同理=++ ② 由①+②得,2=++(+)+(+)=+.∴=21(+). 方法二 连结,,则=+DC ,=+AB ,∴=21(+) =21(+++) =21(+). 12.已知点G 为△ABC 的重心,过G 作直线与AB 、AC 两边分别交于M 、N 两点,且=x ,=y , 求x 1+y1的值. 解 根据题意G 为三角形的重心,故AG =31(+AC ), =-=31(+)-x=(31-x )+31, =-=y - =y -31(+) =(y -31)-31, 由于MG 与GN 共线,根据共线向量基本定理知=λ⇒(31-x )+31 =λ⎥⎦⎤⎢⎣⎡--AB AC y 31)31(, ⎪⎪⎩⎪⎪⎨⎧-=-=-)31(313131y x λλ⇒3131--x =3131-y ⇒x +y -3xy =0两边同除以xy 得x 1+y1=3. §5.2 平面向量基本定理及坐标表示基础自测 1.已知平面向量a =(1,1),b =(1,-1),则向量21a -23b = . 答案 (-1,2) 2.(2008² 安徽理)在平行四边形ABCD 中,AC 为一条对角线,若=(2,4),=(1,3),则= . 答案 (-3,-5)3.若向量a =(1,1),b =(1,-1),c =(-2,1),则c = (用a ,b 表示).答案 -21a -23b 4.已知向量a =⎪⎭⎫ ⎝⎛x 2`1,8,b =(x ,1),其中x >0,若(a -2b )∥(2a +b ),则x 的值为 . 答案 45.设a =⎪⎭⎫ ⎝⎛43,sin x ,b =⎪⎭⎫ ⎝⎛x ,cos 2131,且a ∥b ,则锐角x 为 . 答案4π例1 设两个非零向量e 1和e 2不共线.(1)如果=e 1-e 2,=3e1+2e 2,=-8e 1-2e 2,求证:A 、C 、D 三点共线;121212(1)证明 =e 1-e 2,BC =3e 1+2e 2, CD =-8e 1-2e 2,=+=4e 1+e 2=-21(-8e 1-2e 2)=-21, ∴与共线, 又∵与有公共点C , ∴A 、C 、D 三点共线.(2)解 =+=(e 1+e 2)+(2e 1-3e 2)=3e 1-2e 2,∵A 、C 、D 三点共线,∴与共线,从而存在实数λ使得=λ,即3e 1-2e 2=λ(2e 1-k e 2),由平面向量的基本定理,得⎩⎨⎧-=-=kλλ223,解之得λ=32,k =34. 例2 已知点A (1,0)、B (0,2)、C (-1,-2),求以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标.解 设D 的坐标为(x ,y ).(1)若是 ,则由=DC 得(0,2)-(1,0)=(-1,-2)-(x ,y ),即(-1,2)=(-1-x ,-2-y ),∴⎩⎨⎧=---=--2211y x , ∴x =0,y =-4.∴D 点的坐标为(0,-4)(如图中的D 1).(2,则由=CB 得(x ,y )-(1,0)=(0,2)-(-1,-2),即(x -1,y )=(1,4).解得x =2,y =4.∴D 点坐标为(2,4)(如图中的D 2).(3,则由=得(0,2-(1,0)=(x ,y )-(-1,-2),即(-1,2)=(x +1,y +2).解得x =-2,y =0.∴D 点的坐标为(-2,0)(如图中的D 3).综上所述,以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标为(0,-4)或(2,4)或(-2,0). 例3 (14分)平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1).回答下列问题:(1)若(a +k c )∥(2b -a ),求实数k ;(2)设d =(x ,y )满足(d -c )∥(a +b )且|d -c |=1,求d .解 (1)∵(a +k c )∥(2b -a ),又a +k c =(3+4k ,2+k ),2b -a =(-5,2), 2分 ∴2³(3+4k )-(-5)³(2+k )=0, 4分 ∴k =-1316. 6分 (2)∵d -c =(x -4,y -1),a +b =(2,4),又(d -c )∥(a +b )且|d -c |=1,∴()()()()⎪⎩⎪⎨⎧=-+-=---1140124422y x y x , 10分 解得⎪⎪⎩⎪⎪⎨⎧+=+=5521554y x 或⎪⎪⎩⎪⎪⎨⎧-=-=5521554y x . 12分∴d =⎪⎪⎭⎫ ⎝⎛++55255520,或d =⎪⎪⎭⎫ ⎝⎛--55255520,. 14分1.如图所示,在平行四边形ABCD 中,M ,N 分别为DC ,BC 的中点,已知AM =c ,=d ,试用c ,d 表示,AD . 解 方法一 设AB =a ,AD =b ,则a =+=d +⎪⎭⎫ ⎝⎛-b 21 b =+=c +⎪⎭⎫ ⎝⎛-a 21 将②代入①得a =d +⎪⎭⎫ ⎝⎛-21⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+a c 21 ⇒a =d 34-32c ,代入② 得b =c+⎪⎭⎫ ⎝⎛-21=⎪⎭⎫ ⎝⎛-c d 323434c -32d 即=34d-32c ,=34c -32d 方法二 设=a ,=b .因M ,N 分别为CD ,BC 的中点,所以=21b ,=21a , 因而⇒⎪⎪⎩⎪⎪⎨⎧+=+=b a d a b c 2121⎪⎪⎩⎪⎪⎨⎧-=-=)2(32)2(32d c b c d a , 即AB =32(2d -c ), AD =32(2c -d ). 2.已知A (-2,4)、B (3,-1)、C (-3,-4)且CM =3,=2,求点M 、N 及的坐标. 解 ∵A (-2,4)、B (3,-1)、C (-3,-4), ∴=(1,8),=(6,3),∴CM =3=(3,24),=2=(12,6). 设M (x ,y ),则有CM =(x +3,y +4),∴⎩⎨⎧=+=+24433y x ,∴⎩⎨⎧==200y x , ∴M 点的坐标为(0,20).同理可求得N 点坐标为(9,2),因此=(9,-18),故所求点M 、N 的坐标分别为(0,20)、(9,2),的坐标为(9,-18).3.已知A 、B 、C 三点的坐标分别为(-1,0)、(3,-1)、(1,2),并且=31,=31. 求证:∥. 证明 设E 、F 两点的坐标分别为(x 1,y 1)、(x 2,y 2),则依题意,得=(2,2),=(-2,3), =(4,-1).AE =31=⎪⎭⎫ ⎝⎛32,32,BF =31=⎪⎭⎫ ⎝⎛-1,32 =(x 1,y 1)-(-1,0)= ⎪⎭⎫ ⎝⎛32,32, =(x 2,y 2)-(3,-1)= ⎪⎭⎫ ⎝⎛-1,32.一、填空题1.已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则n m = . 答案 -21 2.设a 、b 是不共线的两个非零向量,已知=2a +p b ,BC =a +b ,CD =a -2b .若A 、B 、D 三点共线,则 p 的值为 .答案 -13.已知向量=(3,-2),=(-5,-1),则21= . 答案 ⎪⎭⎫ ⎝⎛-214, 4.(2007²北京文)已知向量a =(2,4),b =(1,1),若向量b ⊥(a +λb ),则实数λ的值是. 答案 -3EF EF .AB AB的坐标为 .答案 ⎪⎭⎫ ⎝⎛272, 6.设0≤θ<2π,已知两个向量1=(cos θ,sin θ),2OP =(2+sin θ,2-cos θ),则向量21P P 长度的最大值是 . 答案 327.(2008²全国Ⅱ文)设向量a =(1,2),b =(2,3),若向量λa +b 与向量c =(-4,-7)共线,则λ= .答案 28.(2008²菏泽模拟)已知向量m =(a -2,-2),n =(-2,b -2),m ∥n (a >0,b >0),则ab 的最小值是 .答案 16二、解答题9.已知A (-2,4),B (3,-1),C (-3,-4).设=a ,=b ,=c ,且CM =3c ,=-2b ,(1)求:3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n .解 由已知得a =(5,-5),b =(-6,-3),c =(1,8).(1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42).(2)∵mb +nc =(-6m +n ,-3m +8n ),∴⎩⎨⎧-=+-=+-58356n m n m ,解得⎩⎨⎧-=-=11n m . 10.若a ,b 为非零向量且a ∥b ,λ1,λ2∈R ,且λ1λ2≠0.求证:λ1a +λ2b 与λ1a -λ2b 为共线向量.证明 设a =(x 1,y 1),b =(x 2,y 2).∵a ∥b ,b ≠0,a ≠0,∴存在实数m ,使得a =m b ,即a =(x 1,y 1)=(mx 2,my 2),∴λ1a +λ2b =((m λ1+λ2)x 2,(m λ1+λ2)y 2)=(m λ1+λ2)(x 2,y 2)同理λ1a -λ2b =(m λ1-λ2)(x 2,y 2),∴(λ1a +λ2b )∥(λ1a -λ2b )∥b , 而b ≠0,∴(λ1a +λ2b )∥(λ1a -λ2b ). 11.中,A (1,1),=(6,0),点M 是线段AB 的中点,线段CM 与BD 交于点P .(1)若=(3,5),求点C 的坐标;(2)当||=||时,求点P 的轨迹.解 (1)设点C 坐标为(x 0,y 0),又=+=(3,5)+(6,0)=(9,5),即(x 0-1,y 0-1)=(9,5),∴x 0=10,y 0=6,即点C (10,6).(2)由三角形相似,不难得出=2MP设P (x ,y ),则BP =-=(x -1,y -1)-(6,0)=(x -7,y -1),=AM +MC =21+3MP=21+3(-21) =3-=(3(x -1),3(y -1))-(6,0)=(3x -9,3y -3),∵||=||为菱形,∴AC ⊥BD ,∴⊥BP ,即(x -7,y -1)²(3x -9,3y -3)=0.(x -7)(3x -9)+(y -1)(3y -3)=0,∴x 2+y 2-10x -2y +22=0(y ≠1).∴(x -5)2+(y -1)2=4(y ≠1).故点P 的轨迹是以(5,1)为圆心,2为半径的圆去掉与直线y =1的两个交点.12.A (2,3),B (5,4),C (7,10),=+λ.当λ为何值时,(1)点P 在第一、三象限的角平分线上;(2)点P 到两坐标轴的距离相等?解 (1)由已知=(3,1),AC =(5,7),则+λ=(3,1)+λ(5,7)=(3+5λ,1+7λ).设P (x ,y ),则=(x -2,y -3),∴⎩⎨⎧+=-+=-λλ713532y x ,∴⎩⎨⎧+=+=λλ7455y x .∵点P 在第一、三象限的角平分线上,∴x =y ,即5+5λ=4+7λ,∴λ=21. (2)若点P 到两坐标轴的距离相等,则|x |=|y |,即|5+5λ|=|4+7λ|,∴λ=21或λ=-43.1.已知a =(2,3),b =(-4,7),则a 在b 方向上的投影为 .答案 565 2.在边长为1的正三角形ABC 中,设=a ,=c ,=b ,则a ²b +b ²c +c ²a = . 答案21 3.向量a =(cos15°,sin15°),b =(-sin15°,-cos15°),则|a -b |的值是 .答案 34.(2009²常州市武进区四校高三联考)已知向量a =(2,1),b =(3,λ) (λ>0),若(2a -b )⊥b ,则λ= .答案 35.(2008²浙江理)已知a 、b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )²(b -c )=0,则|c |的最大值是 . 答案 2例1 已知向量a =⎪⎭⎫ ⎝⎛x x 23sin ,23cos b =⎪⎭⎫ ⎝⎛-2sin ,2cos x x 且x ∈⎥⎦⎤⎢⎣⎡-4,3ππ. (1)求a ²b 及|a +b |; (2)若f (x )=a ²b -|a +b |,求f (x )的最大值和最小值.解 (1)a ²b =cos 23x cos 2x -sin 23x sin 2x =cos2x , a +b =⎪⎭⎫ ⎝⎛-+2sin 23sin 2cos 23cos x x ,x x(2)由(1)可得f (x )=cos2x -2cos x =2cos 2x -2cos x -1∴当cos x =21时,f (x )取得最小值为-23; 当cos x =1时,f (x )取得最大值为-1.例2 已知a =(cos α,sin α),b =(cos β,sin β)(0<α<β<π).(1)求证:a +b 与a -b 互相垂直;(2)若k a +b 与a -k b 的模相等,求β-α.(其中k 为非零实数)(1)证明 (a +b )²(a -b )=a 2-b 2=|a |2-|b |2=(cos 2α+sin 2α)-(cos 2β+sin 2β)=0, ∴a +b 与a -b 互相垂直.(2)解 k a +b =(k cos α+cos β,k sin α+sin β),a -k b =(cos α-k cos β,sin α-k sin β), b a +k =,1)cos(22+-+αβk kb a k -=.)cos(212k k +--αβb a +k =b a k -,).cos(2)cos(2αβαβ--=-∴k k又k ≠0,∴cos(αβ-)=0.而0<α<β<π,∴β-α=2π. 例3 (14分)设两个向量e 1,e 2满足|e 1|=2,|e 2|=1,e 1与e 2的夹角为3π,若向量2t e 1+7e 2与e 1+t e 2的夹 角为钝角,求实数t 的范围.解 由向量2t e 1+7e 2与e 1+t e 2的夹角为钝角,得()()2121212·72·72e e e e e e e ++++<0, 3分 即(2t e 1+7e 2)²(e 1+t e 2)<0, 化简即得:2t 2+15t +7<0,t e 1 t t t解得-7<t <-21, 7分 当夹角为π时,也有(2te 1+7e 2)²(e 1+t e 2)<0,但此时夹角不是钝角,2t e 1+7e 2与e 1+t e 2反向. 9分设2t e 1+7e 2=λ(e 1+t e 2),λ<0,可求得⎪⎩⎪⎨⎧<==072λλλt t ,∴⎪⎩⎪⎨⎧-=-=21414t λ 12分∴所求实数t 的范围是⎪⎪⎭⎫ ⎝⎛--2147, ⎪⎪⎭⎫ ⎝⎛--21,214. 14分1.向量a =(cos23°,cos67°),向量b =(cos68°,cos22°).(1)求a ²b ;(2)若向量b 与向量m 共线,u =a +m ,求u 的模的最小值.解 (1)a ²b =cos23°²cos68°+cos67°²cos22°=cos23°²sin22°+sin23°²cos22°=sin45°=22. (2)由向量b 与向量m 共线,得m =λb (λ∈R ),u =a +m =a +λb=(cos23°+λcos68°,cos67°+λcos22°)=(cos23°+λsin22°,sin23°+λcos22°),|u |2=(cos23°+λsin22°)2+(sin23°+λcos22°)2 =λ2+2λ+1=222⎪⎪⎭⎫ ⎝⎛+λ +21, ∴当λ=-22时,|u |有最小值为22. 2.已知平面向量a =⎪⎪⎭⎫ ⎝⎛-23,21,b =(-3,-1). (1)证明:a ⊥b ;(2)若存在不同时为零的实数k 、t ,使x =a +(t 2-2)b ,y =-k a +t 2b ,且x ⊥y ,试把k 表示为t 的函数.(1)证明 a ²b =⎪⎪⎭⎫ ⎝⎛-23,21²()1,3-- =⎪⎭⎫ ⎝⎛-21³(-3)+23³(-1)=0, ∴a ⊥b .(2)解 ∵x ⊥y ,∴x ²y =0,即[a +(t 2-2)b ]²(-k a +t 2b )=0.展开得-k a 2+[t 2-k (t 2-2)]a ²b +t 2(t 2-2)b 2=0,∵a ²b =0,a 2=|a |2=1,b 2=|b |2=4,∴-k +4t 2(t 2-2)=0,∴k =f (t )=4t 2 (t 2-2).3.设a =(cos α,sin α),b =(cos β,sin β),且a 与b 具有关系|k a +b |=3|a -k b |(k >0).(1)用k 表示a ²b ;(2)求a ²b 的最小值,并求此时a 与b 的夹角.解 (1)∵|k a +b |=3|a -k b |,∴(k a +b )2=3(a -k b )2,且|a |=|b |=1,即k 2+1+2k a ²b =3(1+k 2-2k a ²b ),∴4k a ²b =k 2+1.∴a ²b =kk 412+(k >0). (2)由(1)知:∵k >0∴a ²b =kk k k 1··2·41414≥+ =21. ∴a ²b 的最小值为21(当且仅当k =1时等号成立) 设a 、b 的夹角为θ,此时cos θ=b a b a ·=21. 0≤θ≤π,∴θ=3π. 故a ²b 的最小值为21,此时向量a 与b 的夹角为3π.一、填空题 1.点O 是三角形ABC 所在平面内的一点,满足OA ²OB =OB ² OC =OC ²OA ,则点O 是△ABC 的 心.答案 垂2.若向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为60°,则a ²b +b ²b 的值为 .答案 53.已知向量a ,b 满足|a |=1,|b |=4,且a ²b =2,则a 与b 的夹角为 .答案 3π 4.若a 与b -c 都是非零向量,则“a ²b =a ²c ”是“a ⊥(b -c )”的 条件.答案 充要5.已知a ,b 是非零向量,且满足(a -2b )⊥a ,(b -2a )⊥b ,则a 与b 的夹角是 .答案 3π 6.(2009²成化高级中学高三期中)已知3a +4b +5c =0,且|a |=|b |=|c |=1,则a ²(b +c )= .答案 53- 7.(2008²天津理,14)如图所示,在平行四边形ABCD 中,=(1,2),=(-3,2),则²= .答案 38.(2008² 江西理,13)直角坐标平面内三点A (1,2)、B (3,-2)、C (9,7),若E 、F 为线段BC 的三等分点,则²= . 答案 22二、解答题9.已知平面上三个向量a 、b 、c 的模均为1,它们相互之间的夹角均为120°.(1)求证:(a -b )⊥c ;(2)若|k a +b +c |>1 (k ∈R ),求k 的取值范围.(1)证明 ∵(a -b )²c =a ²c -b ²c=|a |²|c |²cos120°-|b |²|c |²cos120°=0,∴(a -b )⊥c .(2)解 |k a +b +c |>1⇔|k a +b +c |2>1, ⇔k 2a 2+b 2+c 2+2k a ²b +2k a ²c +2b ²c >1. ∵|a |=|b |=|c |=1,且a 、b 、c 的夹角均为120°, ∴a 2=b 2=c 2=1,a ²b =b ²c =a ²c =-21, ∴k 2+1-2k >1,即k 2-2k >0,∴k >2或k <0.10.已知a =⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛32cos ,32sin ,34cos ,34sin θθθθb ,且θ∈⎥⎦⎤⎢⎣⎡π30,. (1)求ba b a +·的最值; (2)若|k a +b |=3|a -k b | (k ∈R ),求k 的取值范围.解 (1)a ²b =-sin34θ²sin 32θ+cos 34θ²cos 32θ=cos2θ, |a +b |2=|a |2+|b |2+2a ²b =2+2cos2θ=4cos 2θ.∵θ∈⎥⎦⎤⎢⎣⎡3,0π,∴cos θ∈⎥⎦⎤⎢⎣⎡1,21,∴|a +b |=2cos θ. ∴ba b a +·= θθcos 22cos =cos θ-θcos 21. 令t =cos θ,则21≤t ≤1,⎪⎭⎫ ⎝⎛-t t 21′=1+221t >0, ∴t -t 21在t ∈⎥⎦⎤⎢⎣⎡121,上为增函数. ∴-21≤t -t21≤21, 即所求式子的最大值为21,最小值为-21. (2)由题设可得|k a +b |2=3|a -k b |2,∴(k a +b )2=3(a -k b )2又|a |=|b |=1,a ²b =cos2θ,∴cos2θ=kk 412+. 由θ∈⎥⎦⎤⎢⎣⎡π30,,得-21≤cos2θ≤1. ∴-21≤kk 412+≤1.解得k ∈[2-3,2+3] {-1}. 11.设n 和m 是两个单位向量,其夹角是60°,求向量a =2m +n 与b =2n -3m 的夹角.解 由|m |=1,|n |=1,夹角为60°,得m ²n =21. 则有|a |=|2m +n |=2)2(n m +=2244n n ·m m ++=7.|b |=2)32(m n -=229124m n m n +⋅-=7.而a ²b =(2m +n )²(2n -3m )=m ²n -6m 2+2n 2=-27, 设a 与b 的夹角为θ, 则cos θ=b a b a ··=727-=-21.故a ,b 夹角为120°. 12.已知向量a =⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-222323x sin ,x cos ,x sin ,x cos b ,x ∈⎥⎦⎤⎢⎣⎡20π,.若函数f (x )=a ²b -21λ|a +b |的最小值为-23,求实数λ的值. 解 ∵|a |=1,|b |=1,x ∈⎥⎦⎤⎢⎣⎡20π,, ∴a ²b =cos 23x cos 2x -sin 23x sin 2x =cos2x , |a +b |=2)(b a +=222b b a a +⋅+=x 2cos 22+=2x cos =2cos x .∴f (x )=cos2x -λcos x =2cos 2x -λcos x -1 =224cos ⎪⎭⎫ ⎝⎛-λx -82λ-1,cos x ∈[0,1]. ①当λ<0时,取cos x =0,此时f (x )取得最小值,并且f (x )min =-1≠-23,不合题意. ②当0≤λ≤4时,取cos x =4λ, 此时f (x )取得最小值,并且f (x )min =-82λ-1=-23,解得λ=2. ③当λ>4时,取cos x =1,此时f (x )取得最小值,并且f (x )min =1-λ=-23, 解得λ=25,不符合λ>4舍去,∴λ=2. §5.4 正弦定理和余弦定理1.(2008²陕西理,3)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若c =2,b =6,B =120°,则a = .答案 22.(2008²福建理,10)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为 . 答案 3π或32π 3.下列判断中不正确的结论的序号是 .①△ABC 中,a =7,b =14,A =30°,有两解②△ABC 中,a =30,b =25,A =150°,有一解③△ABC 中,a =6,b =9,A =45°,有两解④△ABC 中,b =9,c =10,B =60°,无解答案 ①③④4.在△ABC 中,A =60°,AB =5,BC =7,则△ABC 的面积为 .答案 1035.(2008²浙江理,13)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .若(3b -c )cos A =a cos C ,则cos A = . 答案 33例1 在△ABC 中,已知a =3,b =2,B =45°,求A 、C 和c .解 ∵B =45°<90°且a sin B <b <a ,∴△ABC 有两解.由正弦定理得sin A =b B a sin =245sin 3︒ =23, 则A 为60°或120°.①当A =60°时,C =180°-(A +B )=75°,c =B C b sin sin =︒︒45sin 75sin 2=︒︒+︒45sin )3045sin(2=226+. ②当A =120°时,C =180°-(A +B )=15°,c =B C b sin sin =︒︒45sin 15sin 2=︒︒-︒45sin )3045sin(2=226-. 故在△ABC 中,A =60°,C =75°,c =226+或 A =120°,C =15°,c =226-. 例2 在△ABC 中,a 、b 、c 分别是角A ,B ,C 的对边,且C B cos cos =-c a b +2. (1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积.解 (1)由余弦定理知:cos B =acb c a 2222-+, cos C =abc b a 2222-+.将上式代入C B cos cos =-ca b +2得: ac b c a 2222-+²2222cb a ab -+=-c a b +2 整理得:a 2+c 2-b 2=-ac∴cos B =ac b c a 2222-+=ac ac 2- =-21 ∵B 为三角形的内角,∴B =32π. (2)将b =13,a +c =4,B =32π代入 b 2=a 2+c 2-2ac cos B ,得b 2=(a +c )2-2ac -2ac cos B∴b 2=16-2ac ⎪⎭⎫ ⎝⎛-211,∴ac =3. ∴S △ABC =21ac sin B =433. 例3 (14分)△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且b 2+c 2-a 2+bc =0. (1)求角A 的大小;(2)若a =3,求bc 的最大值;(3)求cb C a --︒)30sin(的值. 解 (1)∵cos A =bca cb 2222-+=bc bc 2-=-21, 2分 又∵A ∈(0°,180°),∴A =120°. 4分(2)由a =3,得b 2+c 2=3-bc ,又∵b 2+c 2≥2bc (当且仅当c =b 时取等号),∴3-bc ≥2bc (当且仅当c =b 时取等号). 6分 即当且仅当c =b =1时,bc 取得最大值为1. 8分 (3)由正弦定理得:===C c B b A a sin sin sin 2R , ∴C R B R C A R c b C a sin 2sin 2)30sin(sin 2)30sin(--︒=--︒ 10分 =CB C A sin sin )30sin(sin --︒ 11分 =CC C C sin )60sin()sin 23cos 21(23--︒- 12分 =C C C C sin 23cos 23)sin 43cos 43-- 13分 =21. 14分 例4 在△ABC 中,a 、b 、c 分别表示三个内角A 、B 、C 的对边,如果(a 2+b 2)sin (A -B )=(a 2-b 2)sin (A +B ),判断三角形的形状.解 方法一 已知等式可化为a 2[sin (A -B )-sin (A +B )]=b 2[-sin (A +B )-sin(A -B )]∴2a 2cos A sin B =2b 2cos B sin A由正弦定理可知上式可化为:sin 2A cos A sin B =sin 2B cos B sin A∴sin A sin B (sin A cos A -sin B cos B )=0∴sin2A =sin2B ,由0<2A ,2B <2π得2A =2B 或2A =π-2B ,即A =B 或A =2π-B ,∴△ABC 为等腰或直角三角形. 方法二 同方法一可得2a 2cos A sin B =2b 2sin A cos B由正、余弦定理,可得a 2b bc a c b 2222-+= b 2a ac b c a 2222-+ ∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2)即(a 2-b 2)(a 2+b 2-c 2)=0∴a =b 或a 2+b 2=c 2∴△ABC 为等腰或直角三角形.1.(1)△ABC 中,a =8,B =60°,C =75°,求b ;(2)△ABC 中,B =30°,b =4,c =8,求C 、A 、a .解 (1)由正弦定理得B b A a sin sin =. ∵B =60°,C =75°,∴A =45°, ∴b =︒︒⨯=45sin 60sin 8sin sin A B a =46. (2)由正弦定理得sin C =430sin 8sin ︒=b B c =1. 又∵30°<C <150°,∴C =90°.∴A =180°-(B +C )=60°,a =22b c -=43.2.已知△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且2S =(a +b )2-c 2,求tan C 的值.解 依题意得ab sin C =a 2+b 2-c 2+2ab ,由余弦定理知,a 2+b 2-c 2=2ab cos C .所以,ab sin C =2ab (1+cos C ), 即sin C =2+2cos C ,所以2sin 2C cos 2C =4cos 22C 化简得:tan2C =2.从而tan C =2tan 12tan22C C-=-34. 3.(2008²辽宁理,17)在△ABC 中,内角A 、B 、C 对边的边长分别是a 、b 、c .已知c =2,C =3π. (1)若△ABC 的面积等于3,求a 、b 的值;(2)若sin C +sin(B -A )=2sin2A ,求△ABC 的面积.解 (1)由余弦定理及已知条件,得a 2+b 2-ab =4.又因为△ABC 的面积等于3,所以21ab sin C =3,所以ab =4. 联立方程组⎪⎩⎪⎨⎧==-+,4,422ab ab b a 解得⎩⎨⎧==22b a . (2)由题意得sin(B +A )+sin(B -A )=4sin A cos A , 即sin B cos A =2sin A cos A , 当cos A =0时,A =2π,B =6π,a =334,b =332. 当cos A ≠0时,得sin B =2sin A ,由正弦定理得b =2a ,联立方程组⎪⎩⎪⎨⎧==-+,2,422a b ab b a 解得⎪⎪⎩⎪⎪⎨⎧==.334332b ,a 所以△ABC 的面积S =21ab sin C =332. 4.已知△ABC 的三个内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等差数列,且2cos2B -8cos B +5=0,求角B 的大小并判断△ABC 的形状.解 方法一 ∵2cos2B -8cos B +5=0,∴2(2cos 2B -1)-8cos B +5=0.∴4cos 2B -8cos B +3=0,即(2cos B -1)(2cos B -3)=0.解得cos B =21或cos B =23(舍去).∴cos B =21. ∵0<B <π,∴B =3π. ∵a ,b ,c 成等差数列,∴a +c =2b .∴cos B =acb c a 2222-+=ac c a c a 2)2(222+-+=21, 化简得a 2+c 2-2ac =0,解得a =c .又∵B =3π,∴△ABC 是等边三角形. 方法二 ∵2cos2B -8cos B +5=0,∴2(2cos 2B -1)-8cos B +5=0.∴4cos 2B -8cos B +3=0,即(2cos B -1)(2cos B -3)=0.解得cos B =21或cos B =23(舍去). ∴cos B =21,∵0<B <π,∴B =3π, ∵a ,b ,c 成等差数列,∴a +c =2b .由正弦定理得sin A +sin C =2sin B =2sin 3π=3. ∴sin A +sin ⎪⎭⎫ ⎝⎛-A 32π=3, ∴sin A +sin A cos 32π-cos A sin 32π=3. 化简得23sin A +23cos A =3,∴sin ⎪⎭⎫ ⎝⎛+6πA =1. ∴A +6π=2π,∴A =3π, ∴C =3π,∴△ABC 为等边三角形.一、填空题1.在△ABC 中,若2cos B sin A =sin C ,则△ABC 一定是 三角形.答案 等腰 2.在△ABC 中,A =120°,AB =5,BC =7,则C B sin sin 的值为 . 答案 53 3.已知△ABC 的三边长分别为a ,b ,c ,且面积S △ABC =41(b 2+c 2-a 2),则A = . 答案 45°4.在△ABC 中,BC =2,B =3π,若△ABC 的面积为23,则tan C 为 . 答案 33 5.在△ABC 中,a 2-c 2+b 2=ab ,则C = .答案 60°6.△ABC 中,若a 4+b 4+c 4=2c 2(a 2+b 2),则C = .答案 45°或135° 7.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =1,b =7,c =3,则B = .答案 65π 8.某人向正东方向走了x 千米,他右转150°,然后朝新方向走了3千米,结果他离出发点恰好3千米,那么x 的值是 .答案 3或23二、解答题9.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,并且a 2=b (b +c ).(1)求证:A =2B ;(2)若a =3b ,判断△ABC 的形状.(1)证明 因为a 2=b (b +c ),即a 2=b 2+bc ,所以在△ABC 中,由余弦定理可得, cos B =ac b c a 2222-+=ac bc c 22+=a c b 2+ =ab a 22=b a 2=BA sin 2sin , 所以sin A =sin2B ,故A =2B . (2)解 因为a =3b ,所以ba =3, 由a 2=b (b +c )可得c =2b , cos B =ac b c a 2222-+=22223443bb b b -+=23, 所以B =30°,A =2B =60°,C =90°. 所以△ABC 为直角三角形.10.(2008²全国Ⅱ理,17)在△ABC 中,cos B =-135,cos C =54. (1)求sin A 的值;(2)△ABC 的面积S △ABC =233,求BC 的长. 解 (1)由cos B =-135,得sin B =1312, 由cos C =54,得sin C =53. 所以sin A =sin(B +C )=sin B cos C +cos B sin C =6533. (2)由S △ABC =233,得21³AB ³AC ³sin A =233. 由(1)知sin A =6533,故AB ³AC =65. 又AC =C B AB sin sin ⨯=1320AB , 故1320AB 2=65,AB =213. 所以BC =C A AB sin sin ⨯=211. 11.已知a 、b 、c 是△ABC 的三边长,关于x 的方程ax 2-222b c - x -b =0 (a >c >b )的两根之差的平方等于4,△ABC 的面积S =103,c =7.(1)求角C ;(2)求a ,b 的值.解 (1)设x 1、x 2为方程ax 2-222b c -x -b =0的两根, 则x 1+x 2=a b c 222-,x 1²x 2=-ab . ∴(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=222)(4a b c -+ab 4=4. ∴a 2+b 2-c 2=ab . 又cos C =abc b a 2222-+=ab ab 2=21, 又∵C ∈(0°,180°),∴C =60°.(2)由S =21ab sin C =103,∴ab =40. ① 由余弦定理c 2=a 2+b 2-2ab cos C , 即c 2=(a +b )2-2ab (1+cos60°). ∴72=(a +b )2-2³40³⎪⎭⎫ ⎝⎛+211. ∴a +b =13.又∵a >b ②∴由①②,得a =8,b =5.12.(2008²广东五校联考)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知a +b =5,c =7,且4sin 22B A +-cos2C =27. (1)求角C 的大小;(2)求△ABC 的面积.解 (1)∵A +B +C =180°,由4sin22B A +-cos2C =27, 得4cos 22C -cos2C =27, ∴4²2cos 1C +-(2cos 2C -1)=27, 整理,得4cos 2C -4cos C +1=0,解得cos C =21, ∵0°<C <180°,∴C =60°.(2)由余弦定理得c 2=a 2+b 2-2ab cos C ,即7=a 2+b 2-ab ,∴7=(a +b )2-3ab , 由条件a +b =5,得7=25-3ab ,ab =6,∴S △ABC =21ab sin C =21³6³23=233.§5.5 正弦定理、余弦定理的应用1.在某次测量中,在A 处测得同一半平面方向的B 点的仰角是60°,C 点的俯角为70°,则∠BAC = . 答案 130°2.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α、β的大小关系为 .答案 α=β3.在△ABC 中,若(a +b +c )(a +b -c )=3ab ,且sin C =2sin A cos B ,则△ABC 是 三角形.答案 等边4.已知A 、B 两地的距离为10 km,B 、C 两地的距离为20 km,现测得∠ABC =120°,则A 、C 两地的距离为 km.答案 1075.线段AB 外有一点C ,∠ABC =60°,AB =200 km,汽车以80 km/h 的速度由A 向B 行驶,同时摩托车以50 km/h 的速度由B 向C 行驶,则运动开始 h 后,两车的距离最小.答案4370例1 要测量对岸A 、B 两点之间的距离,选取相距3 km 的C 、D 两点,并测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°,求A 、B 之间的距离.解 如图所示,在△ACD 中,∠ACD =120°,∠CAD =∠ADC =30°,∴AC =CD =3 km.在△BCD 中,∠BCD =45°,∠BDC =75°,∠CBD =60°.∴BC =︒︒60sin 75sin 3=226+. △ABC 中,由余弦定理,得AB 2=(3)2+(226+)2-2³3³226+³cos75° =3+2+3-3=5,∴AB =5(km).∴A 、B 之间的距离为5 km.例2 (14分)沿一条小路前进,从A 到B ,方位角(从正北方向顺时针转到AB 方向所成的角)是50°,距离是3 km ,从B 到C ,方位角是110°,距离是3 km ,从C 到D ,方位角是140°,距离是(9+33)km.试画出示意图,并计算出从A 到D 的方位角和距离(结果保留根号).解 示意图如图所示, 3分连接AC ,在△ABC 中,∠ABC =50°+(180°-110°)=120°,又AB =BC =3,∴∠BAC =∠BCA =30°. 5分由余弦定理可得AC =︒⋅-+120cos 222BC AB BC AB = )21(33299-⨯⨯⨯-+ =27=33(km). 8分在△ACD 中,∠ACD =360°-140°-(70°+30°)=120°,CD =33+9.由余弦定理得AD =︒⋅-+120222cos CD AC CD AC= )21()933(332)933(272-⨯+⨯⨯-++ =2629)(+(km). 10分 由正弦定理得sin ∠CAD =AD ACD sin CD ∠⋅ =2692923)933(+⨯+=22. 12分 ∴∠CAD =45°,于是AD 的方位角为50°+30°+45°=125°,所以,从A 到D 的方位角是125°,距离为2)62(9+km. 14分 例3 如图所示,已知半圆的直径AB =2,点C 在AB的延长线上,BC =1,点P 为半圆上的一个动点,以DC 为边作等边△PCD ,且点D 与圆心O 分别在PC的两侧,求四边形OPDC 面积的最大值.解 设∠POB =θ,四边形面积为y ,则在△POC 中,由余弦定理得PC 2=OP 2+OC 2-2OP ²OC cos θ=5-4cos θ.∴y =S △OPC +S △PCD =21³1³2sin θ+43(5-4cos θ) =2sin(θ-3π)+435. ∴当θ-3π=2π,即θ=65π时,y max =2+435. 所以四边形OPDC 面积的最大值为2+435.1.某观测站C 在A 城的南偏西20°的方向.由A 城出发的一条公路,走向是南偏东40°,在C 处测得公路上B 处有一人距C 为31千米正沿公路向A 城走去,走了20千米后到达D 处,此时CD 间的距离为21千米,问这人还要走多少千米才能到达A 城?解 设∠ACD =α,∠CDB =β.在△BCD 中,由余弦定理得cos β=CD BD CB CD BD ⋅-+2222 =21202312120222⨯⨯-+=-71, 则sin β=734, 而sin α=sin(β-60°)=sin βcos60°-cos βsin60°=734³21+23³71=1435, 在△ACD 中,由正弦定理得︒60sin 21=αsin AD , ∴AD =︒60sin sin 21α=23143521⨯=15(千米). 答 这个人再走15千米就可到达A 城.2.如图所示,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D ,现测得∠BCD =α,∠BDC =β,CD =s ,并在点C 测得塔顶A 的仰角为θ,求塔高AB .解 在△BCD 中,∠CBD =π-α-β由正弦定理得BDC BC ∠sin =CBD CD ∠sin , 所以BC =CBD BDC CD ∠∠sin sin =)sin(sin s β+αβ⋅ 在Rt △ABC 中,AB =BC tan ∠ACB =)sin(sin tan βαβθ+s . 3.为了竖一块广告牌,要制造三角形支架.三角形支架如图所示,要求∠ACB =60°,BC 的长度大于1米,且AC 比AB 长0.5米.为了使广告牌稳固,要求AC 的长度越短越好,求AC 最短为多少米?且当AC 最短时,BC 长度为多少米?解 设BC =a (a >1),AB =c ,AC =b ,b -c =21. c 2=a 2+b 2-2ab cos60°,将c =b -21代入得(b -21)2=a 2+b 2-ab , 化简得b (a -1)=a 2-41.由a >1,知a -1>0. b =1412--a a =14322)1(2-+-+-a a a =(a -1)+)1(43-a +2≥3+2, 当且仅当a -1=)1(43-a 时,取“=”号,即a =1+23时,b 有最小值2+3. 答 AC 最短为(2+3)米,此时,BC 长为(1+23)米.一、填空题1.海上有A 、B 两个小岛相距10海里,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°视角,则B 、C 的距离是 海里.答案 562.为测量某塔AB 的高度,在一幢与塔AB 相距20 m 的楼顶处测得塔顶A 的仰角为30°,测得塔基B 的俯角为45°,那么塔AB 的高度是 m.答案 20(1+33) 3.如图所示,已知两座灯塔A 和B 与海洋观察站C 的距离都等于a km,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为 km.答案 3a4.一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为 海里/小时.答案 2617 5.如图所示,在河岸AC 测量河的宽度BC ,图中所标的数据a ,b ,c ,α,β是可供测量的数据.下面给出的四组数据中,对测量河宽较适宜的是 (填序号).①c 和α ②c 和b ③c 和β ④b 和α答案 ④6.如图,一货轮航行到M 处,测得灯塔S 在货轮的北偏东15°,与灯塔S 相距20海里,随后货轮按北偏西30°的方向航行30分钟后,又测得灯塔在货轮的东北方向,则货轮的速度为 海里/小时.答案 20(6-2) 7.在△ABC 中,若∠C =60°,则c b a ++ac b += . 答案 18.(2008²苏州模拟)在△ABC 中,边a ,b ,c 所对角分别为A ,B ,C ,且a A sin =b B cos =c C cos ,则∠A = . 答案 2π 二、解答题 9.在△ABC 中,a ,b ,c 分别为角A 、B 、C 的对边,设f (x )=a 2x 2-(a 2-b 2)x -4c 2.(1)f (1)=0且B -C =3π,求角C 的大小; (2)若f (2)=0,求角C 的取值范围. 解 (1)∵f (1)=0,∴a 2-(a 2-b 2)-4c 2=0,∴b 2=4c 2,∴b =2c ,∴sin B =2sin C ,又B -C =3π.∴sin(C +3π)=2sin C , ∴sin C ²cos3π+cos C ²sin 3π=2sin C , ∴23sin C -23cos C =0,∴sin(C -6π)=0, 又∵-6π<C -6π<65π,∴C =6π. (2)若f (2)=0,则4a 2-2(a 2-b 2)-4c 2=0,∴a 2+b 2=2c 2,∴cos C =ab c b a 2222-+=ab c 22, 又2c 2=a 2+b 2≥2ab ,∴ab ≤c 2,∴cos C ≥21, 又∵C ∈(0,π),∴0<C ≤3π. 10.(2008²泰安模拟)在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边.已知a =1,b =2,cos C =43. (1)求边c 的值;(2)求sin(C -A )的值.解(1)c 2=a 2+b 2-2ab cos C=12+22-2³1³2³43=2, ∴c =2.(2)∵cos C =43,∴sin C =47. 在△ABC 中,A a sin =C c sin ,即A sin 1=472.∴sin A =814,∵a <b ,∴A 为锐角,cos A =825. ∴sin(C -A )=sin C cos A -cos C sin A=47³825-43³814=1614. 11.如图所示,扇形AOB ,圆心角AOB 等于60°,半径为2,在弧 AB 上有一动点P ,过P 引平行于OB 的直线和OA 交于点C ,。

2024届高考数学专项练习解三角形“热考”十点(解析版)

2024届高考数学专项练习解三角形“热考”十点(解析版)

解三角形“热考”十点热点题型速览热点一 三角形中边角计算热点二 判断三角形的形状热点三 三角形解的个数问题热点四 解三角形与平面向量的交汇热点五 解三角形与解析几何交汇问题热点六 解三角形与立体几何交汇问题热点七 正弦定理、余弦定理应用于平面几何问题热点八 三角形周长问题热点九 三角形面积问题热点十 三角形范围(最值)问题三角形边(关系式)的问题三角形角(函数值)问题三角形周长问题三角形面积问题热点一三角形中边角计算1(2023·北京·统考高考真题)在△ABC 中,(a +c )(sin A -sin C )=b (sin A -sin B ),则∠C =()A.π6B.π3C.2π3D.5π62(2020·全国·统考高考真题)在△ABC 中,cos C =23,AC =4,BC =3,则cos B =()A.19B.13C.12D.233(2021·全国·高考真题)在△ABC 中,已知B =120°,AC =19,AB =2,则BC =()A.1B.2C.5D.34(2020·山东·统考高考真题)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2+b 2=c 2+ab sin C ,且a sin B cos C +c sin B cos A =22b ,则tan A 等于()A.3 B.-13 C.3或-13 D.-3或135(2021·浙江·统考高考真题)在△ABC 中,∠B =60°,AB =2,M 是BC 的中点,AM =23,则AC =,cos ∠MAC =.【规律方法】1.已知任意两角和一边,解三角形的步骤:①求角:根据三角形内角和定理求出第三个角;②求边:根据正弦定理,求另外的两边.(1)已知内角不是特殊角时,往往先求出其正弦值,再根据以上步骤求解.(2)已知三边解三角形的方法2024届高考数学专项练习解三角形“热考”十点(解析版)(1)先利用余弦定理求出一个角的余弦,从而求出第一个角;再利用余弦定理或由求得的第一个角,利用正弦定理求出第二个角;最后利用三角形的内角和定理求出第三个角.(2)利用余弦定理求三角的余弦,进而求得三个角.热点二判断三角形的形状6在△ABC 中,若b 2sin 2C +c 2sin 2B =2bc cos B cos C ,试判断△ABC 的形状.7(2020·全国·统考高考真题)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos 2π2+A +cos A =54.(1)求A ;(2)若b -c =33a ,证明:△ABC 是直角三角形.【规律方法】利用正弦定理判断三角形形状的方法:(1)化边为角.将题目中的所有条件,利用正弦定理化边为角,再根据三角函数的有关知识得到三个内角的关系,进而确定三角形的形状.(2)化角为边.根据题目中的所有条件,利用正弦定理化角为边,再利用代数恒等变换得到边的关系(如a =b ,a 2+b 2=c 2),进而确定三角形的形状.2.判断三角形的形状时,经常用到以下结论①△ABC 为直角三角形⇔a 2=b 2+c 2或c 2=a 2+b 2或b 2=a 2+c 2.②△ABC 为锐角三角形⇔a 2+b 2>c 2且b 2+c 2>a 2且c 2+a 2>b 2.③△ABC 为钝角三角形⇔a 2+b 2<c 2或b 2+c 2<a 2或c 2+a 2<b 2.④若sin 2A =sin 2B ,则A =B 或A +B =π2.3.常见误区:易忽略三角形中的隐含条件.热点三三角形解的个数问题8(2016·全国卷Ⅰ文,4)△ABC的内角A、B、C的对边分别为a、b、c.已知a=5,c=2,cos A= 23,则b=()A.2B.3C.2D.39在△ABC中,已知sin C=12,a=23,b=2,求边c.10(2023春·江西鹰潭·高三贵溪市实验中学校考阶段练习)在①tan A tan C-3tan A=1+3tan C;②2c-3acos B=3b cos A;③a-3csin A+c sin C=b sin B这三个条件中任选一个,补充在下面问题中并作答.问题:在△ABC中,角A,B,C所对的边分别为a,b,c,且.(1)求角B的大小;(2)已知c=b+1,且角A有两解,求b的范围.【方法技巧】三角形解的个数的判断在△ABC中,已知a,b和A,利用正弦定理解三角形时,会出现解不确定的情况,一般可根据三角形中“大边对大角和三角形内角和定理”来取舍.具体解的情况如下表:A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b解的个数一解两解一解一解上表中若A为锐角,则当a<b sin A时无解;若A为钝角或直角,则当a≤b时无解.热点四解三角形与平面向量的交汇11(2023·全国·统考高考真题)正方形ABCD 的边长是2,E 是AB 的中点,则EC ⋅ED=()A.5B.3C.25D.512(2023·贵州毕节·统考模拟预测)已知点G 为三角形ABC 的重心,且GA +GB =GA -GB,当∠C 取最大值时,cos C =()A.45B.35 C.25D.1513【多选题】(2023·浙江·二模)在△ABC 中,AB 2+AC 2=2BC 2,CD =BC ,则()A.AD >CDB.AD <52CD C.∠ADC >π6D.∠ADC <π4【点评】1.交汇考向主要有:(1)向量坐标运算条件下解三角形问题;(2)三角形中向量运算问题;(3)共线向量条件下解三角形问题;(4)向量的模与解三角形问题.2.解答的总体思路可归结为三个环节:(1)根据向量运算的定义、法则、运算律等,加以计算;(2)应用三角公式,进行变形进而完成化简;(3)应用正弦定理、余弦定理、三角形面积公式等,实施边角转化.就整体而言,正确向量运算、恒等变形是基础,恰当的边角转化是关键,考查的核心是解三角形、三角问题,向量运算是工具.应该注意的是,向量运算条件的给出,也可能是向量平行、垂直,需根据相关条件加以转化.热点五解三角形与解析几何交汇问题14(2021·全国·统考高考真题)已知F 1,F 2是双曲线C 的两个焦点,P 为C 上一点,且∠F 1PF 2=60°,PF 1 =3PF 2 ,则C 的离心率为()A.72B.132C.7D.1315(2023·全国·高三专题练习)已知椭圆x 29+y 26=1,F 1,F 2为两个焦点,O 为原点,P 为椭圆上一点,cos ∠F 1PF 2=35,则|PO |=()A.25B.302C.35D.35216(2023·湖北武汉·统考模拟预测)已知抛物线y 2=8x 的焦点为F ,准线与x 轴的交点为C ,过点C 的直线l 与抛物线交于A ,B 两点,若∠AFB =∠CFB ,则|AF |=.【点评】1.与椭圆、双曲线的定义及几何性质相结合,在“焦点三角形”中,综合应用定义、正弦定理或余弦定理,确定几何量或几何量之间的关系,解决离心率(范围)计算问题,这类问题多以客观题出现;2.直线与圆锥曲线位置关系问题中,通过交点等构造或产生三角形,计算三角形面积(最值)、线段长度等,这类问题多在主观题出现,解题过程往往通过直线与圆锥曲线方程联立方程组,应用判别式、一元二次方程根与系数的关系、弦长公式、正弦定理、余弦定理等.热点六解三角形与立体几何交汇问题17(2023·全国·统考高考真题)已知四棱锥P-ABCD的底面是边长为4的正方形,PC=PD=3,∠PCA=45°,则△PBC的面积为()A.22B.32C.42D.6218(2023·全国·统考高考真题)已知△ABC为等腰直角三角形,AB为斜边,△ABD为等边三角形,若二面角C-AB-D为150°,则直线CD与平面ABC所成角的正切值为()A.15B.25C.35D.2519(2023·河南·校联考模拟预测)点P是圆柱上底面圆周上一动点,△ABC是圆柱下底面圆的内接三角形,已知在△ABC中,内角A、B、C的对边分别为a、b、c,若c=2,C=60°,三棱锥P-ABC的体积最大值为233,则该三棱锥外接球的表面积为()A.193π B.283π C.539π D.433π【点评】与立体几何的交汇问题,往往是利用几何体中存在的三角形,应用正弦定理或余弦定理,确定解题所需要的几何量,完成角的(函数值)的计算、面积计算等,有时与数学文化相结合,解决古典书籍中的问题,或与时俱进,解决现实生活中的立体几何问题,善于发现相关三角形或做辅助线构造三角形,是解题的重要基础.热点七正弦定理、余弦定理应用于平面几何问题20(2023·全国·统考高考真题)在△ABC中,∠BAC=60°,AB=2,BC=6,∠BAC的角平分线交BC于D,则AD=.21(2020·江苏·统考高考真题)在△ABC中,角A,B,C的对边分别为a,b,c,已知a=3,c=2,B= 45°.(1)求sin C的值;(2)在边BC上取一点D,使得cos∠ADC=-45,求tan∠DAC的值.【点评】解三角形应用于平面几何问题的基本思路(1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理求解;(2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.(3)特别提醒:做题过程中,要用到平面几何中的一些知识点,如相似三角形的边角关系、平行四边形的一些性质,要把这些性质与正弦、余弦定理有机结合,才能顺利解决问题.热点八三角形周长问题22(2022·全国·统考高考真题)记△ABC的内角A,B,C的对边分别为a,b,c,已知sin C sin(A-B)= sin B sin(C-A).(1)证明:2a2=b2+c2;(2)若a=5,cos A=2531,求△ABC的周长.23(2022·北京·统考高考真题)在△ABC中,sin2C=3sin C.(1)求∠C;(2)若b=6,且△ABC的面积为63,求△ABC的周长.热点九三角形面积问题24(2023·全国·统考高考真题)在△ABC中,已知∠BAC=120°,AB=2,AC=1.(1)求sin∠ABC;(2)若D为BC上一点,且∠BAD=90°,求△ADC的面积.25(2022·浙江·统考高考真题)在△ABC中,角A,B,C所对的边分别为a,b,c.已知4a=5c, cos C=35.(1)求sin A的值;(2)若b=11,求△ABC的面积.【点评】三角形面积有关的问题解答步骤:(1)化简转化:根据条件,利用三角恒等变换公式,化简已知条件等式,再利用正弦定理、余弦定理化边、化角;(2)选择公式:多选择S△ABC=12ab sin C=12bc sin A=12ac sin B;(3)求值(最值).热点十三角形范围(最值)问题26(2022·全国·统考高考真题)记△ABC的内角A,B,C的对边分别为a,b,c,已知cos A1+sin A=sin2B1+cos2B.(1)若C=2π3,求B;(2)求a2+b2c2的最小值.27(2020·浙江·统考高考真题)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且2b sin A-3a =0.(I)求角B的大小;(II)求cos A+cos B+cos C的取值范围.28(2020·全国·统考高考真题)△ABC中,sin2A-sin2B-sin2C=sin B sin C.(1)求A;(2)若BC=3,求△ABC周长的最大值.【思路引导】(1)第一步,应用正弦定理角化边;第二步,应用余弦定理求cos A,进而求得A;(2)重点分析方法一:由于BC已知,因此,主要任务是确定AC+AB的最值.第一步,应用余弦定理并化简可得AC+AB2-AC⋅AB=9;第二步,利用基本不等式求得AC+AB的最大值,进而得到结果.29(2022秋·河南郑州·高三郑州外国语学校校考阶段练习)在①a+csin A-sin C=b sin A-sin B;②2b-ac-cos Acos C=0;③向量m =c,3b与n=cos C,sin B平行,这三个条件中任选一个,补充在下面题干中,然后解答问题.已知△ABC内角A,B,C的对边分别为a,b,c,且满足.(1)求角C;(2)若△ABC为锐角三角形,且a=4,求△ABC面积的取值范围.【点评】1.边角、周长问题:利用正弦定理余弦定理灵活的进行边角转化,如果转化成 “边”的表达式,应用基本不等式求最值(范围);如果转化成三角函数表达式,应用二次函数的性质或应用三角函数的性质求解.2.面积问题求解基本步骤:一是应用正弦定理、余弦定理实施边角转化;二是确定三角形面积的表达式;三是应用均值不等式或三角函数性质求其最值(范围).解三角形“热考”十点热点题型速览热点一 三角形中边角计算热点二 判断三角形的形状热点三 三角形解的个数问题热点四 解三角形与平面向量的交汇热点五 解三角形与解析几何交汇问题热点六 解三角形与立体几何交汇问题热点七 正弦定理、余弦定理应用于平面几何问题热点八 三角形周长问题热点九 三角形面积问题热点十 三角形范围(最值)问题三角形边(关系式)的问题三角形角(函数值)问题三角形周长问题三角形面积问题热点一三角形中边角计算1(2023·北京·统考高考真题)在△ABC中,(a+c)(sin A-sin C)=b(sin A-sin B),则∠C=()A.π6B.π3C.2π3D.5π6【答案】B【分析】利用正弦定理的边角变换与余弦定理即可得解.【详解】因为(a+c)(sin A-sin C)=b(sin A-sin B),所以由正弦定理得(a+c)(a-c)=b(a-b),即a2-c2=ab-b2,则a2+b2-c2=ab,故cos C=a2+b2-c22ab=ab2ab=12,又0<C<π,所以C=π3 .故选:B.2(2020·全国·统考高考真题)在△ABC中,cos C=23,AC=4,BC=3,则cos B=()A.19B.13C.12D.23【答案】A【分析】根据已知条件结合余弦定理求得AB,再根据cos B=AB2+BC2-AC22AB⋅BC,即可求得答案.【详解】∵在△ABC中,cos C=23,AC=4,BC=3根据余弦定理:AB2=AC2+BC2-2AC⋅BC⋅cos C AB2=42+32-2×4×3×23可得AB2=9,即AB=3由∵cos B=AB2+BC2-AC22AB⋅BC=9+9-162×3×3=19故cos B=1 9 .故选:A.3(2021·全国·高考真题)在△ABC中,已知B=120°,AC=19,AB=2,则BC=()A.1B.2C.5D.3【答案】D【分析】利用余弦定理得到关于BC长度的方程,解方程即可求得边长.【详解】设AB=c,AC=b,BC=a,结合余弦定理:b2=a2+c2-2ac cos B可得:19=a2+4-2×a×c×cos120°,即:a2+2a-15=0,解得:a=3(a=-5舍去),故BC=3.故选:D.4(2020·山东·统考高考真题)在△ABC中,内角A,B,C的对边分别是a,b,c,若a2+b2=c2+ab sin C,且a sin B cos C+c sin B cos A=22b,则tan A等于()A.3B.-13C.3或-13D.-3或13【答案】A【分析】利用余弦定理求出tan C=2,并进一步判断C>π4,由正弦定理可得sin(A+C)=22⇒sin B=22,最后利用两角和的正切公式,即可得到答案;【详解】∵cos C=a2+b2-c22ab=sin C2⇒tan C=2,∴C>π4,∵a sin A =bsin B=csin C=2R,∴sin A⋅sin B⋅cos C+sin C⋅sin B⋅cos A=22sin B,∴sin(A+C)=22⇒sin B=22,∴B=π4,∴tan B=1,∴tan A=-tan(B+C)=-tan B+tan C1-tan B⋅tan C=3,故选:A.5(2021·浙江·统考高考真题)在△ABC中,∠B=60°,AB=2,M是BC的中点,AM=23,则AC=,cos∠MAC=.【答案】213239 13【分析】由题意结合余弦定理可得BC=8,进而可得AC,再由余弦定理可得cos∠MAC.【详解】由题意作出图形,如图,在△ABM 中,由余弦定理得AM 2=AB 2+BM 2-2BM ⋅BA ⋅cos B ,即12=4+BM 2-2BM ×2×12,解得BM =4(负值舍去),所以BC =2BM =2CM =8,在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ⋅BC ⋅cos B =4+64-2×2×8×12=52,所以AC =213;在△AMC 中,由余弦定理得cos ∠MAC =AC 2+AM 2-MC 22AM ⋅AC =52+12-162×23×213=23913.故答案为:213;23913.【规律方法】1.已知任意两角和一边,解三角形的步骤:①求角:根据三角形内角和定理求出第三个角;②求边:根据正弦定理,求另外的两边.(1)已知内角不是特殊角时,往往先求出其正弦值,再根据以上步骤求解.(2)已知三边解三角形的方法(1)先利用余弦定理求出一个角的余弦,从而求出第一个角;再利用余弦定理或由求得的第一个角,利用正弦定理求出第二个角;最后利用三角形的内角和定理求出第三个角.(2)利用余弦定理求三角的余弦,进而求得三个角.热点二判断三角形的形状6在△ABC 中,若b 2sin 2C +c 2sin 2B =2bc cos B cos C ,试判断△ABC 的形状.【答案】直角三角形.【解析】解法一:∵b 2sin 2C +c 2sin 2B =2bc cos B cos C ,∴利用正弦定理可得sin 2B sin 2C +sin 2C sin 2B =2sin B ·sin C ·cos B ·cos C ,∵sin B sin C ≠0,∴sin B ·sin C =cos B cos C ,∴cos (B +C )=0,∴cos A =0,∵0<A <π,∴A =π2,∴△ABC 为直角三角形.解法二:已知等式可化为b 2-b 2cos 2C +c 2-c 2·cos 2B =2bc cos B cos C ,由余弦定理可得b 2+c 2-b 2·a 2+b 2-c 22ab2-c 2·a 2+c 2-b 22ac 2=2bc ·a 2+b 2-c 22ab·a 2+c 2-b 22ac ∴b 2+c 2=a 2,∴△ABC 为直角三角形.解法三:已知等式变形为b 2(1-cos 2C )+c 2(1-cos 2B )=2bc cos B ·cos C ,∴b 2+c 2=b 2cos 2C +c 2cos 2B +2bc cos B ·cos C ,∵b 2cos 2C +c 2cos 2B +2bc cos B cos C =(b cos C +c cos B )2=a 2,∴b 2+c 2=a 2,∴△ABC 为直角三角形.7(2020·全国·统考高考真题)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos 2π2+A +cos A =54.(1)求A ;(2)若b -c =33a ,证明:△ABC 是直角三角形.【答案】(1)A =π3;(2)证明见解析【分析】(1)根据诱导公式和同角三角函数平方关系,cos 2π2+A +cos A =54可化为1-cos 2A +cos A =54,即可解出;(2)根据余弦定理可得b 2+c 2-a 2=bc ,将b -c =33a 代入可找到a ,b ,c 关系,再根据勾股定理或正弦定理即可证出.【详解】(1)因为cos 2π2+A +cos A =54,所以sin 2A +cos A =54,即1-cos 2A +cos A =54,解得cos A =12,又0<A <π,所以A =π3;(2)因为A =π3,所以cos A =b 2+c 2-a 22bc=12,即b 2+c 2-a 2=bc ①,又b -c =33a ②,将②代入①得,b 2+c 2-3b -c 2=bc ,即2b 2+2c 2-5bc =0,而b >c ,解得b =2c ,所以a =3c ,故b 2=a 2+c 2,即△ABC 是直角三角形.【规律方法】利用正弦定理判断三角形形状的方法:(1)化边为角.将题目中的所有条件,利用正弦定理化边为角,再根据三角函数的有关知识得到三个内角的关系,进而确定三角形的形状.(2)化角为边.根据题目中的所有条件,利用正弦定理化角为边,再利用代数恒等变换得到边的关系(如a =b ,a 2+b 2=c 2),进而确定三角形的形状.2.判断三角形的形状时,经常用到以下结论①△ABC 为直角三角形⇔a 2=b 2+c 2或c 2=a 2+b 2或b 2=a 2+c 2.②△ABC 为锐角三角形⇔a 2+b 2>c 2且b 2+c 2>a 2且c 2+a 2>b 2.③△ABC 为钝角三角形⇔a 2+b 2<c 2或b 2+c 2<a 2或c 2+a 2<b 2.④若sin 2A =sin 2B ,则A =B 或A +B =π2.3.常见误区:易忽略三角形中的隐含条件.热点三三角形解的个数问题8(2016·全国卷Ⅰ文,4)△ABC的内角A、B、C的对边分别为a、b、c.已知a=5,c=2,cos A= 23,则b=()A.2B.3C.2D.3【答案】D【解析】由余弦定理,得4+b2-2×2b cos A=5.整理得3b2-8b-3=0,解得b=3或b=-13(舍去),故选D.9在△ABC中,已知sin C=12,a=23,b=2,求边c.【解析】∵sin C=12,且0<C<π,∴C=π6或5π6.当C=π6时,cos C=32,此时,c2=a2+b2-2ab cos C=4,即c=2.当C=5π6时,cos C=-32,此时,c2=a2+b2-2ab cos C=28,即c=27.10(2023春·江西鹰潭·高三贵溪市实验中学校考阶段练习)在①tan A tan C-3tan A=1+3tan C;②2c-3acos B=3b cos A;③a-3csin A+c sin C=b sin B这三个条件中任选一个,补充在下面问题中并作答.问题:在△ABC中,角A,B,C所对的边分别为a,b,c,且.(1)求角B的大小;(2)已知c=b+1,且角A有两解,求b的范围.【答案】(1)答案见解析(2)b>1【分析】(1)若选①,由两角和的正切公式化简即可求出求角B的大小;若选②,利用正弦定理统一为角的三角函数,再由两角和的正弦公式即可求解;若选③,由余弦定理代入化简即可得出答案.(2)将c=b+1代入正弦定理可得sin C=b+12b,要使角A有两解,即12<sin C<1,解不等式即可得出答案.【详解】(1)若选①:整理得1-tan A tan C=-3tan A+tan C,因为A+B+C=π,所以tan B=-tan A+C=-tan A+tan C1-tan A tan C=33,因为B∈0,π,所以B=π6;若选②:因为2c-3acos B=3b cos A,由正弦定理得2sin C-3sin Acos B=3sin B cos A,所以2sin C cos B=3sin A+B=3sin C,sin C>0,所以cos B=32,因为B∈0,π,所以B=π6;若选③:由正弦定理整理得a2+c2-b2=3ac,所以a2+c2-b22ac=32,即cos B=32,因为B∈0,π,所以B=π6;(2)将c =b +1代入正弦定理b sin B =c sin C ,得b sin B =b +1sin C,所以sin C =b +12b ,因为B =π6,角A 的解有两个,所以角C 的解也有两个,所以12<sin C <1,即12<b +12b <1,又b >0,所以b <b +1<2b ,解得b >1.【方法技巧】三角形解的个数的判断在△ABC 中,已知a ,b 和A ,利用正弦定理解三角形时,会出现解不确定的情况,一般可根据三角形中“大边对大角和三角形内角和定理”来取舍.具体解的情况如下表:A 为锐角A 为钝角或直角图形关系式a =b sin A b sin A <a <ba ≥b a >b 解的个数一解两解一解一解上表中若A 为锐角,则当a <b sin A 时无解;若A 为钝角或直角,则当a ≤b 时无解.热点四解三角形与平面向量的交汇11(2023·全国·统考高考真题)正方形ABCD 的边长是2,E 是AB 的中点,则EC ⋅ED=()A.5B.3C.25D.5【答案】B【分析】方法一:以AB ,AD 为基底向量表示EC ,ED,再结合数量积的运算律运算求解;方法二:建系,利用平面向量的坐标运算求解;方法三:利用余弦定理求cos ∠DEC ,进而根据数量积的定义运算求解.【详解】方法一:以AB ,AD为基底向量,可知AB =AD =2,AB ⋅AD=0,则EC =EB +BC =12AB +AD ,ED =EA +AD =-12AB+AD ,所以EC ⋅ED =12AB +AD ⋅-12AB +AD =-14AB2+AD 2=-1+4=3;方法二:如图,以A 为坐标原点建立平面直角坐标系,则E 1,0 ,C 2,2 ,D 0,2 ,可得EC =1,2 ,ED=-1,2 ,所以EC ⋅ED=-1+4=3;方法三:由题意可得:ED =EC =5,CD =2,在△CDE 中,由余弦定理可得cos ∠DEC =DE 2+CE 2-DC 22DE ⋅CE =5+5-42×5×5=35,所以EC ⋅ED =EC ED cos ∠DEC =5×5×35=3.故选:B .12(2023·贵州毕节·统考模拟预测)已知点G 为三角形ABC 的重心,且GA +GB =GA -GB ,当∠C 取最大值时,cos C =()A.45B.35 C.25D.15【答案】A【分析】由题设可得AG ⋅BG =0,结合AG =13(AC +AB ),BG =13(BA +BC )及余弦定理可得cos C =25a b +ba,根据基本不等式即可求解.【详解】由题意GA +GB =GA -GB ,所以(GA +GB )2=(GA -GB)2,即GA 2+GB 2+2GA ⋅GB =GA 2+GB 2-2GA ⋅GB ,所以GA ⋅GB =0,所以AG ⊥BG ,又AG =23×12(AC +AB )=13(AC +AB ),BG =23×12(BA +BC )=13(BA +BC ),则AG ⋅BG =19(AC +AB )⋅(BA +BC )=19(AC⋅BA +AC ⋅BC +AB ⋅BA +AB ⋅BC )=0,所以CA ⋅CB =AC ⋅AB +BA ⋅BC +AB 2,即ab cos C =bc cos A +ac cos B +c 2,由cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab,所以a 2+b 2=5c 2,所以cos C =a 2+b 2-c 22ab=25a b +b a ≥45a b ⋅b a =45,当且仅当a =b 时等号成立,又y =cos x 在0,π 上单调递减,C ∈0,π ,所以当∠C 取最大值时,cos C =45.13【多选题】(2023·浙江·二模)在△ABC 中,AB 2+AC 2=2BC 2,CD =BC ,则()A.AD >CD B.AD <52CD C.∠ADC >π6D.∠ADC <π4【答案】BD【分析】根据条件,结合余弦定理求得AD =3b ,再建立不等关系,判断选项.【详解】设AB=c,BC=CD=a,AC=b,AD=x,由条件可知,b2+c2=2a2,△ABC中,cos B=a2+c2-b22ac,△ABD中,x2=c2+4a2-4ac cos B=c2+4a2-2a2+c2-b2=2a2-c2+2b2=3b2,所以AD=3b,c2=2a2-b2=2a2-33AD2>0,得AD<6a,即AD<6CD<52CD,故B正确;cos∠ADC=a2+3b2-b223ab =a2+2b223ab=a23b+b3a≥216=63>22,所以∠ADC<π4 .故选:BD【点评】1.交汇考向主要有:(1)向量坐标运算条件下解三角形问题;(2)三角形中向量运算问题;(3)共线向量条件下解三角形问题;(4)向量的模与解三角形问题.2.解答的总体思路可归结为三个环节:(1)根据向量运算的定义、法则、运算律等,加以计算;(2)应用三角公式,进行变形进而完成化简;(3)应用正弦定理、余弦定理、三角形面积公式等,实施边角转化.就整体而言,正确向量运算、恒等变形是基础,恰当的边角转化是关键,考查的核心是解三角形、三角问题,向量运算是工具.应该注意的是,向量运算条件的给出,也可能是向量平行、垂直,需根据相关条件加以转化.热点五解三角形与解析几何交汇问题14(2021·全国·统考高考真题)已知F1,F2是双曲线C的两个焦点,P为C上一点,且∠F1PF2=60°, PF1=3PF2,则C的离心率为()A.72B.132C.7D.13【答案】A【分析】根据双曲线的定义及条件,表示出PF1,PF2,结合余弦定理可得答案.【详解】因为PF1=3PF2,由双曲线的定义可得PF1-PF2=2PF2=2a,所以PF2=a,PF1=3a;因为∠F1PF2=60°,由余弦定理可得4c2=9a2+a2-2×3a⋅a⋅cos60°,整理可得4c2=7a2,所以e2=c2a2=74,即e=72.故选:A【点睛】关键点睛:双曲线的定义是入手点,利用余弦定理建立a,c间的等量关系是求解的关键.15(2023·全国·高三专题练习)已知椭圆x29+y26=1,F1,F2为两个焦点,O为原点,P为椭圆上一点,cos∠F1PF2=35,则|PO|=()A.25B.302C.35D.352【答案】B【分析】根据椭圆的定义结合余弦定理求出PF 1 PF 2 ,PF 1 2+PF 2 2的值,利用PO =12PF 1 +PF 2 ,根据向量模的计算即可求得答案.【详解】由题意椭圆x 29+y 26=1,F 1,F 2为两个焦点,可得a =3,b =6,c =3,则PF 1 +PF 2 =2a =6①,即PF 1 2+PF 2 2+2PF 1 PF 2 =36,由余弦定理得F 1F 2 2=PF 1 2+PF 2 2-2PF 1 PF 2 cos ∠F 1PF 2=(23)2,cos ∠F 1PF 2=35,故PF 1 +PF 2 2-2PF 1 PF 2 1+35=12,②联立①②,解得:PF 1 PF 2 =152,∴PF 1 2+PF 2 2=21,而PO =12PF 1 +PF 2 ,所以PO =PO =12PF 1 +PF 2 ,即PO =12PF 1 +PF 2 =12PF 1 2+2PF 1 ⋅PF 2 +PF 2 2=1221+2×152×35=302,故选:B 【点睛】方法点睛:本题综合考查了椭圆和向量知识的结合,解答时要注意到O 为F 1F 2的中点,从而可以利用向量知识求解|PO |.16(2023·湖北武汉·统考模拟预测)已知抛物线y 2=8x 的焦点为F ,准线与x 轴的交点为C ,过点C 的直线l 与抛物线交于A ,B 两点,若∠AFB =∠CFB ,则|AF |=.【答案】8【分析】先设出直线l 的方程,联立抛物线方程,得到两根之和,两根之积,表达出AB =1+m 2⋅y 1-y 2 ,BC =1+m 2⋅y 2,再由正弦定理得到CF AF =BC AB,得到4my 1=y 2y 1-y 2,代入两根之和,两根之积,列出方程,求出m =233,进而求出y 1=43,|AF |=8.【详解】由题意得,F 2,0 ,C -2,0 ,当直线l 的斜率为0时,与抛物线只有1个交点,不合要求,故设直线l 的方程为x =my -2,不妨设m >0,联立y 2=8x ,可得y 2-8my +16=0,易得Δ>0,设A x 1,y 1 ,B x 2,y 2 ,则y 1>0,y 2>0,则y 1+y 2=8m ,y 1y 2=16,则AB =1+m 2⋅y 1-y 2 ,BC =1+m 2⋅y 2 =1+m 2⋅y 2,由正弦定理得CF sin ∠CBF =BC sin ∠CFB ,AF sin ∠ABF =ABsin ∠AFB,因为∠AFB =∠CFB ,∠CBF +∠ABF =π,所以y 1>y 2,CF AF =BC AB ,即4AF=1+m 2⋅y 2 1+m 2⋅y 1-y 2=y 2y 1-y 2,又由焦半径公式可知AF =x 1+2=my 1-2+2=my 1,则4my 1=y 2y 1-y 2,即my 1y 2=4y 1-4y 2=4y 1+y 2 2-4y 1y 2,即16m =464m 2-64,解得m =233,则y 1+y 2=1633,y 1y 2=16,解得y 1=43,故|AF |=my 1=233×43=8,当m <0时,同理可得到|AF |=8.故答案为:8【点睛】方法点睛:解三角形中,当条件中有角平分线时,可利用正弦定理得到角平分线的性质,将角的关系转化为边的比例关系,再进行求解.【点评】1.与椭圆、双曲线的定义及几何性质相结合,在“焦点三角形”中,综合应用定义、正弦定理或余弦定理,确定几何量或几何量之间的关系,解决离心率(范围)计算问题,这类问题多以客观题出现;2.直线与圆锥曲线位置关系问题中,通过交点等构造或产生三角形,计算三角形面积(最值)、线段长度等,这类问题多在主观题出现,解题过程往往通过直线与圆锥曲线方程联立方程组,应用判别式、一元二次方程根与系数的关系、弦长公式、正弦定理、余弦定理等.热点六解三角形与立体几何交汇问题17(2023·全国·统考高考真题)已知四棱锥P -ABCD 的底面是边长为4的正方形,PC =PD =3,∠PCA =45°,则△PBC 的面积为()A.22B.32C.42D.62【答案】C【分析】法一:利用全等三角形的证明方法依次证得△PDO ≅△PCO ,△PDB ≅△PCA ,从而得到PA =PB ,再在△PAC 中利用余弦定理求得PA =17,从而求得PB =17,由此在△PBC 中利用余弦定理与三角形面积公式即可得解;法二:先在△PAC 中利用余弦定理求得PA =17,cos ∠PCB =13,从而求得PA ⋅PC =-3,再利用空间向量的数量积运算与余弦定理得到关于PB ,∠BPD 的方程组,从而求得PB =17,由此在△PBC 中利用余弦定理与三角形面积公式即可得解.【详解】法一:连结AC ,BD 交于O ,连结PO ,则O 为AC ,BD 的中点,如图,因为底面ABCD 为正方形,AB =4,所以AC =BD =42,则DO =CO =22,又PC =PD =3,PO =OP ,所以△PDO ≅△PCO ,则∠PDO =∠PCO ,又PC =PD =3,AC =BD =42,所以△PDB ≅△PCA ,则PA =PB ,在△PAC 中,PC =3,AC =42,∠PCA =45°,则由余弦定理可得PA 2=AC 2+PC 2-2AC ⋅PC cos ∠PCA =32+9-2×42×3×22=17,故PA =17,则PB =17,故在△PBC 中,PC =3,PB =17,BC =4,所以cos ∠PCB =PC 2+BC 2-PB 22PC ⋅BC=9+16-172×3×4=13,又0<∠PCB <π,所以sin ∠PCB =1-cos 2∠PCB =223,所以△PBC 的面积为S =12PC ⋅BC sin ∠PCB =12×3×4×223=4 2.法二:连结AC ,BD 交于O ,连结PO ,则O 为AC ,BD 的中点,如图,因为底面ABCD 为正方形,AB =4,所以AC =BD =42,在△PAC 中,PC =3,∠PCA =45°,则由余弦定理可得PA 2=AC 2+PC 2-2AC ⋅PC cos ∠PCA =32+9-2×42×3×22=17,故PA =17,所以cos ∠APC =PA 2+PC 2-AC 22PA ⋅PC =17+9-322×17×3=-1717,则PA ⋅PC =PA PC cos ∠APC =17×3×-1717=-3,不妨记PB =m ,∠BPD =θ,因为PO =12PA +PC =12PB+PD ,所以PA +PC 2=PB +PD 2,即PA 2+PC 2+2PA ⋅PC =PB 2+PD 2+2PB ⋅PD ,则17+9+2×-3 =m 2+9+2×3×m cos θ,整理得m 2+6m cos θ-11=0①,又在△PBD 中,BD 2=PB 2+PD 2-2PB ⋅PD cos ∠BPD ,即32=m 2+9-6m cos θ,则m 2-6m cos θ-23=0②,两式相加得2m 2-34=0,故PB =m =17,故在△PBC 中,PC =3,PB =17,BC =4,所以cos ∠PCB =PC 2+BC 2-PB 22PC ⋅BC=9+16-172×3×4=13,又0<∠PCB <π,所以sin ∠PCB =1-cos 2∠PCB =223,所以△PBC 的面积为S =12PC ⋅BC sin ∠PCB =12×3×4×223=4 2.故选:C .18(2023·全国·统考高考真题)已知△ABC 为等腰直角三角形,AB 为斜边,△ABD 为等边三角形,若二面角C -AB -D 为150°,则直线CD 与平面ABC 所成角的正切值为()A.15B.25C.35D.25【答案】C【分析】根据给定条件,推导确定线面角,再利用余弦定理、正弦定理求解作答.【详解】取AB 的中点E ,连接CE ,DE ,因为△ABC 是等腰直角三角形,且AB 为斜边,则有CE ⊥AB ,又△ABD 是等边三角形,则DE ⊥AB ,从而∠CED 为二面角C -AB -D 的平面角,即∠CED =150°,显然CE ∩DE =E ,CE ,DE ⊂平面CDE ,于是AB ⊥平面CDE ,又AB ⊂平面ABC ,因此平面CDE ⊥平面ABC ,显然平面CDE ∩平面ABC =CE ,直线CD ⊂平面CDE ,则直线CD 在平面ABC 内的射影为直线CE ,从而∠DCE 为直线CD 与平面ABC 所成的角,令AB =2,则CE =1,DE =3,在△CDE 中,由余弦定理得:CD =CE 2+DE 2-2CE ⋅DE cos ∠CED =1+3-2×1×3×-32=7,由正弦定理得DE sin ∠DCE =CD sin ∠CED ,即sin ∠DCE =3sin150°7=327,显然∠DCE 是锐角,cos ∠DCE =1-sin 2∠DCE =1-3272=527,所以直线CD 与平面ABC 所成的角的正切为35.故选:C 19(2023·河南·校联考模拟预测)点P 是圆柱上底面圆周上一动点,△ABC 是圆柱下底面圆的内接三角形,已知在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,若c =2,C =60°,三棱锥P -ABC 的体积最大值为233,则该三棱锥外接球的表面积为()A.193π B.283π C.539π D.433π【答案】B【分析】利用余弦定理结合基本不等式可求得△ABC面积的最大值,利用正弦定理可求得圆柱底面圆半径,利用锥体体积公式可求得圆柱的高,进而可求得该三棱锥外接球的半径,结合球体表面积公式可求得结果.【详解】在△ABC中,由余弦定理可得4=c2=a2+b2-2ab cos C=a2+b2-ab≥2ab-ab=ab,即ab≤4,当且仅当a=b=2时,等号成立,所以,S△ABC=12ab sin C=34ab≤34×4=3,设圆柱的高为h,则V P-ABC=13S△ABC⋅h≤33h,因为三棱锥的P-ABC体积的最大值为233,则33h=233,所以,h=2,圆柱底面圆半径r=22sin60°=23=233,设三棱锥P-ABC的外接球的半径为R,则该三棱锥的外接球和圆柱的外接球为同一个球,则R2=h22+r2=1+233 2=73,因此,三棱锥外接球的表面积为4πR2=283π.故选:B.【点评】与立体几何的交汇问题,往往是利用几何体中存在的三角形,应用正弦定理或余弦定理,确定解题所需要的几何量,完成角的(函数值)的计算、面积计算等,有时与数学文化相结合,解决古典书籍中的问题,或与时俱进,解决现实生活中的立体几何问题,善于发现相关三角形或做辅助线构造三角形,是解题的重要基础.热点七正弦定理、余弦定理应用于平面几何问题20(2023·全国·统考高考真题)在△ABC中,∠BAC=60°,AB=2,BC=6,∠BAC的角平分线交BC于D,则AD=.【答案】2【分析】方法一:利用余弦定理求出AC,再根据等面积法求出AD;方法二:利用余弦定理求出AC,再根据正弦定理求出B,C,即可根据三角形的特征求出.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

备战2020年高考数学大题精做之解答题题型全覆盖高端精品第一篇三角函数与解三角形专题08 三角形与平面向量结合问题【典例1】【安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试】 在ABC ∆中,,,a b c 分别为角,,A B C 的对边,且有()2cos cos cos sin sin A A C B B C +-=(Ⅰ)求角A ;(Ⅱ)若ABC ∆的内切圆面积为π,当AB AC ⋅u u u v u u u v的值最小时,求ABC ∆的面积.【思路引导】(Ⅰ)利用两角和差余弦公式可将已知等式化简为2cos sin sin sin sin A B C C B =,从而求得1cos 2A =;结合()0,A π∈可求得结果;(Ⅱ)根据内切圆面积可知内切圆半径为1,由内切圆特点及切线长相等的性质可得到b c a +-=入余弦定理中可得到b c +与bc 的关系,利用基本不等式可构造不等式求得12bc ≥,从而得到当b c =时,AB AC ⋅u u u v u u u v取得最小值,将12bc =代入三角形面积公式即可求得结果.解:(Ⅰ)()()()2cos cos cos cos cos cos A A C B A B C C B +-=-++-⎡⎤⎣⎦Q()cos cos cos sin sin cos cos sin sin 2cos sin sin A B C B C C B C B A B C =-+++=2cos sin sin sin sin A B C C B ∴=(),0,B C π∈Q ,sin sin 0C B ∴≠,1cos 2A ∴=,()0,A π∈Q ,3A π∴=。

(Ⅱ)由余弦定理得:222222cos a b c bc A b c bc =+-=+- 由题意可知:ABC ∆的内切圆半径为1如图,设圆I 为三角形ABC 的内切圆,D ,E 为切点可得:2AI =,AD AE ==b c a +-=(222b c b c bc ∴+-=+-,化简得()4b c =+≥b c =时取等号)12bc ∴≥或43bc ≤又b c +>12bc ∴≥,即[)1cos 6,2AB AC bc A bc ⋅==∈+∞u u u v u u u v ,当且仅当b c =时,AB AC ⋅u u u v u u u v的最小值为6此时三角形ABC 的面积:11sin 12sin 223bc S A π==⨯⨯=【典例2】【浙江省杭州市西湖区杭州学军中学2019-2020学年高三上学期期中】 已知在ABC V 中,1AB =,2AC =.(1)若BAC ∠的平分线与边BC 交于点D ,求()2AD AB AC ⋅-u u u r u u u r u u u r;(2)若点E 为BC 的中点,求2211AE BC+u u u r u u u r 的最小值. 【思路引导】(1)根据AD 是角平分线,从而得到12BD AB CD AC ==,然后得到2133AD AB AC =+u u u r u u u r u u u r ,代入到()2AD AB AC ⋅-u u u r u u u r u u u r中,进行整理化简,得到答案;(2)根据E 为BC 的中点,在ABE ∆和ACE ∆中用余弦定理,从而得到224AE BC +u u u r u u u r ()22210AB AC =+=u u u r u u u r ,然后利用基本不等式,求出2211AE BC+u u u r u u u r 的最小值,得到答案.解:(1)因为AD 是角平分线,从而得到12BD AB CD AC ==u u u r u u u ru u u r u u u r 所以可得2133AD AB AC =+u u u r u u u r u u u r,所以()21233AD AB AC AB AC ⎛⎫⋅-=+ ⎪⎝⎭u u u r u u u r u u u r u u ur u u u r ()20AB AC ⋅-=u u u r u u u r ;(2)在ABE ∆和ACE ∆由用余弦定理可得222cos 2AE BE AB AEB AE BE +-∠=u u u r u u u r u u u r u u u r u u u r ,222cos 2AE CE ACAEC AE CE+-∠=u u u r u u u r u u u r u u u r u u u r, 而BE CE =u u u r u u u r,cos cos AEB AEC ∠=-∠,所以得到22222222AE BE AB AE CE ACAE BE AE CE+-+-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r整理得:224AE BC +u u u r u u u r ()22210AB AC =+=u u u r u u u r22221111110AE BC AE BC ⎛⎫ ⎪∴+=+ ⎪ ⎪⎝⎭u u u r u u u r u u u r u u u r ()224AE BC +u u ur u u u r2222414110BC AEAE BC ⎡⎤⎢⎥=+++⎢⎥⎢⎥⎣⎦u u u r u u u r u u u r u u u r1951010⎛+= ⎝≥ 当且仅当2BC AE =u u u r u u u r时,等号成立.【典例3】【2019届四川省雅安中学高三开学考试】在ABC ∆中,角,,A B C 的对边分别是,,a b c ,若()2cos cos a c B b C -=.(1)求角B 的大小;(2)若3a =,ABC ∆,求BA AC ⋅u u u r u u u r 的值.【思路引导】(1)由正弦定理得:()2sin sin cos sin cos A C B B C -=,化为2sin cos sin A B A =,由于sin 0A >,所以1cos 2B =,最后得3B π=; (2)先由3a =且1sin 232ac π⨯=得2c =,再由余弦定理得b =,cos 14A =,进而得()cos 2114BA AC bc A π⎛⎫⋅=-=-=- ⎪ ⎪⎝⎭u u u r u u u r . 解:(1)∵()2cos cos a c B b C -=,由正弦定理得:()2sin sin cos sin cos A C B B C -=, ∴()2sin cos sin cos cos sin sin sin A B C B C B B C A =+=+= ∵0A π<<,∴sin 0A >∴2cos 1B =,1cos 2B =又0B π<<∴3B π=. (2)∵3a =,ABC ∆,∴13sin 23c π⨯=2c =,22223223cos73b π=+-⨯⨯=,即b =22223cos A +-==,∴()cos 21BA AC bc A π⎛⋅=-==- ⎝⎭u u u r u u u r【典例4】【陕西省安康市2019-2020学年高三上学期12月阶段性考试】在平面直角坐标系xOy 中,设ABC V 的内角,,A B C 所对的边分别为,,a b c ,且a b +=,22sin 3sin sin C A B =.(1)求C ;(2)设()1,cos P A -,()cos ,1Q A -,且A C ≤,OP uuu r 与OQ uuur 的夹角为θ,求cos θ的值.【思路引导】 (1)利用正弦定理得232cab =.再由a b +=平方与余弦定理求得cos C 进而求得C 即可.(2)将(1)所得的3C π=代入条件即可求得30A =︒,90B =︒.再利用平面向量的公式求解cos θ即可.解:(1)∵22sin 3sin sin C A B =∴23sin sin sin 2C A B = ∴由正弦定理得232c ab =∵a b +=∴22223a b ab c ++= 根据余弦定理得:2222221cos 2222a b c c ab ab C ab ab ab +--====∴3C π=(2)由(1)知3C π=,代入已知,并结合正弦定理得3sin sin 21sin sin 2A B A B ⎧+=⎪⎪⎨⎪=⎪⎩,解得1sin 2A =或sin 1A =(舍去) 所以30A =︒,90B =︒∴2cos OP OQ A ⋅==u u u r u u u r而27||||1cos 4OP OQ A ⋅==+=u u u r u u u r∴22cos cos 71cos 74A A θ===+. 【典例5】【2019届重庆市巴蜀中学高三上学期第三次月考】 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且12cos 2sin 22=+⎪⎭⎫⎝⎛+C B A ,a =1,b =2. (1)求∠C 和边c ;(2)若BM 4=,=且点P 为△BMN的最值. 【思路引导】(1)利用倍角公式和三角函数的诱导公式将12cos 2sin 22=+⎪⎭⎫⎝⎛+C B A 进行化简可得,一个关于C cos 的一元二次方程,进而可求解出C cos ,即可求出∠C 的大小;然后应用余弦定理即可求出边长c ;(2)建立坐标系,由已知向量的关系BM 4=,=可得,N M ,点的坐标,即可求出△BMN的内切圆方程,运用参数方程[)πθθθ2,0,sin 1cos 1∈⎩⎨⎧+=+=y x ,++中并化简整理得)sin(324643211ϕθ+-+-,再由三角函数的值域为]1,1[-,故所求式子的最大值即可求出. 解:(1)因为12cos 2sin 22=+⎪⎭⎫⎝⎛+C B A , 所以CB A B AC cos )cos(2sin 212cos 2-=+=⎪⎭⎫⎝⎛+-=,所以01cos cos 22=-+C C ,所以1cos -=C 或21cos =C ,又因为),0(π∈C ,所以21cos =C ,所以3π=C .由余弦定理可得,3cos 222=-+=C ab b a c .建立坐标系,由(1)A()())1,0(,0,0,0,3C B ,由BM 4=,=()0,3),4,0(N M ,△BMN 的内切圆方程为:()()11122=-+-y x ,设),(y x P ,则令 [)πθθθ2,0,sin 1cos 1∈⎩⎨⎧+=+=y x()()22222213-+++++-=++y x y x y x ()θθcos 326sin 4321142323322-++-=+--+=y x y x ()324643211sin 324643211-+-≤+-+-=ϕθ【典例6】【河北衡水金卷2019届高三高考模拟一理科数学试题】已知ABC ∆的内角A ,B ,C 的对边a ,b ,c 分别满足22c b ==,2cos cos cos 0b A a C c A ++=,又点D 满足1233AD AB AC =+u u u r u u u r u u u r .(1)求a 及角A 的大小;(2)求||AD u u u r的值.【思路引导】(1)由2cos cos cos 0b A a C c A ++=及正弦定理化简可得即()2sin cos sin sin B A A C B -=+=,从而得1cos 2A =-.又()0,A π∈,所以23A π=,由余弦定理得a =(2)由1233AD AB AC =+u u u v u u u v u u u v ,得221233AD AB AC ⎛⎫=+ ⎪⎝⎭u u u v u u u v u u u v 444142199929⎛⎫=++⨯⨯⨯-= ⎪⎝⎭,所以23AD =u u u v .解:(1)由2cos cos cos 0b A a C c A ++=及正弦定理得2sin cos sin cos cos sin B A A C A C -=+, 即()2sin cos sin sin B A A C B -=+=, 在ABC ∆中,sin 0B >,所以1cos 2A =-. 又()0,A π∈,所以23A π=. 在ABC ∆中,由余弦定理得222222cos 7a b c bc A b c bc =+-=++=,所以a =(2)由1233AD AB AC =+u u u v u u u v u u u v ,得221233AD AB AC ⎛⎫=+ ⎪⎝⎭u u u v u u u v u u u v 444142199929⎛⎫=++⨯⨯⨯-= ⎪⎝⎭,所以23AD =u u u v .【典例7】【广东省珠海市2019-2020学年高三上学期期末】已知A 、B 、C 是ABC ∆的内角,a 、b 、c 分别是其对边长,向量(),m a b c =+u r,()sin sin ,sin sin n B A C B =--r ,且m n ⊥u r r .(1)求角A 的大小;(2)若2a =,求ABC ∆面积的最大值. 【思路引导】(1)由m n ⊥u r r得出()()()sin sin sin sin 0a b B A c C B +-+-=,利用正弦定理边角互化思想以及余弦定理可得出cos A 的值,结合角A 的取值范围可得出角A 的大小;(2)利用余弦定理结合基本不等式可求出bc 的最大值,再利用三角形的面积公式可得出答案.解:(1)(),m a b c =+u r Q ,()sin sin ,sin sin n B A C B =--r ,m n ⊥u r r,()()()sin sin sin sin 0a b B A c C B ∴+-+-=,由正弦定理得()()()0b a b a c c b +-+-=,整理得222b c a bc +-=,2221cos 22b c a A bc +-∴==,0A π<<Q ,3A π∴=; (2)在ABC ∆中,3A π=,2a =,由余弦定理知2222242cos a b c bc A b c bc ==+-=+-,由基本不等式得2242bc b c bc +=+≥,当且仅当b c =时等号成立,4bc ∴≤,11sin 422ABC S bc A ∆∴=≤⨯=ABC ∆1.【2020届河北省冀州中学高三年级模拟考试】△ABC 中,角A 、B 、C 对边分别是a 、b 、c ,满足222()AB AC a b c ⋅=-+u u u r u u u r.(Ⅰ)求角A 的大小;(Ⅱ)求24sin()23C B π--的最大值,并求取得最大值时角B 、C 的大小. 解:(Ⅰ)由222()AB AC a b c ⋅=-+u u u r u u u r已知2222cos 2bc A a b c bc =---,·由余弦定理2222cos a b c bc A =+-得4cos 2bc A bc =-,∴1cos 2A =-,∵0A π<<,∴23A π=. (Ⅱ)∵23A π=,∴3B C π=-,03C π<<.241cos sin()sin()2323C C B B ππ+--=+-2sin()3C π=+.∵03C π<<,∴2333C πππ<+<,∴当32C ππ+=,24sin()23C B π--2,解得6B C π==. 2.【四川省德阳市2018届高三三校联合测试数学】在ABC ∆中,角A B C ,,所对的边分别为a b c ,,,且()cos 3cos a B c b A =-. (1)求cos A 的值;(2)若3b =,点M 在线段BC 上,2AB AC AM +=u u u r u u u r u u u u r ,AM =u u u ur 求ABC ∆的面积.解:因为()cos 3cos a B c b A =-,由正弦定理得:()sin cos 3sin sin cos A B C B A =- 即sin cos sin cos 3sin cos A B B A C A +=, sin 3sin cos C C A = 在ABC ∆中,sin 0C ≠,所以1cos 3A =2AB AC AM +=u u u r u u u r u u u u r ,两边平方得:22224AB AC AB AC AM ++⋅=u u u r u u u r u u u r u u u u r u u u u r由3b =,AM =u u u u r 1cos 3A =得219234183c c ++⨯⨯⨯=⨯解得:79c c ==-或(舍);所以ABC ∆的面积17323S =⨯⨯⨯=3.【山西省运城市2019-2020学年高三上学期期末】在ABC ∆中,角A ,B ,C 的对边分别是a ,b ,c ,且8a =,cos cos 2sin cos cos c A B a C B c C =-. (1)求tan B 的值;(2)若16AB CB =u u u r u u u rg ,求b 的值.【思路引导】(1)由正弦定理知:2sin a R A =,2sin c R C =化简cos cos 2sin cos cos c A B a C B c C =-得2sin cos sin sin A B A B =,即tan 2B =.(2)由tan 2B =得到cos 5B =,因为16AB CB =u u u r u u u r g ,8a =,解得c =代入2222cos b a c ac B =+-即可.解:(1)∵cos cos 2sin cos cos c A B a C B c C =- 由正弦定理知:2sin a R A =,2sin c R C =∴sin cos cos 2sin sin cos sin cos C A B A C B C C =- 又∵sin 0C ≠∴cos cos 2sin cos cos A B A B C =- ∴()cos cos 2sin cos cos A B A B A B =++∴cos cos 2sin cos cos cos sin sin A B A B A B A B =+- ∴2sin cos sin sin A B A B = 又∵sin 0A ≠∴tan 2B =(2)∵tan 2B =∴cos B =又∵16AB CB =u u u r u u u r g ∴cos 16ac B =又∵8a =∴c =∴由余弦定理知,22222cos 8202852b a c ac B =+-=+-⨯⨯=∴b =4.【江苏省盐城市盐城中学2019-2020学年高三11月月考】如图,在ABC ∆中,120BAC ∠=︒,2AB =,1AC =,D 是边BC 上一点,2DC BD =u u u r u u u r.(1)求AD BC ⋅u u u r u u u r的值;(2)若()0AB tCD CD -⋅=u u u r u u u r u u u r,求实数t 的值.【思路引导】(1)将,AD BC u u u r u u u r 都转化为用,AB AC u u u r u u u r为基底表示,根据向量数量积的运算,求得AD BC ⋅u u u r u u u r的值.(2)将原方程()0AB tCD CD -⋅=u u u r u u u r u u u r 转化为2AB CD t CD⋅=u u u r u u u ru u u r ,同(1)的方法,将CD uuu r 转化为用,AB AC u u u r u u u r 为基底表示,根据向量数量积和模的运算,求出t 的值.解:(1)D Q 是边BC 上一点,2DC BD =u u u r u u u r()1133BD BC AC AB ∴==-u u u r u u u r u u u r u u u r()121333AD AB AC AB AB AC =+-=+u u u r u u u r u u u r u u u r u u ur u u u r()2133AD BC AB AC AC AB ⎛⎫∴⋅=+⋅- ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r 22121333AC AB AB AC =-+⋅u u ur u u u r u u u r u u u r18112cos120333=-+⨯⨯⨯︒18183333=--=-,故83AD BC ⋅=-u u u r u u u r(2)()0AB tCD CD -⋅=u u u r u u u r u u u r Q ,2AB CDt CD⋅∴=u u u r u u u ru u u r ()2233CD CB AB AC ==-u u u r u u u r u u u r u u u r Q ,214212cos1207BC =+-⨯⨯⨯︒=u u u r2222839CD CB ⎛⎫== ⎪⎝∴⎭u u u r u u u r 2233AB CD AB AB AC ⎛⎫⋅=⋅- ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r Q 22233AB AC AB =-⋅u u u r u u u r u u u r 821012cos120333=-⨯⨯⨯︒=1514t ∴=5.【湖南省张家界市2018届高三第三次模拟考】 已知ABC ∆中,3B π=.(Ⅰ)若12AB AC ==,求ABC ∆的面积;(II)若4,,AB BM MN NC AN ====u u u u v u u u u v u u u v,求AM 的长.【思路引导】(1)由余弦定理得到BC =,进而得到三角形ABC 是直角三角形,根据公式求得面积;(2)设BM x =,则2BN x =,AN =,由余弦公式得到1BM =,AM =. 解析:(Ⅰ)由题意知,22212cos BC B +-=12=,解得BC =, ∴222AC BC AB +=,∴1122ABC S ∆=⨯=(Ⅱ)设BM x =,则2BNx =,AN =. 在ABN ∆中,()()22242x =+242cos3x π-⋅⋅⋅,解得1x =或2x =-(舍去),∴1BM =. 在ABM ∆中,AM ==.6.【山东省、湖北省部分重点中学2018届高三第二次(12月)联考】设函数()2sin()cos 3f x x x π=+-(Ⅰ) 求()f x 的单调增区间;(Ⅱ) 已知ABC ∆的内角分别为,,A B C ,若()2Af =,且ABC ∆能够盖住的最大圆面积为π,求AB AC ⋅uu u r uuu r 的最小值.【思路引导】(Ⅰ)由三角形两角和的正弦展开利用二倍角公式化简可得()sin 23f x x π⎛⎫=+ ⎪⎝⎭,令222,232k x k k Z πππππ-+≤+≤+∈,求解增区间即可;(Ⅱ)由22A f ⎛⎫=⎪⎝⎭,得3A π=,由题意可知:ABC ∆的内切圆半径为1,根据切线长相等结合图象得b c a +-=()4b c =+,利用均值不等式求最值即可.解:(Ⅰ) ()112sin cos 2sin2cos23222222f x x x cosx sinx cosx x x π⎛⎫⎛⎫=+-=+-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭sin 23x π⎛⎫=+ ⎪⎝⎭.5222,2321212k x k k x k k Z πππππππππ-+≤+≤+⇒-+≤≤+∈. ()f x 的单调增区间为5,,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦.(Ⅱ) sin 23A f A π⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭ ()0,A π∈,所以3A π=.由余弦定理可知:222a b c bc =+-. 由题意可知:ABC ∆的内切圆半径为1.ABC ∆的内角,,A B C 的对边分别为,,a b c ,如图所示可得:b c a +-=(222b c b c bc +-=+-.()412b c bc ⇒=+≥⇒≥或43bc ≤(舍)[)16,2AB AC bc ⋅=∈+∞u u u v u u u v ,当且仅当b c =时,AB AC u u u v u u u v⋅的最小值为6.令也可以这样转化:1r a b c =⇔++=代入222b c b c bc ⎛⎫+=+- ⎪ ⎪⎝⎭; ()412b c bc ⇒=+≥⇒≥或43bc ≤(舍); [)16,2AB AC bc ⋅=∈+∞u u u v u u u v ,当且仅当b c =时,AB AC u u u v u u u v⋅的最小值为6.7.【辽宁省沈阳市交联体2018届高三上学期期中考试】已知函数2()cos 2cos 1f x x x x =--,()x R ∈ (1)当[0,]2x π∈时,求函数()f x 的最小值和最大值;(2)设ABC ∆的内角,,A B C 的对应边分别为,,a b c ,且c =()0f C =,若向量(1,sin )m A =u r与向量(2,sin )n B =r共线,求,a b 的值.【思路引导】(1)利用二倍角公式及化一公式,化简()f x 的表达式,再结合正弦函数的图象,在给定区域上求最值;(2)由()0f C =,解得C 角,利用共线条件及正弦定理得到b=2a ,再利用余弦定理解得,a b 的值. 解:(1)当,即时,有最小值为当,即时,有最大值为(2)与向量共线由正弦定理得①,由余弦定理可得②①②联立可得8. 在ABC ∆中,CA CB CA CB +=-u u u r u u u r u u u r u u u r.(1) 求角C 的大小;(2)若CD AB ⊥,垂足为D ,且4CD =,求ABC ∆面积的最小值.【思路引导】(1)由CA CB CA CB +=-u u u v u u u v u u u v u u u v ,两边平方22CA CB CA CB +=-u u u v u u u v u u u v u u u v ,整理可得0CA CB ⋅=u u u v u u u v ,即CA CB ⊥u u u v u u u v ,从而可得2C π∠=;(2)在直角ADC ∆与直角BDC ∆中中,4sin sin CD AC A A==,4sin sin CD BC B B ==,从而可得114481622sin sin sin cos sin2ABC S CA CB A B A A A∆=⋅=⋅⋅==,根据三角函数的有界性可得 ABC ∆面积的最小值.解:(1)由CA CB CA CB +=-u u u v u u u v u u u v u u u v ,两边平方22CA CB CA CB +=-u u u v u u u v u u u v u u u v ,即()()22CA CB CA CB +=-u u u v u u u v u u u v u u u v ,得到20CA CB ⋅=u u u v u u u v ,即CA CB ⊥u u u v u u u v .所以2C π∠=.(2)在直角ADC ∆中,4sin sin CD AC A A ==, 在直角BDC ∆中,4sin sin CD BC B B==,又0,2A π⎛⎫∈ ⎪⎝⎭,所以sin sin cos 2B A A π⎛⎫=-=⎪⎝⎭, 所以114481622sin sin sin cos sin2ABC S CA CB A B A A A∆=⋅=⋅⋅==, 由+2A B π=得,()20,A π∈,故(]sin20,1A ∈,当且仅当4A π=时,()max sin21A =,从而()min 16ABC S ∆= .9.【重庆市西南大学附属中学校2019届高三上学期第三次月考】在ABC △中,内角A B C ,,的对边分别为a b c ,,,已知1cos 2b a Cc =+. (1)求角A ;(2)若·3AB AC =u u u r u u u u r ,求a 的最小值.【思路引导】(Ⅰ)利用正弦定理、诱导公式、两角和差的三角公式求出cosA 的值,可得A 的值. (Ⅱ)利用余弦定理及基本不等式求得a 的最小值.解:(1) ∵ABC V 中,cos 2cb a C -=, ∴由正弦定理知,1sin sin cos sin 2B AC C -=,∵πA B C ++=,∴()sin sin sin cos cos sin B A C A C A C =+=+, ∴1sin cos cos sin sin cos sin 2A C A C A C C +-=, ∴1cos sin sin 2A C C =, ∴1cos 2A =,∴π3A =.(2) 由 (1)及·3AB AC =u u u r u u u r得6bc =,所以222222cos 6266a b c bc A b c bc =+-=+--=…当且仅当b c =时取等号,所以a 10.【2019届河北省武邑中学高三上学期期末考试】已知ABC ∆的面积为S ,且AB AC S ⋅=u u u r u u u r.(1)求A 2tan 的值;(2)若4π=B ,3CB CA -=u u u r u u u r,求ABC ∆的面积S .【思路引导】(1)利用平面向量的数量积运算法则及面积公式化简已知等式,求出tan A 的值即可;(2)由tan A 与tan B 的值,利用两角和与差的正切函数公式求出tan C 的值,进而求出sin C 的值,利用正弦定理求出b 的值,再利用三角形面积公式即可求出S . 解:(1)设ABC ∆的角C B A ,,所对应的边分别为c b a ,,,∵AB AC S ⋅=u u u r u u u r ,∴A bc A bc sin 21cos =,∴A A sin 21cos =,∴2tan =A .∴34tan 1tan 22tan 2-=-=A A A . (2)3CB CA -=u u u r u u u r ,即3AB c ==u u u r,∵2tan =A ,20π<<A ,∴552sin =A ,55cos =A . ∴10103225522552sin cos cos sin )sin(sin =⋅+⋅=+=+=B A B A B A C . 由正弦定理知:5sin sin sin sin =⋅=⇒=B Ccb B b Cc , 35523521sin 21=⋅⋅==A bc S .。

相关文档
最新文档