数值分析第五版课后答案
数值分析课程第五版课后习题答案
*
[解] = (0.031 × 385.6) 1 × 10 − 4 + (1.1021 × 385.6) 1 × 10 −3 + (1.1021 × 0.031) 1 × 10 −3 ; 2 2 2 −3 −3 −3 = 0.59768 × 10 + 212.48488 × 10 + 0.01708255 × 10 = 213.09964255 × 10 −3 = 0.21309964255
ε * (R* ) 1 1 1 从而 ε * ( R * ) = 1% × R * ,故 ε r* ( R * ) = 。 = 1% × = * 3 300 3 R
6 、设 Y0 = 28 ,按递推公式 Yn = Yn −1 − 1 783 (n = 1,2, ) 计算到 Y100 ,若取 100
783 ≈ 27.982 (五位有效数字, )试问计算 Y100 将有多大误差? [解]令 Yn 表示 Yn 的近似值, e * (Yn ) = Yn − Yn ,则 e * (Y0 ) = 0 ,并且由 1 1 × 27.982 , Yn = Yn −1 − × 783 可知, 100 100 1 × (27.982 − 783 ) ,即 Yn − Yn = Yn −1 − Yn −1 − 100 1 2 从 e * (Yn ) = e * (Yn −1 ) − × (27.982 − 783 ) = e * (Yn − 2 ) − × (27.982 − 783 ) = , 100 100 Yn = Yn −1 − 而 e * (Y100 ) = e * (Y0 ) − (27.982 − 783 ) = 783 − 27.982 ,
而 783 − 27.982 ≤
1 1 × 10 −3 ,所以 ε * (Y100 ) = × 10 −3 。 2 2
数值分析课程第五版课后习题答案(李庆扬等)
数值分析课程第五版课后习题答案(李庆扬等)数值分析课程第五版课后习题答案(李庆扬等)第一章:数值分析导论1. 解答:数值分析是一门研究如何使用计算机来解决数学问题的学科。
它包括了从数学理论到计算实现的一系列技术。
数值分析的目标是通过近似的方式求解数学问题,其结果可能不是完全精确的,但是能够满足工程或科学应用的要求。
2. 解答:数值分析在实际应用中起着重要的作用。
它可以用于求解复杂的数学方程、计算机模拟及建模、数据的统计分析等等。
数值分析是科学计算和工程计算的基础,对许多领域都有着广泛的应用,如物理学、经济学、生物学等。
3. 解答:数值方法指的是使用数值计算的方式来求解数学问题。
与解析方法相比,数值方法一般更加灵活和高效,可以处理一些复杂的数学问题。
数值方法主要包括了数值逼近、插值、数值积分、数值微分、线性方程组的求解、非线性方程的求根等。
4. 解答:计算误差是指数值计算结果与精确解之间的差异。
在数值计算中,由于计算机的有限精度以及数值计算方法本身的近似性等因素,都会导致计算误差的产生。
计算误差可以分为截断误差和舍入误差两种。
第二章:数值误差分析1. 解答:绝对误差是指实际值与精确值之间的差异。
例如,对于一个计算出的数值近似解x和精确解x_0,其绝对误差为| x - x_0 |。
绝对误差可以衡量数值近似解的精确程度,通常被用作评估数值计算方法的好坏。
2. 解答:相对误差是指绝对误差与精确解之间的比值。
对于一个计算出的数值近似解x和精确解x_0,其相对误差为| (x - x_0) / x_0 |。
相对误差可以衡量数值近似解相对于精确解的精确度,常用于评估数值计算方法的收敛速度。
3. 解答:舍入误差是由于计算机的有限精度而引起的误差。
计算机中使用的浮点数系统只能表示有限的小数位数,因此在进行数值计算过程中,舍入误差不可避免地会产生。
舍入误差会导致计算结果与精确结果之间存在差异。
4. 解答:误差限度是指对于给定的数值计算问题,所能容忍的误差范围。
数值分析第五版课后答案2篇
数值分析第五版课后答案2篇数值分析第五版课后答案(一)第一章1.1 机器精度的数值为2^-52 ≈2.22 × 10^-16。
1.2 Example 1.2设f(x) = (1 - cosx)/sinx,则f(0)的分母为0,无法进行数值计算。
1.3 Example 1.3设f(x) = (1 - cosx)/sinx,则f(0)的分子为0,因此有f(0) = 0。
1.4 Example 1.4(a) 将x的值从1.8改为1.799,则f(x)的值由-0.000000000000159为0.000000000000313,差值为0.000000000000472。
(b) 我们有f'(x) = sinx/(1 - cosx) - 1/sin^2x。
将x的值从1.8改为1.799,利用f(x)和f'(x)的值可以得到下面的近似式:f(x + Δx) ≈ f(x) + f'(x)Δx = -0.000000000000159 + 0.449787416887455×0.001 = -0.000000000000137。
与(a)中的结果相近。
1.5 Example 1.5(a) 当x很接近于0时,函数值的符号取决于cosx的符号,其中cosx接近于1。
因此,函数值为正。
(b) 当x很接近于π时,函数值的大小趋于无穷大,因为分母趋向于0,而分子不为0。
1.6 Example 1.6(a) 因为函数在x = 0处是奇函数,所以它的导数为偶函数。
(b) 首先,我们有f''(0) = -2,因此x = 0是最大值。
其次,我们有f''(x) = -2 - 8sin^2x。
由于-f''(x)在x = 0处是正的,我们有当x越接近0时,f''(x)越小,也就意味着函数在x = 0处是严格的最大值。
1.7 Example 1.7(a) 我们有f(x) = x^3 - 2x^2 - 5x + 6,f'(x) =3x^2 - 4x - 5和f''(x) = 6x - 4。
数值分析第五版习题答案全部清华大学出版社
6
12.计算 f ( 2 1) ,取 2 ,利用下列等式计算,哪一个得到的结果最好?
1 , ( 2 1) 6
(3 2 2) 3 ,
6
1 , 99 70 2 。 (3 2 2) 3
解:设 y ( x 1) , 若x 若通过
若通过 (3 2 2) 计算 y 值,则
3
y * (3 2x* )2 x* 6 y * x* * 3 2x y * x*
若通过
1 计算 y 值,则 (3 2 2) 3 1 x* * 4 (3 2 x )
1 1 1 10 4 10 3 10 3 2 2 2 3 1.05 10
* * * (2) ( x1 x2 x3 ) * * * * * * * * * x1 x2 ( x3 ) x2 x3 ( x1 ) x1 x3 ( x2 )
1 1 1 1.1021 0.031 10 1 0.031 385.6 10 4 1.1021 385.6 10 3 2 2 2 0.215
* * * *
*
*
*
* * *
*
*
1 ( x1* ) 10 4 2 1 * ( x2 ) 10 3 2 1 * ( x3 ) 10 1 2 1 * ( x4 ) 10 3 2 1 * ( x5 ) 10 1 2
* * * (1) ( x1 x2 x4 ) * * * ( x1 ) ( x2 ) ( x4 )
解: y0
2 1.41
1 ( y0 *) 10 2 2
又 yn 10 yn 1 1
数值分析第五版答案(全)
第一章 绪论1.设0x >,x 的相对误差为δ,求ln x 的误差。
解:近似值*x 的相对误差为*****r e x xe x x δ-=== 而ln x 的误差为()1ln *ln *ln **e x x x e x =-≈进而有(ln *)x εδ≈2.设x 的相对误差为2%,求n x 的相对误差。
解:设()nf x x =,则函数的条件数为'()||()p xf x C f x = 又1'()n f x nx-=, 1||n p x nx C n n-⋅∴== 又((*))(*)r p r x n C x εε≈⋅且(*)r e x 为2((*))0.02n r x n ε∴≈3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, *456.430x =,*57 1.0.x =⨯解:*1 1.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =⨯是二位有效数字。
4.利用公式(2.3)求下列各近似值的误差限:(1) ***124x x x ++,(2) ***123x x x ,(3) **24/x x .其中****1234,,,x x x x 均为第3题所给的数。
解:*41*32*13*34*151()1021()1021()1021()1021()102x x x x x εεεεε-----=⨯=⨯=⨯=⨯=⨯***124***1244333(1)()()()()1111010102221.0510x x x x x x εεεε----++=++=⨯+⨯+⨯=⨯ ***123*********123231132143(2)()()()()1111.10210.031100.031385.610 1.1021385.6102220.215x x x x x x x x x x x x εεεε---=++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯≈**24****24422*4335(3)(/)()()110.0311056.430102256.43056.43010x x x x x x xεεε---+≈⨯⨯+⨯⨯=⨯=5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为343V R π=则何种函数的条件数为23'4343p R V R R C V R ππ===(*)(*)3(*)r p r r V C R R εεε∴≈=又(*)1r V ε=%1故度量半径R 时允许的相对误差限为εr (V ∗)=13∗1%=13006.设028Y =,按递推公式1n n Y Y -= (n=1,2,…)计算到100Y 27.982≈(5位有效数字),试问计算100Y 将有多大误差?解:1n n Y Y -=-10099Y Y ∴=9998Y Y =9897Y Y =……10Y Y =依次代入后,有1000100Y Y =-即1000Y Y =27.982≈, 100027.982Y Y ∴=-*310001()()(27.982)102Y Y εεε-∴=+=⨯100Y ∴的误差限为31102-⨯。
数值分析课程第五版课后习题答案
数值分析课程第五版课后习题答案课后习题一:a) 求解非线性方程f(x) = x^3 - 2x - 5的根。
解答:可使用牛顿迭代法来求解非线性方程的根。
牛顿迭代法的迭代公式为:x_(n+1) = x_n - f(x_n)/f'(x_n),其中x_n为第n次迭代的近似解。
对于给定的方程f(x) = x^3 - 2x - 5,计算f'(x)的导数为f'(x) = 3x^2 - 2。
选择一个初始近似解x_0,并进行迭代。
迭代的终止条件可以选择两次迭代间的解的差值小于某个预设的精度。
b) 计算矩阵加法和乘法的运算结果。
解答:设A和B为两个矩阵,A = [a_ij],B = [b_ij],则A和B的加法定义为C = A + B,其中C的元素为c_ij = a_ij + b_ij。
矩阵乘法定义为C = A * B,其中C的元素为c_ij = ∑(a_ik * b_kj),k的取值范围为1到矩阵的列数。
c) 使用插值方法求解函数的近似值。
解答:插值方法可用于求解函数在一组给定点处的近似值。
其中,拉格朗日插值法是一种常用的方法。
对于给定的函数f(x)和一组插值节点x_i,i的取值范围为1到n,利用拉格朗日插值多项式可以构建近似函数P(x),P(x) = ∑(f(x_i) * l_i(x)),其中l_i(x)为拉格朗日基函数,具体表达式为l_i(x) = ∏(x - x_j)/(x_i - x_j),j的取值范围为1到n并且j ≠ i。
课后习题二:a) 解决数值积分问题。
解答:数值积分是求解定积分的数值近似值的方法。
常用的数值积分方法包括矩形法、梯形法和辛普森法。
矩形法采用矩形面积的和来近似曲边梯形的面积,梯形法采用等距离子区间上梯形面积的和来近似曲边梯形的面积,而辛普森法则利用等距离子区间上梯形和抛物线面积的加权和来近似曲边梯形的面积。
b) 使用迭代方法求解线性方程组。
解答:线性方程组的求解可以通过迭代方法来进行。
数值分析第五版_李庆扬__课后习题答案
第一章 绪论1.设0x >,x 的相对误差为δ,求ln x 的误差。
解:近似值*x 的相对误差为*****r e x x e x x δ-=== 而ln x 的误差为()1ln *ln *ln **e x x x e x =-≈进而有(ln *)x εδ≈2.设x 的相对误差为2%,求n x 的相对误差。
解:设()n f x x =,则函数的条件数为'()||()p xf x C f x = 又1'()n f x nx-=Q , 1||n p x nx C n n-⋅∴==又((*))(*)r p r x n C x εε≈⋅Q 且(*)r e x 为2((*))0.02n r x n ε∴≈3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, *456.430x =,*57 1.0.x =⨯解:*11.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =⨯是二位有效数字。
4.利用公式(2.3)求下列各近似值的误差限:(1) ***124x x x ++,(2) ***123x x x ,(3) **24/x x . 其中****1234,,,x x x x 均为第3题所给的数。
解:*41*32*13*34*151()1021()1021()1021()1021()102x x x x x εεεεε-----=⨯=⨯=⨯=⨯=⨯***124***1244333(1)()()()()1111010102221.0510x x x x x x εεεε----++=++=⨯+⨯+⨯=⨯ ***123*********123231132143(2)()()()()1111.10210.031100.031385.610 1.1021385.6102220.215x x x x x x x x x x x x εεεε---=++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯≈**24****24422*4335(3)(/)()()110.0311056.430102256.43056.43010x x x x x x x εεε---+≈⨯⨯+⨯⨯=⨯=5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少?解:球体体积为343V R π=则何种函数的条件数为23'4343p R V R R C V R ππ===g g(*)(*)3(*)r p r r V C R R εεε∴≈=g又(*)1r V ε=Q故度量半径R 时允许的相对误差限为1(*)10.333r R ε=⨯≈6.设028Y =,按递推公式1n n Y Y -= (n=1,2,…)计算到100Y 27.982≈(5位有效数字),试问计算100Y 将有多大误差?解:1n n Y Y -=Q10099Y Y ∴=9998Y Y =9897Y Y =……10Y Y =依次代入后,有1000100Y Y =-即1000Y Y =27.982≈, 100027.982Y Y ∴=-*310001()()(27.982)102Y Y εεε-∴=+=⨯100Y ∴的误差限为31102-⨯。
数值分析第五版答案(全)
第一章 绪论1.设0x >,x 的相对误差为δ,求ln x 的误差。
解:近似值*x 的相对误差为*****r e x xe x x δ-=== 而ln x 的误差为()1ln *ln *ln **e x x x e x =-≈进而有(ln *)x εδ≈2.设x 的相对误差为2%,求n x 的相对误差。
解:设()nf x x =,则函数的条件数为'()||()p xf x C f x = 又1'()n f x nx-=, 1||n p x nx C n n-⋅∴== 又((*))(*)r p r x n C x εε≈⋅且(*)r e x 为2((*))0.02n r x n ε∴≈3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, *456.430x =,*57 1.0.x =⨯解:*1 1.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =⨯是二位有效数字。
4.利用公式(2.3)求下列各近似值的误差限:(1) ***124x x x ++,(2) ***123x x x ,(3) **24/x x .其中****1234,,,x x x x 均为第3题所给的数。
解:*41*32*13*34*151()1021()1021()1021()1021()102x x x x x εεεεε-----=⨯=⨯=⨯=⨯=⨯***124***1244333(1)()()()()1111010102221.0510x x x x x x εεεε----++=++=⨯+⨯+⨯=⨯ ***123*********123231132143(2)()()()()1111.10210.031100.031385.610 1.1021385.6102220.215x x x x x x x x x x x x εεεε---=++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯≈**24****24422*4335(3)(/)()()110.0311056.430102256.43056.43010x x x x x x xεεε---+≈⨯⨯+⨯⨯=⨯=5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为343V R π=则何种函数的条件数为23'4343p R V R R C V R ππ===(*)(*)3(*)r p r r V C R R εεε∴≈=又(*)1r V ε=%1故度量半径R 时允许的相对误差限为εr (V ∗)=13∗1%=13006.设028Y =,按递推公式1n n Y Y -= (n=1,2,…)计算到100Y 27.982≈(5位有效数字),试问计算100Y 将有多大误差?解:1n n Y Y -=-10099Y Y ∴=9998Y Y =9897Y Y =……10Y Y =依次代入后,有1000100Y Y =-即1000Y Y =27.982≈, 100027.982Y Y ∴=-*310001()()(27.982)102Y Y εεε-∴=+=⨯100Y ∴的误差限为31102-⨯。
数值分析课程第五版课后习题答案
第一章 绪论3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(2.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++;[解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ; [解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。
[解]53232323*42*4*2*2*41***4*2*1088654.01021)430.56(461.561021)430.56(461.561021)430.56(031.01021430.561)()()(1)()/(-----=⨯≈⨯⨯=⨯⨯=⨯⨯+⨯⨯=+=⎪⎪⎭⎫⎝⎛∂∂=∑x x x x x x x f x x e n k k kεεε。
数值分析课程第五版课后习题答案(李庆扬等)(OCR)
根是x,,2…,x-,且V。x,x…·,x)=V,Cx6,x…·)(x-x)…(x-x)。
V,(xo,x,…x-x)=11】 -x,)用a-x,)
[证明]由
可得求证。
=V,(Cx8,x,…,xX))11(x-x)
2、当x=1-1,2时,f(x)=0,-3.4,求f(x)的二次插值多项式。
L,(x)=y%((xx6--xx,)((xx-2x-x22))
y=f(x)=f0.5)=-0.693147,y2=f(x)=f(0.6)=-0.510826,则
L2(x)=y。 (x-x)(x-x2)
(x6-x)x-x)
(x-x)(x-x)
(x-x)(x-x2)
(x-xo)(x-x) (x2-xo)(x2-x)
=-0.916291×.(0(.x4-0-.05.)5()x(-00..64)-0.6-.
30—+2—9.x9583x31 ̄02'=0.8336×104
14、试用消元法解方程x组1+10"x=100
x+x2=2
,假定只有三位数计算,问结果是否
可靠?
[解]精确解为x1=0100-*1 10"-2 ,当使用三位数运 算时,得到
x =1,x2=1,结果可靠。
15、已知三角形面积s=s去= absinc,其中c为弧度,0<c< 且测量a,b,c
位有效数字;x=56.430有5位有效数字;x=7×10有2位有效数字。 4、利用公式(3.3)求下列各近似值的误差限,其中x,x;,x,x;均为第3题所给
的数。
(1)x+x2+x:
e(x+x写+x)=>
[解]
E(x)=E(x)+E(x)+E(x;)
3+tx10=1.05×103
(2)xxx;
(完整版)数值分析第五版答案(全)
第一章 绪论1.设0x >,x 的相对误差为δ,求ln x 的误差。
解:近似值*x 的相对误差为*****r e x xe x x δ-=== 而ln x 的误差为()1ln *ln *ln **e x x x e x =-≈进而有(ln *)x εδ≈2.设x 的相对误差为2%,求n x 的相对误差。
解:设()nf x x =,则函数的条件数为'()||()p xf x C f x = 又1'()n f x nx-=, 1||n p x nx C n n-⋅∴== 又((*))(*)r p r x n C x εε≈⋅且(*)r e x 为2((*))0.02n r x n ε∴≈3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, *456.430x =,*57 1.0.x =⨯解:*1 1.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =⨯是二位有效数字。
4.利用公式(2.3)求下列各近似值的误差限:(1) ***124x x x ++,(2) ***123x x x ,(3) **24/x x .其中****1234,,,x x x x 均为第3题所给的数。
解:*41*32*13*34*151()1021()1021()1021()1021()102x x x x x εεεεε-----=⨯=⨯=⨯=⨯=⨯***124***1244333(1)()()()()1111010102221.0510x x x x x x εεεε----++=++=⨯+⨯+⨯=⨯ ***123*********123231132143(2)()()()()1111.10210.031100.031385.610 1.1021385.6102220.215x x x x x x x x x x x x εεεε---=++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯≈**24****24422*4335(3)(/)()()110.0311056.430102256.43056.43010x x x x x x xεεε---+≈⨯⨯+⨯⨯=⨯=5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为343V R π=则何种函数的条件数为23'4343p R V R R C V R ππ===(*)(*)3(*)r p r r V C R R εεε∴≈=又(*)1r V ε=%1故度量半径R 时允许的相对误差限为εr (V ∗)=13∗1%=13006.设028Y =,按递推公式1n n Y Y -= (n=1,2,…)计算到100Y 27.982≈(5位有效数字),试问计算100Y 将有多大误差?解:1n n Y Y -=-10099Y Y ∴=9998Y Y =9897Y Y =……10Y Y =依次代入后,有1000100Y Y =-即1000Y Y =27.982≈, 100027.982Y Y ∴=-*310001()()(27.982)102Y Y εεε-∴=+=⨯100Y ∴的误差限为31102-⨯。
数值分析第五版-李庆扬--课后习题答案
数值分析第五版-李庆扬--课后习题答案第一章绪论1.设某0,某的相对误差为,求ln某的误差。
e某某某某某解:近似值某某的相对误差为=er某某某某1e某而ln 某的误差为eln某某ln某某ln某某某进而有(ln某某)2.设某的相对误差为2%,求某n的相对误差。
解:设f(某)某n,则函数的条件数为Cp|某n某n1|n,Cp|n某f'(某)|f(某)又f'(某)n某n1又r((某某)n)Cpr(某某)且er(某某)为2r((某某)n)0.02n3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个某某某单位,试指出它们是几位有效数字:某11.1021,某20.031,某3385.6,某某某456.430,某571.0.某解:某11.1021是五位有效数字;某某20.031是二位有效数字;某某3385.6是四位有效数字;某某456.430是五位有效数字;某某571.0.是二位有效数字。
某某某某某某某某4.利用公式(2.3)求下列各近似值的误差限:(1)某1,(2)某1.某2某4某2某3,(3)某2/某4某某某某其中某1均为第3题所给的数。
,某2,某3,某4解:121某(某2)10321某(某3)10121某(某4)10321某(某5)1012(某1某)104某某某(1)(某1某2某4)某某某(某1)(某2)(某4)1114331010102221.05103某某某(2)(某1某2某3)某某某某某某某某某某1某2(某3)某2某3(某1)某1某3(某2)1111.10210.0311010.031385.61041.1021385.61032220.215某某(3)(某2/某4)某某某某某2(某4)某4(某2)某某24110.03110356.4301032256.43056.4301055计算球体积要使相对误差限为1,问度量半径R时允许的相对误差限是多少?4解:球体体积为VR33则何种函数的条件数为RV'R4R2Cp34VR33r(V某)Cpr(R某)3r(R某)又r(V某)121故度量半径R时允许的相对误差限为r(R某)10.3331783(n=1,2,…)6.设Y028,按递推公式YnYn1100计算到Y100。
数值分析第五版课后答案
数值分析第五版课后答案(ii )2/(x ) = Imr0.40.50.60.7 0.8 lar一 0.916 291 一 0.693 147 一 0・ 510826-0. 356 675-0.223 144用线性插值及二次插值计算InO. 54的近似值•解 依据插值误差估计式选距离0. 54较近的点为插值节点,并建立差商 表如下:一 0.693 147-0.510 826 - 0.916 291写出Newton 插值多项式M(H ) =- 0.693 147 + 1.823 210Q — 0.5)N2)= M (_r) + (—0.204 115〉(工一0. 5)匕一0・6)计算近似值Ni (0. 54) =一 0.693 147+ 1.823 210(0. 54 — 0. 5) =—0.620 218 6弘(0.54) = N 】(0.54) — 0.204 115(0. 54 - 0.5X0. 54-0.6) =-0.616 8394・设门为互异节点(j = 0.1 ■…山).求证:A(I )三卫(上=0, 1 ■…,Q;n(ii )心一工)铅(门三o 仏=1. 2. •••■" 证明 (i )令fS 』工X 若插值节点为X/7 - 0,1 则/<x )的n次播值多项武为["(工)=工球丿3插值余项为R”(王〉=/(X )— L n (X )= /—(/)(n + 1)!/X—Ti-CkXVZ又因为k < 所以严)(0 = 0,R 心)二 0x 0 = 0. 5 X] = 0. 6工2 = 0. 4二> -0.204 1151.823 2102. 027 325所以丿・0 1 -n L'? /xsr ("卜;(_"“(/〉 r —0 丿•()L ' r / SCOg ( . ) (一 x)k -'x' =(彳一 Qi 三 05.设 /(x) 6 C 2[a, 6]且 /(a) = fib) = 0.求证: max | f(x) £(b —a),max | /z (j) \ a^r^ib .O心疋6证明 令x = a 和工=人以此为插值节点•则插值多项式为Li (工)= /(a) -—; + f(b) Y —- 三 0<2—o b — a应用插值余项公式有y*7(^) (X — a)(.x — 6) Wmax | /(g) I max | (x — a)(x — b) | / Wb a<jfCZ> _(6 — a )2 max | fXx ) | O aM 临 b6.在一 4<x<4上给出r (T )= e 『的等距节点函数表,若用分段二次插值求e 「的近似值,要使截断误差不超过10一&,问使用函数表的步长h 应取多少?解 若插值节点为IT , r 和工沖则分段二次插值多项式的插值余项为式中Ml = Xi — h,工沖=$ +札\R :(r) l^ye 1max | (文—刀_)) (_r —兀)〈工—J7°j )丨 0插值点个数< W 6 得 A < 0.006 5&是奇数,故实际可采用的函数值表步长7•若必=2S 求及解 根据向前差分算子和中心差分算子的定义进行求解£(:)(-】〉1巧” =£(:)(-1)-皿=孑y” = (F? — F~T )°y” = (E"r )*(E — IYy n =「2$% = L (%) = g = 2—8.如果fl 工、是刃次多项式,记= f (j--T-h ) —/(T ).证明/(x )的 &阶差分Nfa )(0W 是rn-k 次多项式,并且A^7(T> = 0(/为正 蔓牧).证明 对加次多项式/(才)应用Taylor 公式有A/(x ) = /(z + A ) —/(j ) = /( J )A H- rr/^x ) + ••• 4- Jf"' (x )Z! 初!即△/(/)为m- 1次的多项式・= △(△/&)),对加一 1 > 0次多项式应用上述推理过程知 △(△/(工))=庄只工)是加一2次的多项式.依此过程递推,知A7<^X0<Xr<r«)为m-k 次多项武. 所以必工)为常数,故 s = 0(/为正整数).9. 证明 A (/*g* ) = /* Ag* 4-A/*.证明 A/igJ = /n-ign-i ~ Ag* = /n-igHi - fkgkn 十/*gi - fkgk = gtrl (人+1 — 人> + fk(g^l 一创)=g 屮+ 介厶®15.证明两点三次Hermite 摘值余项是尺3(刃='‘4 ;目(工—九)'(H —)?, E €(N ,才屮)并由此求出分段三次Henniw 猶值的课差限・证明 若工W [工―文屮]・且插值多项式满足条件円3 {竝)=/(竝几 H3(X H -1)=产(工屮)H ; ( Z* ) = f (x> ) * H3' (J T H -I )=(.r*41)1 4-(- 4) 十 0. 006 581 268 冬 1 217 旦 N4 —(—4) F T8T2162 0. 006 579知插值余项RQ) = /(文)一耳(工> 有二重零点g和文卄故设R(攵)=以文)0 —比)?(文一攵申〃确定函数恥才几当JC = X*或工屮时來工)取任何有限值均可I当才H忑,J•屮时“&(仏°文屮),构造关于变量t的函数g(r) == /([)—丹3(『)一总(才)(〔一=*)2((— X*+l )2 显然有g(文▲)= 0. g(i?) = 0. ) = og'(r*.〉= 0, £心屮)=0在S ,工]和Dr, z*+l J上对g(T)使用Rolle定理,存在® €(无,才〉及少W (w, x*-ti)使得&'(》)=0, g'(%)= 0在a ,巾),Cyl *罪),<72« x*+i)上对g'(=)使用Rolle定理,存在供| € 5,巾),巾?€(6,%)和阻屮6(%,XHI)使得g"(知)=g"(?!2)= g"(少.屮)=0再依次对g(0和g"(“使用Rolle定理,知至少存在(比,工屮)使得gW(E)=而g⑷⑺=一虹小4!,将"弋入•得到£€5 •工屮)推导过程表明W依赖于工点,及=•综合以上过程可知R(T)= “(&(a■一忑)2(工一卫^)2下面建立分段三次Hermite插值的谋差限.记h (小为/Cr)在[a,刃上的基于等距节点的分段三次Hermite插值函数.x k = a+kh 4 = 0, !••• ♦ n), h = b — a■n在小区间[去,/小]上有I /(x)— /A<x)| —右 | 严(£)|(X— X*)-(X— XH-1)2 <7f max \尸4)(力))max (_r —业)?(工一z屮尸而最值0 才=十妙 ]max (工一及)■(工一 z>+! 「L l 「• , maxs"(5 ― l )2h 4 = r k n<<<! 16进而得误差估计1 /(文)-越空简|八(如】6・求一个次数不离于4次的多项式PCr 〉•使它满足P(0) = P(0) = 0, P(l) =P71) = HP(2) = 1.解法一 利用Hermite 插值可得到次数不高于4的多项式几== 1;为==打 W f > = 0 •加I = 1H 3(X )=(才)+ /(文)◎(才)=(1 一 2 三「卫■)(才二空)2 =(1 + 2刃1)2氐—XI 竝一 4G&) = (1-2 J ~-r| )( - )2 = (3 — 2&)疋Jj —竝 XI — To仇(工)=兀(工一 1)?向=(工一 1)JT 2所以Hj (2) = (3 — 2x )x 2 + (1* — 1 )J -? =— T 3 + 2z~设 = H 3(X )4-A (T -^)2(J —T ))2,其中・A 为待定常数,令 F (2)=1得于是P3十一尸这样可写岀Newton 插值公式P (x ) = 0 + 0(乂一0)十 1(工一0)? — 1(広一0)?(工一 1) +— 0)'($ — l )? =— 1) + 4-工?(&一 1)?=解法二(带重节点的Newton 插值法)建立如下差商表:-124 4J-x 2 (r ~ 3): 417 •设f (.C 二厂丄g 在一 5€工€5上取"=10•按等矩节点求分施线1 f JT性插值函数ha )・计算各节点间中点处Z A (J -)与/(x >的值,并佑计课差.解 若 = 5,r lc = 5,则步长 A = ------------- ---- -- -- = I =— 5+ ih = — 5 +n2(ow?w 10).在区间Cx-上•分段线性插值瓯数为/1°(X )= /(X,)工汁】一広+工一 rTT7T F+不分段线性插值函数定义如下:各节点间中点处函数值及插值函数值如下所示:估计谋差:在区间[乙,刀+门上lf (jr )—击厂(。
数值分析第5版课后答案
数值分析第5版课后答案本文是数值分析第5版课后答案。
以下是每章节课后习题的答案。
第一章:导论和误差分析1.什么是数值分析?数值分析是利用数学模型和离散数值计算方法进行科学计算的一门学科。
它通过建立数学描述、离散化、数值求解等步骤求解各种科学计算问题。
2.什么是误差?误差是实际值与理论值之间的差异。
误差分为绝对误差和相对误差。
3.什么是有效数字?有效数字是指一个数值中有效的数字位数,不包括前导0和末尾0。
第二章:计算机算术1.什么是机器数?机器数是计算机内部表示的数字。
它是由位组成的2进制数,可以表示整数和实数。
2.什么是补码?补码是表示负整数的一种方法。
它是将一个数反码后加1得到的数,也就是一个数与其相反数的和,是一种用来解决计算机计算负数的方法。
3.什么是浮点数?浮点数是一种可以表示任意大小的实数的计算机数据类型。
它由两部分组成:指数和尾数。
指数表示数的大小,尾数表示数的精度。
第三章:方程的解法1.什么是二分法?二分法是一种求解连续函数零点的方法。
它需要先确定一个区间,然后在该区间中搜索函数值为0的点。
2.什么是牛顿迭代法?牛顿迭代法是一种求解非线性方程的方法。
它利用函数的一阶导数和二阶导数近似表示函数,并利用初始值和迭代公式得到近似解。
3.什么是割线法?割线法是一种求解非线性方程的方法。
它是利用函数两点连线的斜率逼近函数的零点,并利用初始值和迭代公式得到近似解。
第四章:插值和逼近1.什么是插值?插值是利用已知数据点得到一个函数,使这个函数通过这些点。
2.什么是拉格朗日插值?拉格朗日插值是一种插值方法。
它利用数据点和插值点的函数值,通过拉格朗日插值公式得到通过插值点的函数。
3.什么是样条插值?样条插值是一种插值方法。
它是通过多项式连接各个区间,并满足一定条件得到一个光滑的函数。
第五章:数值积分1.什么是数值积分?数值积分是用数值计算方法来近似计算定积分的方法。
2.什么是梯形公式?梯形公式是数值积分的一种方法。
数值分析第5版课后答案
数值分析第5版课后答案该科目:数值分析适合年级:研究生及以上题型一:选择题1. 数值分析的主要研究对象是:A. 数值计算方法B. 数值计算机器C. 数值计算结果D. 数值计算过程2. 数值计算方法不可以解决的问题是:A. 导数的计算B. 积分的计算C. 微分方程的求解D. 等式的求解3. 下述哪个数值计算方法的计算机程序与解析方法的计算机程序相同:A. 数值逼近法B. 插值法C. 求解非线性方程的法D. 数值微积分4. 下述哪个数值计算方法不属于插值法:A. 牛顿插值法B. 拉格朗日插值法C. 分段插值法D. 辗转相消插值法5. 下述哪个数值计算方法不属于数值微积分:A. 数值积分B. 复化求积公式C. 龙贝格求积公式D. 杜汉求积公式答案:1-A、2-D、3-C、4-D、5-D题型二:填空题1. 理解复化求积公式,对于数值积分的准确度影响较大的主要有两个因素。
一是∆x的大小,这个因素可以通过增加______的数量来得到优化,即可以用增加区间的方法来降低误差;二是f(x)在所积区间上的变化率,如果f''(x)变化范围大,则误差大,误差变化规律主要是______型。
2. 当计算公式为∫f(x)dx时,为了防止舍入误差的产生,通常都采取尽可能多的方式使用对偶的数字,这种方法叫______。
3. 当使用拉格朗日插值公式求解区间[3,4]内f(x)=e^x , 求在x=3.5处的插值多项式P(x),则带入拉格朗日的插值公式,得到答案为P(3.5)=______。
4. 如果插值用的插值点的横坐标相等,这样的插值称为______插值。
5. 当区间划分的精度x越小,则时域精度τ也会________。
答案:1-∆x、振荡、2-对偶数码(Baud complement)、3-e^3.5-0.0881(2)、4-重复、5-增加。
题型三:判断题1. 龙贝格求积公式在划分区间上使用的步长是解析式算出的()。
清华大学第五版《数值分析》课后答案
第1章绪论内容提要#〜误差度量1数值分析研究两类误差:舍入误差和截断误差,由于计算机字长的有限性,对相关数据进行存储表示时便产生舍入误差,计算机必须在有限的时间内得到运行结果,于是无穷的运算过程必须截断为有限过程,由此产生截断误差,2,误差的度量分式有:绝对误差(限)、相对误差(限〗和有效数字,设?是真值工的一个近似,绝对误差为一:!相对误差为& ,绝对误差限〉和相对误X X差限6^ 〉分别是〉 |和^(:^ ^|的上限,3^对于非零近似值^的如下规格化标准形式X^ ^ 10^ X0#!1X2'&X&,&!' ?X I ^0 〈1. 1〉如果存在尽可能大的&,使得〉| & ^乂10"-",则称?有"位有效数字.进而当&^》时,称X,是有效数.4,有效数字和相对误差的关系定理1. 1 如果形如式〈1. V的有&位有效数字,则定理1.2如果形如式〈1. 0的:^的相对误差满足^|《"二" X化1-"则纟^至少有&位有效数字,二、浮点数系统对于5+ ^ + 2位的浮点数系0表示二进制阶码数值的二进制位数〃表示尾数的二进制位数,其他两位表示阶码和尾数的符号〉,机器数绝对值的范围是2-21〜22'-、实数表示的相对舍入误差限是2-'.当数据的绝对值大于22'-1时,计算机非正常停机,称之为上溢,当非零数据的绝对值小于2-2',用机器零表示,精度损失,称之为下溢,、误差传播如果在运算过程中舍入误差能够得到控制,或者舍入误差的增长不影响产生可靠的结果则纟称该算法是数值稳定的,函数值绝对误差传播公式如下^/(^" 丫) ## /(;:)〉 1 2〉^(/(^" ^-^:》#亡"";二…、^ 〉(丄门)!.^^")〉#| /'(?) |〈1.4〉、数值稳定性不同的教材对数值方法稳定性的定义有所不同,有的要求随计算过程的深入误差不增长,有的则要求误差增长速度不能太快^只要不影响产生具有有效数字的近似值即认为是稳定的,读者应注意教材中的定义.随着学习的深入,会针对各种具体算法给出稳定性的确切定义,^ 2 ^典型例题与解题技巧【例1】求!&的近似值,使其绝对误差限精确到1乂1。