温度监控系统的设计1

合集下载

温度监控系统课程设计报告

温度监控系统课程设计报告

温度监控系统课程设计报告1 设计背景设计目的及意义随着现代计算机和自动化技术的发展,作为各种信息的感知、采集、转换、传输相处理的功能器件,温度传感器的作用日益突出,成为自动检测、自动控制系统和计量测试中不可缺少的重要技术工具,其应用已遍及工农业生产和日常生活的各个领域。

本设计就是为了满足人们在生活生产中对温度测量系统方面的需求。

(1)在学习了课程后,为了加深对理论知识的理解,学习理论知识在实际中的运用,培养动手能力和解决实际问题的经验。

(2)通过实验提高对单片机的认识,提高软件调试能力。

(3)进一步熟悉和掌握单片机的结构及工作原理,通过课程设计,掌握以单片机核心的电路设计的基本方法和技术。

(4)通过实际程序设计和调试,逐步掌握模块化程序设计方法和调试技术。

(5)熟悉温度控制的工作原理,选择合适的元件,绘制系统电路原理图,运用单片机原理及其应用,进行软硬件系统的设计和调试,加深对单片机的了解和运用,进而提高自己的应用知识能力、设计能力和调试能力。

总体设计思路本设计以单片机为基础,温度监控系统大致上可以分为以下几个步骤:系统分析过程(1)根据系统的目标,明确所采用温度监控系统的目的和任务。

(2)确定系统所在的工作环境。

(3)根据系统的工作要求,确定系统的基本功能和方案。

系统设计内容(1)构思设计温度监控系统的工作流程。

(2)对要求设计的系统进行功能需求分析,考虑多种设计方案,比较各方案的特点,并确定合理可行的方案,并设计相应的功能结构。

(3)根据系统的控制要求,选择合适型号的芯片及元器件。

(4) 设计以单片机为核心的控制程序。

(5) 电路板及其结构的设计。

(6) 进行系统的调试,完成最终的设计。

2 总体设计方案设计系统框图本设计为无线电控制电路,系统框图如下所示:图1-1 系统框图系统功能此设计以单片机为核心的温度监控系统,其功能是:平常状态下可以做温度计使用。

当温度超过预设温度时二极管会闪烁报警,当温度降下时二极管则停止闪烁。

温度监控系统的设计(软件设计)

温度监控系统的设计(软件设计)

温度监控系统的设计——系统的软件设计指导老师:** 老师摘要随着科技的发展,相较于很多年以前人们对于自己生活的需求也发生了戏剧性的改变。

而监控系统恰恰迎合了人们的这一需要。

在众多先进测量控制技术中,由于单片微处理器的性能日益提高、价格又不断降低,使其性能价格比的优势非常明显并且我们知道利用MATLAB可以方便地进行仿真整定PID参数。

本文介绍一个以单片机为核心的温度监控系统,主要包括控制算法的仿真分析(用MATLAB)和软件编程(用C51),它是利用传感器采集温度信号, 温度信号经放大电路放大、A/D转换后送到单片机中,并将温度值显示在数码管上,单片机把它同由键盘实现的给定温度进行比较,再由单片机根据控制策略给出控制量,然后将控制量送驱动电路驱动加热装置和报警装置,从而构成了实时闭环系统。

本人主要负责系统的软件设计,在软件设计过程中,我们尽可能使其功能化、模块化、尽量采用子程序调用的方法。

【关键字】单片机;温度监控系统;PID控制算法;MATLAB;软件设计(C51)。

AbstractWith the increasing pace of science and technology, perhaps no change has characteristic the past decades more dramatic than that of people’s demands of their own life. Supervision and monitoring system meet the requirements of them. In these numerous advanced measurement and control technology, because of the enhanced performance and reduced price of MCU, making the advantage that its ratio of performance to price been obvious and as we know MATLAB is easy to simulate the setting of PID parameter. This text, which comprised by the simulation and analysis of control algorithms (using MATLAB) and the program of software (using C51), introduces a temperature monitor whose core is a MCU. It gathers the temperature signal and amplifies it by an amplifier circuit microcomputer. Simultaneity sends it into the MCU after A/D conversion. Then show it on in the LED. The single chip compares it with the temperature, which realizes by the keyboardand give control measure according to the control strategy. In the end, the MCU sends control measure to drive circuit in order to drive the heating installation and warning device. And a closed system is formed.I am mainly responsible for the software design of the system .In process of the software design; we make its function, modularization and use subroutine as far as possible.KEYWORDS: MCU; temperature monitor system; The control algorithm of PID;MATLAB;software design(C51).目录引言---------------------------------------------------------------------------------------------- 4 1 系统概述---------------------------------------------------------------------------------------- 41.1系统功能描述 ------------------------------------------------------------------------------------------ 41.2 系统的框图--------------------------------------------------------------------------------------------- 52 、PID控制与MATLAB仿真 -------------------------------------------------------------- 52.1 PID控制------------------------------------------------------------------------------------------------- 52.1.1 PID控制的优点------------------------------------------------------------------------------ 52.1.2 数字PID ----------------------------------------------------------------------------------- 62.1.3 凑试法确定PID参数----------------------------------------------------------------------- 62.1.4 电炉传递函数 -------------------------------------------------------------------------------- 72.1.5 PID控制框图 ----------------------------------------------------------------------------- 72.2 MATLAB仿真-------------------------------------------------------------------------------------------- 72.2.1 Simulink模型的建立 ---------------------------------------------------------------------- 82.2.2 PID 的MATLAB编程实现 ------------------------------------------------------------------ 93 、硬件概述----------------------------------------------------------------------------------- 103.1 硬件电路概述 ---------------------------------------------------------------------------------------- 103.2 AT89C51端口定义---------------------------------------------------------------------------------- 113.3 模数转换模块 ---------------------------------------------------------------------------------------- 123.4键盘模块------------------------------------------------------------------------------------------------ 133.5显示模块------------------------------------------------------------------------------------------------ 144、软件设计----------------------------------------------------------------------------------- 154.1 单片机编程语言的选择 ---------------------------------------------------------------------------- 154.1.1 汇编语言 ------------------------------------------------------------------------------------- 154.1.2 C语言---------------------------------------------------------------------------------------- 154.2 软件总体结构图 ------------------------------------------------------------------------------------- 164.2.1系统初始化 ----------------------------------------------------------------------------------- 164.2.2主程序模块软件设计 ---------------------------------------------------------------------- 164.3 A/D模块软件设计 ----------------------------------------------------------------------------------- 174.4 键盘模块软件设计 ---------------------------------------------------------------------------------- 174.5 报警模块软件设计 ---------------------------------------------------------------------------------- 194.6 采样、PID校正及PWM 输出模块软件设计--------------------------------------------- 204.7 显示模块软件设计 ---------------------------------------------------------------------------------- 215、系统调试与总结 ------------------------------------------------------------------------- 225.1 系统调试----------------------------------------------------------------------------------------------- 225.2程序链接------------------------------------------------------------------------------------------------ 235.3总结------------------------------------------------------------------------------------------------------ 255.4英文及翻译链接 -------------------------------------------------------------------------------------- 25 参考文献----------------------------------------------------------------------------------------- 26鸣谢-------------------------------------------------------------------------------------------- 27引言随着电子技术和微电子技术的发展,微型计算机发展也越来越快。

机房温度监控系统的设计与实现

机房温度监控系统的设计与实现

图1 机房温度监控系统功能设计模块示意图2.1 实时监测功能描述:机房温度监控系统工作时,必须实时监测各种数据。

要求:需要检测的数据包括各个温度采集点的温度数据、各个辅助冷却设备的运行状态和网络通信状态等。

2.2 自动控制功能描述:系统工作时,根据采集到的实时温度数据和设置好温度上下阀值进行比较,温度过高时自动打开对应区域的冷却设备;温度过低时关闭对应区域冷却设备。

要求:充分利用机房冷凝器设备和图2 机房温度采集节点分布图图3 机房温度监控系统主界面截图不会对原有系统造成不良影响。

温度采集及通信模块的设计采用2级分布式控显示,既可以上位机PC远程集中控制模式,又可实现温度采集模块本地分布式控制模式。

根据机房设备安装情况、通风情况和发射机运行等情况,确定出个温度采集节点。

如图2所示,安装于左、右冷凝器9个排风机是轴流风机,把发射机冷凝器产生的热风抽往室外,排风机的开启主要由排风机口温度决定,需要在9个排风机入口各布置一个采温点,发射机冷凝器风机的开启由各自的进、出水温度决定,因此把每部发射机冷凝器进、出水管作为温度采集点,各安装1个温度传感器。

水洗风给机房大厅降温,尤其在夏天时,新疆南疆地表温度高,在发射机开启后,由于发射机风冷系统是内循环,机房大厅温度上升很快,不利于发射机稳定工作,因此在大厅两侧分别安装1个温度传感器,取样的温度数据作为开启对应水洗风及其风量大小的依据;在发射机冷凝器冷却效果不好的情况下,需要开启混风机加大进风量,因此在左、右冷凝器室分别布置1温点。

由于发射机进出水管均为铜所以采用贴片式温度传感器,而排风机口则采用壁挂式温度传感器。

温度传感器采用三线制接法,接到温度控制仪的热电阻输入端,温度控制仪的485与TU8002型转换器的输入端相连接,TU8002型转换器完成485和以太网之间的转换,连接到以太网交换机上。

基于LabVIEW的自动温度监控系统的设计

基于LabVIEW的自动温度监控系统的设计

基于LabVIEW的自动温度监控系统的设计作者:何乾伟,王小魏,黄致尧来源:《科技视界》 2015年第27期何乾伟王小魏黄致尧(西南石油大学石油与天然气工程学院,四川成都610500)【摘要】传统的温度监控器功能完全依赖硬件实现,有精度低、速度慢、价格昂贵等缺点,根据温度监控的需要,结合虚拟仪器的特点,基于LabVIEW的开发平台设计了一种自动温度监控系统。

该系统主要完成了前面板和程序框图的设计,具有使用灵活、效率高、自动化程度高、操作简单、可实现用户自定义其功能等优点。

【关键词】温度监控系统;LabVIEW;程序;设计0引言借助于仪器仪表技术和计算机技术的飞速发展,虚拟仪器随之诞生,20世纪80年代,美国国家仪器公司首先提出虚拟仪器的概念,和传统仪器相比,虚拟仪器具有使用灵活、效率高、自动化程度高、操作简单、可实现用户自定义其功能等优点。

虚拟仪器已成为未来仪器发展的一种趋势,但这也对现有虚拟仪器技术提出了更高的要求。

本文重点介绍了一种基于LabVIEW而设计的数字化自动温度监控系统,在很大程度上解决了传统温度检测仪器的诸多弊端。

该仪器可以由用户自由地组合计算机平台、硬件、软件、以及各种实现应用所需要的附件,这种灵活性可由供应商定义,功能固定、独立的传统仪器无法与之相比。

1自动温度监控系统的设计指标该自动温度监控系统基于LebView而设计,在实现传统温度监控器所实现的功能的基础上,结合虚拟仪器的特点进而增加了一些传统仪器不具备的新功能,该设计实现的主要功能如下:1)实时监测温度数值;2)自动分析已检测温度,显示最大温度、最小温度和平均温度;3)设定温度的监控范围,出现异常时报警提示;4)华氏温度与摄氏温度之间互相转换;5)用户可以控制监测过程。

2自动温度监控系统的设计2.1前面板的设计前面板的设计主要包括显示部分和控制部分,具体设计步骤如下,图1为前面板的设计图。

2.1.1显示部分显示部分主要包括一个波形图表和多个字符串显示控件,波形图表用于显示当前温度值和规定的报警温度温度上下线,字符串显示控件分别用于显示设定的温度上下线、当前温度值、最大温度、最小温度和平均温度,以便于更加直观的观察各项温度的精确值。

基于单片机的多点无线温度监控系统

基于单片机的多点无线温度监控系统

基于单片机的多点无线温度监控系统1. 引言1.1 研究背景在现代社会,温度监控系统在各个领域中发挥着重要作用,例如工业生产、环境监测、医疗保健等。

随着科技的不断发展,基于单片机的多点无线温度监控系统逐渐成为一种趋势。

研究背景部分将深入探讨这一领域的发展现状,以及存在的问题和挑战。

目前,传统的有线温度监控系统存在布线复杂、安装维护困难等问题,限制了其在一些特定场景下的应用。

而无线温度监控系统以其布线简便、实时监测等优势逐渐被广泛应用。

目前市面上的产品多数存在监测范围有限、数据传输不稳定等问题,迫切需要一种更为稳定、可靠的无线温度监控系统。

本文将基于单片机技术设计一种多点无线温度监控系统,旨在解决现有系统存在的问题,提高监测范围和数据传输稳定性。

通过对单片机、温度传感器、通信模块等关键部件的选择和设计,构建一套高性能的无线温度监控系统,为相关领域的应用提供更好的技术支持和解决方案。

1.2 研究意义无线温度监控系统的研究意义在于提高温度监控的效率和精度,实现对多个点位的远程管理和监控。

通过使用单片机技术,可以实现对多个温度传感器的同时监测和数据传输,使监控过程更加智能化和便捷化。

这对于各种需要严格控制温度的场合如实验室、制造业、医疗行业等具有重要意义。

无线温度监控系统的研究也有助于推动物联网技术的发展,为智能家居、智能城市等领域打下基础。

通过建立稳定、高效的多点无线温度监控系统,不仅可以提高生产效率,降低能耗,提升产品质量,还可以有效预防事故发生,保障人员安全。

研究基于单片机的多点无线温度监控系统具有重要的现实意义和应用前景。

1.3 研究目的本文旨在设计并实现基于单片机的多点无线温度监控系统,通过对温度传感器采集的数据进行处理和传输,实现对多个监测点的实时监控。

具体目的包括:1. 提高温度监控系统的便捷性和灵活性,使监控人员可以随时随地实时获取监测点的温度数据,为及时处理异常情况提供有力支持;2. 降低监控系统的成本,利用单片机和无线通信模块取代传统的有线连接方式,减少线缆布线成本和维护成本;3. 提升监控系统的稳定性和可靠性,通过精心选型与设计,以及合理的系统实现过程,确保系统能够持续稳定地运行,并提供准确可靠的数据;4. 探索未来监控系统的发展方向,从实际应用情况出发,进一步优化系统性能,并为未来无线温度监控系统的研究和应用奠定基础。

基于单片机的多点无线温度监控系统

基于单片机的多点无线温度监控系统

基于单片机的多点无线温度监控系统随着物联网技术的不断发展,无线传感器网络在各个领域都得到了广泛应用。

基于单片机的多点无线温度监控系统,不仅可以实现对多个温度点的实时监控,还可以通过无线方式传输监测数据,实现远程监控和管理。

本文将介绍基于单片机的多点无线温度监控系统的原理、设计和实现过程。

一、系统概述基于单片机的多点无线温度监控系统主要由传感器节点、信号处理单元、无线通信模块、监控中心等组成。

传感器节点负责采集温度数据,信号处理单元对采集的数据进行处理和存储,无线通信模块实现数据传输,监控中心则负责接收和显示监测数据。

二、系统设计1. 传感器节点设计传感器节点是系统的核心部分,负责采集温度数据。

为了实现多点监控,传感器节点需要设计成多个独立的模块,每个模块负责监测一个特定的温度点。

传感器节点的设计需要考虑传感器的选择、数据采集和处理电路的设计、以及无线通信模块的接口设计。

传感器节点采用数字温度传感器DS18B20进行温度采集,采集到的数据通过单片机进行处理和存储,然后通过无线通信模块进行数据传输。

2. 信号处理单元设计信号处理单元主要负责对传感器采集到的数据进行处理和存储。

传感器采集到的数据需要进行数字化处理,然后存储到单片机的内部存储器中。

传感器节点采用的是单片机AT89S52作为信号处理单元,通过单片机的A/D转换功能对温度数据进行数字化处理,然后存储到单片机的内部EEPROM中。

3. 无线通信模块设计无线通信模块主要负责将传感器节点采集到的数据传输到监控中心。

传感器节点采用的是nRF24L01无线模块,通过SPI接口与单片机进行通信,并实现数据的传输。

4. 监控中心设计三、系统实现传感器节点采用DS18B20数字温度传感器进行温度采集,通过单片机AT89S52进行数据处理和存储,然后通过nRF24L01无线模块实现数据的传输。

传感器节点的设计需要考虑功耗、尺寸和成本等因素,需要尽量减小功耗和尺寸,降低成本。

基于单片机的多点无线温度监控系统

基于单片机的多点无线温度监控系统

基于单片机的多点无线温度监控系统随着物联网技术的不断发展,无线传感器网络(WSN)在各个领域中的应用越来越广泛。

温度监控系统作为最基本的传感器网络应用之一,在工业控制、环境监测、医疗保健等领域中发挥着重要作用。

本文将介绍一种基于单片机的多点无线温度监控系统,通过这种系统可以实现对多个点位温度数据的实时监测和远程传输。

一、系统设计方案1. 系统硬件设计该温度监控系统的核心部件是基于单片机的无线温度传感器节点。

每个节点由温度传感器、微控制器(MCU)、无线模块和电源模块组成。

温度传感器选用DS18B20,它是一种数字温度传感器,具有高精度、数字输出和单总线通信等特点。

微控制器采用常见的ARM Cortex-M系列单片机,用于采集温度传感器的数据、控制无线模块进行数据传输等。

无线模块采用低功耗蓝牙(BLE)模块,用于与监控中心进行无线通信。

电源模块采用可充电锂电池,以确保系统的长期稳定运行。

系统的软件设计主要包括传感器数据采集、数据处理和无线通信等部分。

传感器数据采集部分通过单片机的GPIO口读取温度传感器的数据,并进行相应的数字信号处理。

数据处理部分对采集到的数据进行滤波、校正等处理,以保证数据的准确性和稳定性。

无线通信部分则通过BLE模块实现与监控中心的无线数据传输。

二、系统工作原理1. 温度传感器节点工作原理每个温度传感器节点通过温度传感器采集环境温度数据,然后通过单片机将数据处理成符合BLE通信协议的数据格式,最终通过BLE模块进行无线传输。

2. 监控中心工作原理监控中心通过接收来自各个温度传感器节点的温度数据,并进行数据解析和处理,最终在界面上显示出各个点位的温度数据。

监控中心还可以设置温度报警阈值,当某个点位的温度超过预设阈值时,监控中心会发出报警信息。

三、系统特点1. 多点监控:系统可以同时监测多个点位的温度数据,实现对多个点位的实时监控。

2. 无线传输:系统采用BLE无线模块进行数据传输,避免了布线的烦恼,使得系统的安装和维护更加便捷。

智能农业设施中的温湿度监控与调控系统设计

智能农业设施中的温湿度监控与调控系统设计

智能农业设施中的温湿度监控与调控系统设计智能农业设施是现代农业发展的重要方向之一,它通过应用先进的技术手段,提高了农作物的产量和质量,促进了农业生产的可持续发展。

在智能农业设施中,温湿度是影响作物生长的关键因素之一。

为了实现智能农业设施中的有效温湿度监控与调控,需要设计并应用相应的系统。

一、智能温湿度监控系统设计智能温湿度监控系统主要是通过传感器对农业设施中的温湿度进行实时监测,并将监测数据传输到控制中心进行分析和处理。

系统设计的关键是选择合适的传感器,确保监测数据的准确性和稳定性。

1. 选择合适的温湿度传感器在智能农业设施中,常用的温湿度传感器有电阻式传感器、集成式传感器和纳米传感器等。

电阻式传感器价格较低,但对环境要求较高,易受温湿度变化和外界干扰影响;集成式传感器采用数字信号输出,具有较高的精度和稳定性,适用于复杂环境;纳米传感器体积小、灵敏度高,但价格较高。

根据实际需求选择适合的传感器。

2. 确保数据传输的稳定性智能温湿度监控系统需要将传感器采集到的温湿度数据传输到控制中心进行分析和处理。

为了确保数据传输的稳定性,可采用无线传输技术如Zigbee或LoRa等,或者借助物联网技术将数据传输到云端进行存储和管理。

同时,系统应设有网络故障切换和数据加密等功能,确保数据的安全和可靠性。

3. 建立实时监测与报警机制智能温湿度监控系统需要能够实时监测目标区域的温湿度变化,并及时发出报警,以便及时采取措施防范和解决问题。

监测数据可以通过显示屏、手机APP等方式直观地反映出来,同时系统还应具备远程控制和设置报警阈值的功能,以适应不同作物对温湿度要求的差异。

二、智能温湿度调控系统设计智能温湿度调控系统主要通过控制设备如加热器、通风设备、喷灌系统等,对农业设施中的温湿度进行有效调节和控制。

系统设计的关键是选择合适的调控设备和建立精确的控制算法。

1. 选择合适的调控设备温湿度调控系统中常用的调控设备包括加热器、通风设备、喷灌系统等。

冷链物流温度监控与报警系统设计

冷链物流温度监控与报警系统设计

冷链物流温度监控与报警系统设计冷链物流是指在物流过程中对易变质产品进行温度控制和监控,以确保产品的质量和安全。

在冷链物流过程中,温度监控和报警系统起着至关重要的作用,可以实时监测温度变化,并在温度异常时及时报警,以保证产品的品质和安全性。

本文将探讨冷链物流温度监控与报警系统的设计原理和关键技术。

一、冷链物流温度监控系统设计原理冷链物流温度监控系统的设计原理是通过传感器实时采集环境温度数据,并将采集到的数据通过通信网络传输到中央控制系统。

中央控制系统根据预设的温度范围进行数据分析和处理,并在温度超出设定范围时触发报警机制。

下面将介绍冷链物流温度监控系统设计的主要技术要点。

1. 传感器选择和布置在冷链物流过程中,合适的传感器是实现温度监控的关键。

常用的温度传感器有热电偶、热敏电阻和半导体温度传感器等。

根据实际需求选择适合的传感器,并合理布置在货物密集的区域,以确保准确采集到温度数据。

2. 数据采集与传输温度数据的采集与传输是冷链物流温度监控系统设计的核心。

可采用无线传感器网络技术,利用无线传感器节点采集环境温度数据,并通过无线通信模块将数据传输到中央控制系统中。

此外,还可以使用物联网技术和云计算技术实现数据的远程采集和传输,以提高系统的智能化和便捷性。

3. 数据分析与处理中央控制系统接收到温度数据后,需要进行数据分析和处理。

首先,对采集到的数据进行实时监测和记录,以便进行后期的分析和溯源。

其次,将采集到的数据与预设的温度范围进行比对,如果温度超出设定范围,就触发报警机制。

最后,对温度数据进行历史记录和统计分析,为冷链物流过程中的质量控制和管理提供支撑。

4. 报警机制设计报警机制是冷链物流温度监控系统设计的重要部分。

当温度超出设定范围时,系统会自动触发报警,通知相关人员进行处理。

报警方式可以包括声音报警、短信报警、邮件报警等,以确保及时采取措施避免温度对产品造成损害。

二、冷链物流温度监控系统设计关键技术冷链物流温度监控系统设计需要涉及多个关键技术,下面将重点介绍其中的几个关键技术。

温湿度监控系统方案

温湿度监控系统方案

温湿度监控系统方案温湿度监控系统方案⒈引言本文档旨在提供一个完整的温湿度监控系统方案,以便用户能够了解系统的整体设计和功能,以及相关的技术要求和环境需求。

⒉系统概述⑴系统描述温湿度监控系统是用于实时监测和记录环境中的温度和湿度,并将数据传输到中央服务器进行存储和分析的系统。

⑵系统功能●实时监测和记录环境温度和湿度数据●提供可视化界面显示温湿度数据●发出警报通知管理员当温湿度超出预设范围●数据存储和分析功能⒊技术要求⑴硬件要求●温湿度传感器:用于测量环境温度和湿度的设备●数据采集器:用于收集传感器数据并将其发送到服务器的设备●中央服务器:用于存储和分析传感器数据的设备●可视化界面:用于显示温湿度数据和系统状态的设备⑵软件要求●嵌入式软件:运行在数据采集器上,负责接收传感器数据并将其发送到服务器●服务器软件:用于接收和存储数据,并提供数据分析功能●可视化界面软件:用于显示温湿度数据和系统状态⒋系统设计⑴硬件设计●安装温湿度传感器在监测区域●部署数据采集器在每个监测区域●配置中央服务器用于存储和分析数据●连接可视化界面设备到服务器⑵软件设计●开发嵌入式软件,实现传感器数据的采集和发送功能●配置服务器软件,用于接收和存储数据,以及提供数据分析功能●开发可视化界面软件,实现数据的显示和系统状态的监测功能⒌系统测试⑴功能测试●测试温湿度监测功能是否正常●测试数据采集器和服务器之间的通信是否正常●测试警报功能是否正常⑵性能测试●测试系统的响应时间和吞吐量●测试系统的可靠性和稳定性⒍系统部署●安装温湿度传感器和数据采集器●部署中央服务器和可视化界面设备●配置系统参数和网络设置⒎系统维护和升级●定期检查和校准传感器●定期备份和维护服务器数据●及时修复软硬件故障●升级软件和固件以提高系统性能⒏附件本文档附带的附件为:●温湿度监控系统设计图纸●嵌入式软件源代码●服务器软件配置文件●可视化界面软件源代码⒐法律名词及注释●温湿度传感器:测量环境温度和湿度的设备,通常使用数字式温湿度传感器●数据采集器:将传感器数据采集并发送到服务器的设备,通常使用嵌入式系统●中央服务器:用于存储和分析传感器数据的设备,通常使用数据库和分析软件●可视化界面:用于显示温湿度数据和系统状态的设备,通常使用计算机或移动设备。

温湿度智能监控系统的设计-毕业设计-好

温湿度智能监控系统的设计-毕业设计-好

温湿度智能测控系统摘要本设计实现的是单片机温湿度测量与控制系统,通过在LCD1602 上实时显示室内环境的温度和相对湿度。

系统采用集温湿度传感器与A/D 转换器为一体的DHT90 传感器芯片,通过单片机AT89C52 处理进行显示,其它模块包括了实时时钟/日期产生电路和超限报警处理电路,对所测量的值进行实时显示和报警处理。

本文介绍了基于ATMEL 公司的AT89C52 系列单片机的温湿度实时测量与控制系统和显示系统的设计,包括介绍了硬件结构原理,并分析了相应的软件的设计及其要点,包括软件设计流程及其程序实现。

系统结构简单、实用,提高了测量精度和效率。

关键词:温湿度测控DHT90 传感器AT89C52 单片机LCD1602AbstractThe design and implementation of measurement and control temperature and humidity is MCU system, through which the temperature and humidity measurement LCD1602. System adopts set temperature and humidity sensor and A/D converter for DHT90 chip microcontroller processing, through that other modules including real-time clock/date produce circuit and the off-gauge alarm circuit, the value of measurement for real-time display and alarm.The paper introduces the ATMEL company based on AT89C52 single-chip series of temperature and humidity measurement and control system and real-time display system design, including the hardware structure and principle, and the corresponding software design, including the design of the software and its key process and procedure.System structure is simple,practical, and improve the measuring precision and efficiency.Keywords:temperature and humidity control, DHT90, LCD1602,AT89C52目录摘要 (I)Abstract (II)目录 (III)前言 (1)1 概述 (2)1.1 温度、湿度数据采集与监测技术的发展历程 (2)1.2 内外温度和湿度测量的发展史 (3)2 系统总体设计 (6)2.1 系统功能设计 (6)2.2 系统设计原则 (6)3 方案论证与比较 (8)3.1 3.2 3.3 3.4数据采集部分 (8)控制部分 (9)显示部分 (10)系统框架图 (10)4 系统硬件结构 (11)4.1 温湿度传感器DHT90 (13)4.1.1 温湿传感器DHT90 的简介 (13)4.1.2 接口说明 (14)4.1.3 温湿传感器DHT90 的工作过程 (14)4.1.4 输出转换为物理量 (16)4.2 AT89C52 (18)4.2.1 主要性能参数 (18)4.2.2 功能特性概述 (18)4.2.3 特殊功能寄存器 (21)4.2.4 存储器结构 (23)4.2.5 看门狗定时器 (24)4.2.6 定时器2 (25)4.2.7 中断 (27)4.3 单片机最小系统的设计 (27)4.3.1 复位电路设计 (27)4.3.2 时钟电路设计 (28)4.3.3 报警电路 (28)4.3.4 键盘设定模块 (29)4.3.5 稳压电路 (30)4.4 软件设计 (30)5系统软件设计 (31)6仿真与调试 (32)6.1 仿真 (32)6.2 硬件调试 (33)总结 (35)致谢 (37)参考文献 (38)附件 (39)前言在现代工业现场,随着科技的进步和自动化水平的提高,电缆的用量越来越大,电缆的安全保护已成为不可忽视的问题。

温度监控系统的设计

温度监控系统的设计

引言随着“信息时代”的到来,作为获取信息的手段——传感器技术得到了显著的进步,其应用领域越来越广泛,对其要求越来越高,需求越来越迫切。

传感器技术已成为衡量一个国家科学技术发展水平的重要标志之一。

因此,了解并掌握各类传感器的基本结构、工作原理及特性是非常重要的。

由于传感器能将各种物理量、化学量和生物量等信号转变为电信号,使得人们可以利用计算机实现自动测量、信息处理和自动控制,但是它们都不同程度地存在温漂和非线性等影响因素。

传感器主要用于测量和控制系统,它的性能好坏直接影响系统的性能。

因此,不仅必须掌握各类传感器的结构、原理及其性能指标,还必须懂得传感器经过适当的接口电路调整才能满足信号的处理、显示和控制的要求,而且只有通过对传感器应用实例的原理和智能传感器实例的分析了解,才能将传感器和信息通信和信息处理结合起来,适应传感器的生产、研制、开发和应用。

另一方面,传感器的被测信号来自于各个应用领域,每个领域都为了改革生产力、提高工效和时效,各自都在开发研制适合应用的传感器,于是种类繁多的新型传感器及传感器系统不断涌现。

温度传感器是其中重要的一类传感器。

其发展速度之快,以及其应用之广,并且还有很大潜力。

为了提高对传感器的认识和了解,尤其是对温度传感器的深入研究以及其用法与用途,基于实用、广泛和典型的原则而设计了本系统。

本文利用单片机结合传感器技术而开发设计了这一温度监控系统。

文中传感器理论单片机实际应用有机结合,详细地讲述了利用热敏电阻作为热敏传感器探测环境温度的过程,以及实现热电转换的原理过程。

本设计应用性比较强,设计系统可以作为生物培养液温度监控系统,如果稍微改装可以做热水器温度调节系统、实验室温度监控系统等等。

课题主要任务是完成环境温度检测,利用单片机实现温度调节并通过计算机实施温度监控。

设计后的系统具有操作方便,控制灵活等优点。

本设计系统包括温度传感器,A/D转换模块,输出控制模块,数据传输模块,温度显示模块和温度调节驱动电路六个部分。

基于PLC的温度监控系统设计

基于PLC的温度监控系统设计

基于PLC的温度监控系统设计介绍本文档旨在设计一个基于PLC(可编程逻辑控制器)的温度监控系统。

该系统可以实时监测和控制温度参数,用于保持设定的温度范围内。

以下是该系统的设计要点。

功能和特性1. 温度传感器:系统使用温度传感器来测量环境温度,并将数据传输给PLC进行处理。

2. PLC控制器:PLC是系统的核心控制单元,通过编程来接收和处理温度传感器的数据,并采取相应的控制措施。

3. 温度控制算法:PLC根据预设的温度范围,采用适当的控制算法来控制温度。

4. 控制执行器:系统会根据温度控制算法的结果,通过执行器来控制温度,如打开或关闭空调、加热器等设备。

5. 实时监控界面:系统提供一个界面用于实时监控当前温度和控制状态,并提供报警功能以警示异常温度。

设计流程步骤1:传感器接入将温度传感器适配至PLC输入模块,确保传感器能够准确测量环境温度。

步骤2:PLC编程通过PLC编程软件,编写程序来控制温度。

程序应包括以下功能:- 读取温度传感器的数据- 判断当前温度是否在设定的温度范围内- 根据判断结果采取相应的控制措施步骤3:控制执行器编程控制执行器,使其根据PLC控制算法的结果进行相应的温度控制操作,如打开或关闭空调、启动或关闭加热器等。

步骤4:实时监控界面设计并实现一个实时监控界面,用于显示当前温度和控制状态,并提供报警功能以警示异常温度。

界面可以通过人机界面(HMI)或远程监控软件实现。

系统优势- 实时监控:系统能够实时监控温度参数,并根据需要采取控制措施。

- 自动化控制:PLC编程实现了温度控制的自动化,无需人工干预。

- 灵活性:系统可根据实际需求进行定制和扩展,以满足不同场景下的温度控制需求。

- 可靠性:PLC作为稳定可靠的控制器,能够保证系统的稳定性和可靠性。

结论基于PLC的温度监控系统设计旨在实现自动化的温度控制,并提供了实时监控和报警功能。

该系统具有灵活性和可靠性,并可根据需求进行定制和扩展。

单片机课程设计——温度监控系统

单片机课程设计——温度监控系统

单片机课程设计报告题目:温度监控系统设计学院:通信与信息工程学院专业:电子信息工程专业班级:电信xxxx班成员: XXXXXXXXX二〇一一年七月十二日一、引言温度是工业控制中主要的被控参数之一,特别是在冶金、化工、建材、食品、机械、石油等工业中,具有举足重轻的作用。

对于不同场所、不同工艺、所需温度高低范围不同、精度不同,则采用的测温元件、测方法以及对温度的控制方法也将不同;产品工艺不同、控制温度的精度不同、时效不同,则对数据采集的精度和采用的控制算法也不同,因而,对温度的测控方法多种多样。

随着电子技术和微型计算机的迅速发展,微机测量和控制技术也得到了迅速的发展和广泛的应用。

利用微机对温度进行测控的技术,也便随之而生,并得到日益发展和完善,越来越显示出其优越性。

作为获取信息的手段——传感器技术得到了显著的进步,其应用领域较广泛。

传感器技术已成为衡量一个国家科学技术发展水平的重要标志之一。

因此,了解并掌握各类传感器的基本结构、工作原理及特性是非常重要的。

为了提高对传感器的认识和了解,尤其是对温度传感器的深入研究以及其用法与用途,基于实用、广泛和典型的原则而设计了本系统。

本系统利用传感器与单片机相结合,应用性比较强,本系统可以作为仓库温度监控系统,如果稍微改装可以做热水器温度调节系统、实验室温度监控系统,以及构成智能电饭煲等等。

课题主要任务是完成环境温度监测,利用单片机实现温度监测并通过报警信号提示温度异常。

本设计具有操作方便,控制灵活等优点。

本设计系统包括单片机,温度采集模块,显示模块,按键控制模块,报警和指示模块五个部分。

文中对每个部分功能、实现过程作了详细介绍。

整个系统的核心是进行温度监控,完成了课题所有要求。

二、实验目的和要求2.1学习DS18B20温度传感芯片的结构和工作原理。

2.2掌握LED数码管显示的原理及编程方法。

2.3掌握独立式键盘的原理及使用方法。

2.4掌握51系列单片机数据采集及处理的方法。

stm32温度监控课程设计

stm32温度监控课程设计

stm32温度监控课程设计一、课程目标知识目标:1. 学生能够理解STM32的硬件结构,掌握其基本编程方法。

2. 学生能够掌握温度传感器的工作原理,并了解其在STM32中的应用。

3. 学生能够学会使用STM32进行温度数据的采集、处理和显示。

技能目标:1. 学生能够运用C语言对STM32进行编程,实现温度监控功能。

2. 学生能够独立设计并搭建温度监控系统的硬件电路。

3. 学生能够通过调试程序,解决温度监控过程中出现的问题。

情感态度价值观目标:1. 学生通过本课程的学习,培养对电子工程和编程的兴趣,增强实践操作的自信心。

2. 学生能够认识到科技在生活中的重要作用,提高创新意识和团队协作能力。

3. 学生能够关注环保和节能问题,将所学知识应用于实际问题的解决。

分析课程性质、学生特点和教学要求:1. 课程性质:本课程属于电子技术实践课程,强调理论与实践相结合,注重培养学生的动手能力和实际操作技能。

2. 学生特点:学生为高年级电子工程及相关专业学生,具备一定的电子技术和编程基础。

3. 教学要求:在教学过程中,要注重引导学生主动探究,激发学生的创新思维,提高学生的实际问题解决能力。

二、教学内容1. STM32硬件结构与编程基础- 熟悉STM32的内部结构,包括GPIO、ADC、定时器等模块。

- 学习STM32的编程环境搭建,掌握Keil MDK的使用。

2. 温度传感器工作原理与应用- 掌握温度传感器(如DS18B20)的工作原理。

- 学习温度传感器与STM32的接口技术。

3. 温度监控系统的硬件设计- 设计温度传感器与STM32的硬件连接电路。

- 学习电路原理图的绘制和PCB布线。

4. 温度监控系统的软件编程- 使用C语言编写STM32程序,实现温度数据的采集、处理和显示。

- 学习中断处理、多任务编程等高级编程技术。

5. 系统调试与优化- 分析温度监控系统可能出现的故障,掌握调试方法。

- 学习系统性能优化技巧,提高温度监控的准确性和稳定性。

温湿度监控系统方案

温湿度监控系统方案

温湿度监控系统方案温湿度监控系统方案一、引言1.1 目的本文档旨在提供一套完整的温湿度监控系统方案,以满足监控和管理温湿度的需求。

1.2 背景随着现代社会的发展,温湿度对于许多行业和领域来说都是至关重要的参数。

温湿度监控系统可以帮助用户实时监测温湿度数据,并提供相应的报警和数据分析功能,以确保环境的稳定和安全。

二、系统概述2.1 系统架构温湿度监控系统采用分布式架构,包括传感器节点、数据传输模块、数据处理模块和用户界面模块。

2.2 系统功能- 采集温湿度数据:传感器节点负责采集环境中的温湿度数据,并传输给数据传输模块。

- 数据传输:数据传输模块负责接收传感器节点的数据,并通过网络将数据传输给数据处理模块。

- 数据处理与存储:数据处理模块接收到传感器节点的数据后,根据预设的算法进行数据处理和存储,并提供数据查询和分析功能。

- 报警功能:系统能够根据设定的温湿度阈值进行实时监测,一旦温湿度超出预设范围,系统将自动触发报警。

- 用户界面:系统提供直观友好的用户界面,用户能够实时查看温湿度数据、设置报警阈值和进行数据分析。

2.3 系统特点- 可靠性:传感器节点与数据传输模块之间采用可靠的无线通信技术,确保数据的稳定传输。

- 实时性:系统能够实时采集数据,并进行实时处理和报警,确保用户能够及时获得温湿度变化的信息。

- 扩展性:系统支持多节点接入,用户可以根据实际需求扩展监控范围和节点数量。

- 数据安全性:系统提供数据备份和恢复功能,保证数据的安全存储和可靠性。

三、系统设计3.1 传感器选择根据监控需求和环境条件,选择适合的温湿度传感器,确保传感器的准确性和可靠性。

3.2 数据传输技术选择适合的无线通信技术,如Wi-Fi、Zigbee或LoRa等,确保传输的稳定性和范围覆盖。

3.3 数据处理与存储设计合适的数据处理算法,包括数据清洗、滤波和校正等,确保数据的准确性。

同时,选择合适的数据库用于存储和管理温湿度数据。

温度监测控制系统设计方案

温度监测控制系统设计方案

温度监测控制系统设计方案第一章总体设计方案1.1计设要求(1)基本围-50°C-110°C(2)精度误差小于0.5°C(3)LED数码直读显示(4)可以任意设定温度的上下限报警功能1・2系统基本设计方案方案一:采用热电阻温度传感器。

热电阻是利用导体的电阻随温度变化的特性制成的测温元件。

现应用较多的有钳、铜、镰等热电阻。

其主要的特点为精度高、测量围大、便于远距离测量。

苗的物理、化学性能极稳定,耐氧化能力强,易提纯,复制性好, 工业性好,电阻率较高,因此,钳电阻用于工业检测中高精密测温和温度标准。

缺点是价格贵,温度系数小,受到磁场影响大,在还原介质中易被玷污变脆。

按IEC标准测温围-200〜650°C,百度电阻比W (100) =1.3850时,R0为100Q和10 Q,其允许的测量误差A级为± (0. 15°C+0. 002 |t| ), B 级为土(0. 3°C+0. 005 |t| )o铜电阻的温度系数比苗电阻大,价格低,也易于提纯和加工;但其电阻率小,在腐蚀性介质中使用稳定性差。

在工业中用于-50〜180°C测温。

方案二:采用DS18B20温度传感器,由于温度测量的普遍性,温度传感器的市场份额大大增加,居传感器首位。

数字化温度传感器DS18B20是世界上第一片支持“一线总线”接口的温度传感器。

现在, 新一代的DS18B20温度传感器体积更小、更经济、更灵活。

DS18B20 温度传感器测量温度围为-55£〜+125°Co在-1(TC〜+859围,精度为土0.5°C o现场温度直接以“一线总线"的数字方式传输,大大提高了系统的抗干扰性。

综合比较方案一与方案二,方案二更为适合于本设计系统对于模拟量输入的要求,比较其框图,方案二更具备硬件简单的突出优点,所以选择方案二作为信号的输入通道。

红外温度监测系统设计报告

红外温度监测系统设计报告

红外温度监测系统设计报告一、引言红外温度监测系统是一种使用红外传感器来实时检测物体表面温度的系统。

它可以广泛应用于工业生产、医疗、安防等领域,具有非接触、实时、高精度等优势。

本报告将介绍一个基于红外传感器的温度监测系统设计方案。

二、系统设计方案1. 功能需求本系统需要实现以下功能:- 实时获取物体表面的温度数据- 将温度数据传输至显示设备- 在显示设备上实时显示监测结果- 发出警报以提醒异常温度值的出现2. 硬件设计系统硬件设计包括红外传感器、显示设备和控制器。

- 红外传感器:用于感知物体表面的红外辐射,将红外信号转换为电信号。

- 显示设备:通常为液晶显示屏,用于实时显示温度数据和报警信息。

- 控制器:负责数据的处理和控制,包括温度数据的采集、传输和处理,以及警报的触发和控制。

3. 软件设计系统软件设计包括数据处理和警报触发。

- 数据处理:控制器通过红外传感器采集物体表面的温度数据,然后通过通信接口将数据传输至显示设备。

显示设备上的软件负责解析并显示温度数据。

- 警报触发:控制器将采集到的温度数据与设定的阈值进行比较,当温度超过预设阈值时,触发警报并通过通信接口将警报信息传输至显示设备。

4. 系统结构系统结构如下图所示:![系统结构图](system_structure.png)三、系统实施系统实施的步骤如下:1. 硬件组装:将红外传感器、显示设备和控制器按照设计要求进行组装和连接。

2. 软件开发:编写控制器和显示设备上的软件代码,实现数据采集、传输和显示功能,以及警报触发逻辑。

3. 系统调试:测试硬件和软件功能是否正常,校准红外传感器的测温精度,并调整阈值和警报逻辑。

4. 系统部署:将系统安装在需要进行温度监测的场所,并进行测试运行。

5. 系统维护:定期检查和维护硬件设备,更新软件版本以修复和优化功能。

四、系统性能系统性能指标如下:- 测温精度:本设计要求红外传感器的测温精度达到±0.5C。

温度监控系统设计

温度监控系统设计
软 件 2011年 第 32卷 第 4期
Software
国际 IT 传 媒 品 牌
温 度监控 系统 设计
刘 军 王 岩
(海 军驻 沈 阳地 区航 空军 事 代表 室 ,沈 阳 )
摘 要 :随着科 技的发展和 自动化水平 的提高 ,温度 的 自动监测 已经成为各行各 业进行 安全生产和减少损失采取 的重要措施之
1 系统的硬件方案设计
本 系 统 采 用 AT89C52单 片 机 作 为 控 制 核 心 ,外 接 LCD 液 晶 屏 及 4×4键 盘 作 为 外 部 I/0,应 用 4×4键 盘 完 成 对
0 引言
本 系 统 设 计 了一 个 具 有 温 度 采 集 、处 理 显 示 、阈值 控 制 的 远 程 温 度控 制 系统 。 系 统 能 按 要 求 定 时 采 集 三 处 温 度 数 据 ,识 别 传 感 器 故 障 ,通 过 液 晶 屏 显 示 各 处 温 度 及 平 均 温 度 ,同 时 能 够 设 置 告 警 温 度 ,超 出 阈值 时 输 出开 关 量 并 告 警 。 系 统 的 实 现 比 较 方 便 ,主 要 应 用 主 控 制 模 块 控 制 温 度 传 感 模 块 、显 示 模 块 和 键 盘 输 入 模 块 ,液 晶 显 示 模 块 显 示 测 量 温 度 并 可 显 示 相 应 的 输 入 控 制 温 度 ,具 有 良 好 的 人 机 交 互 功 能 ,存 储 模 块 属 于 主 控 模 块 的 一 个 分 支 ,用 于 对 外 扩 展 时 存 储 一 些 输 入 信 息 ,一 般 情 况下 ,可 以不使 用。总 线通 信模块 连接 计算 机 ,主要 完成 系统 与 主 机 间 的 数 据 传 输 。该 系 统 理 论 上 可 行 ,实 际 具 有 可 操 作 性 。 本 文 根 据 设 计 要 求 详 细 分 析 了 温 度 监 控 的 设 计 方 案 及 控 制 系 统 原 理 ,给 出 了 温 度 监 控 系 统 中 各 个 模 块 的 组 成 及 工 作 原 理 , 对 所 设 计 的 系 统 的 主 要 功 能 进 行 了 说 明 。 该 系 统 在 生 活 方 面 具 有 重 大 的 实 际 应 用 价 值 ,可 广 泛 应 用 于 某 些 复 杂 环 境 条 件 、 多 处 温 度 测 量 及 计 算 机 整 体 监 控 等 场 所 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带有9位地址探测的通用同步异步接收/发送(USART/RCI)。
带有RD,WR和CS控制(只40/44引脚)8位字宽的并行从端口。
带有降压的复位检测电路。
(3)RS-232-C接口电路
计算机与计算机或计算机与终端之间的数据传送可以采用串行通讯和并行通讯二种方式。由于串行通讯方式具有使用线路少、成本低,特别是在远程传输时,避免了多条线路特性的不一致而被广泛采用。 在串行通讯时,要求通讯双方都采用一个标准接口,使不同 的设备可以方便地连接起来进行通讯。 RS-232-C接口(又称 EIA RS-232-C)是目前最常用的一种串行通讯接口。它是在1970年由美国电子工业协会(EIA)联合贝尔系统、 调制解调器厂家及计算机终端生产厂家共同制定的用于串行通讯的标 准。它的全名是“数据终端设备(DTE)和数据通讯设备(DCE)之间 串行二进制数据交换接口技术标准”该标准规定采用一个25个脚的 DB25连接器,对连接器的每个引脚的信号内容加以规定,还对各种信 号的电平加以规定。
SLEEP期间仍能工作。
Timer 2 :带有8位周期寄存器,预分频和后分频器的8位定时器/计数器
2个捕捉器,比较器和PWM模块。
其中 :捕捉器是16位的,最大分辨率为12.5nS。
比较器是16位的,最大分辨率为200nS。
PWM最大分辨率为是10位。
10位多通道模/数转换器。
带有SPI(主模式)和I2C(主/从)模式的SSP。
直接,间接和相对寻址方式。
上电复位(POR)。
上电定时器(PWRT)和震动启动定时器。
监视定时器(WDT),它带有片内可靠运行的RC振荡器。
可编程的代码保护。
低功耗睡眠方式。
可选择的振荡器。
低功耗,高速CMOS FLASH/EEPROM工艺。
全静态设计。
在线串行编程(ICSP)。
单独5v的内部电路串行编程(ICSP)能力。
1 设计要求
1.1 控制要求
(1)生物繁殖培养液的温度要保证在适于细胞繁殖的温度内,这主要在控制程序设计中考虑。温度控制范围为15~25,升温、降温阶段的温度控制精度要求为0.5度,保温阶段温度控制精度为 0.5度 。
图1.1.1温度控制曲线
(2)微机自动调节 正常情况下,系统投入自动。
(3)模拟手动操作 当系统发生异常,投入手动操作。
③主要技术参数:
时间常数≤30S
测量功率≤0.1mW
使用温度范围-55~+125℃
耗散系数≥6mW/℃
额定功率0.5W
④降功耗曲线:
图2.2.2温7A单片机
MicroChip PCI16F877A单片机主要性能:
具有高性能RISC CPU
仅有35条单字指令。
除程序指令为两个周期外,其余的均为单周期指令。
运行速度:DC-20M时钟输入。
DC-200ns指令周期。
8K*14个FLASH程序存储器。
368*8个数据存储器(RAM)字节。
引脚输出和PIC16C73B/74B/76/77兼容。
中断能力(达到14个中断源)。
8级深度的硬件堆栈。
单片机:PIC16F877A(PIC16F877A为美国MICORCHIP公司生产的带A/D转换的8位单片机)。
显示系统:商用计算机。
用户内存:256MRAM。
系统总线:RS-232-C接口(又称 EIA RS-232-C)RS232 C有25条线,,分为5个功能组,包括4条数据线,11条控制线,3条定时线,7条备用线和未定义线。
(4)微机监控功能 显示当前被控量的设定值、实际值,控制量的输出。
1.2 受控对象的数学模型
生物繁殖的培养液主要用于生物的繁殖研究,而温度是影响生物繁殖的重要因素。本系统要求长时间监视培养液的温度,并对当前的温度进行控制。本控制对象为生物繁殖用培养液,采用继电器进行控制。
2 系统的硬件配置
2.1 单片机和系统总线
为了提高对传感器的认识和了解,尤其是对温度传感器的深入研究以及其用法与用途,基于实用、广泛和典型的原则而设计了本系统。本文利用单片机结合传感器技术而开发设计了这一温度监控系统。文中传感器理论单片机实际应用有机结合,详细地讲述了利用热敏电阻作为热敏传感器探测环境温度的过程,以及实现热电转换的原理过程。
本设计应用性比较强,设计系统可以作为生物培养液温度监控系统,如果稍微改装可以做热水器温度调节系统、实验室温度监控系统等等。课题主要任务是完成环境温度检测,利用单片机实现温度调节并通过计算机实施温度监控。设计后的系统具有操作方便,控制灵活等优点。
本设计系统包括温度传感器,A/D转换模块,输出控制模块,数据传输模块,温度显示模块和温度调节驱动电路六个部分。文中对每个部分功能、实现过程作了详细介绍。整个系统的核心是进行温度监控,完成了课题所有要求。
操作系统:Windows 2000。
2.2硬件介绍
计算机工作的外围电路设备
(1)温度传感器
温度传感器采用补偿型NTC热敏电阻其主要性能如下:
①补偿型NTC热敏电阻B值误差范围小,对于阻值误差范围在5%的产品,其一致性、互换性良好。适合于一般精度的温度测量和计量设备。
②外型结构和尺寸:
图2.2.1温度传感器结构尺寸图
引言
随着“信息时代”的到来,作为获取信息的手段——传感器技术得到了显著的进步,其应用领域越来越广泛,对其要求越来越高,需求越来越迫切。传感器技术已成为衡量一个国家科学技术发展水平的重要标志之一。因此,了解并掌握各类传感器的基本结构、工作原理及特性是非常重要的。
由于传感器能将各种物理量、化学量和生物量等信号转变为电信号,使得人们可以利用计算机实现自动测量、信息处理和自动控制,但是它们都不同程度地存在温漂和非线性等影响因素。传感器主要用于测量和控制系统,它的性能好坏直接影响系统的性能。因此,不仅必须掌握各类传感器的结构、原理及其性能指标,还必须懂得传感器经过适当的接口电路调整才能满足信号的处理、显示和控制的要求,而且只有通过对传感器应用实例的原理和智能传感器实例的分析了解,才能将传感器和信息通信和信息处理结合起来,适应传感器的生产、研制、开发和应用。另一方面,传感器的被测信号来自于各个应用领域,每个领域都为了改革生产力、提高工效和时效,各自都在开发研制适合应用的传感器,于是种类繁多的新型传感器及传感器系统不断涌现。温度传感器是其中重要的一类传感器。其发展速度之快,以及其应用之广,并且还有很大潜力。
处理机读/写访问程序存储器。
运行电压范围2.0v到5v。
高输入/输出电流25mA。
商用,工业用温度范围。
低功耗:
在5v,4MHz时典型值小于2mA。
在3v,32KHz时典型值小于20uA。
典型的静态电流值小于1uA。
外围特征:
Timer 0 :带有预分频的8位定时器/计数器。
Timer 1 :带有预分频的16位定时器/计数器,在使用外部晶体时钟时在
相关文档
最新文档