05《大学物理学》静电场练习题(马)

合集下载

《大学物理》课后解答题 第五章静电场

《大学物理》课后解答题  第五章静电场

第五章 真空中的静电场一、思考讨论题1、电场强度与电势有什么关系?试回答下列问题,并举例说明: (1)场强为零的地方,电势是否一定为零? (2)电势高的地方,场强是否一定大? (3)电势相等处,场强是否一定相等?(4)已知某一点的电势,可否求出该点的场强?反之如何? 解:(1)不一定。

比如两同种点电荷连线中点,场强为零,电势不为零。

(2)不一定。

匀强电场,场强处处相等,而电势不等。

(3)不一定。

点电荷产生的电场线中,电势相等的地方场强方向不一样。

(4)都不可以求。

2、已知某一高斯面所包围的空间内0=∑q ,能否说明穿过高斯面上每一部分的电通量都是0?能否说明高斯面上的场强处处为0?解:由高斯定理∑⎰=⋅=q S d E S1εψ ,0=∑q 仅指通过高斯面的电通量为零,并非场强一定在高斯面处处为零(高斯面外的电荷也在高斯面上各点产生场强)。

3、已知某高斯面上处处E =0,可否肯定高斯面内0=∑q ,可否肯定高斯面处处无电荷?解:可以肯定。

高斯面上处处E =0,0=⋅⎰S d E S,由高斯定理必有0=∑q 。

4、如图1.1所示,真空中有A 、B 两均匀带电平板相互平行并靠近放置,间距为d (d 很小),面积均为S ,带电分别为+Q 和-Q 。

关于两板间的相互作用力,有人说,根据库仑定律应有:2024dQ f πε=; 又有人说,根据f QE =,应有:SQ f 02ε=。

他们说得对吗?你认为f 应等于多少?解:(1)2024dQ f πε=是错误的,因为库仑定律只适用于点电荷,两个带电平板不能直接用库仑定律计算。

(2)SQ f 02ε=也错误。

因为用sqE 0ε=计算的场强是两带电平板产生的合场强,而Eq F =中的场强是一个带电板的电荷量乘以另一个所产生的场强,而不是合场强。

电荷与图1.1自身产生的场强作用力恒为零。

正确答案是:Sq q S qEdq F 02022εε=⋅==⎰ 5、在无限大带电平面和无限长带电直线的电场中,确定各点电荷时,可否选无穷远处为0势点?为什么?解:不能。

大学物理静电场练习题带标准答案

大学物理静电场练习题带标准答案

大学物理静电场练习题带答案————————————————————————————————作者:————————————————————————————————日期:大物练习题(一)1、如图,在电荷体密度为ρ的均匀带电球体中,存在一个球形空腔,若将带电体球心O 指向球形空腔球心O '的矢量用a 表示。

试证明球形空腔中任一点电场强度为 . A 、03ρεa B 、0ρεa C 、02ρεa D 、3ρεa2、如图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强A 、02πR λε-B 、0πRλε- C 、00ln 22π4λλεε+ D 、00ln 2π2λλεε+3、 如图所示,一导体球半径为1R ,外罩一半径为2R 的同心薄导体球壳, 外球壳所带总电荷为Q ,而内球的电势为0V ,求导体球和球壳之间的电势差 (填写A 、B 、C 或D ,从下面的选项中选取)。

A 、1020214R Q V R R πε⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭ B 、102024R Q V R R πε⎛⎫- ⎪⎝⎭C 、0024Q V R πε- D 、1020214R Q V R R πε⎛⎫⎛⎫+-⎪ ⎪⎝⎭⎝⎭4.如图所示,电荷面密度为1σ的带电无限大板A 旁边有一带电导体B ,今测得导体表面靠近P 点处的电荷面密度为2σ。

求:(1)P 点处的场强 ;(2)导体表面靠近P 点处的电荷元S ∆2σ所受的电场力 。

A 、20σεB 、202σεC 、2202S σε∆D 、220S σε∆5.如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为r ε,壳外是真空,则在壳外P 点处(OP r =)的场强和电位移的大小分别为[ ]Q Opr)(A )2200,44r Q QE D rr εεε==ππ; (B )22,44r Q QE D r r ε==ππ; (C )220,44Q QE D r r ε==ππ; (D )2200,44Q QE D r r εε==ππ。

大学物理静电场练习题带答案

大学物理静电场练习题带答案

大物练习题(一)1、如图,在电荷体密度为ρ的均匀带电球体中,存在一个球形空腔,若将带电体球心O指向球形空腔球心O'的矢量用a表示。

试证明球形空腔中任一点电场强度为 .A、3ρεa B、ρεaC、2ρεa D、3ρεa2、如图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R.试求环中心O点处的场强A、2πRλε- B、πRλε-C、00ln22π4λλεε+ D、00ln2π2λλεε+3、 如图所示,一导体球半径为1R ,外罩一半径为2R 的同心薄导体球壳, 外球壳所带总电荷为Q ,而内球的电势为0V ,求导体球和球壳之间的电势差 (填写A 、B 、C 或D ,从下面的选项中选取)。

A 、1020214R Q V R R πε⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭ B 、102024R Q V R R πε⎛⎫- ⎪⎝⎭C 、0024Q V R πε- D 、1020214R Q V R R πε⎛⎫⎛⎫+-⎪ ⎪⎝⎭⎝⎭4.如图所示,电荷面密度为1σ的带电无限大板A 旁边有一带电导体B ,今测得导体表面靠近P 点处的电荷面密度为2σ。

求:(1)P 点处的场强 ;(2)导体表面靠近P 点处的电荷元S ∆2σ所受的电场力 。

A 、20σεB 、202σεC 、2202S σε∆D 、220S σε∆5.如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为r ε,壳外是真空,则在壳外P 点处(OP r =)的场强和电位移的大小分别为[ ]Q Opr(A )2200,44r Q QE D rr εεε==ππ; (B )22,44r Q QE D r r ε==ππ; (C )220,44Q QE D r r ε==ππ; (D )2200,44Q QE D r r εε==ππ。

6、在一点电荷产生的静电场中,一块电介质如图放置,以点电荷所在处为球心作一球形闭合面,则对此球形闭合面: (A )高斯定理成立,且可用它求出闭合面上各点的场强;(B )高斯定理成立,但不能用它求出闭合面上各点的场强; (C )由于电介质不对称分布,高斯定理不成立; (D )即使电介质对称分布,高斯定理也不成立。

大学物理:静电场练习题

大学物理:静电场练习题

由对称性可知 U p 0
l
l
l
0
12
的均匀电场!
练: 真空中一半径为R的均匀带电球面,总电量为 Q(Q > 0)。今在球面上挖去非常小块的面积
ΔS (连同电荷), 且假设
不影响原来的电荷分布, 则挖去ΔS后球心处电场
R
O
S
强度的大小E= QS /(16 2 0 R 4 )
其方向为 由圆心O点指向S
解:由场强叠加原理,挖去S 后的电场可以看作
和Φ2 ,通过整个球面的电场强度通量为 ΦS ,则
(C) (A) Φ1 Φ2 , ΦS q / 0
S2
q S1 q
O a 2a X
(B)Φ1 Φ2 , ΦS 2q / 0
(C) Φ1 Φ2 , ΦS q / 0
(D) Φ1 Φ2 , ΦS q / 0
解:由高斯定理 ΦS q / 0
(D) 0
解:过P点作如图同轴圆柱形高斯面S,由高斯定理
SE dS 2rlE 0
R1
所以E=0。
l
2
1 R2O r P
4. 有两个点电荷电量都是 +q, 相距为2a。今以左边的
点电荷所在处为球心,以a为半径作一球形高斯面,
在球面上取两块相等的小面积 S1 和 S2 , 其位置如图 所示。设通过 S1 和 S 2 的电场强度通量分别为 Φ1
2. 上半部带正电,下半部带负电,线密度为
3. 非均匀带电,线密度为 0sin
y
dq
d o
x
R
dE
思路:叠加法
dq dE E
解:1)
dq Rd
dE
dq
4 0 R 2
;沿径向

大学物理静电学题库及答案

大学物理静电学题库及答案

一、选择题:(每题3分)1、 在坐标原点放一正电荷Q ,它在P 点(x =+1,y =0)产生的电场强度为E.现在,另外有一个负电荷-2Q ,试问应将它放在什么位置才能使P 点的电场强度等于零?(A) x 轴上x >1.(B) x 轴上0<x <1.(C) x 轴上x <0. (D) y 轴上y >0.(E) y 轴上y <0.[ ]2、一均匀带电球面,电荷面密度为σ,球面内电场强度处处为零,球面上面元d S 带有σ d S 的电荷,该电荷在球面内各点产生的电场强度(A) 处处为零. (B) 不一定都为零.(C) 处处不为零. (D) 无法判定 .[]3、在边长为a 的正方体中心处放置一电荷为Q 的点电荷,则正方体顶角处的电场强度的大小为:(A) 2012a Q επ. (B) 206a Qεπ.(C) 203a Q επ. (D) 20a Qεπ. [ ]4、电荷面密度分别为+σ和-σ的两块“无限大”均匀带电的平行平板,如图放置,则其x 变化的关系曲线为:(设场强方向向右为正、向左为负) [ ]σ(D)5、设有一“无限大”均匀带正电荷的平面.取x 轴垂直带电平面,坐标原点在带电平面上,则其周围空间各点的电场强度E随距离平面的位置坐标x 变化的关系曲线为(规定场强方向沿x 轴正向为正、反之为负):[ ](B)x6、设有一“无限大”均匀带负电荷的平面.取x 轴垂直带电平面,坐标原点位于带电平面上,则其周围空间各点的电场强度E 随距离平面的位置坐标x 变化的关系曲线为(规定场强方向沿x 轴正向为正、反之为负):[ ]7、关于电场强度定义式0/q F E=,下列说法中哪个是正确的?(A) 场强E 的大小与试探电荷q 0的大小成反比.(B) 对场中某点,试探电荷受力F 与q 0的比值不因q 0而变.(C) 试探电荷受力F 的方向就是场强E的方向.(D) 若场中某点不放试探电荷q 0,则F =0,从而E=0. [ ]8、将一个试验电荷q 0 (正电荷)放在带有负电荷的大导体附近P 点处(如图),测得它所受的力为F .若考虑到电荷q 0不是足够小,则(A) F / q 0比P 点处原先的场强数值大.(B) F / q 0比P 点处原先的场强数值小. (C) F / q 0等于P 点处原先场强的数值.(D) F / q 0与P 点处原先场强的数值哪个大无法确定. [ ]9、下面列出的真空中静电场的场强公式,其中哪个是正确的? (A) 点电荷q 的电场:204rq E επ=.(r 为点电荷到场点的距离)(B) “无限长”均匀带电直线(电荷线密度λ)的电场:r r E302ελπ=(r为带电直线到场点的垂直于直线的矢量)(C) “无限大”均匀带电平面(电荷面密度σ)的电场:02εσ=E(D) 半径为R 的均匀带电球面(电荷面密度σ)外的电场:r rR E302εσ= (r为球心到场点的矢量)10、下列几个说法中哪一个是正确的?(A) 电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向.(B) 在以点电荷为中心的球面上, 由该点电荷所产生的场强处处相同.(C) 场强可由q F E /=定出,其中q 为试验电荷,q 可正、可负,F试验电荷所受的电场力.P 0(D) 以上说法都不正确. [ ]11、一电场强度为E 的均匀电场,E 的方向与沿x 轴正向,如图所示.则通过图中一半径为R 的半球面的电场强度通量为(A) πR 2E . (B) πR 2E / 2. (C) 2πR2E . (D) 0. []12、已知一高斯面所包围的体积内电荷代数和∑q =0,则可肯定:(A) 高斯面上各点场强均为零. (B) 穿过高斯面上每一面元的电场强度通量均为零.(C) 穿过整个高斯面的电场强度通量为零. (D) 以上说法都不对. [ ]13、一点电荷,放在球形高斯面的中心处.下列哪一种情况,通过高斯面的电场强度通量发生变化:(A) 将另一点电荷放在高斯面外. (B) 将另一点电荷放进高斯面内. (C) 将球心处的点电荷移开,但仍在高斯面内.(D) 将高斯面半径缩小. [ ]14、点电荷Q 被曲面S 所包围 , 从无穷远处引入另一点电荷q至曲面外一点,如图所示,则引入前后: (A) 曲面S 的电场强度通量不变,曲面上各点场强不变. (B) 曲面S 的电场强度通量变化,曲面上各点场强不变. (C) 曲面S 的电场强度通量变化,曲面上各点场强变化. (D) 曲面S 的电场强度通量不变,曲面上各点场强变化. [ ]15、半径为R 的均匀带电球面的静电场中各点的电场强度的大小E 与距球心的距离r 之间的关系曲线为:[ ]qE O r (D) E ∝1/r 216、半径为R 的均匀带电球体的静电场中各点的电场强度的大小E 与距球心的距离r 的关系曲线为: [ ]17、半径为R 的“无限长”均匀带电圆柱体的静电场中各点的电场强度的大小E 与距轴线的距离r 的关系曲线为:[ ]18、半径为R 的均匀带电球面,若其电荷面密度为σ,则在距离球面R 处的电场强度大小为:(A)εσ. (B) 02εσ.(C) 04εσ. (D) 08εσ. [ ]19、高斯定理⎰⎰⋅=VSV S E 0/d d ερ(A) 适用于任何静电场.(B) 只适用于真空中的静电场. (C) 只适用于具有球对称性、轴对称性和平面对称性的静电场.(D) 只适用于虽然不具有(C)中所述的对称性、但可以找到合适的高斯面的静电场. [ ] 20、根据高斯定理的数学表达式⎰∑⋅=Sq S E 0/d ε可知下述各种说法中,正确的是:(A) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零.(B) 闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零. (C) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零.(D) 闭合面上各点场强均为零时,闭合面内一定处处无电荷. [ ]21、关于高斯定理的理解有下面几种说法,其中正确的是:(A) 如果高斯面上E处处为零,则该面内必无电荷. (B) 如果高斯面内无电荷,则高斯面上E处处为零. (C) 如果高斯面上E处处不为零,则高斯面内必有电荷.(D) 如果高斯面内有净电荷,则通过高斯面的电场强度通量必不为零. [ ]22、如图所示,两个同心均匀带电球面,内球面半径为R 1、带有电荷Q 1,外球面半径为R 2、带有电荷Q 2,则在外球面外面、距离球心为r 处的P 点的场强大小E 为:(A)20214rQ Q επ+. (B)()()2202210144R r Q R r Q -π+-πεε. (C) ()2120214R R Q Q -π+ε. (D) 2024r Q επ. [ ]23、 如图所示,两个“无限长”的、半径分别为R 1和R 2的共轴圆柱面,均匀带电,沿轴线方向单位长度上的所带电荷分别为λ1和λ2,则在外圆柱面外面、距离轴线为r 处的P 点的电场强度大小E 为:(A)r0212ελλπ+.(B) ()()20210122R r R r -π+-πελελ.(C) ()20212R r -π+ελλ. (D) 20210122R R ελελπ+π. [ ]24、A 和B 为两个均匀带电球体,A 带电荷+q ,B 带电荷-q ,作一与A 同心的球面S 为高斯面,如图所示.则(A) 通过S 面的电场强度通量为零,S 面上各点的场强为零.(B) 通过S 面的电场强度通量为q / ε0,S 面上场强的大小为20π4rqE ε=.(C) 通过S 面的电场强度通量为(- q ) / ε0,S 面上场强的大小为20π4rqE ε=. (D) 通过S 面的电场强度通量为q / ε0,但S 面上各点的场强不能直接由高斯定理求出. [ ]25、在空间有一非均匀电场,其电场线分布如图所示.在电场中作一半径为R 的闭合球面S ,已知通过球面上某一面元∆S 的电场强度通量为∆Φe ,则通过该球面其余部分的电场强度通量为(A) - ∆Φe . (B)e SR Φ∆∆π24. (C) e SSR Φ∆∆∆-π24. (D) 0.[ ]26、半径为R 的“无限长”均匀带电圆柱面的静电场中各点的电场强度的大小E 与距轴线的距离r 的关系曲线为: [ ]27、静电场中某点电势的数值等于 (A)试验电荷q 0置于该点时具有的电势能. (B)单位试验电荷置于该点时具有的电势能. (C)单位正电荷置于该点时具有的电势能.(D)把单位正电荷从该点移到电势零点外力所作的功. [ ]28、如图所示,边长为l 的正方形,在其四个顶点上各放有等量的点电荷.若正方形中心O 处的场强值和电势值都等于零,则:(A) 顶点a 、b 、c 、d 处都是正电荷. (B) 顶点a 、b 处是正电荷,c 、d 处是负电荷. (C) 顶点a 、c 处是正电荷,b 、d 处是负电荷. (D) 顶点a 、b 、c 、d 处都是负电荷. [ ] 29、如图所示,边长为 0.3 m 的正三角形abc ,在顶点a 处有一电荷为10-8 C 的正点电荷,顶点b 处有一电荷为-10-8 C 的负点电荷,则顶点c 处的电场强度的大小E 和电势U 为: (41επ=9³10-9 N m /C 2)(A) E =0,U =0. (B) E =1000 V/m ,U =0.(C) E =1000 V/m ,U =600 V .(D) E =2000 V/m ,U =600 V . [ ]30、如图所示,半径为R 的均匀带电球面,总电荷为Q ,设无穷远处的电势为零,则球内距离球心为r 的P 点处的电场强度的大小和电势为:(A) E =0,r Q U 04επ=. (B) E =0,R Q U 04επ=.(C) 204r Q E επ=,r Q U 04επ= . (D) 204r Q E επ=,RQU 04επ=. [ ]31、关于静电场中某点电势值的正负,下列说法中正确的是:E O r (A) E ∝1/rb a(A) 电势值的正负取决于置于该点的试验电荷的正负. (B) 电势值的正负取决于电场力对试验电荷作功的正负. (C) 电势值的正负取决于电势零点的选取.(D) 电势值的正负取决于产生电场的电荷的正负. [ ]32、在边长为a 的正方体中心处放置一点电荷Q ,设无穷远处为电势零点,则在正方体顶角处的电势为:(A)aQ 034επ .(B) a Q032επ.(C) a Q 06επ. (D) aQ012επ . [ ]33、 图中所示为一球对称性静电场的电势分布曲线,r 表示离对称中心的距离.请指出该电场是由下列哪一种带电体产生的.(A) 半径为R 的均匀带正电球面.(B) 半径为R的均匀带正电球体. (C) 正点电荷.(D) 负点电荷. [ ]34、 图中所示为一球对称性静电场的电势分布曲线,r 表示离对称中心的距离.请指出该电场是由下列哪一种带电体产生的.(A) 半径为R 的均匀带负电球面. (B) 半径为R 的均匀带负电球体. (C) 正点电荷. (D) 负点电荷. [ ]35、一半径为R 的均匀带电球面,带有电荷Q .若规定该球面上的电势值为零,则无限远处的电势将等于 (A)R Q0π4ε. (B) 0.(C) RQ0π4ε-. (D) ∞. [ ]36、 真空中有一点电荷Q ,在与它相距为r 的a 点处有一试验电荷q .现使试验电荷q 从a 点沿半圆弧轨道运动到b 点,如图所示.则电场力对q 作功为(A)24220r r Qq π⋅πε. (B) r r Qq 2420επ. (C) r rQqππ204ε. (D) 0. [ ]37、点电荷-q 位于圆心O 处,A 、B 、C 、D 为同一圆周上的四点,如图所示.现将一试验电荷从A 点分别移动到B 、C 、D 各点,则 (A) 从A 到B ,电场力作功最大.(B) 从A 到C ,电场力作功最大.(C) 从A 到D ,电场力作功最大.(D) 从A 到各点,电场力作功相等. []38、如图所示,边长为a 的等边三角形的三个顶点上,分别放置着三个正的点电荷q 、2q 、3q .若将另一正点电荷Q从无穷远处移到三角形的中心O 处,外力所作的功为:(A) a qQ023επ . (B) aqQ 03επ.(C)a qQ 0233επ. (D) aqQ032επ. [ ]39、在已知静电场分布的条件下,任意两点P 1和P 2之间的电势差决定于 (A) P 1和P 2两点的位置. (B) P 1和P 2两点处的电场强度的大小和方向. (C) 试验电荷所带电荷的正负.(D) 试验电荷的电荷大小. [ ]40、如图所示,直线MN 长为2l ,弧OCD 是以N 点为中心,l 为半径的半圆弧,N 点有正电荷+q ,M点有负电荷-q .今将一试验电荷+q 0从O 点出发沿路径OCDP 移到无穷远处,设无穷远处电势为零,则电场力作功(A) A <0 , 且为有限常量. (B) A >0 ,且为有限常量.(C) A =∞. (D) A =0. [ ]41、已知某电场的电场线分布情况如图所示.现观察到一负电荷从M 点移到N 点.有人根据这个图作出下列几点结论,其中哪点是正确的?(A) 电场强度E M <E N . (B) 电势U M <U N . (C) 电势能W M <W N . (D) 电场力的功A >0.[ ]42、已知某电场的电场线分布情况如图所示.现观察到一负电荷从M 点移到N 点.有人根据这个图作出下列几点结论,其中哪点是正确的?(A) 电场强度E M >E N . (B) 电势U M >U N . (C) 电势能W M <W N . (D) 电场力的功A >0.[ ]43、在电荷为-Q 的点电荷A 的静电场中,将另一电荷为q 的点电荷B 从a 点移到b 点.a 、b 两点距离点电荷A 的距离分别为r 1和r 2,如图所示.则移动过程中电场力做的功为 Aq2q- r(A)⎪⎪⎭⎫ ⎝⎛-π-210114r r Qε. (B) ⎪⎪⎭⎫⎝⎛-π210114r r qQ ε. (C) ⎪⎪⎭⎫⎝⎛-π-210114r r qQ ε. (D) ()1204r r qQ -π-ε [ ]44、带有电荷-q 的一个质点垂直射入开有小孔的两带电平行板之间,如图所示.两平行板之间的电势差为U ,距离为d ,则此带电质点通过电场后它的动能增量等于(A) dqU-. (B) +qU .(C) -qU . (D) qU 21. [ ]45、在匀强电场中,将一负电荷从A 移到B ,如图所示.则: (A) 电场力作正功,负电荷的电势能减少. (B) 电场力作正功,负电荷的电势能增加. (C) 电场力作负功,负电荷的电势能减少.(D) 电场力作负功,负电荷的电势能增加. [ ]46、 图中实线为某电场中的电场线,虚线表示等势(位)面,由图可看出:(A) E A >E B >E C ,U A >U B >U C . (B) E A <E B <E C ,U A <U B <U C . (C) E A >E B >E C ,U A <U B <U C . (D) E A <E B <E C ,U A >U B >U C . [ ]47、电子的质量为m e ,电荷为-e ,绕静止的氢原子核(即质子)作半径为r 的匀速率圆周运动,则电子的速率为 (A) k r m ee . (B) rm ke e . (C) r m k ee 2. (D) rm ke e 2. (式中k =1 / (4πε0) )[ ]48、质量均为m ,相距为r 1的两个电子,由静止开始在电力作用下(忽略重力作用)运动至相距为r 2,此时每一个电子的速率为 (A)⎪⎪⎭⎫⎝⎛-21112r r m ke . (B) ⎪⎪⎭⎫⎝⎛-21112r r m ke . (C) ⎪⎪⎭⎫ ⎝⎛-21112r r m k e . (D) ⎪⎪⎭⎫⎝⎛-2111r r m k e (式中k =1 / (4πε0) ) [ ]49、相距为r 1的两个电子,在重力可忽略的情况下由静止开始运动到相距为r 2,从相距r 1到-q dO U-BE相距r 2期间,两电子系统的下列哪一个量是不变的? (A) 动能总和; (B) 电势能总和;(C) 动量总和; (D) 电相互作用力. [ ]50、一电偶极子放在均匀电场中,当电偶极矩的方向与场强方向不一致时,其所受的合力F和合力矩M为:(A) F =0,M = 0. (B) F = 0,M≠0.(C) F ≠0,M =0. (D) F ≠0,M≠0. [ ]51、真空中有两个点电荷M 、N ,相互间作用力为F,当另一点电荷Q 移近这两个点电荷时,M 、N两点电荷之间的作用力 (A) 大小不变,方向改变. (B) 大小改变,方向不变.(C) 大小和方向都不变. (D) 大小和方向都改. [ ]52、设有一带电油滴,处在带电的水平放置的大平行金属板之间保持稳定,如图所示.若油滴获得了附加的负电荷,为了继续使油滴保持稳定,应采取下面哪个措施?(A) 使两金属板相互靠近些.(B) 改变两极板上电荷的正负极性.(C) 使油滴离正极板远一些.(D) 减小两板间的电势差. [ ]53、正方形的两对角上,各置电荷Q ,在其余两对角上各置电荷q ,若Q 所受合力为零,则Q 与q 的大小关系为(A) Q =-22q . (B) Q =-2q .(C) Q =-4q . (D) Q =-2q . [ ]54、电荷之比为1∶3∶5的三个带同号电荷的小球A 、B 、C ,保持在一条直线上,相互间距离比小球直径大得多.若固定A 、C 不动,改变B的位置使B 所受电场力为零时,AB 与BC 的比值为(A) 5. (B) 1/5.(C)5. (D) 1/5. [ ]55、面积为S 的空气平行板电容器,极板上分别带电量±q ,若不考虑边缘效应,则两极板间的相互作用力为(A)S q 02ε. (B) Sq 022ε.(C) 2022S q ε. (D) 202Sq ε. [ ]56、充了电的平行板电容器两极板(看作很大的平板)间的静电作用力F 与两极板间的电压U 的关系是:(A) F ∝U . (B) F ∝1/U .(C) F ∝1/U 2. (D) F ∝U 2. [ ]-+57、 有一带正电荷的大导体,欲测其附近P 点处的场强,将一电荷量为q 0 (q 0 >0 )的点电荷放在P 点,如图所示,测得它所受的电场力为F .若电荷量q 0不是足够小,则(A) F / q 0比P 点处场强的数值大. (B) F / q 0比P 点处场强的数值小. (C) F / q 0与P 点处场强的数值相等.(D) F / q 0与P 点处场强的数值哪个大无法确定. [ ]58、关于高斯定理,下列说法中哪一个是正确的? (A) 高斯面内不包围自由电荷,则面上各点电位移矢量D为零. (B) 高斯面上处处D为零,则面内必不存在自由电荷.(C) 高斯面的D通量仅与面内自由电荷有关.(D) 以上说法都不正确. [ ]59、关于静电场中的电位移线,下列说法中,哪一个是正确的? (A) 起自正电荷,止于负电荷,不形成闭合线,不中断. (B) 任何两条电位移线互相平行.(C) 起自正自由电荷,止于负自由电荷,任何两条电位移线在无自由电荷的空间不相交. (D) 电位移线只出现在有电介质的空间. [ ]60、两个半径相同的金属球,一为空心,一为实心,把两者各自孤立时的电容值加以比较,则(A) 空心球电容值大. (B) 实心球电容值大.(C) 两球电容值相等. (D) 大小关系无法确定. [ ]二、填空题(每题4分)61、静电场中某点的电场强度,其大小和方向与__________________________________________________________________相同.62、电荷为-5³10-9 C 的试验电荷放在电场中某点时,受到 20³10-9 N 的向下的力,则该点的电场强度大小为_____________________,方向____________.63、静电场场强的叠加原理的内容是:_________________________________________________________________________________________________________________________________________________________________.q 0P64、在静电场中,任意作一闭合曲面,通过该闭合曲面的电场强度通量⎰∙S Ed 的值仅取决于 ,而与 无关.65、半径为R 的半球面置于场强为E的均匀电场中,其对称轴与场强方向一致,如图所示.则通过该半球面的 电场强度通量为__________________.66、电荷分别为q 1和q 2的两个点电荷单独在空间各点产生的静电场强分别为1E 和2E,空间各点总场强为E =1E +2E.现在作一封闭曲面S ,如图所示,则以下两式分别给出通过S 的电场强度通量 ⎰⋅S E d 1=______________________________,⎰⋅S Ed =________________________________.67、一面积为S 的平面,放在场强为E 的均匀电场中,已知 E 与平面间的夹角为θ(<π/2),则通过该平面的电场强度通量的数值Φe =______________________.68、如图,点电荷q 和-q 被包围在高斯面S 内,则通过该高斯面的电场强度通量⎰⋅SS E d =_____________,式中E为_________________处的场强.69、一半径为R 的均匀带电球面,其电荷面密度为σ.该球面内、外的场强分布为(r表示从球心引出的矢径):()r E=______________________(r <R ),()r E=______________________(r >R ).70、一半径为R 的“无限长”均匀带电圆柱面,其电荷面密度为σ.该圆柱面内、外场强分布为(r表示在垂直于圆柱面的平面上,从轴线处引出的矢径):()r E=______________________(r <R ),()r E=______________________(r >R ).71、在点电荷+q 和-q 的静电场中,作出如图所示的三个闭合面S 1、S 2、S 3,则通过这些闭合面的电场强度通量分别是:Φ1=________,Φ2=___________,Φ3=__________72、在静电场中,任意作一闭合曲面,通过该闭合曲面的电场强度通量⎰∙S Ed 的值仅取决于 ,而与 无关.73、一闭合面包围着一个电偶极子,则通过此闭合面的电场强度通量Φe =_________________.74、图中曲线表示一种球对称性静电场的电势分布,r表示离对称中心的距离.这是____________________________________________的电场.75、一半径为R 的均匀带电球面,其电荷面密度为σ.若规定无穷远处为电势零点,则该球面上的电势U =____________________.76、电荷分别为q 1,q 2,q 3的三个点电荷分别位于同一圆周的三个点上,如图所示.设无穷远处为电势零点,圆半径为R ,则b 点处的电势U =___________ .77、描述静电场性质的两个基本物理量是______________;它们的定义式是________________和__________________________________________.78、静电场中某点的电势,其数值等于______________________________ 或_______________________________________.79、一点电荷q =10-9 C ,A 、B 、C 三点分别距离该点电荷10 cm 、20 cm 、30 cm .若选B 点的电势为零,则A 点的电势为______________,C 点的电势为________________.(真空介电常量ε0=8.85³10-12 C 2²N -1²m -2)80、电荷为-Q 的点电荷,置于圆心O 处,b 、c 、d 为同一圆周上的不同点,如图所示.现将试验电荷+q 0从图中a 点分别沿ab 、ac 、ad 路径移到相应的b 、c 、d 各点,设移动过程中电场力所作的功分别用A 1、1 23q 13qbA 2、A 3表示,则三者的大小的关系是______________________.(填>,<,=)81、如图所示,在一个点电荷的电场中分别作三个电势不同的等势面A ,B ,C .已知U A >U B >U C ,且U A -U B =U B -U C ,则相邻两等势面之间的距离的关系是:R B -R A ______ R C -R B . (填<,=,>)82、一电荷为Q 的点电荷固定在空间某点上,将另一电荷为q 的点电荷放在与Q 相距r 处.若设两点电荷相距无限远时电势能为零,则此时的电势能W e =________________________.83、如图所示,在电荷为q 的点电荷的静电场中,将一电荷为q 0的试验电荷从a 点经任意路径移动到b点,外力所作的功A =______________.84、真空中电荷分别为q 1和q 2的两个点电荷,当它们相距为r 时,该电荷系统的相互作用电势能W =________________.(设当两个点电荷相距无穷远时电势能为零)85、在静电场中,一质子(带电荷e =1.6³10-19 C)沿四分之一的圆弧轨道从A 点移到B 点(如图),电场力作功8.0³10-15 J .则当质子沿四分之三的圆弧轨道从B 点回到A 点时,电场力作功A =____________________.设A 点电势为零,则B 点电势U =____________________.86、静电力作功的特点是________________________________________________________________________________,因而静电力属于_________________力.87、静电场的环路定理的数学表示式为:______________________.该式的物理意义是:__________________________________________________________________________________________________________.该定理表明,静电场是____________________________________场.88、一电荷为Q 的点电荷固定在空间某点上,将另一电荷为q 的点电荷放在与Q 相距rA处.若设两点电荷相距无限远时电势能为零,则此时的电势能W e =________________________.89、 图示为某静电场的等势面图,在图中画出该电场的电场线.90、图中所示以O 为心的各圆弧为静电场的等势(位)线图,已知U 1<U 2<U 3,在图上画出a 、b 两点的电场强度的方向,并 比较它们的大小.E a ________ E b (填<、=、>).91、一质量为m ,电荷为q 的粒子,从电势为U A 的A 点,在电场力作用下运动到电势为U B 的B 点.若粒子到达B 点时的速率为v B ,则它在A 点时的速率v A=___________________________.92、一质量为m 、电荷为q 的小球,在电场力作用下,从电势为U 的a 点,移动到电势为零的b 点.若已知小球在b 点的速率为v b ,则小球在a 点的速率v a= ______________________.93、一质子和一α粒子进入到同一电场中,两者的加速度之比,a p ∶a α=________________.94、带有N 个电子的一个油滴,其质量为m ,电子的电荷大小为e .在重力场中由静止开始下落(重力加速度为g ),下落中穿越一均匀电场区域,欲使油滴在该区域中匀速下落,则电场的方向为__________________,大小为_____________.OU U95、在静电场中有一立方形均匀导体,边长为a .已知立方导体中心O 处的电势为U 0,则立方体顶点A 的电势为____________. 96、一孤立带电导体球,其表面处场强的方向____________表面;当把另一带电体放在这个导体球附近时,该导体球表面处场强的方向_________________表面.97、如图所示,将一负电荷从无穷远处移到一个不带电的导体附近,则导体内的电场强度______________,导体的电势 ______________.(填增大、不变、减小)98、一空气平行板电容器,两极板间距为d ,充电后板间电压为U .然后将电源断开,在两板间平行地插入一厚度为d /3的金属板,则板间电压变成U ' =________________ .99、一孤立带电导体球,其表面处场强的方向____________表面;当把另一带电体放在这个导体球附近时,该导体球表面处场强的方向_________________表面.100、A 、B 两个导体球,相距甚远,因此均可看成是孤立的.其中A 球原来带电,B 球不带电,现用一根细长导线将两球连接,则球上分配的电荷与球半径成______比.101、如图所示,两同心导体球壳,内球壳带电荷+q ,外球壳带电荷-2q .静电平衡时,外球壳的电荷分布为: 内表面___________ ; 外表面___________ .102、如图所示,将一负电荷从无穷远处移到一个不带电的导体附近,则导体内的电场强度______________,导体的电势______________.(填增大、不变、减小)103、一金属球壳的内、外半径分别为R 1和R 2,带电荷为Q .在球心处有一电荷为q 的点电荷,则球壳内表面上的电荷面密度σ =______________.104、一半径为R 的均匀带电导体球壳,带电荷为Q .球壳内、外均为真空.设无限远处为电势零点,则壳内各点电势U =______________.105、一平行板电容器,上极板带正电,下极板带负电,其间充满相对介电常量为εr = 2的各向同性均匀电介质,如图所示.在图上大致画出电介质内任一点P 处自由电荷产生的场强 0E, 束缚电荷产生的场强E '和总场强E.106、两个点电荷在真空中相距d 1 = 7 cm 时的相互作用力与在煤油中相距d 2 = 5cm时的相互作用力相等,则煤油的相对介电常量εr =___________________.107、如图所示,平行板电容器中充有各向同性均匀电介质.图中画出两组带有箭头的线分别表示电场线、电位移线.则其中(1)为__________________线,(2)为__________________线.108、一个半径为R 的薄金属球壳,带有电荷q ,壳内充满相对介电常量为εr 的各向同性均匀电介质.设无穷远处为电势零点,则球壳的电势 U = ________________________________.109、一平行板电容器,两板间充满各向同性均匀电介质,已知相对介电常量为εr .若极板上的自由电荷面密度为σ ,则介质中电位移的大小D =____________,电场强度的大小E =____________________.110、一个半径为R 的薄金属球壳,带有电荷q ,壳内真空,壳外是无限大的相对介电常量为εr 的各向同性均匀电介质.设无穷远处为电势零点,则球壳的电势 U =____________________________.111、一平行板电容器,充电后切断电源,然后使两极板间充满相对介电常量为εr 的各向同性均匀电介质.此时两极板间的电场强度是原来的____________倍;电场能量是原来的___________ 倍.112、一平行板电容器,充电后与电源保持联接,然后使两极板间充满相对介电常(1)(2)量为εr的各向同性均匀电介质,这时两极板上的电荷是原来的______倍;电场强度是原来的_________倍;电场能量是原来的_________倍.113、在相对介电常量为εr的各向同性的电介质中,电位移矢量与场强之间的关系是___________________ .114、分子的正负电荷中心重合的电介质叫做_______________ 电介质.在外电场作用下,分子的正负电荷中心发生相对位移,形成________________________.115、一平行板电容器,两板间充满各向同性均匀电介质,已知相对介电常量为εr .若极板上的自由电荷面密度为σ,则介质中电位移的大小D =____________,电场强度的大小E =____________________.116、一平行板电容器充电后切断电源,若使二极板间距离增加,则二极板间场强_________________,电容____________________.(填增大或减小或不变) 117、一个孤立导体,当它带有电荷q而电势为U时,则定义该导体的电容为C =______________,它是表征导体的________________的物理量.118、一个孤立导体,当它带有电荷q而电势为U时,则定义该导体的电容为C =______________,它是表征导体的________________的物理量.119、两个空气电容器1和2,并联后接在电压恒定的直流Array电源上,如图所示.今有一块各向同性均匀电介质板缓慢地插入电容器1中,则电容器组的总电荷将__________,电容器组储存的电能将__________.(填增大,减小或不变)120、真空中均匀带电的球面和球体,如果两者的半径和总电荷都相等,则带电球面的电场能量W1与带电球体的电场能量W2相比,W1________ W2 (填<、=、>).三、计算题:(每题10分)121、如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.122、用绝缘细线弯成的半圆环,半径为R ,其上均匀地带有正电荷Q ,试求圆心O 点的电场强度.123、如图所示,一长为10 cm 的均匀带正电细杆,其电荷为1.5³10-8 C ,试求在杆的延长线上距杆的端点5 cm 处的P 点的电场强度.(41επ=9³109 N ²m 2/C 2 )124、真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为:Ex =bx , E y =0 , E z =0.常量b =1000 N/(C ²m).试求通过该高斯面的电通量125、真空中有一半径为R 的圆平面.在通过圆心O 与平面垂直的轴线上一点P 处,有一电荷为q 的点电荷.O 、P 间距离为h ,如图所示.试求通过该圆平面的电场强度通量.126、若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85³10-12C 2 / N ²m 2 )127、如图所示,两个点电荷+q 和-3q ,相距为d . 试求: (1) 在它们的连线上电场强度0=E的点与电荷为+q 的点电荷相距多远? (2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远?128、一带有电荷q =3³10-9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6³10-5 J ,粒子动能的增量为4.5³10-5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大?Lq PqdEq。

大学物理第五章 静电场部分的习题及答案

大学物理第五章 静电场部分的习题及答案

第五章 静电场一、简答题1、为什么在无电荷的空间里电场线不能相交?答案:由实验和理论知道,静电场中任一给定点上,场强是唯一确定的,即其大小和方向都是确定的.用电场线形象描述静电场的空间分布时,电场线上任一点的切线方向表示该点的场强方向.如果在无电荷的空间里某一点上有几条电场线相交的话,则过此交点对应于每一条电场线都可作出一条切线,这意味着交点处的场强有好几个方向,这与静电场中任一给定点场强具有唯一确定方向相矛盾,故无电荷的空间里电场线不能相交.2、简述静电场中高斯定理的文字内容和数学表达式。

答案:在真空中的静电场内,通过任意封闭曲面的电通量等于该封闭曲面所包围的所有电荷电量的代数和的01ε倍。

0ε∑⎰=⋅内S Sq S d E3、写出静电场的环路定理,并分别说明其物理意义。

答案:静电场中,电场强度的环流总是等于零(或0l=⋅⎰l d E ),静电场是保守场。

4、感生电场与静电场有哪些区别和联系?二、选择题1、如图所示,两个同心均匀带电球面,内球面半径为1R 、带有电荷1Q ,外球面半径为2R 、带有电荷2Q ,则在外球面外面、距离球心为r 处的P 点的场强大小E 为 ( A ) A.20214r Q Q επ+ B.()()2202210144R r Q R r Q -π+-πεε C.()2120214R R Q Q -+επ D.2024r Q επ 2、半径为R 的均匀带电球体的静电场中各点的电场强度的大小E 与距球心的距离r 的关系曲线为:( B )3、图示一均匀带电球体,总电荷为Q +,其外部同心地罩一内、外半径分别为1r 、2r 的金属球壳.设无穷远处为电势零点,则在球壳内半径为r 的P 点处的场强和电势为: ( D )A.204r QE επ=,r Q U 04επ= B.0=E ,104r Q U επ= C. 0=E ,r Q U 04επ=D.0=E ,204r Q U επ= 4、图中实线为某电场中的电场线,虚线表示等势(位)面,由图可看出:( D )A.C B A E E E >>,C B A U U U >>B.C B A E E E <<,C B A U U U <<C.C B A E E E >>,C B A U U U <<D.C B A E E E <<,C B A U U U >>5、面积为S 的空气平行板电容器,极板上分别带电量q ±,若不考虑边缘效应,则两极板间的相互作用力为 ( B )A.S q 02εB.S q 022εC.2022S q εD.202Sq ε 6、一均匀带电球面在球面内各处产生的场强 ( A )A.处处为零B.不一定为零C.一定不为零D.是常数7、已知一高斯面所包围的体积内电量代数和0=∑i q ,则可肯定:( C )A.高斯面上各点场强均为零B.穿过高斯面上每一面元的电通量均为零C.穿过整个高斯面的电通量为零D.以上说法都不对8、下列说法中正确的是 ( D )A.电场强度为0的点,电势也一定为0.B.电场强度不为0的点,电势也一定不为0.C.电势为0的点,则电场强度也一定为0.D.电势在某一区域为常数,则电场强度在该区域也必定为0.9、如图所示,一个带电量为q 的点电荷位于正立方体的中心上,则通过其中一侧面的电场强度通量等于 ( B ):A.04εqB.06εqC.06πεqD.04πεq 三、计算题1、两无限长同轴圆柱面,半径分别为1R 和2R (21R R < ),带有等量异号电荷,单位长度的电量为λ和λ-,求:(1) 1R r <;(2)21R r R <<;(3)r R <2处各点的场强。

大学物理第05章_静电场习题

大学物理第05章_静电场习题

第5章 静电场习题解答5.1一带电体可作为点电荷处理的条件是( ) (A )电荷必须呈球形分布。

(B )带电体的线度很小。

(C )带电体的线度与其它有关长度相比可忽略不计。

(D )电量很小。

5.2图中所示为一沿 x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ(x >0)和 -λ(x < 0),则 oxy 坐标平面上点(0,a )处的场强 E 为:( ) ( A ) 0 ( B )02aλπεi ( C )04a λπεi ( D ) ()02aλπε+i j 5.3 两个均匀带电的同心球面,半径分别为R 1、R 2(R 1<R 2),小球带电Q ,大球带电-Q ,下列各图中哪一个正确表示了电场的分布 ( )(A) (B) (C) (D)5.4 如图所示,任一闭合曲面S 内有一点电荷q ,O 为S 面上任一点,若将q 由闭合曲面内的P 点移到T 点,且OP =OT ,那么 ( )(A) 穿过S 面的电通量改变,O 点的场强大小不变; (B) 穿过S 面的电通量改变,O 点的场强大小改变; (C) 穿过S 面的电通量不变,O 点的场强大小改变;(D) 穿过S 面的电通量不变,O 点的场强大小不变。

5.5如图所示,a 、b 、c 是电场中某条电场线上的三个点,由此可知 ( ) (A) E a >E b >E c ; (B) E a <E b <E c ; (C) U a >U b >U c ; (D) U a <U b <U c 。

5.6关于高斯定理的理解有下面几种说法,其中正确的是 ( ) (A) 如果高斯面内无电荷,则高斯面上E处处为零; (B) 如果高斯面上E处处不为零,则该面内必无电荷;(C) 如果高斯面内有净电荷,则通过该面的电通量必不为零;(D) 如果高斯面上E处处为零,则该面内必无电荷。

5.7 下面说法正确的是 [ ](A)等势面上各点场强的大小一定相等; (B)在电势高处,电势能也一定高; (C)场强大处,电势一定高;(D)场强的方向总是从电势高处指向低处.5.8 已知一高斯面所包围的体积内电量代数和0i q =∑ ,则可肯定:[ ] (A )高斯面上各点场强均为零。

大学物理静电场练习题及答案

大学物理静电场练习题及答案

练习题7-1 两个点电荷所带电荷之和为Q ,它们各带电荷为多少时,相互间的作用力最大?解: 这是一个条件极值问题。

设其中一个点电荷带电q ,则另一个点电荷带电q Q -, 两点电荷之间的库仑力为()241r qq Q F -=πε由极值条件0d d =q F,得Q q 21=又因为202221d d r q F πε-=<0这表明两电荷平分电荷Q 时,它们之间的相互作用力最大。

7-2 两个相同的小球,质量都是m ,带等值同号的电荷q ,各用长为l 的细线挂在同一点,如图7-43所示。

设平衡时两线间夹角2θ很小。

(1)试证平衡时有下列的近似等式成立:31022⎪⎪⎭⎫⎝⎛=mg l q x πε式中x 为两球平衡时的距离。

(2)如果l = 1.20 m ,m =10 g ,x =5.0 cm ,则每个小球上的电荷量q 是多少?(3)如果每个球以-19s C 1001⋅⨯-.的变化率失去电 图7-43 练习题7-2图 荷,求两球彼此趋近的瞬时相对速率d x /d t 是多少? 解:(1)带电小球受力分析如图解所示。

小球平衡时,有FT =θsinmg T =θcos由此二式可得mgF =θtan因为θ很小,可有()l x 2tan ≈θ,再考虑到2024x q F πε=可解得31022⎪⎪⎭⎫ ⎝⎛=mg l q x πε(2)由上式解出C 10382282130-⨯±=⎪⎪⎭⎫⎝⎛±=.l mgx q πε (3) 由于tq q x t q q mg l t x d d 32d d 322d d 31310=⎪⎪⎭⎫ ⎝⎛==-πευ 带入数据解得-13s m 10401⋅⨯=-.υ合力的大小为2222201222412cos 2⎪⎭⎫ ⎝⎛+⋅⎪⎭⎫ ⎝⎛+⋅⋅===d x x d x e F F F x πεθ()23222043241dx xe +=πε令0d d =x F ,即有()()0482341825222232202=⎥⎥⎦⎤⎢⎢⎣⎡+⋅-+d x x d x e πε 由此解得α粒子受力最大的位置为22d x ±=7-4 由相距较近的等量异号电荷组成的体系称电偶极子,生物细胞膜及土壤颗粒表面的双电层可视为许多电偶极子的集合。

《大学物理学》电磁感应部分练习题(马)

《大学物理学》电磁感应部分练习题(马)

《大学物理学》电磁感应部分自主学习材料一、选择题:1.图示为导线AB 在均匀磁场中作下列四种运动,(1)垂直于磁场作平动;(2)绕固定端A 作垂直于磁场转动;(3)绕其中心点O 作垂直于磁场转动;(4)绕通过中心点O 的水平轴作平行于磁场的转动。

关于导线AB 的两端产生的感应电动势哪个结论是错误的?( ) (A )(1)有感应电动势,A 端为高电势; (B )(2)有感应电动势,B 端为高电势; (C )(3)无感应电动势; (D )(4)无感应电动势。

【提示:(3)虽切割磁感线,但A 、B 两端电势相等;(4)不切割磁感线,(1)和(2)切割磁感线,由右手定则,A 端为高电势】2.如图所示,一根无限长直导线载有电流I ,一个矩形线圈位于导体平面沿垂直于载流导线方向以恒定速率运动,则:( ) (A )线圈中无感应电流;(B )线圈中感应电流为顺时针方向; (C )线圈中感应电流为逆时针方向; (D )线圈中感应电流方向无法确定。

【提示:载流无限长直导线在其附近产生的磁场是非均匀的:02IB rμπ=,知矩形线圈内磁通量发生减小的变化,由右手定则,感应电流为顺时针方向】3.尺寸相同的铁环与铜环所包围的面积中,通以相同变化率的磁通量,则环中:( ) (A )感应电动势不同, 感应电流不同;(B ) 感应电动势相同,感应电流相同; (C )感应电动势不同, 感应电流相同;(D )感应电动势相同,感应电流不同。

【提示:铁环与铜环的电阻不同,所以感应电流不同】4.一“探测线圈”由50匝导线组成,截面积24S cm =,电阻R =25Ω,放在均匀磁场中且线圈平面与磁场方向垂直,若把探测线圈迅速翻转︒90,测得通过线圈的电荷量为C 1045-⨯=∆q ,则此均匀磁场磁感应强度B 的大小为: ( )(A )0.01T ; (B )0.05T ; (C )0.1T ; (D )0.5T 。

【提示:由d d t εΦ=-、N BS Φ=及d q I d t R ε==知N BSq R∆=,∴0.05B T =】5.如图所示,在圆柱形空间有一磁感强度为B 的均匀磁场,B 的大小以速率d Bd t变化,在磁场中有A 、B 两点,其间可放 置一直导线和一弯曲的导线,则有下列哪些情况:( )A(1) (2) (3) (4)(A )电动势只在直导线中产生; (B )电动势只在弯曲的导线中产生;(C )电动势在直导线和弯曲的导线中都产生,且两者大小相等; (D )直导线中的电动势小于弯曲导线中的电动势。

大学物理学第五版马文蔚高等教育出版社静电场2

大学物理学第五版马文蔚高等教育出版社静电场2
S S
(5-13) (5-14)
S
规定: 闭合曲面上任一点的外法线为正向!
{
E 线穿出: </2, d E >0 E 线穿入: >/2, d E < 0
通过闭合曲面的电 场线数目与该曲面 内的电荷间的关系
三.高斯定理
q3
+ -
+ -q
2
q1
S
1. 定理的表述 q4 在任意的静电场中,通过任一闭合曲面的 E 通量,等于该曲面内电荷量的代数和除以0 。 1 E E d S qi (5-16) S
1
2
无限长均匀 带电圆柱
E E r O
+ + + S下 + + +
E
r 2 20 R
E
1 r
R
r
E
r 2 20 R
无限长均匀 带电圆柱面
E
E
E=0 O
1 r
无限长均匀带电圆柱面内 ? E =0
R
r
用高斯定理求E的要点:
由电荷分布的对称性→电场分布的对称性! 1.分析电场的对称性。 由此判断出:① 各点 E 的方向 ② 那些点 E 的大小相等。 点电荷,均匀带电球面(体)、球层(套叠); a.球对称:

o
dE
x
(3) 分解变量
(4) 统一变量
dl d Ex dE sin sin 2 40 R dl d E y dE cos cos 2 40 R d l Rd
参与题:一均 匀带电圆弧, 电荷线密度为 ,圆弧圆心 角为0,求Eo=?
0
方向:沿y轴正向。

大学物理第10章静电场练习题

大学物理第10章静电场练习题

⼤学物理第10章静电场练习题第10章静电场练习题班级______________学号____________姓名________________⼀、选择题1. 电场强度E = F /q 0 这⼀定义的适⽤范围是()(A) 点电荷产⽣的电场(B )静电场(C )匀强电场(D )任何电场。

2. 如图1所⽰.有⼀电场强度E 平⾏于x 轴正向的均匀电场,则通过图中⼀半径为R 的半球⾯的电场强度通量为()A 、πR 2E .B 、πR 2E /2 .C 、2πR 2E .D 、 0 . 3. 如图2所⽰,两个同⼼的均匀带电球⾯,内球⾯半径为R 1,带电量Q 1,外球⾯半径为R 2,带电量为Q 2.设⽆穷远处为电势零点,则在两个球⾯之间,距中⼼为r 处的P 点的电势为:() (A) r Q Q 0214πε+. (B) 2 0210144R Q R Q πεπε+. (C) 2020144R Q r Q πεπε+. (D) r Q R Q 0210144πεπε+. 4. 关于⾼斯定理,以下说法正确的是()(A) ⾼斯定理是普遍适⽤的,但⽤它计算电场强度时要求电荷分布具有某种对称性;(B) ⾼斯定理对⾮对称性的电场是不正确的;(C) ⾼斯定理⼀定可以⽤于计算电荷分布具有对称性的电场的电场强度;(D) ⾼斯定理⼀定不可以⽤于计算⾮对称性电荷分布的电场的电场强度.5. ⼀“⽆限⼤”均匀带电平⾯A ,其附近放⼀与它平⾏的有⼀定厚度的“⽆限⼤”平⾯导体板B ,如图3所⽰.已知A 上的电荷⾯密度为σ,则在导体板B 的两个表⾯1和2上的感应电荷⾯密度为:()(A) σ1 = -σ , σ2 = +σ. (B) σ1 = -σ/2 , σ2 = +σ/2.(C) σ1 = -σ , σ2 = 0. (D) σ1 = -σ/2 , σ2 = -σ /2.6. 如图4, 两个完全相同的电容器C 1和C 2,串联后与电源连接. 现将⼀各同性均匀电介质板插⼊C 1中,则: ()(A) 电容器组总电容减⼩.(B) C 1上的电量⼤于C 2上的电量.(C) C 1上的电压⾼于C 2上的电压.(D) 电容器组贮存的总能量增⼤.7. 在⼀个带有正电荷的均匀带电球⾯外,放置⼀个电偶极⼦,其电矩P 的⽅向如图所⽰,当释放后该电偶极⼦的运动主要是:()(A )沿逆时针⽅向旋转,直⾄电矩P 沿径向指向球⾯⽽停⽌。

大学物理静电场理论及习题

大学物理静电场理论及习题

qn
电场强度的计算 点电荷电场的场强
F
v v v F qq0 F= r E= 2 q0 4πε0r
v E=
q 4πε0r
r 2
q
r
qo
电场具有球对称性. 电场具有球对称性
NIZQ
第11页
大学物理学 静电场
点电荷系电场中的场强 由场强叠加原理: 由场强叠加原理 点电荷系的场强: 点电荷系的场强
电场 ─ 早期 电磁理论是超距作用理论 早期: 电磁理论是超距作用理论. 超距作用理论 ─ 后来: 法拉第提出场的概念. 后来 法拉第提出场的概念 电场的特点 1. 对位于其中的带电体有力的作用 对位于其中的带电体有力的作用——力学性质 力学性质. 力学性质 2. 带电体在电场中运动 电场力要作功 带电体在电场中运动, 电场力要作功——能量性质 能量性质. 能量性质 电荷 电场 电荷 场的物质性 电场具有做功本领, 表明电场具有能量; 电场具有做功本领 表明电场具有能量 变化的电场以 光速在空间传播, 表明电场具有动量. 光速在空间传播 表明电场具有动量 电场与实物之间的不同在于它具有叠加性. 电场与实物之间的不同在于它具有叠加性
NIZQ
第8页
大学物理学 静电场
电场强度 1. 在电场的不同点上放同样的正试验电荷 0 在电场的不同点上放同样的正试验电荷q 结论: 电场中各处的力学性质 结论 不同. 不同 2. 在电场的同一点上放不同的试 验电荷
F3 F1
q3
q1
v v v Q F0 F F2 1 Q 1 = =L= = r q2 2 q1 q2 q0 4πε0 r v F 结论: 结论 定义为电场 = 恒矢量 q0
//
大学物理学 静电场

大学物理第7章静电场练习题

大学物理第7章静电场练习题

第7章 习题精选(一)选择题7-1、下列几种说法中哪一个是正确的(A )电场中某点场强的方向,就是点电荷在该点所受电场力的方向. (B )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同.(C )场强可由q F E /计算,其中q 为试验电荷,q 可正、可负,F 为试验电荷所受电场力.(D )以上说法都不正确.[ ]7-2、图中实线为某电场的电场线,虚线表示等势面,由图可看出: (A )C B A E E E ,C B A V V V .(B )C B A E E E ,C B A V V V . (C )C B A E E E ,C B A V V V .(D )C B A E E E ,C B A V V V .[ ]7-3、关于电场强度定义式0/q F E,下列说法中哪个是正确的(A )场强E的大小与试验电荷0q 的大小成反比.(B )对场中某点,试验电荷受力F与0q 的比值不因0q 而变. (C )试验电荷受力F 的方向就是场强E的方向.(D )若场中某点不放试验电荷0q ,则0 F ,从而0 E.[ ]7-4、有一边长为a 的正方形平面,在其中垂线上距中心O 点垂直距离为a /2处,有一电量为q 的正点电荷,如图所示,则通过该平面的电场强度通量为(A )03 q . (B )04 q (C )03 q . (D )06 q[ ]7-5、已知一高斯面所包围的体积内电荷代数和0 q ,则可肯定:(A )高斯面上各点场强均为零. (B )穿过高斯面上每一面元的电场强度通量均为零. (C )穿过整个高斯面的电场强度通量为零. (D )以上说法都不对.[ ]q7-6、点电荷Q 被曲面S 所包围,从无穷远处引入另一点电荷q 至曲面外一点,如图,则引入前后: (A )曲面S 的电场强度通量不变,曲面上各点场强不变. (B )曲面S 的电场强度通量变化,曲面上各点场强不变. (C )曲面S 的电场强度通量变化,曲面上各点场强变化. (D )曲面S 的电场强度通量不变,曲面上各点场强变化.[ ]7-7、高斯定理0/d q S E S(A )适用于任何静电场. (B )只适用于真空中的静电场. (C )只适用于具有球对称性、轴对称性和平面对称性的静电场.(D )只适用于虽然不具有(C )中所述的对称性、但可以找到合适的高斯面的静电场.[ ]7-8、关于高斯定理的理解有下面几种说法,其中正确的是:(A )如果高斯面上E处处为零,则该面内必无电荷.(B )如果高斯面内无电荷,则高斯面上E处处为零.(C )如果高斯面上E处处不为零,则高斯面内必有电荷.(D )如果高斯面内有净电荷,则通过高斯面的电场强度通量必不为零.[ ]7-9、静电场中某点电势的数值等于(A )试验电荷q 0置于该点时具有的电势能. (B )单位试验电荷置于该点时具有的电势能. (C )单位正电荷置于该点时具有的电势能.(D )把单位正电荷从该点移到电势零点外力所做的功.[ ]7-10、图中所示为轴对称性静电场的E ~r 曲线,请指出该电场是由下列哪一种带电体产生的(E 表示电场强度的大小,r 表示离对称轴的距离).(A )“无限长”均匀带电圆柱面. (B )“无限长”均匀带电圆柱体. (C )“无限长”均匀带电直线. (D )“有限长”均匀带电直线.[ ]7-11、如图所示,边长为l 的正方形,在其四个顶点上各放有等量的点电荷.若正方形中心O 处的场强值和电势值都等于零,则:(A )顶点a 、b 、c 、d 处都是正电荷.(B )顶点a 、b 处是正电荷,c 、d 处是负电荷. (C )顶点a 、c 处是正电荷,b 、d 处是负电荷. (D )顶点a 、b 、c 、d 处都是负电荷.[ ]7-12、图中所示为一球对称性静电场的电势分布曲线,r 表示离对称中心的距离.请指出该电场是由下列哪一种带电体产生的. (A )半径为R 的均匀带负电球面.(B )半径为R 的均匀带负电球体. (C )正点电荷. (D )负点电荷.[ ]7-13、已知某电场的电场线分布情况如图所示.现观察到一负电荷从M 点移到N 点.有人根据这个图作出下列几点结论,其中哪个是正确的(A )电场强度N M E E . (B )电势N M V V . (C )电势能pN pM E E . (D )电场力的功0 W .[ ]7-14、有三个直径相同的金属小球.小球1和小球2带等量异号电荷,两者的距离远大于小球直径,相互作用力为F .小球3不带电并装有绝缘手柄.用小球3先和小球1碰一下,接着又和小球2碰一下,然后移去.则此时小球1和2之间的相互作用力为:(A )0. (B )F /4. (C )F /8. (D )F /2.[ ]7-15、一“无限大”均匀带电平面A ,其附近放一与它平行的有一定厚度的“无限大”平面导体板B ,如图所示.已知A 上的电荷面密度为 ,则在导体板B 的两个表面1和2上的感应电荷面密度为:(A ) 1, 2. (B ) 211 , 212 .(C ) 211 , 212 . (D ) 1,02 .[ ]baA+7-16、A 、B 为两导体大平板,面积均为S ,平行放置,如图所示.A 板带电荷1Q ,B 板带电荷2Q ,如果使B 板接地,则AB 间电场强度的大小E 为(A )S Q 012 . (B )S Q Q 0212 . (C )S Q01 . (D )SQ Q 0212 .[ ]7-17、两个同心薄金属球壳,半径分别为1R 和2R (12R R ),若分别带上电荷1q 和2q ,则两者的电势分别为1V 和2V (选无穷远处为电势零点).现用导线将两球壳相连接,则它们的电势为(A )1V . (B )2V . (C )21V V . (D ))(2121V V .[ ]7-18、如图所示,一带负电荷的金属球,外面同心地罩一不带电的金属球壳,则在球壳中一点P 处的场强大小与电势(设无穷远处为电势零点)分别为:(A )00 V E ,. (B )00 V E ,. (C )00 V E ,. (D )00 V E ,.[ ]7-19、在一不带电荷的导体球壳的球心处放一点电荷,并测量球壳内外的场强分布.如果将此点电荷从球心移到球壳内其它位置,重新测量球壳内外的场强分布,则将发现:(A )球壳内、外场强分布均无变化. (B )球壳内场强分布改变,球壳外不变. (C )球壳外场强分布改变,球壳内不变. (D )球壳内、外场强分布均改变.[ ]7-20、电场强度0/q F E这一定义的适用范围是:(A )点电荷产生的电场. (B )静电场. (C )匀强电场. (D )任何电场.[ ]7-21、在边长为b 的正方形中心放置一点电荷Q ,则正方形顶角处的场强为: (A )20π4b Q . (B )20π2b Q . (C )20π3b Q . (D )20πb Q. [ ]7-22、一“无限大”均匀带电平面A 的右侧放一与它平行的“无限大”均匀带电平面B .已知A 面电荷面密度为 ,B 面电荷面密度为 2,如果设向右为正方向,则两平面之间和平面B 右侧的电场强度分别为:+Q 2A B(A )002 ,. (B )00 ,. (C )00232 ,. (D )002 , . [ ]7-23、一带有电量Q 的肥皂泡(可视为球面)在静电力的作用下半径逐渐变大,设在变大的过程中其球心位置不变,其形状保持为球面,电荷沿球面均匀分布,则在肥皂泡逐渐变大的过程中:(A )始终在泡内的点的场强变小. (B )始终在泡外的点的场强不变. (C )被泡面掠过的点的场强变大. (D )以上说法都不对.[ ]7-24、两个同心均匀带电球面,半径分别为a R 和b R (a R <b R ),所带电荷分别为a Q 和b Q .设某点与球心相距r ,当b R r 时,该点的电场强度的大小为:(A )2b b 2a 0π41R Q r Q . (B ) 2b a 0π41r Q Q . (C ) 2b a 0π41r Q Q . (D )2a 0π41r Q . [ ]7-25、关于高斯定理的理解有下面几种说法,其中正确的是: (A )如果高斯面内有净电荷,则通过高斯面的电通量必不为零.(B )如果高斯面内无电荷,则高斯面上E处处为零.(C )如果高斯面上E处处不为零,则该面内必有电荷. (D )高斯定理仅适用于具有高度对称性的电场.[ ]7-26、一点电荷放在球形高斯面的中心处,下列哪一种情况,通过该高斯面的电通量会发生变化. (A )将另一点电荷放在高斯面外. (B )将另一点电荷放在高斯面内. (C )将球心处的点电荷移开,但仍在高斯面内. (D )将高斯面缩小.[ ]7-27、在已知静电场分布的条件下,任意两点1P 和2P 之间的电势差决定于: (A )1P 和2P 两点的位置. (B )1P 和2P 两点处的电场强度的大小和方向. (C )试验电荷所带电荷的正负. (D )试验电荷所带的电量.[ ]7-28、带电导体达到静电平衡时,其正确结论是:(A )导体表面上曲率半径小处电荷密度较小.(B )表面曲率半径较小处电势较高.(C )导体内部任一点电势都为零. (D )导体内任一点与其表面上任一点的电势差等于零.[ ]7-29、一个平行板电容器,充电后与电源断开,当用绝缘手柄将电容器两极板间距离拉大,则两极板间的电势差U ,电场强度的大小E ,将发生如下变化.(A )U 减小,E 减小. (B )U 增大,E 增大.(C )U 增大,E 不变. (D )U 减小,E 不变.[ ](二)填空题7-1、根据定义,静电场中某点的电场强度等于置于该点的___________________所受到的电场力.7-2、电场线稀疏的地方电场强度________;密集的地方电场强度________.(填“较大”或“较小”)7-3、均匀带电细圆环圆心处的场强为______________.7-4、一电偶极子,带电量为C 1025 q ,间距cm 5.0 L ,则系统电矩为_____________Cm .7-5、在静电场中作一任意闭合曲面,通过该曲面的电场强度通量的值取决于________________.7-6、两个平行的“无限大”均匀带电平面,其电荷面密度分别为 和 ,则两平面之间的电场强度大小为___________________,方向为_____________________.7-7、一个均匀带电球面半径为R ,带电量为Q .在距球心r 处(r <R )某点的电势为________________.7-8、在电荷为q 的点电荷的静电场中,将一电荷为0q 的试验电荷从a 点(距离q 为a r )沿任意路径移动到b 点(距离q 为b r ),外力克服静电场力所做的功 W ____________________.7-9、电荷为C 1059 的试验电荷放在电场中某点时,受到N 10209 的向下的力,则该点的电场强度大小为____________,方向____________.+ +2 AB C7-10、两个平行的“无限大”均匀带电平面,其电荷面密度分别为 和 2 ,如图所示,则A 、B 、C 三个区域的电场强度分别为:E A =______________,E B =________________,E C =_____________(设方向向右为正).7-11、一半径为R 的带有一缺口的细圆环,缺口长度为d (d <<R )环上均匀带有正电,电荷为q ,如图所示.则圆心O 处的场强大小 E ______________,场强方向为____________.7-12、半径为R 的半球面置于场强为E的均匀电场中,其对称轴与场强方向一致,如图所示.则通过该半球面的电场强度通量为___________.7-13、一均匀带正电的导线,电荷线密度为 ,其单位长度上总共发出的电场线条数(即电场强度通量)是____________.7-14、如图,点电荷q 和-q 被包围在高斯面S 内,则通过该高斯面的电场强度通量 SS E d =_________,式中E为__________________处的场强.7-15、在点电荷+q 和-q 的静电场中,作出如图所示的三个闭合面S 1、S 2、S 3,则通过这些闭合面的电场强度通量分别是:1Φ=___________,2Φ=___________,3Φ=________________.7-16、描述静电场的两个基本物理量是__________________;它们的定义公式是_______________和_________________.7-17、图示BCD 是以O 点为圆心,以R 为半径的半圆弧,在A 点有一电荷为+q 的点电荷,O 点有一电荷为-q 的点电荷.线段R BA .现将一单位正电荷从B 点沿半圆弧轨道BCD 移到D 点,则电场力所做的功为_____________.7-18、半径为R 的均匀带电圆环,电荷线密度为 .设无穷远处为电势零点,则圆环中心O 点的电势V =_____________________.7-19、静电场的场强环路定理的数学表示式为:____________.该式的物理意义____________________1 2 3该定理表明,静电场是____________场.7-20、电荷为Q 的点电荷固定在空间某点上,将另一电荷为q 的点电荷放在与Q 相距r 处.若设两点电荷相距无限远时电势能为零,则此时系统的电势能E p =___________________.7-21、一空气平行板电容器,两极板间距为d ,充电后板间电压为U .然后将电源断开,在两板间平行地插入一厚度为d /3的金属板,则板间电压变成U =________________.7-22、如图所示,两同心导体球壳,内球壳带电荷+q ,外球壳带电荷-2q .静电平衡时,外球壳的电荷分布为:内表面_____________;外表面_______________.7-23、如图所示,把一块原来不带电的金属板B ,移近一块已带有正电荷Q 的金属板A ,平行放置.设两板面积都是S ,板间距离是d ,忽略边缘效应.当B 板不接地时,两板间电势差U AB =_____________;B 板接地时两板间电势差 ABU _____________.7-24、一个不带电的金属球壳的内、外半径分别为R 1和R 2,今在中心处放置一电荷为q 的点电荷,则球壳的电势U =_____________.7-25、一平行板电容器充电后切断电源,若使两电极板距离增加.则电容将____________,两极板间电势差将__________.(填“增大”、“减小”或“不变”)(三)计算题7-1、电荷为q 1=×10-6C 和q 2=×10-6C 的两个点电荷相距20cm ,求离它们都是20cm 处的电场强度.(真空介电常量-2-12120m N C 108.85 )S7-2、如图所示,一长为10cm 的均匀带正电细杆,其电荷为×10-8C ,试求在杆的延长线上距杆的端点5cm 处的P 点的电场强度.(2-290C m N 10941)7-3、绝缘细线弯成的半圆环,半径为R ,其上均匀地带有正电荷Q ,试求圆心O 点的电场强度.7-4、“无限长”均匀带电的半圆柱面,半径为R ,设半圆柱面沿轴线OO'单位长度上的电荷为 ,试求轴线上一点的电场强度.7-5、真空中两条平行的“无限长”均匀带电直线相距为a ,其电荷线密度分别为 和 .试求:在两直线构成的平面上,两线间任一点的电场强度(选Ox 轴如图所示,两线的中点为原点).7-6、真空中一立方体形的高斯面,边长a =,位于图中所示位置.已知空间的场强分布为:bx E x ,0z y E E .常量b =1000N/(C m ).试求通过该高斯面的电通量.7-7、如图所示,两个点电荷+q 和-3q ,相距为d ,试求:(1)在它们的连线上电场强度0 E的点与电荷为+q 的点电荷相距多远(2)若选无穷远处电势为零,两点电荷之间电势0 V 的点与电荷为+q 的点电荷相距多远7-8、一“无限大”平面中部有一半径为R 的圆孔,设平面上均匀带电,电荷面密度为 .如图所示,试求通过小孔中心O 并与平面垂直的直线上各点的场强和电势(选O 点的电势为零).7-9、一个带等量异号电荷的均匀带电同心球面,半径分别为m 03.01 R 和m 10.02 R .已知两者的电势差为450V ,求内球面上所带的电荷.7-10、厚度为d 的“无限大”均匀带电导体板两表面单位面积上电荷之和为 .试求图示离左板面距离为a 的一点与离右板面距离为b 的一点之间的电势差.12。

大学物理静电场作业题参考答案

大学物理静电场作业题参考答案

解得 q 2l sin 4 0mg tan 7.3.4 长 l =15.0cm的直导线AB上均匀地分布着线密度 =5.0x10-9C·m-1的正电荷.试
求:(1)在导线的延长线上与导线B端相距 a1 =5.0cm处 P 点的场强;(2)在导线的垂直 平分线上与导线中点相距 d2 =5.0cm 处 Q 点的场强.
S
(D) 曲 面 S 的 电 场 强 度 通 量 不 变 , 曲 面 上 各 点 场 强 变
化.
题 7.1(2)图
[答案 D ]
(3)在电场中的导体内部的 [ ] (A)电场和电势均为零; (B)电场不为零,电势均为零; (C)电势和表面电势相等; (D)电势低于表面电势。 [答案:C]
(4)两个同心均匀带电球面,半径分别为 Ra 和 Rb (Ra<Rb), 所带电荷分别为 Qa 和
Uo
4U1
4
8.99
109
1.25 5
108 102
8.99 103V
(2)根据电势差的定义,有UO q0 (U UO )
选取无穷远处为电势零点WO q0 (U UO ) 8.99 106 J
电场力做负功,说明实际需要外力克服电场力做功。
题 7.3.11 图 7.3.11 如题7.3.11图所示,在 A ,B 两点处放有电量分别为+ q ,- q 的点电荷,AB
解:如题 7.3.4 图所示
(1) 在带电直线上取线元 dx ,其上电量 dq 在 P 点产生场强为 dEP
1 4π 0
dx (a x)2
EP
dE P
4π 0
l 2 l 2
dx (a x)2
4π 0
[ a
1
l
1 a

大学物理D-05静电场

大学物理D-05静电场

q

p q
l

两个等量异号电荷-q,+q相距为l,该带电体系 为电偶极子;
电偶极矩(电矩) p q l 用 l 表示从-q到+q的位矢.
27
大学物理
解一
Y
E
E
Q E 40 Q E X 4 0
E E r r r
Q
E
文字表述: 在真空中,两个静止点电荷之间的相 互作用力大小,与它们的电量的乘积成正比,与它 们之间距离的平方成反比;作用力的方向沿着它们 的联线,同号电荷相斥,异号电荷相吸。
qq F k e F r
1 2 12 2 12 12
21
q1
F21
q1
r12
r12
F12
q2
q2
y
l 4 0 x 2 q E i 2 l 4 0 x 2 E q
5
大学物理
物理学的第二次大综合
库仑定律: 电荷与电荷间的相互作用 (磁极与磁极间的相互作用)
奥斯特的发现: 电流的磁效应,安培发现电流与电流 间的相互作用规律. 法拉第的电磁感应定律: 电磁一体
麦克斯韦电磁场统一理论(19世纪中叶)
赫兹在实验中证实电磁波的存在,光是电磁波.
技术上的重要意义:发电机、电动机、无线电技术等.
11
大学物理
2.库仑定律
点电荷模型
(d r12)
1) 概念:当带电体的大小和形状可以忽略时, 可把电荷看成是一个带电的点,称为点电荷
q1
F21e
q1
r12
12
F12
q2
q2
F21

大学物理题库-第5章 静电场习题(含答案解析)

大学物理题库-第5章 静电场习题(含答案解析)

真空中的静电场一 选择题1.两个等量的正电荷相距为2a ,P 点在它们的中垂线上,r 为P 到垂足的距离。

当P 点电场强度大小具有最大值时,r 的大小是:[ ](A )42a r =(B )32a r = (C )22ar = (D )a r 2= 2.如图5-1所示,两个点电荷的电量都是q +,相距为a 2,以左边点电荷所在处为球心,以a 为半径作一球形高斯面,在球面上取两块相等的小面积1S 和2S ,设通过1S 和2S 的电通量分别为1Φ和2Φ,通过整个球面的电通量为Φ,则[ ](A )021εq=ΦΦ>Φ,(B )0212,εq=ΦΦ<Φ(C )021εq=ΦΦ=Φ,(D )021εq=ΦΦ<Φ,3.在静电场中,高斯定理告诉我们 [ ](A )高斯面内不包围电荷,则高斯面上各点E的量值处处相等;(B )高斯面上各点E只与面内电荷有关,与面外电荷无关;(C )穿过高斯面的E(D )穿过高斯面的E 通量为零,则高斯面上各点的E必为零; 4.如图5-2所示,两个“无限长”的同轴圆柱面,半径分别为1R 和2R ,其上均匀带电,沿轴线方向单位长度上的带电量分别为1λ和2λ,则在两圆柱面之间、距轴线为r 的P 点处的场强大小为:[ ](A )r 012πελ (B )r 0212πελλ+ (C )()r R -2022πελ (D )()1012R r -πελ5.电荷面密度为+σ和-σ的两块“无限大”均匀带电平行平板,放在与平面垂直的x2-5 图1 - 5 图轴上a +和a -位置,如图5-3所示。

设坐标圆点o 处电势为零,则在a x a +<<-区域的电势分布曲线为: ( )6.真空中两个平行带电平板A 、B ,面积均为S ,相距为)(S d d <<2,分别带电量q +和q -,则两板间相互作用力的大小为:[ ](A )204d q πε (B )Sq 0ε (C )Sq 022ε (D )不能确定7.静电场中,下列说法哪一个是正确的?[ ](A )正电荷的电势一定是正值; (B )等势面上各点的场强一定相等;(C )场强为零处,电势也一定为零; (D )场强相等处,电势梯度矢量一定相等。

《大学物理》章节试题及答案(五)

《大学物理》章节试题及答案(五)

《大学物理》章节试题及答案第五章 静 电 场5 -1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A)放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B)中的( )分析与解 “无限大”均匀带电平板激发的电场强度为02εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B).5 -2 下列说法正确的是( )(A)闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(B)闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零(C)闭合曲面的电通量为零时,曲面上各点的电场强度必定为零(D)闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零 分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B).5 -3 下列说法正确的是( )(A) 电场强度为零的点,电势也一定为零(B) 电场强度不为零的点,电势也一定不为零(C) 电势为零的点,电场强度也一定为零(D) 电势在某一区域内为常量,则电场强度在该区域内必定为零分析与解 电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D).*5 -4 在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p 的方向如图所示.当电偶极子被释放后,该电偶极子将( )(A) 沿逆时针方向旋转直到电偶极矩p 水平指向棒尖端而停止(B) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时沿电场线方向朝着棒尖端移动(C) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动(D) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动分析与解 电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B).5 -5 精密实验表明,电子与质子电量差值的最大范围不会超过±10-21 e ,而中子电量与零差值的最大范围也不会超过±10-21e ,由最极端的情况考虑,一个有8 个电子,8 个质子和8 个中子构成的氧原子所带的最大可能净电荷是多少? 若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小.分析 考虑到极限情况, 假设电子与质子电量差值的最大范围为2×10-21 e ,中子电量为10-21 e ,则由一个氧原子所包含的8 个电子、8 个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较.解 一个氧原子所带的最大可能净电荷为()e q 21max 10821-⨯⨯+=二个氧原子间的库仑力与万有引力之比为1108.2π46202max <<⨯==-Gmεq F F g e 显然即使电子、质子、中子等微观粒子带电量存在差异,其差异在±10-21e范围内时,对于像天体一类电中性物体的运动,起主要作用的还是万有引力.5 -6 1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带e 32 的上夸克和两个带e 31-的下夸克构成.若将夸克作为经典粒子处理(夸克线度约为10-20 m),中子内的两个下夸克之间相距2.60×10-15 m .求它们之间的相互作用力.解 由于夸克可视为经典点电荷,由库仑定律()r r r re εr q q εe e e F N 78.3π41π412202210=== F 与径向单位矢量e r 方向相同表明它们之间为斥力.5 -7 质量为m ,电荷为-e 的电子以圆轨道绕氢核旋转,其动能为E k .证明电子的旋转频率满足4320232me E εk =v 其中ε0 是真空电容率,电子的运动可视为遵守经典力学规律.分析 根据题意将电子作为经典粒子处理.电子、氢核的大小约为10-15 m ,轨道半径约为10-10 m ,故电子、氢核都可视作点电荷.点电荷间的库仑引力是维持电子沿圆轨道运动的向心力,故有2202π41r e εr m =v 由此出发命题可证.证 由上述分析可得电子的动能为re εm E K 202π8121==v 电子旋转角速度为3022π4mr εe ω= 由上述两式消去r ,得432022232π4me E εωK ==v 5 -8 在氯化铯晶体中,一价氯离子Cl -与其最邻近的八个一价铯离子Cs +构成如图所示的立方晶格结构.(1) 求氯离子所受的库仑力;(2) 假设图中箭头所指处缺少一个铯离子(称作晶格缺陷),求此时氯离子所受的库仑力.分析 铯离子和氯离子均可视作点电荷,可直接将晶格顶角铯离子与氯离子之间的库仑力进行矢量叠加.为方便计算可以利用晶格的对称性求氯离子所受的合力.解 (1) 由对称性,每条对角线上的一对铯离子与氯离子间的作用合力为零,故F 1 =0.(2) 除了有缺陷的那条对角线外,其它铯离子与氯离子的作用合力为零,所以氯离子所受的合力F 2 的值为N 1092.1π3π4920220212⨯===aεe r εq q F F 2 方向如图所示.5 -9 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为 2204π1Lr Q εE -= (2) 在棒的垂直平分线上,离棒为r 处的电场强度为2204π21L r r Q εE += 若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较.分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为r rq εe E 20d π41d '= 整个带电体在点P 的电场强度⎰=E E d接着针对具体问题来处理这个矢量积分.(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,⎰=LE i E d (2) 若点P 在棒的垂直平分线上,如图(A)所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是⎰⎰==Ly E αE j j E d sin d 证 (1) 延长线上一点P 的电场强度⎰'=L r πεq E 202d ,利用几何关系 r ′=r -x 统一积分变量,则()220022204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰电场强度的方向沿x 轴.(2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为E r εq αE L d π4d sin 2⎰'= 利用几何关系 sin α=r /r ′,22x r r +=' 统一积分变量,则()2203/22222041π2d π41L r r εQ r x L xrQ εE L/-L/+=+=⎰当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度r ελL r L Q r εE l 0220π2 /41/π21lim =+=∞→此结果与无限长带电直线周围的电场强度分布相同[图(B)].这说明只要满足r 2/L 2 <<1,带电长直细棒可视为无限长带电直线.5 -10 一半径为R 的半球壳,均匀地带有电荷,电荷面密度为σ,求球心处电场强度的大小.分析 这仍是一个连续带电体问题,求解的关键在于如何取电荷元.现将半球壳分割为一组平行的细圆环,如图所示,从教材第5 -3 节的例1 可以看出,所有平行圆环在轴线上P 处的电场强度方向都相同,将所有带电圆环的电场强度积分,即可求得球心O 处的电场强度.解 将半球壳分割为一组平行细圆环,任一个圆环所带电荷元θθR δS δq d sin π2d d 2⋅==,在点O 激发的电场强度为()i E 3/2220d π41d r x qx ε+=由于平行细圆环在点O 激发的电场强度方向相同,利用几何关系θR x cos =,θR r sin =统一积分变量,有()θθθεδθθR πδR θR πεr x q x πεE d cos sin 2 d sin 2cos 41d 41d 02303/2220=⋅=+=积分得 02/004d cos sin 2εδθθθεδE π⎰== 5 -11 水分子H 2O 中氧原子和氢原子的等效电荷中心如图所示,假设氧原子和氢原子等效电荷中心间距为r 0 .试计算在分子的对称轴线上,距分子较远处的电场强度.分析 水分子的电荷模型等效于两个电偶极子,它们的电偶极矩大小均为00er P =,而夹角为2θ.叠加后水分子的电偶极矩大小为θer P cos 20=,方向沿对称轴线,如图所示.由于点O 到场点A 的距离x >>r 0 ,利用教材第5 -3 节中电偶极子在延长线上的电场强度302π41x p εE = 可求得电场的分布.也可由点电荷的电场强度叠加,求电场分布.解1 水分子的电偶极矩θer θP P cos 2cos 200==在电偶极矩延长线上30030030cos π1cos 4π412π41x θer εx θer εx p εE === 解2 在对称轴线上任取一点A ,则该点的电场强度+-+=E E E2020π42π4cos 2cos 2x εe r εθer E βE E -=-=+ 由于 θxr r x r cos 202022-+=rθr x βcos cos 0-= 代入得()⎥⎥⎦⎤⎢⎢⎣⎡--+-=23/20202001cos 2cos π42x θxr r x θr x εe E测量分子的电场时, 总有x >>r 0 , 因此, 式中()⎪⎭⎫ ⎝⎛⋅-≈⎪⎭⎫ ⎝⎛-≈-+x θr x x θr x θxr r x cos 2231cos 21cos 2033/2033/20202,将上式化简并略去微小量后,得300cos π1xθe r εE = 5 -12 两条无限长平行直导线相距为r 0 ,均匀带有等量异号电荷,电荷线密度为λ.(1) 求两导线构成的平面上任一点的电场强度( 设该点到其中一线的垂直距离为x );(2) 求每一根导线上单位长度导线受到另一根导线上电荷作用的电场力.分析 (1) 在两导线构成的平面上任一点的电场强度为两导线单独在此所激发的电场的叠加.(2) 由F =q E ,单位长度导线所受的电场力等于另一根导线在该导线处的电场强度乘以单位长度导线所带电量,即:F =λE .应该注意:式中的电场强度E 是另一根带电导线激发的电场强度,电荷自身建立的电场不会对自身电荷产生作用力.解 (1) 设点P 在导线构成的平面上,E +、E -分别表示正、负带电导线在P 点的电场强度,则有()i i E E E x r x r ελx r x ελ-=⎪⎪⎭⎫ ⎝⎛-+=+=+-00000π211π2(2) 设F +、F -分别表示正、负带电导线单位长度所受的电场力,则有i E F 00π2r ελλ==-+ i E F 002π2r ελλ-=-=+- 显然有F +=F -,相互作用力大小相等,方向相反,两导线相互吸引.5 -13 如图为电四极子,电四极子是由两个大小相等、方向相反的电偶极子组成.试求在两个电偶极子延长线上距中心为z 的一点P 的电场强度(假设z >>d ).分析 根据点电荷电场的叠加求P 点的电场强度.解 由点电荷电场公式,得()()k k k E 202020π41π412π41d z q εd z q εz q ε++-+= 考虑到z >>d ,简化上式得()()k k k E 42022220222206π4...321...32112π4/11/1112π4z qd εq z d z d z d z d z z εq z d z d z z εq =⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡++-+++++-=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-+-+-= 通常将Q =2qd 2 称作电四极矩,代入得P 点的电场强度k E 403π41zQ ε= 5 -14 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量.分析 方法1:由电场强度通量的定义,对半球面S 求积分,即⎰⋅=SS d s E Φ 方法2:作半径为R 的平面S ′与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理∑⎰==⋅01d 0q εS S E 这表明穿过闭合曲面的净通量为零,穿入平面S ′的电场强度通量在数值上等于穿出半球面S 的电场强度通量.因而⎰⎰'⋅-=⋅=S S S E S E Φd d 解1 由于闭合曲面内无电荷分布,根据高斯定理,有⎰⎰'⋅-=⋅=S S S E S E Φd d 依照约定取闭合曲面的外法线方向为面元d S 的方向,E R πR E 22πcos π=⋅⋅-=Φ解2 取球坐标系,电场强度矢量和面元在球坐标系中可表示为①()r θθθE e e e E sin sin cos sin cos ++=r θθR e S d d sin d 2=ER θθER θθER SS 2π0π02222πd sin d sin d d sin sin d ===⋅=⎰⎰⎰⎰S E Φ5 -15 边长为a 的立方体如图所示,其表面分别平行于Oxy 、Oyz 和Ozx 平面,立方体的一个顶点为坐标原点.现将立方体置于电场强度()12E kx E +E =i +j (k ,E 1 ,E 2 为常数)的非均匀电场中,求电场对立方体各表面及整个立方体表面的电场强度通量.解 如图所示,由题意E 与Oxy 面平行,所以任何相对Oxy 面平行的立方体表面,电场强度的通量为零,即0==DEFG OABC ΦΦ.而()[]()2221ABGF d a E dS E kx E =⋅++=⋅=⎰⎰j j i S E Φ考虑到面CDEO 与面ABGF 的外法线方向相反,且该两面的电场分布相同,故有22a E ABGF CDEO -=-=ΦΦ 同理 ()[]()2121AOEF d a E dS E E -=-⋅+=⋅=⎰⎰i j i S E Φ()[]()()2121BCDG d a ka E dS E ka E Φ+=⋅++=⋅=⎰⎰i j i S E因此,整个立方体表面的电场强度通量3ka ==∑ΦΦ5 -16 地球周围的大气犹如一部大电机,由于雷雨云和大气气流的作用,在晴天区域,大气电离层总是带有大量的正电荷,云层下地球表面必然带有负电荷.晴天大气电场平均电场强度约为1m V 120-⋅,方向指向地面.试求地球表面单位面积所带的电荷(以每平方厘米的电子数表示). 分析 考虑到地球表面的电场强度指向地球球心,在大气层中取与地球同心的球面为高斯面,利用高斯定理可求得高斯面内的净电荷.解 在大气层临近地球表面处取与地球表面同心的球面为高斯面,其半径E R R ≈(E R 为地球平均半径).由高斯定理∑⎰=-=⋅q εR E E 021π4d S E 地球表面电荷面密度∑--⨯-=-≈=2902cm 1006.1π4/E εR q σE单位面积额外电子数25cm 1063.6/-⨯=-=e σn5 -17 设在半径为R 的球体内,其电荷为球对称分布,电荷体密度为()()R r ρkr ρ>=≤≤= 0R r 0k 为一常量.试分别用高斯定理和电场叠加原理求电场强度E 与r 的函数关系.分析 通常有两种处理方法:(1) 利用高斯定理求球内外的电场分布.由题意知电荷呈球对称分布,因而电场分布也是球对称,选择与带电球体同心的球面为高斯面,在球面上电场强度大小为常量,且方向垂直于球面,因而有2Sπ4d r E ⋅=⋅⎰S E 根据高斯定理⎰⎰=⋅V ρεd 1d 0S E ,可解得电场强度的分布. (2) 利用带电球壳电场叠加的方法求球内外的电场分布.将带电球分割成无数个同心带电球壳,球壳带电荷为r r ρq ''⋅=d π4d 2,每个带电球壳在壳内激发的电场0d =E ,而在球壳外激发的电场rrεqe E 20π4d d =由电场叠加可解得带电球体内外的电场分布()()()()R r r r Rr>=≤≤=⎰⎰d R r 0d 0E E E E解1 因电荷分布和电场分布均为球对称,球面上各点电场强度的大小为常量,由高斯定理⎰⎰=⋅V ρεd 1d 0S E 得球体内(0≤r ≤R ) ()4202πd π41π4r εk r r kr εr r E r==⎰()r εr e E 04=球体外(r >R )()4202πd π41π4r εk r r kr εr r E R==⎰()r εkR r e E 024=解2 将带电球分割成球壳,球壳带电r r r k V ρq '''==d π4d d 2 由上述分析,球体内(0≤r ≤R )()r r rεkr r r r r k εr e e E 0222004d π4π41=''⋅'=⎰ 球体外(r >R )()rr RrεkR r r r πr k πεr e e E 20222004d 441=''⋅'=⎰5 -18 一无限大均匀带电薄平板,电荷面密度为σ,在平板中部有一半径为r的小圆孔.求圆孔中心轴线上与平板相距为x 的一点P 的电场强度.分析 用补偿法求解利用高斯定理求解电场强度只适用于几种非常特殊的对称性电场.本题的电场分布虽然不具有这样的对称性,但可以利用具有对称性的无限大带电平面和带电圆盘的电场叠加,求出电场的分布.若把小圆孔看作由等量的正、负电荷重叠而成,挖去圆孔的带电平板等效于一个完整的带电平板和一个带相反电荷(电荷面密度σ′=-σ)的小圆盘.这样中心轴线上的电场强度等效于平板和小圆盘各自独立在该处激发电场的矢量和.解 由教材中第5 -4 节例4 可知,在无限大带电平面附近n εe E 012=n e 为沿平面外法线的单位矢量;圆盘激发的电场n r x x εσe E ⎪⎪⎭⎫ ⎝⎛+--=220212 它们的合电场强度为n rx xεσe E E E 220212+=+=在圆孔中心处x =0,则E =0在距离圆孔较远时x >>r ,则nnεσx r εσe e E 02202/112≈+=上述结果表明,在x >>r 时,带电平板上小圆孔对电场分布的影响可以忽略不计.5 -19 在电荷体密度为ρ 的均匀带电球体中,存在一个球形空腔,若将带电体球心O 指向球形空腔球心O ′的矢量用a 表示(如图所示).试证明球形空腔中任一点的电场强度为a E 03ερ=分析 本题带电体的电荷分布不满足球对称,其电场分布也不是球对称分布,因此无法直接利用高斯定理求电场的分布,但可用补偿法求解.挖去球形空腔的带电球体在电学上等效于一个完整的、电荷体密度为ρ的均匀带电球和一个电荷体密度为-ρ、球心在O ′的带电小球体(半径等于空腔球体的半径).大小球体在空腔内P 点产生的电场强度分别为E 1 、E 2 ,则P 点的电场强度 E =E 1 +E 2 . 证 带电球体内部一点的电场强度为r E 03ερ=所以 r E 013ερ=,2023r E ερ-= ()210213r r E E E -=+=ερ根据几何关系a r r =-21,上式可改写为a E 03ερ=5 -20 一个内外半径分别为R 1 和R 2 的均匀带电球壳,总电荷为Q 1 ,球壳外同心罩一个半径为R 3 的均匀带电球面,球面带电荷为Q 2 .求电场分布.电场强度是否为离球心距离r 的连续函数? 试分析.分析 以球心O 为原点,球心至场点的距离r 为半径,作同心球面为高斯面.由于电荷呈球对称分布,电场强度也为球对称分布,高斯面上电场强度沿径矢方向,且大小相等.因而24d r πE ⋅=⎰S E .在确定高斯面内的电荷∑q 后,利用高斯定理∑⎰=0/d εq S E 即可求出电场强度的分布. 解 取半径为r 的同心球面为高斯面,由上述分析∑=⋅02/π4εq r Er <R 1 ,该高斯面内无电荷,0=∑q ,故01=ER 1 <r <R 2 ,高斯面内电荷()31323131R R R r Q q --=∑故 ()()23132031312π4rR R εR r Q E --= R 2 <r <R 3 ,高斯面内电荷为Q 1 ,故2013π4rεQ E =r >R 3 ,高斯面内电荷为Q 1 +Q 2 ,故20214π4r εQ Q E +=电场强度的方向均沿径矢方向,各区域的电场强度分布曲线如图(B)所示.在带电球面的两侧,电场强度的左右极限不同,电场强度不连续,而在紧贴r =R 3 的带电球面两侧,电场强度的跃变量230234π4ΔεσR εQ E E E ==-= 这一跃变是将带电球面的厚度抽象为零的必然结果,且具有普遍性.实际带电球面应是有一定厚度的球壳,壳层内外的电场强度也是连续变化的,本题中带电球壳内外的电场,在球壳的厚度变小时,E 的变化就变陡,最后当厚度趋于零时,E 的变化成为一跃变.5 -21 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1 和R 2 >R 1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R 1 ,(2) R 1 <r <R 2 ,(3) r >R 2 .分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且⎰⋅=rL E d π2S E ,求出不同半径高斯面内的电荷∑q .即可解得各区域电场的分布. 解 作同轴圆柱面为高斯面,根据高斯定理∑=⋅0/π2εq rL Er <R 1 ,0=∑q01=E在带电面附近,电场强度大小不连续,电场强度有一跃变 R 1 <r <R 2 ,L λq =∑rελE 02π2=r >R 2, 0=∑q03=E在带电面附近,电场强度大小不连续,电场强度有一跃变00π2π2ΔεσrL εL λr ελE ===这与5 -20 题分析讨论的结果一致.5 -22 如图所示,有三个点电荷Q 1 、Q 2 、Q 3 沿一条直线等间距分布且Q 1 =Q 3 =Q .已知其中任一点电荷所受合力均为零,求在固定Q 1 、Q 3 的情况下,将Q 2从点O 移到无穷远处外力所作的功.分析 由库仑力的定义,根据Q 1 、Q 3 所受合力为零可求得Q 2 .外力作功W ′应等于电场力作功W 的负值,即W ′=-W .求电场力作功的方法有两种:(1)根据功的定义,电场力作的功为l E d 02⎰∞=Q W其中E 是点电荷Q 1 、Q 3 产生的合电场强度. (2) 根据电场力作功与电势能差的关系,有()0202V Q V V Q W =-=∞其中V 0 是Q 1 、Q 3 在点O 产生的电势(取无穷远处为零电势). 解1 由题意Q 1 所受的合力为零()02π4π420312021=+d εQ Q d εQ Q 解得 Q Q Q 414132-=-=由点电荷电场的叠加,Q 1 、Q 3 激发的电场在y 轴上任意一点的电场强度为()2/322031π2yd εQ E E E yy y +=+=将Q 2 从点O 沿y 轴移到无穷远处,(沿其他路径所作的功相同,请想一想为什么?)外力所作的功为()dεQ y y d εQ Q Q W y 022/322002π8d π241d =+⋅⎥⎦⎤⎢⎣⎡--=⋅-='⎰⎰∞∞l E 解2 与解1相同,在任一点电荷所受合力均为零时Q Q 412-=,并由电势的叠加得Q 1 、Q 3 在点O 的电势dεQd εQ d εQ V 003010π2π4π4=+=将Q 2 从点O 推到无穷远处的过程中,外力作功dεQ V Q W 0202π8=-=' 比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多. 5 -23 已知均匀带电长直线附近的电场强度近似为r rελe E 0π2=为电荷线密度.(1)求在r =r 1 和r =r 2 两点间的电势差;(2)在点电荷的电场中,我们曾取r →∞处的电势为零,求均匀带电长直线附近的电势时,能否这样取? 试说明.解 (1) 由于电场力作功与路径无关,若沿径向积分,则有12012ln π2d 21r r ελU r r =⋅=⎰r E (2) 不能.严格地讲,电场强度r e rελE 0π2=只适用于无限长的均匀带电直线,而此时电荷分布在无限空间,r →∞处的电势应与直线上的电势相等. 5 -24 水分子的电偶极矩p 的大小为6.20 ×10-30 C · m.求在下述情况下,距离分子为r =5.00 ×10-9 m 处的电势.(1) 0θ=︒;(2) 45θ=︒;(3) 90θ=︒,θ 为r 与p 之间的夹角. 解 由点电荷电势的叠加2000P π4cos π4π4r εθp r εq r εq V V V =-+=+=-+-+ (1) 若o 0=θ V 1023.2π4320P -⨯==rεp V (2) 若o45=θ V 1058.1π445cos 320o P -⨯==rεp V (3) 若o90=θ 0π490cos 20oP ==r εp V5 -25 一个球形雨滴半径为0.40 mm ,带有电量1.6 pC ,它表面的电势有多大? 两个这样的雨滴相遇后合并为一个较大的雨滴,这个雨滴表面的电势又是多大? 分析 取无穷远处为零电势参考点,半径为R 带电量为q 的带电球形雨滴表面电势为RqεV 0π41=当两个球形雨滴合并为一个较大雨滴后,半径增大为R 32,代入上式后可以求出两雨滴相遇合并后,雨滴表面的电势. 解 根据已知条件球形雨滴半径R 1 =0.40 mm ,带有电量q 1 =1.6 pC ,可以求得带电球形雨滴表面电势V 36π411101==R q εV当两个球形雨滴合并为一个较大雨滴后,雨滴半径1322R R =,带有电量q 2 =2q 1 ,雨滴表面电势V 5722π4113102==R q εV5 -26 电荷面密度分别为+σ和-σ的两块“无限大”均匀带电的平行平板,如图(a)放置,取坐标原点为零电势点,求空间各点的电势分布并画出电势随位置坐标x 变化的关系曲线.分析 由于“无限大”均匀带电的平行平板电荷分布在“无限”空间,不能采用点电荷电势叠加的方法求电势分布:应该首先由“无限大”均匀带电平板的电场强度叠加求电场强度的分布,然后依照电势的定义式求电势分布. 解 由“无限大” 均匀带电平板的电场强度i 02εσ±,叠加求得电场强度的分布, ()()()⎪⎪⎩⎪⎪⎨⎧><<--<=a x a x a εσa x2 00i E 电势等于移动单位正电荷到零电势点电场力所作的功()a x a x εσV x <<--=⋅=⎰ d 0l E ()a x a εσV -<=⋅+⋅=⎰⎰- d d 0a-axl E l E ()a x a εσV >-=⋅+⋅=⎰⎰ d d 0a-axl E l E 电势变化曲线如图(b)所示.5 -27 两个同心球面的半径分别为R 1 和R 2 ,各自带有电荷Q 1 和Q 2 .求:(1) 各区域电势分布,并画出分布曲线;(2) 两球面间的电势差为多少?分析 通常可采用两种方法(1) 由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度的积分关系求电势.取同心球面为高斯面,借助高斯定理可求得各区域的电场强度分布,再由⎰∞⋅=p p V l E d 可求得电势分布.(2) 利用电势叠加原理求电势.一个均匀带电的球面,在球面外产生的电势为rεQV 0π4=在球面内电场强度为零,电势处处相等,等于球面的电势RεQV 0π4=其中R 是球面的半径.根据上述分析,利用电势叠加原理,将两个球面在各区域产生的电势叠加,可求得电势的分布. 解1 (1) 由高斯定理可求得电场分布()()()22021321201211π4 π40R r r εQ Q R r R rεQ R r r r>+=<<=<=e E e E E 由电势⎰∞⋅=rV l E d 可求得各区域的电势分布.当r ≤R 1 时,有20210120212113211π4π4π411π40d d d 2211R εQ R εQ R εQ Q R R εQ V R R R R r+=++⎥⎦⎤⎢⎣⎡-+=⋅+⋅+⋅=⎰⎰⎰∞lE l E l E当R 1 ≤r ≤R 2 时,有202012021201322π4π4π411π4d d 22R εQ r εQ R εQ Q R r εQ V R R r+=++⎥⎦⎤⎢⎣⎡-=⋅+⋅=⎰⎰∞lE l E当r ≥R 2 时,有rεQ Q V r 02133π4d +=⋅=⎰∞l E (2) 两个球面间的电势差⎪⎪⎭⎫⎝⎛-=⋅=⎰210121211π4d 21R R εQ U R R l E 解2 (1) 由各球面电势的叠加计算电势分布.若该点位于两个球面内,即r ≤R 1 ,则2021011π4π4R εQ R εQ V +=若该点位于两个球面之间,即R 1 ≤r ≤R 2 ,则202012π4π4R εQ r εQ V +=若该点位于两个球面之外,即r ≥R 2 ,则rεQ Q V 0213π4+=(2) 两个球面间的电势差()2011012112π4π42R εQ R εQ V V U R r -=-== 5 -28 一半径为R 的无限长带电细棒,其内部的电荷均匀分布,电荷的体密度为ρ.现取棒表面为零电势,求空间电势分布并画出分布曲线.分析 无限长均匀带电细棒电荷分布呈轴对称,其电场和电势的分布也呈轴对称.选取同轴柱面为高斯面,利用高斯定理⎰⎰=⋅V V εd 1d 0S E 可求得电场分布E (r ),再根据电势差的定义()l E d ⋅=-⎰bab a r V V并取棒表面为零电势(V b =0),即可得空间任意点a 的电势.解 取高度为l 、半径为r 且与带电棒同轴的圆柱面为高斯面,由高斯定理 当r ≤R 时02/ππ2ερl r rl E =⋅得 ()02εr ρr E = 当r ≥R 时02/ππ2ερl R rl E =⋅得 ()r εR ρr E 022=取棒表面为零电势,空间电势的分布有 当r ≤R 时()()22004d 2r R ερr εr ρr V Rr-==⎰ 当r ≥R 时()rRεR ρr r εR ρr V Rrln 2d 20202==⎰如图所示是电势V 随空间位置r 的分布曲线.5 -29 一圆盘半径R =3.00 ×10-2 m.圆盘均匀带电,电荷面密度σ=2.00×10-5 C ·m -2 .(1) 求轴线上的电势分布;(2) 根据电场强度与电势梯度的关系求电场分布;(3) 计算离盘心30.0 cm 处的电势和电场强度.分析 将圆盘分割为一组不同半径的同心带电细圆环,利用带电细环轴线上一点的电势公式,将不同半径的带电圆环在轴线上一点的电势积分相加,即可求得带电圆盘在轴线上的电势分布,再根据电场强度与电势之间的微分关系式可求得电场强度的分布.解 (1) 带电圆环激发的电势220d π2π41d xr rr σεV +=由电势叠加,轴线上任一点P 的电势的()x x Rεσxr r r εσV R-+=+=⎰22222d 2 (1)(2) 轴线上任一点的电场强度为i i E ⎥⎦⎤⎢⎣⎡+-=-=22012d d x R xεσx V (2) 电场强度方向沿x 轴方向.(3) 将场点至盘心的距离x =30.0 cm 分别代入式(1)和式(2),得V 1691=V-1m V 5607⋅=E当x >>R 时,圆盘也可以视为点电荷,其电荷为C 1065.5π82-⨯==σR q .依照点电荷电场中电势和电场强度的计算公式,有V 1695π40==xεqV 1-20m V 5649π4⋅==xεq E 由此可见,当x >>R 时,可以忽略圆盘的几何形状,而将带电的圆盘当作点电荷来处理.在本题中作这样的近似处理,E 和V 的误差分别不超过0.3%和0.8%,这已足以满足一般的测量精度.5 -30 两个很长的共轴圆柱面(R 1 =3.0×10-2 m ,R 2 =0.10 m),带有等量异号的电荷,两者的电势差为450 V.求:(1) 圆柱面单位长度上带有多少电荷?(2) r =0.05 m 处的电场强度.解 (1) 由习题5 -21 的结果,可得两圆柱面之间的电场强度为rελE 0π2=根据电势差的定义有120212ln π2d 21R R ελU R R =⋅=⎰l E 解得 1812120m C 101.2ln/π2--⋅⨯==R R U ελ (2) 解得两圆柱面之间r =0.05m 处的电场强度10m V 7475π2-⋅==rελE 5 -31 轻原子核(如氢及其同位素氘、氚的原子核)结合成为较重原子核的过程,叫做核聚变.在此过程中可以释放出巨大的能量.例如四个氢原子核(质子)结合成一个氦原子核(α粒子)时,可释放出25.9MeV 的能量.即MeV 25.9e 2He H 4014211++→这类聚变反应提供了太阳发光、发热的能源.如果我们能在地球上实现核聚变,就能获得丰富廉价的能源.但是要实现核聚变难度相当大,只有在极高的温度下,使原子热运动的速度非常大,才能使原子核相碰而结合,故核聚变反应又称作热核反应.试估算:(1)一个质子(H 11)以多大的动能(以电子伏特表示)运动,才能从很远处到达与另一个质子相接触的距离? (2)平均热运动动能达到此值时,温度有多高? (质子的半径约为1.0 ×10-15 m) 分析 作为估算,可以将质子上的电荷分布看作球对称分布,因此质子周围的电势分布为rεeV 0π4=将质子作为经典粒子处理,当另一质子从无穷远处以动能E k 飞向该质子时,势能增加,动能减少,如能克服库仑斥力而使两质子相碰,则质子的初始动能Re r εeV E 2π41202RK0=≥ 假设该氢原子核的初始动能就是氢分子热运动的平均动能,根据分子动理论知:。

大学物理学第五版马文蔚高等教育出版社静电场1ppt课件

大学物理学第五版马文蔚高等教育出版社静电场1ppt课件

性相吸”。q1
q2
q1
q2
大小:
+
F1 2
F12F2
1k
q1 q2 r2
r
+
F2 1
+ F12 r

F2 1
(k =8.988109 N·m2·C29109 N·m2·C2)
方向:同性相斥,异性相吸。
矢量表示:
F kqr1q22
令: k
e施力 受力
1
4 0
1
精(5选-p1pat课)件2021F40
n
即:
E Ei
(5-3)
i 1
•• q1 qn F3
•q2
•q0 F2
•q3
Fn
F1
点电荷系在空间任一点所激发的总场强等于各个点电荷单独
存在时在该点各自所激发的场强的矢量和。
精选ppt课件2021
7
四.场强的计算 (重点、难点)
线1.索点:电从荷点的电场荷强的场强
公理带式电求出体EF出发的点q4,场F电0q利强0荷0q4r用。系2qe叠0及r2加任e 原意
大学物理
静电场
(第一讲)
作业:P191 习题 5-7 5-9 5-12
精选ppt课件2021
1
第五章 静电场 静止电荷产生的电场
5-1电荷的量子化 电荷守恒定律
电学主要研究电磁场的规律及物质的电学、磁学性质,研究与 电磁现象有关的规律。电学是牛顿唯一没有问津的领域。
对电的初步认识:摩擦生电 丝绸-玻璃(+)毛皮-橡胶(-)
电场
a) 电量 q0 足够小;
q0 F
+
E b) q0
定义:
的几E 何 尺F寸足够(5小-2.)

大学物理学第三章静电场自学练习题

大学物理学第三章静电场自学练习题

第三章 静电场 自学练习题一、选择题:5-1.电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图放置,其周围空间各点电场强度E(设向右为正)随位置坐标x 变化的关系为:( )(A )(B )(C ) (D )【提示:带σ的 “无限大”均匀带电平板在其空间产生的场强为0/2σε,则两块平板之间的场强为零,外面为0/σε】5-2.下列说法正确的是:( )(A )闭合曲面上各点电场强度都为零时,曲面内一定没有电荷; (B )闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零;(C )闭合曲面的电通量为零时,曲面上各点电场强度必定为零; (D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零。

【提示:用01SEdS qε=∑⎰⎰判断】5-3.下列说法正确的是:( )(A )电场强度为零的点,电势也一定为零;(B )电场强度不为零的点,电势也一定不为零;(C )电势为零的点,电场强度也一定为零;(D )电势在某一区域内为常量,则电场强度在该区域内必定为零。

【提示:电场等于电势梯度的负值为场强】5--1.两块金属板的面积均为S ,相距为d (d 很小),分别带电荷q +与q -,两板为真空,则两板之间的作用力为:( )(A )202q F S ε=; (B )20q F Sε=; (C )2204q F dπε=; (D )2208q F dπε=。

【提示:带σ的 “无限大”均匀带电平板在其空间产生的场强为0/2σε,则另一板受到的力为0/2q σε⋅,即22q F Sε=】5--2.有一电场强度为E 的均匀电场,的方向与行,则穿过如图所示的半球面的电通量为:( )(A )2R E π; (B )212R E π; (C )22R E π; (D )0。

【提示:穿入半球面的电通量与穿出的电通量相等,所以穿过半球面的电通量为零】5--3. 关于高斯定理的理解有下面几种说法,其中正确的是 ( )(A )如果高斯面上E处处为零,则该高斯面内必无电荷;(B )如果穿过高斯面上电通量为零,则该高斯面上的电场强度一定处处为零;(C )如果高斯面内有净电荷,则通过该高斯面的电通量必不为零;(D )高斯面上各点的电场强度仅由高斯面内的电荷提供。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《大学物理学》静电场部分自主学习材料一、选择题:5-1.电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图放置,其周围空间各点电场强度E(设向右为正)随位置坐标x 变化的关系为:( )(A )(B )(C ) (D )【提示:带σ的 “无限大”均匀带电平板在其空间产生的场强为0/2 ,则两块平板之间的场强为零,外面为0/ 】5-2.下列说法正确的是:( )(A )闭合曲面上各点电场强度都为零时,曲面内一定没有电荷;(B )闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零; (C )闭合曲面的电通量为零时,曲面上各点电场强度必定为零;(D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零。

【提示:用01S EdS q v v Ò判断】5-3.下列说法正确的是:( )(A )电场强度为零的点,电势也一定为零;(B )电场强度不为零的点,电势也一定不为零; (C )电势为零的点,电场强度也一定为零;(D )电势在某一区域内为常量,则电场强度在该区域内必定为零。

【提示:电场等于电势梯度的负值为场强】5--1.两块金属板的面积均为S ,相距为d (d 很小),分别带电荷q 与q ,两板为真空,则两板之间的作用力为:( )(A )202q F S ; (B )20q F S ; (C )2204q F d ; (D )2208q F d 。

【提示:带σ的 “无限大”均匀带电平板在其空间产生的场强为0/2 ,则另一板受到的力为0/2q ,即202q F S】5--2.有一电场强度为E v的均匀电场,的方向与O x 轴正方向平行,则穿过如图所示的半球面的电通量为:( )(A )2R E ; (B )212R E ; (C )22R E ; (D )0。

【提示:穿入半球面的电通量与穿出的电通量相等,所以穿过半球面的电通量为零】5--3. 关于高斯定理的理解有下面几种说法,其中正确的是 ( )OxR(A )如果高斯面上E处处为零,则该高斯面内必无电荷;(B )如果穿过高斯面上电通量为零,则该高斯面上的电场强度一定处处为零; (C )如果高斯面内有净电荷,则通过该高斯面的电通量必不为零; (D )高斯面上各点的电场强度仅由高斯面内的电荷提供。

【提示:用01S EdS q v v Ò判断】7.如图所示,a 、b 、c 是电场中某条电场线上的三个点,由此可知 ( )(A) E a >E b >E c ; (B) E a <E b <E c ; (C) U a >U b >U c ; (D) U a <U b <U c 。

【提示:顺着电场线的方向,电势是逐步降低的】8.在边长为a 的正立方体中心有一个电量为q 的点电荷,则通过该立方体任一面的电通量为 ( )(A)q; (B)02q ; (C) 04q ; (D) 06q 。

【提示:闭合面穿出的总通量为:q。

而立方体其中一个面的面积是总表面积的六分之一】 5-15.如图所示,边长为a 、的立方体其表面分别平行于Ox y 、Oyz 和Ozx ,正方体的一个顶点为坐标原点。

如果立方体处于12()E E k x i E j v v v的非均匀电场中,则立方体的与Ozx 平行的表面(见图中阴影部分)的电通量为:( ) (A )0; (B )21E a ; (C )22E a ; (D )3ka 。

【提示:图中阴影部分的面积为2a j v,则224122[()]E k x i E j a j E a v v v 】立方体闭合面的总通量为:( )(A )0; (B )21E a ; (C )22E a ; (D )3ka 。

【提示:图中上表面积为2a k v ,则2112[()]0E k x i E j a k v v v,同理,下表面的20 ;图中左侧面为2a j v ,则223122[()]()E k x i E j a j E a v v v ,同理,右侧面的242E a ;图中外表面积为2a i v,则2235121[()]E k a i E j a i E a k a v v v ,内表面的面积为2a i v,则226121[]()E i E j a i E a v v v ;总通量为:3i k a 】10.真空中有一个半径为R 的均匀带电球体,电荷体密度为 ,球外无电荷,则空间电场的分布为: ( )(A )00r R E r R ; (B )323r R E R r Rr;(C )030r r R E r R; (D )032033r r RE R r Rr。

【提示:当r R 时,由01SEdS q v v Ò有2301443r E r ,得03r E ;当r R 时,有2301443r E R,得3203R E r】 11.两个均匀带电的同心球面,半径分别为R 1、R 2(R 1<R 2),小球带电Q ,大球带电-Q ,下列各图中哪一个正确表示了电场的分布 ( )(A ) (B ) (C ) (D )【提示:当1r R 时,有10E;当12R r R 时,有2204Qr E,得2204Q E r;当2r R时,有230()4Q Q r E,得30E 】12.如图所示,在点电荷q 的电场中,若选取图中P 为电势零点,则M 点的电势为:( ) (A )04q a;(B )08q a;(C ) 04q a;(D ) 08q a。

【提示:当选取P 为电势零点时,M 处的电势为220048aaq qV d r ra】5-22.如图所示,有三个点电荷Q ,q ,Q 沿一直线等距分布,且头尾两个点电荷Q 是固定的。

那么,要将q 推到无穷远时,电场力需作功为:( ) (A )04qQ d;(B )02qQ d;(C ) 04qQ d;(D ) 02qQ d。

【提示:点电荷Q 产生的电势为04QV r 。

则两个点电荷Q 在q 处产生的电势为02Q V d,考虑到无穷远处的电势为零,则电势差为02Q U d;利用W qU 有02qQ W d】14.电荷分布在有限空间内,则任意两点P 1、P 2之间的电势差取决于 ( ) (A ) 从P 1移到P 2的试探电荷电量的大小; (B ) P 1和P 2处电场强度的大小; (C ) 试探电荷由P 1移到P 2的路径; (D ) 由P 1移到P 2电场力对单位正电荷所作的功。

【提示:查看电势差的定义】15.半径为R 的均匀带电球体的静电场中各点的电场强度的大小E 与球心的距离r 的关系曲线为下图的那一个? ( )【提示:当r R 时,有2301443r E r,得03r E,与r 成正比;当r R 时,有2301443r E R ,12121221•••qPM•••QqQ()B ()C ()D ()A得3203R E r,与2r 成反比】 5-27.两个均匀带电的同心球面,半径分别为R 1、R 2(R 1<R 2),小球带电Q 1,大球带电Q 2,则在电场空间内: ( ) (A )R 1内的电势分布为1204Q Q V r;(B )R 1、R 2间的电势分布为104Q V r ;(C )R 2外的电势分布为1204Q Q V r;(D )R 1、R 2间电势差为1201211()4Q Q U R R 。

【当1r R 时,有10E ;当12R r R 时,有21204Q r E ,得12204Q E r;当2r R 时,有212304Q Q r E,123204Q Q E r。

当1r R 时,有212112112122000120211()4444R R R Q Q Q Q Q Q V d r d r r r R R R ;当12R r R 时,有2211211222200020211()4444R rR Q Q Q Q Q Q V d r d r rr r R R;当2r R 时,有1212320044r Q Q Q Q V d r r r 】 二、填空题:5--7.有一带电球体,其电荷的体密度为/k r ,其中k 为常数,r 为球内任一处的半径。

球面内任一点的电场强度的大小为 。

【当r R 时,所包围的电荷为:22042r k q r d r kr r,由高斯定理有:2224kr r E 得E 02k 】2. 如图所示,边长分别为a 和b 的矩形,其A 、B 、C 三 个顶点上分别放置三个电量均为q 的点电荷,则中心O 点的 场强为 ,方向 。

【提示:可利用代偿法,将没有电荷的D 点看成同时放置了q 的电荷,再考虑对称性。

则中心O 点的场强为2202()qa b ;方向由O 指向D 】3.一均匀带电球面,总电量为Q ,半径为R ,在r <R 的区域内场强大小为 ,在r >R 的区域内场强大小为 。

【提示:∵球面带电,∴在r R 区域内没有电荷,场强为0;在r R 区域内高斯面包围的电荷为Q ,场强为204Q r 】4. 内、外半径分别为R 1、R 2的均匀带电厚球壳,电荷体密度为 。

则,在r <R 1的区域内场强大小为 ,在R 1<r <R 2的区域内场强大小为 ,在r >R 2的区域内场强大小为 。

【提示:利用高斯定理可求得在1r R 区域内场强为0;在12R r R 区域内场强为33120()3r R r ;在2r R 区域内场强为332120()3R R r 】5. 在场强为E 的均匀电场中取一半球面,其半径为R ,电场强度的方向与半球面的对称轴B平行。

则通过这个半球面的电通量为 ,若用半径为R 的圆面将半球面封闭,则通过这个封闭的半球面的电通量为 。

【提示:由通量定义E d S vv 知前者为2R E ;后者是闭合面,为0】6.如图所示,一个点电荷q 放在O 处,A ,B ,C 三点距离该点电 荷分别为a ,2a 和3a ,若选图中B 处为电势零点,那么A 点的电势 为: ,C 点的电势为: 。

【提示:由电势定义PV E d l v v知前者为08q a;后者为024q a】7.如图所示,已知正方形顶点有四个点电荷1q 91.010C ,2q 92.010C ,3q 93.010C ,4q 94.010C ,正方形顶点到中心O 处的距离为cm r 5 ,以无穷远处为电势零点, 则正方形中心O 处的电势O V 为 V 。

【提示:利用点电荷在空间产生电势的定义式04q V r知四个点电荷在O 点产生的电势为123400004444O q q q q V rrrr,代入数值可求得1800伏特】8. 边长为a 的正六边形每个顶点处有一个点电荷+q ,取无限远处 作为参考点,则O 点电势为 ,O 点的场强大小为 。

相关文档
最新文档