静电场中的导体
大学物理-第3章-静电场中的导体
R2 R1
在金属球壳与导体球之间(r0 < r < R1时):
q r0
作过 r 处的高斯面S1
q
S1 E2 dS 0
得
E2 r
q
40r 2
q
E2 40r 2 er
在金属球壳内(R1< r < R2时):电场 E3 0
在金属球壳外( r > R2时): 作过 r 处的高斯面 S 2
S2
E4
dS
在它形成的电场中平行放置一无限大金属平板。求:
金属板两个表面的电荷面密度?
解:带电平面面电荷密度0 ,导体两面感应电荷面密度分 别为1 和 2,由电荷守恒有
1 2 0 (1)
导体内场强为零(三层电荷产生)
σ0 σ1
σ2
E0 E1 E2 0
(2)
E0
0 1 2 0
(3)
20 20 20
导体表面任一点的电场强度都与导体表面垂 直。
20
2.导体在静电平衡状态下 的一些特殊性质
❖ 导体是等势体,导体表面是等势面。
在导体内部任取两点P和Q,它们之间的电势差可以表示为
VP VQ
Q
E
dl
0
P
❖ 导体表面的电场强度方向与导体的表面相垂直。
❖ 导体上感应电荷对原来的外加电场施加影响,改
Q1
Q2
0
q
q
0
得
E4r
q
4 0 r 2
E4
q
4 0 r 2
er
43
思考:(3)金属球壳和金属球的电势各 为多少?
解:设金属球壳的电势为U壳 ,则:
U壳
R2 E4 dl
1、静电场中的导体-13
P
3S + 4S = QB
又电荷守恒,所以有: 1S + 2S = QA
Q A QB 联立得: 1 4 2S QB Q A Q A QB 3 2 2S 2S
两板中间的场强为:
1 2 3 4 E 2 0 2 0 2 0 2 0 2 0 B 2 Q A QB U AB E dl Ed d d A 0 2 0 S
U ab
b
a
E dl
0
导体整体是等势体 导体表面是等势面
E0
三、静电平衡时导体上电荷的分布
导体的静电平衡条件; 根据:
1 静电场的高斯定理: E dS S 0
q
S内
i
(1)导体内部无净电荷,电荷分布在导体表面; 在导体内任作一高斯面S ,则:
1 SE dS 0
球A与壳B之间的电势差为:
q3 q2
q1
R3 R1 R2
U AB
R2
R1
q1 1 1 q1 ( ) dr 2 4 π 0 R1 R2 4 π 0 r
q3 q2
q1
R3 R1 R2
q1 q 2 0 q2 - q1
由电荷守恒定律:
q3 q q2 q q1
考虑电荷分布的对称性,由高斯定理得:
E 0 r R1
q1 E 2 4π 0 r
R1 r R2
E 0 R3 r R2 q1 q E r R3 2 4π o r
S内
q
S内
i
=0
S
qi 0 不存在净电荷
(2)导体表面上各处的面电荷密度与该处表面外 附近的场强大小成正比;
4静电场中的导体
3) 推论:处于静电平衡的导体是等势体 导体表面是等势面 导 体 是 等 势 体
en
E dl
E
+
+ + +
E dl 0
导体内部电势相等
dl
+
+
et
U AB E dl 0
AB
A
B
注意 当电势不同的导体相互接触或用另一导体(例如导 线)连接时,导体间将出现电势差,引起电荷宏观 的定向运动,使电荷重新分布而改变原有的电势差, 直至各个导体之间的电势相等、建立起新的静电平 衡状态为止。
各个分区的电场分布(电场方向以向右为正):
1 2 3 4 在Ⅰ区:E 2 0 2 0 2 0 2 0 1 Q 方向向左 0 2 0 S
Eint 0
◆ 导体表面紧邻处的场强必定和导体表面垂直。
E S 表面
证明(1):如果导体内部有一点场强不为零,该点的 自由电子就要在电场力作用下作定向运动,这就不 是静电平衡了。 证明(2):若导体表面紧邻处的场强不垂直于导体表 面,则场强将有沿表面的切向分量 Et,使自由电子 沿表面运动,整个导体仍无法维持静电平衡。
const .
E dS
S
q
i
i
0
E dl 0
L
3. 电荷守恒定律
讨论题:
1. 将一个带电+q、半径为 RB 的大导体球 B 移近一 个半径为 RA 而不带电的小导体球 A,试判断下列说 法是否正确。 +q B (1) B 球电势高于A球。 (2) 以无限远为电势零点,A球的电势 A 0 。 (3) 在距 B 球球心的距离为r ( r >> RB ) 处的一点P, q /(40。 r2) 该点处的场强等于 (4) 在 B 球表面附近任一点的场强等于 B / 0 ,
静电场中的导体
R1
22
Vo
E dl
0 R3
0 R1
R2
E1 E3
dl
dl
R2
R3
E2
dl
R1 E4 dl
q (1 1 2)
4 π ε0 R3 R2 R1
2.31103 V
R1=10 cm,R2=7 cm R3=5 cm,q=10-8 C
2q
q
q
R3
R2 R1
23
S4
E4
dS
2q ε0
2q E4 4 π ε0r 2 (r R1)
S4
R1
2q
S3
q
R33
rr
R2
R1111
R1
21
E1 0
(r R3 )
E2
4
q π ε0r 2
(R3 r R2 )
E3 0
(R1 r R2 )
E4
2q 4 π ε0r 2
(r R1)
2q
q
q
R3
电势也会受到影响 25
二 电介质的极化
电介质 无极分子:(氢、甲烷、石蜡等) 有极分子:(水、有机玻璃等)
26
电介质分子可分为有极和无极两类:
(1)分子中的正电荷等效中心 与负电荷等效
中心重合的称为无极分子(如H2、 CH4、CO2)
无极分子在电场中, 无极分子
E
正负电荷中心会被 拉开一段距离,产生 感应电偶极矩,这 称为位移极化。
1 CU 2 2
+++++++++
---------
+ dq
大学物理-静电场中的导体
E内= 0 等势体
静电平衡时的导体
接地 :取得与无限远相同的电势 通常取为零)。 (通常取为零)。
6
半径为R的金属球与地相连接 的金属球与地相连接, 例1. 半径为 的金属球与地相连接,在与球心 相距d=2R处有一点电荷 处有一点电荷q(>0),问球上的 相距 处有一点电荷 , 感应电荷 q'=? q'?q =
q3
q2 q1
B
R1 R2
A
R3
22
解: (1)当球体和球壳为一般带电体时 ) 用高斯定理可求得场强分布为
r −R E3 = (q1 + 3 Q) ( R2 ≤ r ≤ R3 ) 2 4πε0r R3 − R 1
3 3 2 3 2
4πε0 R q1 E2 = 2 4πε0r
E1 =
q1
3 1
r
(r ≤ R1 )
E = σ / εo
1 3.面电荷密度正比于表面曲率 σ ∝ R 面电荷密度正比于表面曲率
31
例4-2 (3)如果外壳接地,情况如何? )如果外壳接地,情况如何? (4)如果内球接地,情况又如何? )如果内球接地,情况又如何? (3)如果外壳接地 ) 则: 外壳电势= 外壳电势= 无穷远处电势 =0 外壳带电量= 外壳带电量=Q’
S
ε0 V
S 是任意的。 是任意的。 令S→ 0,则必有ρ 内 = 0。 。
8
必为零。 2.导体壳: 外可不为零,但σ内 和 E内必为零。 导体壳: 可不为零, 导体壳 σ
σ内 = 0
E内 = 0
S内
σ外
理由: 理由: 在导体中包围空腔选取 高斯面S 高斯面 , 则:
S
r r ∫ E导内 ⋅ d s = 0
静电场中的导体和电介质
第十章静电场中的导体和电介质§10-1 静电场中的导体一、导体的静电平衡1、金属导体的电结构及静电感应(1)金属导体:由带正电的晶格和带负电的自由电子组成.带电导体:总电量不为零的导体;中性导体:总电量为零的导体;孤立导体:与其他物体距离足够远的导体.“足够远”指其他物体的电荷在该导体上激发的场强小到可以忽略.(2)静电感应过程:导体内电荷分布与电场的空间分布相互影响的过程.(3)静电平衡状态:导体中自由电荷没有定向移动的状态.2、导体静电平衡条件(1)从场强角度看:①导体内任一点,场强;②导体表面上任一点与表面垂直.证明:由于电场线与等势面垂直,所以导体表面附近的电场强度必定与该处表面垂直.说明:①静电平衡与导体的形状和类别无关.②“表面”包括内、外表面;(2)从电势角度也可以把上述结论说成:静电平衡时导体为等势体.①导体内各点电势相等;②导体表面为等势面.证明:在导体上任取两点A,B,.由于=0,所以.(插话:空间电场线的画法.由于静电平衡的导体是等势体,表面是等势面.因此,导体正端发出的电场线绝对不会回到导体的负端.应为正电荷发出的电场线终于无穷远,负电荷发出的电场线始于无穷远.)二、静电平衡时导体上的电荷分布1、导体内无空腔时电荷分布如图所示,导体电荷为Q,在其内作一高斯面S,高斯定理为:导体静电平衡时其内,, 即.S面是任意的,导体内无净电荷存在.结论:静电平衡时,净电荷都分布在导体外表面上.2、导体内有空腔时电荷分布(1)腔内无其它电荷情况如图所示,导体电量为Q,在其内作一高斯面S,高斯定理为:由于静电平衡时,导体内因此,即S内净电荷为0,空腔内无其它电荷,静电平衡时,导体内又无净电荷空腔内表面上的净电荷为0.讨论:在空腔内表面上能否出现符号相反的电荷,等量的正负电荷?我们设想,假如有在这种可能,如图所示,在A点附近出现+q,B点附近出现-q,这样在腔内就分布始于正电荷上终于负电荷的电力线,由此可知,,但静电平衡时,导体为等势体,即,因此,假设不成立.结论:静电平衡时,腔内表面无净电荷分布,净电荷都分布在外表面上,(腔内电势与导体电势相同).(2)空腔内有点电荷情况如图所示,导体电量为Q,其内腔中有点电荷+q,在导体内作一高斯面S,高斯定理为静电平衡时 , .又因为此时导体内部无净电荷,而腔内有电荷+q,腔内表面必有感应电荷-q.结论:静电平衡时,腔内表面有感应电荷-q,外表面有感应电荷+q. 3、导体表面附近的电场强度和电荷面密度的关系(1)导体表面上电荷分布设在导体表面上某一面积元(很小)上,电荷分布如图所示 ,过边界作一闭合柱面,S上下底、均与平行,S侧面与垂直,柱面的高很小,即与非常接近,此柱面并且是关于对称的.S作为高斯面,高斯定理为(注意与无限大带电平面的区别).结论:导体表面附近,.(2)导体表面曲率对电荷分布影响理论证明某些规则形状的孤立导体带电后,在表面上曲率越大的地方场强越强, 必大,所以曲率大的地方电荷面密度大;导体曲率较小处,表面电荷面密度也较小;在表面凹进去的地方(曲率为负),电荷密度更小.但不是绝对结论.(3)、尖端放电尖端附近场强较大,该处的空气可能被电离成导体而出现尖端放电现象.如图,BC相对AC更容易放电.“电晕”:离子撞击空气分子时,有时能量较小不能使分子电离,但能使分子获得高能量而跃迁到高能级,返回基态时就会发出光子,在尖端出现暗淡的光环.夜晚高压线周围笼罩的绿色光晕.“电风”:金属针接起电机,针尖紧贴蜡烛焰.假设金属针带足量正电荷,针尖附近场强足够大,电离空气分子,吸引负电荷离子,排斥正电荷离子,则正电荷离子吹向蜡烛焰,形成“电风”.4、静电屏蔽(1)空腔内无带电体.由于空腔中的场强处处为零,放在空腔中的物体,就不会受到外电场的影响,所以空心金属球体对于放在它的空腔内的物体有保护作用,使物体不受外电场影响.(2)空腔导体接地.由于空腔外表面电荷因接地而与大地中和,所以腔内物体带电不影响腔外物体.静电屏蔽现象:空腔导体可以保护腔内物体不受腔外电荷和电场的影响,或接地的空腔导体可以保护外部物体不受腔内电荷和电场的影响.应用:如电话线从高压线下经过,为了防止高压线对电话线的影响,在高压线与电话线之间装一金属网等.例10-1:在电荷+q的电场中,放一不带电的金属球,从球心 到点电荷所在距离处的矢径为,试问(1)金属球上净感应电荷?(2)这些感应电荷在球心处产生的场强?解:(1)0(2)球心处场强(静电平衡要求),即+q在处产生的场强与感应电荷在处产生场强的矢量和=0.方向指向+q.(感应电荷在处产生电势=?球电势=?选无穷远处电势=0.)P49.课本例题例10.1;10.2§10-2 电介质的电极化和有介质时的高斯定理一、电介质的电结构1、结构电介质:通常所说的绝缘体,常温下电阻率在108-1018Ω•m范围内.主要特征:它的分子中电子被原子核束缚的很紧,介质内几乎没有自由电子,其导电性能很差.与导体的主要区别:在外电场作用下达静电平衡时,电介质内部的场强不为零.2、电介质分类(2类)(1)无极分子电介质:无外电场时,分子正负电荷中心重合(如等).其固有电矩为零,对外不显电性.(2)有极分子电介质:即使无外电场时,分子的正负电荷中心也不重合(如:等).由于分子热运动的无规则性,在物理小体积内的平均电偶极矩仍为零,因而也没有宏观电偶极矩分布(对外不显电性).分子正负电荷中心不重合时相当于一电偶极子.二、电介质的极化1、电极化现象实验表明,将电容器充电后,再去掉电源,然后将某种电介质(如:玻璃,硬橡胶等)插入电容器之间,会发现极板间电压减小了.由知,E减小了.那么E是如何减少的呢?从平板电容场强公式知,E的减小,意味着电介质与极板的近邻处的电荷面密度减小了.但是,极板上的电荷没变,即电荷面密度没变,这种改变只能是电介质上的两个表面出现了如图所示的正、负电荷.电介质在外电场作用下,其表面或体内出现净电荷的现象称为电介质的极化.电极化时电介质表面处出现的净电荷称为极化电荷(属于束缚电荷范畴),称为自由电荷.可见,电荷面密度(自由电荷面密度)-(极化电荷面密度),即减小了.(束缚电荷受到限制,束缚电荷量比自由电荷少的多,故比少的多.)E减小.更直观的解释是,产生的场强与产生的场强相反,所以它的场强为,即减小了,这也可以解释实验结果.2、两类电介质的极化(1)无极分子的位移极化无极分子在没有受到外电场作用时,它的正负电荷的中心是重合的,因而没有电偶极矩,如图a所示,但当外电场存在时,它的正负电荷的中心发生相对位移,形成一个电偶极子,其偶极矩方向沿外电场方向,如图b所示.对一块介质整体来说,由于电介质中每一个分子都成为电偶极子,所以,它们在电介质中排列如图,在电介质内部,相邻电偶极子正负电荷相互靠近,因而对于均匀电介质来说,其内部仍是电中性的,但在和外电场垂直的两个端面上就不同了.由于电偶极子的负端朝向电介质一面,正端朝向另一面,所以电介质的一面出现负电荷,一面出现正电荷,显然这种正负电荷是不能分离的,故为束缚电荷.结论:无极分子的电极化是由于分子的正负电荷的中心在外电场的作用下发生相对位移的结果,这种电极化称为位移电极化.(2)有极分子的取向极化有极分子本身就相当于一个电偶极子,在没有外电场时,由于分子做不规则热运动,这些分子偶极子的排列是杂乱无章的,如图d所示,所以电介质内部呈电中性.当有外电场时,每一个分子都受到一个电力矩作用,如图所示,这个力矩要使分子偶极子转到外电场方向,只是由于分子的热运动,各分子偶极子不能完全转到外电场的方向,只是部分地转到外电场的方向,即所有分子偶极子不是很整齐地沿着外电场方向排列起来,如图f所示.但随着外电场的增强,排列整齐的程度要增大.无论排列整齐的程度如何,在垂直外电场的两个端面上都产生了束缚电荷.结论:有极分子的电极化是由于分子偶极子在外电场的作用下发生转向的结果,故这种电极化称为转向电极化.说明:在静电场中,两种电介质电极化的微观机理显然不同,但是宏观结果即在电介质中出现束缚电荷的效果时确是一样的,故在宏观讨论中不必区分它们.(3)附加电场由于电介质极化后出现极化电荷,介质内空间一点的场强:.:介质外的电荷产生的电场,即外电场;:介质上的极化电荷产生的电场.对均匀电介质,外场为匀强电场时,介质内的与方向严格相反,大小||<||.作用是减小介质内电场的,..(插话:1、对电介质的要求对于均匀电介质,极化电荷只出现在电介质表面;对于不均匀电介质,极化电荷出现在表面和内部.一般考虑均匀电介质.均匀电介质:电介质的物理和化学性质各处一致.比如,密度均匀,力学、热学、光学、电磁效应各处一致.2、极化电荷与自由电荷极化电荷:电介质因极化而出现在电介质表面(或体内)的宏观电荷;自由电荷:在外场作用下可以自由运动的宏观电荷.(1)极化电荷是束缚电荷的宏观表现,是束缚在晶格上的分子中的电子作的微小位移,或者整个分子作微小旋转所引起的.因此,极化电荷的运动范围不能超出分子线度;而自由电荷是由于原子或分子的电离或者金属中自由电子的重新分布引起的,它的活动范围可以是整个物体或物体之间;(2)极化电荷不能转移,自由电荷可以转移;可略(3)极化电荷可以吸附导体中自由电荷,但不能被中和掉,而自由电荷可以被中和.3、静电场中的电介质与静电场中的导体(1)它们都会因受电场的作用而出现宏观电荷;这些电荷反过来又会影响电场,这种影响都削弱了原电场;(比较微观本质的不同)(2)都会达到稳定状态——电介质的稳定极化状态和导体的静电平衡状态.(比较微观本质的不同)导体处于静电平衡状态时,表面的感应电荷在导体内产生的感应电场能把外电场完全抵消,导体内场强处处为零;而电介质被极化后,表面出现的极化电荷在介质内产生的电场不能完全抵消外电场,介质内存在电场.)3、电偶极子在外场受到的力和力矩均匀外场下,电偶极子所受总静电力:;总力矩: (10.3)虽然=0,但不为0. 的效果将使电偶极矩旋转到与外电场方向一致,使趋于0,形成稳定状态.三、电极化强度、极化电荷与极化强度的关系1、定义.电极化强度矢量定义为(10.4)即电极化强度矢量是单位体积内分子电矩的矢量和.当外电场越强时,极化现象越显著,单位体积内的分子电矩矢量和就越大,极化强度就越大.反之,外电场越弱,极化现象不显著,单位体积内的分子电矩矢量和就越小.可见,电极化强度矢量可以用来描述电介质的极化程度.上式给出的极化强度是点的函数,一般来说,介质中不同点的电极化强度矢量不同.但对于均匀的无极分子电介质处在均匀的外电场中,,其中n是分子数密度(单位体积的分子数),p是极化后电介质每个分子的电矩矢量.在国际单位制中,电极化强度矢量的单位为库仑/米2(C/m2).2、电极化强度与束缚电荷的关系由于束缚电荷是电介质极化的结果,所以束缚电荷与电极化强度之间一定存在某种定量关系.为方便讨论,现以无极分子电介质为例来讨论,考虑电介质内某一小面元dS,设其电场E的方向(因而P的方向)与dS的法线方向成θ角(如图6.7所示),由于E的作用,分子的正负电荷中心将沿电场方向拉开距离l.为简化分析,假定负电荷不动,而正电荷沿E 的方向发生位移l.在面元dS后侧取一斜高为l,底面积为dS的体元dV.由于电场E的作用,此体元内所有分子的正电荷中心将穿过dS面到前侧去.以q表示每个分子的正电荷量,则由于电极化而越过dS面元的总电荷为(1)介质表面处dS是电介质的表面,由于电介质极化(10.5)是其外法向单位矢.讨论:(2)封闭曲面处由于极化穿过有限面积S的电荷为,若dS是封闭曲面,则穿过整个封闭曲面的电荷为.因为电介质是电中性的,据电荷守恒定律,则得由电介质极化而在封闭面内净余的束缚电荷为(10.6)(10.6)可称为“极化强度的高斯定理”.从闭合面内向外的极化强度的通量,等于从闭合面内移出去的极化电荷的量.结论:式(10.5)和式(10.6)就是由于介质极化而产生的束缚电荷与电极化强度的关系.从(10.6)可以看出,在均匀外电场中,均匀电介质内部的任何体元内都不会有净余束缚电荷,束缚电荷只能出现在均匀电介质的表面,即:.对非均匀电介质,电介质内部也有束缚电荷分布.四、电极化强度与场强的关系电介质的极化状态通过极化强度来描述,由于电介质的极化是电场对电介质作用的结果,因此,电介质内任意一点的极化强度应由该点总电场()决定.与的关系与电介质的性质有关,对各向同性电介质:. (10.7):各向同性均匀电介质的电极化率.电场不太强时,由电介质性质决定,是无量纲量.该式是一个经验定律.课程中讨论的都是各向同性的均匀电介质.五、有介质时的高斯定理1、有介质时的高斯定理(1)定理推导根据真空中的高斯定理,通过闭合曲面S的电场强度通量为所给面包围的电荷除以,即此处, 应理解为闭合面内一切正、负电荷的代数和,在无电介质存在时,;在有介质存在时,S内既有自由电荷,又有极化电荷,应是S内一切自由电荷与极化电荷的代数和,即、分别表示自由电荷和极化电荷.由于难以测量和计算,应消除.根据.上式变换为令.得(2)定理形式(10.8)其中,称为电位移矢量.利用经验规律(10.9)其中,称为相对介电常数,称为绝对介电常数(也叫电容率).(10.9)式称为各向同性经验电介质的性能方程.(10.8)式称为“高斯定理的普遍形式”——“有介质时的高斯定理”.表明通过任意曲面的电位移通量,等于该封闭曲面内包围的自由电荷的代数和.说明:(1)上式为电介质中的高斯定理,是高斯定理的普遍形式.(2)是辅助量,无真正的物理意义,是为了回避难以量化的极化电荷而引入的辅助量.算出后,可求.(3)如同引进电力线一样,为描述方便,可引进电位移线,并规定电位移线的切线方向即为的方向,电位移线的密度(通过与电位移线垂直的单位面积上的电位移线条数)等于该处的大小.所以,通过任一曲面上电位移线条数为,称此为通过S的电位移通量;对闭合曲面,此通量为.(4)根据,以平行板电容器产生的线、线和线说明其区别.①电位移线总是始于正的自由电荷,止于负的自由电荷,与极化电荷无关.因而线在电介质和真空中一致;②电力线是可始于一切正电荷和止于一切负电荷(包括自由电荷与极化电荷).真空中,线与线一致,而在极化电荷内部,由于与反向,减弱了,如图.③电极化强度线起于极化负电荷,终于极化正电荷,只存在于极化电介质内,真空中=0,电介质内,.2、定理的应用例10-2:平行板电容器,板间有二种各向同性的均匀介质,分界面平行板面,介电常数分别为、,厚度为、,自由电荷面密度为.求(1)、=?(2)电容C=?解:(1) 设二种介质中电位移矢量分别为、,在左极板处做高斯面S,一对面平行板面,面积均为A,侧面垂直板面,由高斯定理有其中,左底面=0,侧面上.又,,即 ,方向垂直板面向右.同样在右极板处做高斯面,一对面平行极板面,面积均为,侧面与板面垂直,由高斯定理有:,即,方向向右.可见,,即两种介质中法向不变.方向向右.(2)例10-3:在半径为R的金属球外,有一外半径为的同心均匀电介质层,其相对介电常数为,金属球电量为Q,试求:(1)场强空间分布;(2)电势空间分布.解:(1)由题意知,均是球对称的,取球形高斯面S,由有Q>0:沿半径向外;Q<0:沿半径向内.(2)介质外任一点P电势介质内任一点Q电势球为等势体,电势为例10-4:有一个带电为+q半径为的导体球,与内外半径分别为、 带电量为-q的导体球壳同心,二者之间有两层均匀电介质,内层和外层电介质的介电常数分别为、,且二电介质分界面也是与导体球同心的半径为的球面.试求:(1)电位移矢量分布;(2)场强分布;(3)导体球与导体空间电势差;(4)导体球壳构成电容器的电容.解:(1)由题意知,场是球对称的,选球形高斯面S, 由有得 ,沿半径向外.(2)与同向,即沿半径向外.(3)(4)根据自由电荷分布利用高斯定理求解,和前面一样,必须满足对称性:第一,自由电荷的分布和电介质的分布同时满足三种对称性之一,即平面对称、轴对称、球对称,概括为“电介质的表面为等势面”;第二,电介质充满整个电场.在满足上述对称性后,可以利用高斯定理唯一地求解电场问题,此时电位移矢量与极化电荷无关.§10-3 电容 电容器一、孤立导体的电容在真空中设有一半径为R的孤立的球形导体,它的电量为q,那么它的电势为(取无限远处电势=0)对于给定的导体球,即R一定,当变大时,V也变大;变小时,V也变小,但是却不变.此结论虽然是对球形孤立导体而言的,但对一定形状的其它导体也是如此,仅与导体大小和形状等有关,因而有下面定义.定义:孤立导体的电量q与其电势V之比称为孤立导体电容,用C表示,记作:(10.11)对于孤立导体球,其电容为.C的单位为:F(法),1F=1C/1V.在实用中F太大,常用或,他们之间换算关系:.(电容与电量的存在与否无关)二、电容器及其电容实际上,孤立的导体是不存在的,周围总会有别的导体.当有其它导体存在时,则必然因静电感应而改变原来的电场分布,进而影响导体电容.下面我们具体讨论电容器的电容.1、电容器:两个带有等值而异号电荷的导体所组成的带电系统称为电容器.电容器可以储存电荷,也可以储存能量.2、电容器电容:如图所示,两个导体A、B放在真空中,它们所带的电量分别为+q,-q,如果A、B电势分别为、,那么A、B电势差为,电容器的电容定义为:(10.12)由上可知,如将B移至无限远处,=0.所以,上式就是孤立导体的电容.所以,孤立导体的电势相当于孤立导体与无限远处导体之间的电势差.所以,孤立导体电容是B放在无限远处时的特例.导体A、B常称电容器的两个电极.3、电容器电容的计算①极间分别带有+Q,-Q电量,利用高斯定理,计算极间电场强度分布;②根据电场去分布,求出极间电势差;③将极板电量和极间电势差代入电容器电容定义式,计算出电容.(1)、平行板电容器的电容设A、B二极板平行,面积均为S,相距为d,电量为+q,-q,极板线度比d大得多,且不计边缘效应.所以A、B间为均匀电场.板间充满电介质,介电常数为ε.由高斯定理知,A、B间场强大小为.则 (10.13)为该电容器极板间真空时的电容值.(2)、球形电容器设二均匀带电同心球面A、B,半径、,电荷为+q,-q. 板间充满电介质,介电常数为ε.A、B间任一点场强大小为:,.为该电容器极板间真空时的电容值.讨论:①当时,有,令,为平行板电容器电容.②当为孤立球形电容器电容.A为导体球或A、B均为导体球壳结果如何?(3)、圆柱形电容器圆柱形电容器是两个同轴柱面极板构成的,如图所示,设A、B半径为、,电荷为+q,-q,板间充满电介质,介电常数为ε.除边缘外,电荷均匀分布在内外两圆柱面上,单位长柱面带电量,是柱高.由高斯定理知,A、B内任一点P处的大小为则 (10.15)(可知:在计算电容器时主要是计算两极间的电势差).(插话:4、电介质对电容器电容的影响以上所得电容是极间为真空情况,若极间充满电介质(不导电的物质),实际表明,此时电容C要比真空情况电容大,可表示,或.与介质有关,称为相对介电系数 .以上各情况若充满电介质(极间),有:球形: ;平板:;柱形:.称为介质的介电常数.())下面以平行板电容器为例求:(1)电介质中场强 E由电容器定义,有(无介质) 为电压,为电量.(有介质) 为电压,为电量.(2)极化电荷面密度介质内电场:.即: (极化电荷面密度)三、电容器的串联与并联在实际应用中,现成的电容器不一定能适合实际的要求,如电容大小不合适,或者电容器的耐压程度不合要求有可能被击穿等原因.因此有必要根据需要把若干电容器适当地连接起来.若干个电容器连接成电容器的组合,各种组合所容的电量和两端电压之比,称为该电容器组合的等值电容.1、 串联:几个电容器的极板首尾相接(特点:各电容的电量相同).设A、B间的电压为,两端极板电荷分别为+q,-q,由于静电感应,其它极板电量情况如图,.由电容定义有(10.16a)2、并联:每个电容器的一端接在一起,另一端也接在一起.(特点:每个电容器两端的电压相同,均为,但每个电容器上电量不一定相等)等效电量为:,由电容定义有:(10.16b)例10-5:平行板电容器,极板宽、长分别为a和b,间距为d,今将厚度t,宽为a的金属板平行电容器极板插入电容器中,不计边缘效应,求电容与金属板插入深度x的关系(板宽方向垂直底面).解:由题意知,等效电容如左下图所示,电容为:说明:C大小与金属板插入位置(距极板距离)无关;注意:(1)掌握串并联公式;(2)掌握平行板电容器电容公式.例8-3:半径为a的二平行长直导线相距为d(d>>a),二者电荷线密度为,,试求(1)二导线间电势差;(2)此导线组单位长度的电容.解:(1)如图所取坐标,P点场强大小为:(2)注意:(1)公式.(2)此题的积分限,即明确导体静电平衡的条件.§10.4 电场的能量一、电容器储存的静电能一个电中性的物体,周围没有电场,当把电中性物体的正、负电荷分开时,外力作了功,这时该物体周围建立了电场.所以,通过外力做功可以把其它形式能量转变为电能,贮藏在电场中.。
静电场中的导体
分布在导体的表面上。
4、导体以外,靠近导体表面附近处的场强大小与导 体表面在该处的面电荷密度 的关系
E 0
二
静电平衡时导体上电荷的分布
1、 实心导体
+
+ + + +
E 0
+
S
+ + +
+
q E dS 0
S
0
q 0
结论: 导体内部无电荷,电荷只能分布
q
+
q
+
+
q
+
实验验证
外表面所带感应电荷全部入地
总结: 空腔导体(无论接地与否)将使腔内不
受外场影响。
接地空腔导体将使外部空间不受腔内电
场的影响。
四 有导体存在时场强和电势的计算
电荷守恒定律 电荷分布
静电平衡条件
E U
例1、有一外半径R1,内半径为R2的金属球壳。在球壳 中放一半径为R3的金属球,球壳和球均带有电量10-8C的 正电荷。问:(1)两球电荷分布。(2)球心的电势。 (3)球壳电势。 + + + 解:(1)、电荷+q分布在内球表面。 + - + 球壳内表面带电-q。
S A+ +
A
+
+
B+ B +
+ +
+
b、空腔内有带电体
E dS 0
S1
q
i
0
电荷分布在表面上
思考: 内表面上有电荷吗?
E dS 0 qi 0
静电场中的导体
'
'
13
电偶极矩: 斜柱体的体积:
' ql Sl V Sl cos
电极化强度矢量的大小: p
' p cos pn
3、电介质的极化规律,极化率:
' V cos
p
极化强度矢量与该点的合场强有关,并与介质有关 对大多数各向同性电介质
2、电容器及其电容: 平板电容:
同轴柱形电容器 设 长 为 l
s c 0 d
C AB
qA U A UB
带电量为 q 外半径为 RB
8
内半径为 RA 则 q l
L
E 2 0 r B U AB E dl
A
RB
q c 2 0 U AB
同心球形电容器
1.0 102 m 处的电势
3、把点电荷移开球心,导体球壳的电势是否变化?
10 4 . 0 10 解:1、 V 9 109 40 R2 3.0 10 2
q
+q
-q
120v
2、定义
R1
+q
V1
R1
q 4 0 r
2
r1
dr
R2
q 4 0 r
0
s
E
0
2
尖端放电的实质 三、静电屛蔽:
+
+ + + + +
+ +
四、导体存在时静电场的计算: 例1、金属板面积为S,带电量为 Q。近旁平行放置第二块不 带电大金属板。 1、求电荷分布和电场分布;
9 静电场中的导
Conductors in Electrostatic Field
本章主要内容
§9-1 导体的静电平衡条件 §9-2 静电平衡导体上的电荷分布 §9-3 有导体存在时静电场的分析与计算 §9-4 静电屏蔽
§9-1 导体的静电平衡条件
Electrostatic Equilibrium Condition of a Conductor
在外加电场的作用下, 在外加电场的作用下,导体上宏观电荷产生运动而使宏观电 荷重新分布(对均匀导体来说表现在表面), ),这种现象称为 荷重新分布(对均匀导体来说表现在表面),这种现象称为静
电感应;由静电感应而产生的宏观电荷称为感应电荷。 由静电感应而产生的宏观电荷称为感应电荷 感应电荷。
electrostatic induction
感应电荷的产生会影响导体 内部和周围空间的电场。 内部和周围空间的电场。感应电 荷激发的电场在导体内部逐渐增 直至与外电场相互抵消。 大,直至与外电场相互抵消。最 终达到: 实际过程极其短暂) 终达到:(实际过程极其短暂)
-
Fe
Fe′
+ + + +
-
+
静电平衡——导体内部和表面的宏观电荷无定向移动。 导体内部和表面的宏观电荷无定向移动。 导体内部和表面的宏观电荷无定向移动 导体内部场强处处为零。 静电平衡的条件是:导体内部场强处处为零。
∑Q
i
i
= const.
§9-3 有导体存在时静电场 的分析与计算
Computation of Distribution of an ElectroElectrostatic Field when Existing Conductor(s)
6.1.1静电场中的导体 - 静电场中的导体
q
Q
r
R
V
q
4 0r
Q
4 0 R
rr RR
4. 导体表面的电场和电荷 尖端放电及其应用: 尖端附近的强电场引起空气电离。
A. 电风实验 B. 避雷针的原理 C. 高压设备中的电极通常做成直径较大的 光滑球形
4. 导体表面的电场和电荷
电晕现象是强电场作用下导线周围空气产生的电离 现象。导体表面的电场强度超过某一定数值时,就 会产生电晕。
电介质:
半导体: 自由电子数密度较小,约为 1012~1019个/cm3
绝缘体: 基本上没有参与导电的自由电子
2. 导体的静电平衡条件
(1)物理图像
自由电荷 重新分布
(附加电场
E)
↑
导体(自由电荷)
相互 作用
静电场( E0)
↓
静电场重新分布
E E0 E
(2)静电平衡状态:
(2)导体是等势体,导体表面是等势面;
U ab
b
E
dl
0
a
E0 a
Uac
c
E dl 0
a
b
c
(3()因导为体电表场面线邻与近等处势的面场处强处必正定交和)导体表E面out垂直?。
4. 导体表面的电场和电荷
(1)
E
0
en
作扁圆柱形高斯面 S→ E
导体内部和表面无电荷的定向移动 (电荷分布不随时间变化)
2. 导体的静电平衡条件
(3)静电平衡条件:导体内部各点场 强为零 Ein E0 E' 0
3. 静电平衡时导体的基本性质
(1)导体内部各处无净电荷,电荷只分布在表面;
静电场中的导体
R1 r R2
E3
1
4
0
Q q/ r2
U
R1
E.dr
R2 R1
E2.dr
R2 E3.dr 0
r R2
q/
4 0
1 R1
1 R2
1
4 0
Q q/ R2
0,
解得
q
R 1
Q
R
2
故外球壳外表面荷电 Q q/ Q R1 Q
R2
17
10
例8-14 如图所示,一带正电Q的点电荷离半径为R的金属球壳 外的距离为d,求金属球壳上的感应电荷在球心O处的场强。
q/
R
r
E0 0 E/ d
Q
解 以球心为坐标原点,球心指向点电荷的方向为矢径方向,则
点电荷在球心处的场强
Q
E0 4 0 (R d )2 r0
又
E E/ E 0
内
0
q
总之,导体壳内部电场不受壳外电荷的影响,接地导体使 得外部电场不受壳内电荷的影响。这种现象称为静电屏蔽。
12
2、尖端放电
在带电尖端附近,电离的分子与周围分子碰撞,使周围的 分子处于激发态发光而产生电晕现象。
+ +
++ +++
+ +
+++
+
尖端效应在大多数情况下是有害的:如高压电线上的电晕, 故此,高压设备中的金属柄都做成光滑的球形。
△s面上σ均匀, E1=常矢 ,且垂直于导体表面,又E内=0
e
E表
E s1 1
0
ds
s
1.5 静电场中的导体
§5 静电场中的导体
5.2 导体上的电荷分布 尖端放电现象 尖端放电可以利用的一面——避雷针。 当带电的云层接近地表面时,由于静电感应使地面上 物体带异号电荷,这些电荷比较集中地分布在突出的 物体(如高大建筑物、烟囱、大树)上。当电荷积累 到一定程度,就会在云层和这些物体之间发生强大的 火花放电。这就是雷击现象。 为了避免雷击,如右图所示,可在高大建筑物上安装 尖端导体(避雷针),用粗铜缆将避雷针通地,通地 的一端埋在几尺深的潮湿泥土里或接到埋在地下的金 属板(或金属管)上,以保持避雷针与大地电接触良 好。当带电的云层接近时,放电就通过避雷针和通地 粗铜导体这条最易于导电的通路局部持续不断地进行 以免损坏建筑物。
2
§5 静电场中的导体
2.1.1 导体的静电平衡条件 导体从非平衡态趋于平衡态的过程:
把一个不带电的导体放在均匀电场中。在导体所占据的那部分空间 里本来是有电场的,各处电势不相等。在电场的作用下,导体中的自由 电荷将发生移动,结果使导体的一端带上正电,另一端带上负电,这就 是静电感应现象。 导体上的电荷达到什么程度时,电荷不再增加? 导体内部: E E0 E 0, 达到平衡
12
§5 静电场中的导体
5.3 导体壳(腔内无带电体情形) (2)法拉第圆筒 静电平衡时,导体壳内表面没有电荷的结论 可以通过如图所示的实验演示。
A、B是两个验电器,把一个差不多封闭的空心金 属圆筒C(圆筒内无带电体)固定在验电器B上。给圆 筒和验电器B以一定的电荷,则金箔张开。取一个装有 绝缘柄的小球D,使它和圆筒C外表面接触后再碰验电 器A(图a),则A上金箔张开,如果重复若干次,我们 就能使金属箔A张开的角度很显著,这证明圆筒C的外 表面是带上了电的。 如果把小球D插入圆筒上的小孔使之与圆筒的内 表面相接触后,再用验电器A检查(图b),则发现A的 金属箔总不张开。这表明圆筒C的内表面不带电。这 就从实验上证实了上述结论。这实验称为法拉第圆筒 实验,实验中的圆筒C称为法拉第圆筒。
第一节 静电场中的导体
8-1 静电场中的导体一、静电感应 静电平衡条件金属导体由大量的带负电的自由电子和带正电的晶体点阵构成。
无论对整个导体或对导体中某一个小部分来说,自由电子的负电荷和晶体点阵的正电荷的总量是相等的,导体呈现电中性。
若把金属导体放在外电场中,导体中的自由电子在作无规则热运动的同时,还将在电场力作用下作宏观定向运动,从而使导体中的电荷重新分布。
在外电场作用下,引起导体中电荷重新分布而呈现出的带电现象,叫做静电感应现象。
如上图所示,在电场强度为0E 的均强电场中放入一块金属板G ,则在电场力的作用下,金属板内部的自由电子将逆着外电场的方向运动,使得G 的两个侧面出现了等量异号的电荷。
于是,这些电荷在金属板的内部建立起一个附加电场,其电场强度E '和外来的电场强度0E 的方向相反。
这样,金属板内部的电场强度E 就是0E 和E '的叠加。
开始时0E E <',金属板内部的电场强度不为零,自由电子会不断地向左移动,从而使E '增大。
这个过程一直延续到金属板内部的电场强度等于零,即0=E 时为止。
这时,导体内没有电荷作定向运动,导体处于静电平衡状态。
当导体处于静电平衡状态时,满足以下条件:(1) 导体内部任何一点处的电场强度为零;(2) 导体表面处电场强度的方向,都与导体表面垂直;(3)导体为一等势体。
讨论:导体表面的电场强度与表面垂直在静电平衡时,不仅导体内部没有电荷作定向运动,导体表面也没有电荷作定向运动,这就要求导体表面电场强度的方向应与表面垂直。
假若导体表面处电场强度的方向与导体表面不垂直,则电场强度沿表面将有切向分量,自由电子受到该切向分量相应的电场力的作用,将沿表面运动,这样就不是静电平衡状态了。
讨论:导体是等势体导体的静电平衡条件,也可以用电势来表述。
由于在静电平衡时,导体内部的电场强度为零,因此,如在导体内取任意两点B A 和,这两点间的电势差U ,即电场强度沿B A 和两点间任意路径的线积分应为零,即⎰=⋅=AB U 0d l E这表明,在静电平衡时,导体内任意两点间的电势是相等的。
静电场中的导体
Q
• q 在O点的电势
u1
q
4 0l
• Q 在O点的电势 O点的电势为0
u2
dq
4 0 R
Q
4 0 R
u2 u2 0
QRq l
例 两球半径分别为R1、R2,带电量q1、q2,设两球相距很远, 当用导线将彼此连接时,电荷将如何 分布?
R1
R2
q1 q2
q1
q2
解 设用导线连接后,两球带电量之和守恒 q1 q2 q1 q2
E1
q1
40r 2
u1
Edr
q1
R1
4 0 R1
E2
q2
40r 2
u2
Edr
q2
R2
4 0 R2
1 R2 2 R1
思考 如果两球相距较近,结果怎样?
例 已知导体球壳 A 带电量为Q ,导体球 B 带电量为 q 求 (1) 将A接地后再断开,电荷和电势的分布;
(2) 再将B接地,电荷的分布。
2. 电荷分布在内外表面
+
+ e 0
+
+ S q内 0
+
+
+
+
+
e
++0
-
+
+
-+
+ +
-
q内
0
-
+
E
++ ++
++
3. 表面附近的场强 E 与电荷面密度 的关系
e
E dS
EdS ES S
右底面
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
静电场中的导体2.1 填空题2.1.1 一带正电小球移近不带电导体时,小球将受到( )力作用;一带负电小球移近不带电导体时,小球将受到( )力作用;一带正电小球靠近不带电的接地导体时,小球将受到( )力作用。
2.1.2 在一个带正电的大导体附近P 点放置一个点电荷q(电荷q 不是足够小),实际测得它的受力为F ,如果q>0, 则F/q 与P 点场强E 0关系为( ),如果q<0, 则F/q 与P 点场强关系为( )2.1.3 导体在静电场中达到静电平衡的条件是( )和( )。
2.1.4 导体处于静电平衡状态时,导体内部电荷体密度( ),电荷只能分布在( )。
2.1.5 导体处于静电平衡状态时,导体是( )体,表面是( )面。
2.1.6 接地导体的电势等于( ),地球与( )等电势。
2.1.7 一导体球壳,内外半径分别为R 1和R 2,带电q ,球壳内还有一点电荷q ,则导体球壳的电势是( )。
2.1.8 一点电荷q 放在一接地的无限大导电平面附近,则导电平面上的总电量为( )。
2.1.9 将一个点电荷+q 移近一个不带电的导体B 时,则导体B 的电势将( )。
2.1.10 一封闭导体壳C 内有一些分别带q 1、q 2…的带电体,导体壳C 外也有一些分别带Q 1、Q 2…的带电体,则q 1、q 2…的大小对导体壳C 外的电场强度( )影响,对C 外的电势( )影响;Q 1、Q 2…的大小对导体壳C 内的电场强度( )影响,对C 内的电势( )影响。
2.1.11 两个同心导体球壳A 、B ,若内球B 上带电q ,则电荷在其表面上的分布呈( )分布;当从外边把另一带电体移近这两个同心球时,则内球B 上的分布呈( )分布。
2.1.12 两导体球半径分别为r A 和r B ,A 球带电q ,B 球不带电,现用一细导线连接,则分布在两球上的电荷之比Q A ∶Q B ( )。
2.1.13 在带等量异号电荷的二平行板间的均匀电场中,一个电子由静止自负极板释放,经t 时间抵达相隔d 的正极板,则两极板间的电场为( ),电子撞击正极板的动能为( )。
2.1.14 中性导体空腔的腔内、腔外分别有一个点电荷q 和Q ,均与导体空腔不接触,则导体空腔内、外表面的电量分别为( )和( )。
2.1.15 当空腔内有带电体时,导体空腔内表面带电,它所带电荷与腔内带电体所带电荷( )。
2.1.16 金属球壳内外半径分别为a 和b ,带电量为Q ,球心O 点的电势为( )。
2.1.17 两个同心导体球,内球带电1Q ,外球带电2Q ,则,外球内表面电量为( );外球外表面电量为( )。
2.1.18两个同心导体球,内球带电1Q ,外球带电2Q ,若将外球接地,外球内表面电量为( );外球外表面电量为( )。
2.1.19 两同心金属球A 及金属球壳B ,原来不带电,如要使两球中间区域的场强不为零,并使金属球壳外的场强为零,则可采取( )或( )两种办法。
2.1.20 在金属块中有一半径为3cm 的球形空腔,空腔中心O 点处有一点电荷q=1.0×10-7C ,则空腔中a 点(oa=1.5 cm)处的场强E a 为( ),金属块b 点(ob=4cm)处的场强E b 为( )。
2.1.21半径r 1∶r 2=1∶4的两金属球,带等量的正电荷,当两者相距d 时(d>>r 1,d>>r 2),有一定的电势能,若将两球接触后再各自移回原处,则电势能变为原来的( )。
2.2 选择题2.2.1 导体在静电平衡时,其内部电场强度( )A :为常数;B :为零;C :不为零;D :不确定。
2.2.2 对于导体,下列说法正确的有( )A :表面电荷密度大处电势高; B:表面曲率大处电势高;C :表面上每点的电势不相等;D :导体内没有电场线。
2.2.3 电场中的导体内部的 ()A :电场和电势均为零; B:电场不为零而电势为零;C :电势和表面电势相等;D :中心处电势较表面电势低。
2.2.4 下面关于静电场中导体的描述不正确的是( )A :导体处于静电平衡状态;B :导体内部电场处处为零;C :电荷分布在导体内部;D :导体表面的电场垂直于导体表面。
2.2.5导体表面附近的场强与该处导体表面的电荷面密度的关系为( ) A :n E 02εσ=; B :n E 02εσ=; C :n E 0εσ= ; D :n E 0εσ=。
2.2.6 如图所示,绝缘的带电导体上a 、b 、c 三点,电荷密度( )A :a 点最大;B :b 点最大;C :c 点最大;D :一样大。
2.2.7 两个形状相同带有等量同号电荷的金属小球,相互作用力为F ,现在用一个有绝缘柄的不带电相同金属小球去与两小球先后接触后移去,这样原来二小球的相互作用力变为( )A :2F ;B :4F ;C :F 83; D :85F 。
2.2.8 为测定带电+ Q 的金属球在某点的电场强度E ,在该点放了一带电+Q/3的检验电荷,测得受力为F ,则()A :Q F E 3=;B :QF E 3>; C :Q F E 3<; D : Q F E 23=。
2.2.9 一带电+Q 的金属球壳,半径为R ,在距球心2R 处的N 点有一自由电偶极子e P ,方向垂直ON ,则该电偶极子将 ()A :转向到该点电场方向;B :以2R 为半径作圆周运动;C :沿该点电场E 方向平动;D :先转至E 方向,再逆E 平动。
2.2.10 一孤立金属球带电1.2×10-8 C ,当电场强度为3×106 V·m -1时,空气将被击穿,则金属球的最小半径为( )A :1.7×10-13 m ;B :1.8×10-8 m;C :3.6×10-5 m ;D :6.0×10-3 m 。
2.2.11 点电荷q 置于距离无限大导电平面d 处,若将导电平面接地,则导电平面上的总电量为( )A : 2-q ;B :q -;C :q 2-;D :d q -。
2.2.12 一半径为R 的导体球表面的电荷面密度为σ,则在距球面R 处的电场强度为 ( )A : 0εσB :02εσ C :04εσ D :08εσ 2.2.13 真空中将一带电为 q 半径为R A 的金属球A 放在内外半径分别为R B 和R C 的不带电金属球壳B 内,若用导线将A 、B 连接,则A 球的电势是( )A :AR q04πε B :B R q 04πε C :C R q04πε D :⎪⎪⎭⎫ ⎝⎛-40C B R R q 11πε 2.2.14 一个闭合的不带电导体空腔,其导体的电导率为无限大,空腔内有一电荷Q A 和观察者A ,导体外有一电荷QB 和观察者B ,则下列最精确的说法是( )A :A 观察者观察到Q A 和QB 的场;B :A 观察者只观察到Q A 的场, B 观察者只观察到Q B 的场;C :A 观察者只观察到Q A 的场,B 观察者可观察到Q A 和Q B 的场;D :A 、B 观察者都观察到Q A 和Q B 的场。
2.2.15 一不带电的导体球壳半径为R ,在球心处放一点电荷,测得壳内外的电场。
然后将此电荷移至距球心R/2处,重新测量,则电荷移动对电场的影响为 ( )A :球壳内外电场均不改变;B :壳内电场改变,壳外电场不变;C :球壳内外电场均改变;D :壳内电场不变,壳外电场改变。
2.2.16 将一个带正电的导体靠近一个不带电的导体A ,则导体A 的电势将( )A :增大;B :减小;C :不变;D :为零。
2.2.17 在一个不带电的金属球壳的球心放置一个+q 点电荷,若将此电荷偏离球心,则球壳上的电势将( )A :升高;B :降低;C :不变;D :为零。
2.2.18 一带负电的油滴,在带电的水平放置的大平行金属板之间维持稳定。
若油滴获得了附加的负电,为了维持油滴稳定,则应()A :使金属板互相靠近些;B :改变板上电荷的正负极性;C :使油滴离带电板远一些;D :减小两板之间的电势差。
2.2.19 真空中有一个带电的金属球壳,则( )A :球壳内表面的电势小于外表面的电势;B :球壳内表面的电势大于外表面的电势;C :球壳内表面的电势等于外表面的电势;D :球壳内、外表面电势的大小关系与球壳内是否存在电荷有关。
2.2.20 平板电容器的电容量与极板面积成( ),与板间距离成( )。
A :正比、正比B :正比、反比C :反比、正比D :反比、反比2.2.21 如图所示,电路中AB 间等效电容为( )A :600 PFB :360 PFC :300 PFD :150 PF2.2.22 平行板电容器极板面积为S ,间距为d ,电容为C ,如将其间距拉到2d( )A :4 CB :2 CC :3 CD :0.5 C2.2.23 平行板电容器在接入电源后,把两板间距拉大,则电容器的( )。
A :电容增大;B :电场强度增大;C :所带电量增大;D :电容及两板内场强都减小。
2.2.24极板间为真空的平行板电容器,充电后与电源断开,将两极板用绝缘工具拉开一些距离,则下列说法正确的是 ( )A :电容器极板上电荷面密度增加;B :电容器极板间的电场强度增加;C :电容器的电容不变;D :电容器极板间的电势差增大。
2.2.25 金属球A 与同心球壳B 组成电容器,球A 带电荷q, 球壳B 带电荷Q ,测得球与球壳的电势为U AB , 则电容器的电容为( )A :AB U q B :ABU Q C :AB U Q q + D :AB U Q q - 2.2.26 一平行板电容器充电后又切断电源,然后再将两极板的距离增大,这时与电容器相关联的:(A)电容器极板上的电荷;(B)电容器两极板间的电势差;(C)电容器极板间的电场;(D)电容器的电容;(E)电容器储存的能量。
1)上述五个物理量中增加的有 ( );2)上述五个物理量中减少的有 ( );3)上述五个物理量中恒定的有 ( );2.2.27 给一平行板电容器充电后断开电源,其储存的电能为0ω,现给两板间充满相介电常数为r ε的电介质,则电容器内储存的能量为( )A :0ωεrB :r εω0C :0ωD :无法判定。
2.2.28 一球形电容器,内球面带电Q A >0,球壳内壁带电Q B = -Q A ,球壳外壁带电Q C =2Q A ,将内球接地后,上述电量分别变为Q′A 、Q′B 和Q′C ,则Q′A 、Q′B 和Q′C 为( ) A :Q′A =Q′B =0,Q′C =Q′A ; B :Q′A >0,Q′B =-Q′A ,Q′C >0;C :Q′A <0,Q′B =-Q′A ,Q′C >0;D :Q′A >0,Q′B =-Q′A ,Q′C <0。