第01讲 集合的概念与运算(原卷版)-2021届新课改地区高三数学一轮专题复习
第1章 第1讲集合的概念与运算-2021版高三数学(新高考)一轮复习课件共45张PPT
![第1章 第1讲集合的概念与运算-2021版高三数学(新高考)一轮复习课件共45张PPT](https://img.taocdn.com/s3/m/3e0f0bb414791711cc7917ba.png)
第一章 集合与常用逻辑用语
高考一轮总复习 • 数学 • 新高考
返回导航
[解析] (1)B={x|x∈A}={1,2,3}=A,故选 C.
(2)∵集合 A={x|x=sin n3π,n∈Z}={0, 23,- 23},且 B⊆A,∴集合 B 的个 数为 23=8,故选 C.
(3)解法一:(列举法),由题意知
高考一轮总复习 • 数学 • 新高考
返回导航
(2)(多选题)(2020·湖南长郡中学模拟改编)已知集合 M={y|y=x-|x|,x∈R},N
={y|y=(12)x,x∈R},则下列不正确的是(ABD )
A.M=N
B.N⊆M
C.M=∁RN
D.(∁RN)∩M=∅
(3)已知集合 A={x|x2-3x-10≤0},B={x|mx+10>0},若 A⊆B,则 m 的取值范
返回导航
(3)若 a+2=1,则 a=-1,A={1,0,1},不合题意;若(a+1)2=1,则 a=0 或-
2,当 a=0 时,A={2,1,3},当 a=-2 时,A={0,1,1},不合题意;若 a2+3a+3=1,
则 a=-1 或-2,显然都不合题意;因此 a=0,所以 2 0200=1.
∵1∉A,∴a+2≠1,∴a≠-1;(a+1)2≠1,解得 a≠0,-2;a2+3a+3≠1 解
A.(-1,1)
B.(1,2)
C.(-1,+∞)
D.(1,+∞)
[解析] 由题意得A∪B={x|x>-1},即A∪B=(-1,+∞),故选C.
第一章 集合与常用逻辑用语
高考一轮总复习 • 数学 • 新高考
返回导航
6. (2019·全国卷Ⅱ,5分)设集合A={x|x2-5x+6>0},B={x|x-1<0},则A∩B
2021年高考数学一轮复习 第01讲 集合
![2021年高考数学一轮复习 第01讲 集合](https://img.taocdn.com/s3/m/93b8aed9f78a6529657d5313.png)
第一节集合[考纲传真] 1.了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义.3.(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用Venn图表达集合间的基本关系及集合的基本运算.1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系:属于或不属于,分别记为∈和∉.(3)集合的三种表示方法:列举法、描述法、Venn图法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号N N*(或N+)Z Q R2.集合间的基本关系表示关系文字语言符号语言记法基本关系子集集合A的元素都是集合B的元素x∈A⇒x∈B A⊆B或B⊇A 真子集集合A是集合B的子集,但集合B中至少有一个元素不属于AA⊆B,∃x0∈B,x0∉A A B或B A 相等集合A,B的元素完全相同A⊆B,B⊆A⇒A=B A=B 空集不含任何元素的集合.空集是任何集合A的子集∀x,x∉∅,∅⊆A ∅3.集合的基本运算表示运算文字语言符号语言图形语言记法交集属于A且属于B的元素组成的集合{x|x∈A且x∈B} A∩B 并集属于A或属于B的元素组成的集合{x|x∈A或x∈B} A∪B 补集全集U中不属于A的元素组成的集合{x|x∈U,x∉A} ∁U A[常用结论]1.若有限集A中有n个元素,则集合A的子集个数为2n,真子集的个数为2n-1.2.A⊆B⇔A∩B=A⇔A∪B=B.3.A∩∁U A=∅;A∪∁U A=U;∁U(∁U A)=A.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)任何集合都至少有两个子集.( )(2)已知集合A={x|y=x2},B={y|y=x2},C={(x,y)|y=x2},则A=B=C.( )(3)若{x2,x}={-1,1},则x=-1. ( )(4)若A∩B=A∩C,则B=C. ( )[解析](1)错误.空集只有一个子集,就是它本身,故该说法是错误的.(2)错误.集合A是函数y=x2的定义域,即A=(-∞,+∞);集合B是函数y=x2的值域,即B=[0,+∞);集合C是抛物线y=x2上的点集.因此A,B,C不相等.(3)正确.(4)错误.当A=∅时,B,C可为任意集合.[答案](1)×(2)×(3)√(4)×2.(教材改编)若集合A={x∈N|x≤10},a=22,则下列结论正确的是( )A.{a}⊆A B.a⊆AC.{a}∈A D.a∉AD[由题意知A={0,1,2,3},由a=22知,a∉A.]3.设集合A={1,2,3},B={2,3,4},则A∪B=( )A.{1,2,3,4} B.{1,2,3}C.{2,3,4} D.{1,3,4}A[A∪B={1,2,3,4}.]4.(2018·浙江高考)已知全集U={1,2,3,4,5},A={1,3},则∁U A=( )A.∅B.{1,3}C.{2,4,5} D.{1,2,3,4,5}C[∵U={1,2,3,4,5},A={1,3},∴∁U A={2,4,5}.故选C.]5.若集合A={x|-2<x<1},B={x|x<-1或x>3},则A∩B=( )A.{x|-2<x<-1} B.{x|-2<x<3}C.{x|-1<x<1} D.{x|1<x<3}A[∵A={x|-2<x<1},B={x|x<-1或x>3},∴A∩B={x|-2<x<-1}.]集合的含义与表示1.设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b ∈B },则M 中的元素个数为( ) A .3 B .4C .5D .6B [因为集合M 中的元素x =a +b ,a ∈A ,b ∈B ,所以当b =4,a =1,2,3时,x =5,6,7. 当b =5,a =1,2,3时,x =6,7,8. 由集合元素的互异性,可知x =5,6,7,8. 即M ={5,6,7,8},共有4个元素.]2.若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a =( ) A.92 B.98C .0D .0或98D [若集合A 中只有一个元素,则方程ax 2-3x +2=0只有一个实根或有两个相等实根. 当a =0时,x =23,符合题意;当a ≠0时,由Δ=(-3)2-8a =0得a =98,所以a 的取值为0或98.]3.已知a ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a,1={a 2,a +b,0},则a 2 019+b 2 019为()A .1B .0C .-1D .±1C [由已知得a ≠0,则ba=0,所以b =0,于是a 2=1,即a =1或a =-1,又根据集合中元素的互异性可知a =1应舍去,因此a =-1,故a 2 019+b 2 019=(-1)2 019+02 019=-1.]4.设集合A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},则实数a =________. 1 [由A ∩B ={3}知a +2=3或a 2+4=3. 解得a =1.][规律方法] 与集合中的元素有关的问题的求解策略 1确定集合中的元素是什么,即集合是数集还是点集. 2看这些元素满足什么限制条件.3根据限制条件列式求参数的值或确定集合中元素的个数,要注意检验集合是否满足元素的互异性.集合间的基本关系A x x 2x xB x x x A .B ⊆A B .A =BC .AB D .B A(2)(2019·大庆模拟)集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈Z ⎪⎪⎪x +1x -3≤0,B ={y |y =x 2+1,x ∈A },则集合B 的子集个数为( ) A .5 B .8C .3D .2(3)已知集合A ={x ∈R |x 2+x -6=0},B ={x ∈R |ax -1=0},若B ⊆A ,则实数a 的取值集合为________.(1)C (2)B (3)⎩⎨⎧⎭⎬⎫-13,12,0 [(1)A ={1,2},B ={1,2,3,4},则AB ,故选C.(2)由x +1x -3≤0得-1≤x <3,则A ={-1,0,1,2},B ={y |y =x 2+1,x ∈A }={1,2,5},其子集的个数为23=8个.(3)A ={-3,2},若a =0,则B =∅,满足B ⊆A ,若a ≠0,则B =⎩⎨⎧⎭⎬⎫1a ,由B ⊆A 知,1a =-3或1a =2,故a =-13或a =12,因此a 的取值集合为⎩⎨⎧⎭⎬⎫-13,12,0.] [规律方法] 1.集合间基本关系的两种判定方法 1化简集合,从表达式中寻找两集合的关系. 2用列举法或图示法等表示各个集合,从元素或图形中寻找关系.2.根据集合间的关系求参数的方法,已知两集合间的关系求参数时,关键是将两集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、Venn 图化抽象为直观进行求解.易错警示:B ⊆A A ≠∅,应分B =∅和B ≠∅两种情况讨论.为()A .1B .2C .4D .8(2)已知集合A ={x |x 2-2x ≤0},B ={x |x ≤a },若A ⊆B ,则实数a 的取值范围是________. (1)C (2)[2,+∞) [(1)由A ⊆C ⊆B 得C ={0}或{0,-1}或{0,1}或{0,-1,1},故选C. (2)A ={x |0≤x ≤2},要使A ⊆B ,则a ≥2.]集合的基本运算►考法1 集合的运算【例2】 (1)(2018·全国卷Ⅲ)已知集合A ={x |x -1≥0},B ={0,1,2},则A ∩B =( ) A .{0} B .{1} C .{1,2}D .{0,1,2}(2)(2018·全国卷Ⅰ)已知集合A ={x |x 2-x -2>0},则∁R A =( ) A .{x |-1<x <2} B .{x |-1≤x ≤2} C .{x |x <-1}∪{x |x >2}D .{x |x ≤-1}∪{x |x ≥2}(3)(2019·桂林模拟)已知集合M ={x |-1<x <3},N ={-1,1},则下列关系正确的是( ) A .M ∪N ={-1,1,3} B .M ∪N ={x |-1≤x <3} C .M ∩N ={-1}D .M ∩N ={x |-1<x <1}(1)C (2)B (3)B [(1)由题意知,A ={x |x ≥1},则A ∩B ={1,2}.(2)法一:A ={x |(x -2)(x +1)>0}={x |x <-1或x >2},所以∁R A ={x |-1≤x ≤2},故选B. 法二:因为A ={x |x 2-x -2>0},所以∁R A ={x |x 2-x -2≤0}={x |-1≤x ≤2},故选B.(3)M∪N={x|-1≤x<3},M∩N={1},故选B.]►考法2 利用集合的运算求参数【例3】(1)设集合A={x|-1≤x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是( )A.-1<a≤2 B.a>2C.a≥-1 D.a>-1(2)集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为( )A.0 B.1 C.2 D.4(3)(2019·厦门模拟)已知集合A={x|x<a},B={x|x2-3x+2<0},若A∩B=B,则实数a的取值范围是( )A.a≤1 B.a<1C.a≥2 D.a>2(1)D(2)D(3)C[(1)由A∩B≠∅知,集合A,B有公共元素,作出数轴,如图所示:易知a>-1,故选D.(2)由题意可知{a,a2}={4,16},所以a=4,故选D.(3)B={x|1<x<2},由A∩B=B知B⊆A,则a≥2,故选C.][规律方法]解决集合运算问题需注意以下三点:1看元素组成,集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.2看集合能否化简,集合能化简的先化简,再研究其关系并进行运算,可使问题简单明了,易于求解.3要借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,并注意端点值的取舍.A.(-1,0) B.(0,1)C.(-1,3) D.(1,3)(2)(2019·西安模拟)设集合A={x|x2-3x+2≥0},B={x|x≤2,x∈Z},则(∁R A)∩B=( )A.{1} B.{2} C.{1,2} D.∅(3)(2017·全国卷Ⅱ)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=( )A.{1,-3} B.{1,0}C.{1,3} D.{1,5}(4)(2019·长沙模拟)已知集合A={1,3,9,27},B={y|y=log3x,x∈A},则A∩B=( )A.{1,3} B.{1,3,9}C.{3,9,27} D.{1,3,9,27)(1)C(2)D(3)C(4)A[(1)A={x|-1<x<1},B={x|0<x<3},所以A∪B={x|-1<x<3},故选C.(2)A={x|x≤1或x≥2},则∁R A={x|1<x<2}.又集合B={x|x≤2,x∈Z},所以(∁R A)∩B=∅,故选D.(3)∵A∩B={1},∴1∈B.∴1-4+m=0,即m=3.∴B ={x |x 2-4x +3=0}={1,3}.故选C.(4)因为A ={1,3,9,27},B ={y |y =log 3x ,x ∈A }={0,1,2,3}, 所以A ∩B ={1,3}.]1.(2018·全国卷Ⅰ)已知集合A ={0,2},B ={-2,-1,0,1,2},则A ∩B =( ) A .{0,2} B .{1,2}C .{0}D .{-2,-1,0,1,2}A [由题意知A ∩B ={0,2}.]2.(2018·全国卷Ⅱ)已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( ) A .9 B .8C .5D .4A [由x 2+y 2≤3知,-3≤x ≤3,-3≤y ≤ 3.又x ∈Z ,y ∈Z ,所以x ∈{-1,0,1},y ∈{-1,0,1},所以A 中元素的个数为9,故选A.]3.(2017·全国卷Ⅰ)已知集合A ={x |x <2},B ={x |3-2x >0},则( )A .A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x <32 B .A ∩B =∅ C .A ∪B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <32 D .A ∪B =RA [因为B ={x |3-2x >0}=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <32,A ={x |x <2},所以A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <32,A ∪B ={x |x <2}. 故选A.]4.(2015·全国卷Ⅰ)已知集合A ={x |x =3n +2,n ∈N },B ={6,8,10,12,14},则集合A ∩B 中元素的个数为( )A .5B .4C .3D .2D [分析集合A 中元素的特点,然后找出集合B 中满足集合A 中条件的元素个数即可.集合A 中元素满足x =3n +2,n ∈N ,即被3除余2,而集合B 中满足这一要求的元素只有8和14.故选D.] 自我感悟:______________________________________________________ ________________________________________________________________ ________________________________________________________________。
2021年高考文科数学(人教A版)一轮复习讲义:第1讲集合的概念与运算
![2021年高考文科数学(人教A版)一轮复习讲义:第1讲集合的概念与运算](https://img.taocdn.com/s3/m/69a54a0ac8d376eeafaa3182.png)
第 1 讲 集合的概念与运算一、知识梳理 1.集合与元素(1) 集合元素的三个特征: 确定性、互异性、无序性. ⑵元素与集合的关系是属于或不属于关系,用符号€或 ?表示.⑶集合的表示法: 列举法、描述法、图示法.[注意]N 为自然数集(即非负整数集),包含0,而N *和N +的含义是一样的,表示正整数集,不包含0.2.集合间的基本关系⑴A U B= A? B? A, A AB= A? A? B.(2) A A A= A, A A? = ?.(3) A U A= A, A U ? = A.(4)A A (?U A)= ?, A U (?U A) = U , ?u(?u A) = A.二、习题改编1. (必修1P12A 组T5 改编)若集合P = {x€ N|xW[ 2 018}, a= 2 .2,则()A . a€ P B. {a} € PC. {a}? PD. a?P解析:选D.因为a = 2 2不是自然数,而集合P是不大于,2 018的自然数构成的集合,所以a?P.故选D.2. (必修1P12B 组T1 改编)已知集合M = {0 , 1 , 2, 3, 4}, N= {1 , 3, 5},则集合M U N的子集的个数为__________ .解析:由已知得M U N = {0,1 , 2, 3, 4, 5},所以M U N的子集有26= 64(个).答案:64一、思考辨析判断正误(正确的打“V”,错误的打“X”)(1) 若集合A= {x|y= x2} , B= {y|y= x2}, C= {(x, y)|y= x2},贝U A, B, C 表示同一个集合.()(2) 若a在集合A中,则可用符号表示为a? A.( )(3) 若A B,贝U A? B 且A工B.( )(4) N* N Z.( )(5) 若A n B= A A C,贝U B = C.( )答案:(1)X (2) X (3) V ⑷V (5) X二、易错纠偏常见误区⑴忽视集合的互异性致错;(2) 集合运算中端点取值致错;(3) 忘记空集的情况导致出错.1. _____________________________________________________________ 已知集合U = { —1, 0, 1} , A= {x|x= m2, m€ U},则?U A=_______________________________ .解析:因为A= {x|x= m2, m€ U} = {0 , 1},所以?u A = { —1}.答案:{ —1}2. 已知集合___________________________________________________ A = {x|(x —1)(x—3)<0} , B = {x|2<x<4},贝U A A B = ____________________________________________ , A U B =_________ ,(?R A) U B= ____________ .解析:由已知得 A = {x|1<x<3} , B= {x|2<x<4},所以 A A B = {x|2<x<3} ,A U B= {x|1<x<4}, (?R A)U B = {x|x w 1 或x>2}.答案:(2, 3) (1 , 4)(―汽 1]U (2,+s )3. 已知集合M = {xX—a= 0} ,N = {x|ax—1 = 0},若M n N= N,则实数a的值是解易得M = {a}.因为M n N= N,所以N? M ,所以N= ?或N = M ,所以a= 0或析:a= ±1.答0或1或—1案:集合的基本概念(师生共研)(1)已知集合A = {1 , 2, 3, 4, 5}, B = {(x, y)|x€ A且y€ A且x—y€ A},则B中所含元素的个数为()A. 3B. 6C. 8D. 10(2)已知集合A = {m+ 2, 2m2+ m},若3€ A,贝V m的值为_________ .【解析】(1)由x€ A, y€ A, x—y€ A,得x—y = 1 或x—y= 2 或x—y= 3 或x—y= 4, 所以集合 B = {(2 , 1), (3, 1), (4, 1), (5, 1) , (3 , 2) , (4 , 2) , (5 , 2) , (4 , 3) , (5 , 3),(5 , 4)},所以集合B中有10个元素.(2)因为3€ A,所以m + 2= 3 或2m2+ m= 3.当m+ 2 = 3,即m= 1 时,2m2+ m= 3 ,此时集合A中有重复元素3 ,所以m= 1不符合题意,舍去;3当2m2+ m= 3时,解得m=—?或m= 1(舍去),当m=—多时,m+ 2 =扌工3,符合题意•所以m=— 2.【答案】(1)D (2) —2与集合中元素有关问题的求解策略31•已知集合AWx €乙且尸* Z},则集合A 中的元素个数为()B. 3D . 5解析:选C.因为一J € Z ,2-x所以2-x 的取值有一3,— 1,1,3,又因为x € Z ,所以x 的值分别为5, 3, 1, — 1,故集合A 中的元素个数为4.b2.设 a , b € R ,集合{1 , a +b , a} = 0, j b ,则 b — a =()A . 1B .— 1 C. 2D .— 2b解析:选 C.因为{1 , a + b , a} = 0,, b , a ^O ,所以 a + b = 0,贝9一 = — 1 ,所以 a = a a—1, b = 1.所以 b — a = 2.3.设集合A = {0 , 1 , 2 , 3}, B = {x|— x € A , 1 — x?A},贝燦合B 中元素的个数为()A . 1B . 2C . 3D . 4解析:选A.若x € B ,则一x € A ,故x 只可能是0 , — 1 , — 2, — 3,当0 € B 时,1 — 0当一3€ B 时,1— (— 3) = 4?A ,C . 4 当一1€ B 时,1— (— 1) = 2 € A ;当一2€ B 时, 1— (— 2) = 3 €A ;所以B = { —3},故集合B中元素的个数为1.集合间的基本关系(师生共研)(1)已知集合A = {x|x2—3x+ 2= 0, x€ R} ,B = {x|0<x<5, x€ N},则满足条件A? C? B的集合C的个数为()A.1 B.2C.3 D.4(2)已知集合A = {x—1 v x v 3} ,B = {x|—m<x<m},若B? A,贝U m的取值范围为_______ .【解析】(1 )由题意可得,A={1,2},B={1,2,3,4},又因为A? C? B,所以C={1 ,2}或{1 ,2,3}或{1 ,2,4}或{1 ,2,3,4}.(2)当m w 0 时,B= ?,显然B? A.当m>0 时,因为A= {x|—1<x<3} .当B? A 时,在数轴上标出两集合,如图,—m> —1,所以m w 3, 所以0<m w 1.—m<m.综上所述,m的取值范围为(—g, 1].【答案】(1)D (2)( —g, 1][提醒]题目中若有条件B? A,则应分B= ?和B丰?两种情况进行讨论.1 .已知集合A= {x|x2—2x>0} , B = {x|—5<x< 5},则()A . A A B= ? B. A UB = RC. B? AD. A? B解析:选 B.因为A = {x|x>2 或x<0},因此A U B= {x|x>2 或x<0} U{x|—5<x< 5} = R. 故选B.2.已知集合A= {x|x2—2x—3W 0, x€ N*},则集合A的真子集的个数为()A. 7B. 8C. 15D. 16解析:选A.法一:A= {x|—1 W x< 3, x€ N*} = {1 , 2, 3},其真子集有:?,{1} , {2}, {3} , {1 , 2} , {1 , 3}, {2 , 3}共7 个.法二:因为集合A中有3个元素,所以其真子集的个数为23- 1= 7(个).3. 设集合A = {x|1<x<2} , B = {x|x<a},若An B= A,贝U a 的取值范围是()A . {a|a< 2} B. {a^< 1}C. {a|a> 1}D. {a|a> 2}解析:选 D.由 A n B= A,可得A? B,又A= {x|1<x<2} , B= {x|x<a},所以a>2•故选D.集合的基本运算(多维探究)角度一集合的运算(1)(2019高考全国卷I )已知集合U = {1 ,2,3,4,5,6,7},A= {2 ,3,4,5},B= {2 ,3,6,7},贝B n ?U A= ()A. {1 ,6}B. {1 ,7}C. {6 ,7}D. {1 ,6,7}(2)(2020郑•州市第一次质量预测)设全集U = R,集合A ={x|—3<x<1} , B = {x|x+ 1 >0}, 则?U(A U B)=( )A . {x|x<—3 或x> 1} B. {xx< —1 或x> 3}C. {x|x w 3}D. {xx<—3}【解析】⑴依题意得?u A= {1 , 6, 7},故B A ?u A={6 , 7}.故选C.(2)因为B = {x|x> —1} , A = {x|—3<x<1},所以A U B= {x|x> —3},所以?u(A U B) = {x|x<—3} .故选 D.【答案】(1)C (2)D集合基本运算的求解策略角度二利用集合的运算求参数{x|x<a},若A n B M ?,则a的取值范围是(A 1<a w 2C. a》一1⑵集合A= {0 , 2, a} , B= {1 , a1 2},若A. 0C. 2【解析】(1)设集合A = {x| —1w x<2} , B =)B. a>21 因为A n B M ?,所以集合A, B有公共元素,作出数轴,如图所示,易知a> — 1.2 根据并集的概念,可知{a, a2} = {4 , 16},故a= 4.【答案】(1)D (2)D D. a>—1A U B= {0 , 1, 2, 4, 16},贝U a 的值为()B. 1D. 4根据集合的运算结果求参数的值或取值范围的方法(1)将集合中的运算关系转化为两个集合之间的关系.若集合中的元素能一一列举,则用观察法得到不同集合中元素之间的关系;若集合是与不等式有关的集合,则一般利用数轴解决,要注意端点值能否取到.(2)将集合之间的关系转化为解方程(组)或不等式(组)问题求解.(3)根据求解结果来确定参数的值或取值范围.1. (2019 高考天津卷)设集合A= { —1 , 1 , 2, 3, 5} , B= {2 , 3,4}, C= {x€ R|1< x<3}, 则(A nC) U B =( )A. {2}B. {2, 3}C. {—1, 2, 3}D. {1 , 2, 3, 4}。
2021年高考数学一轮复习 专题1.1 集合的概念及其基本运算(讲)文(含解析)
![2021年高考数学一轮复习 专题1.1 集合的概念及其基本运算(讲)文(含解析)](https://img.taocdn.com/s3/m/dc7ea9179ec3d5bbfc0a7449.png)
2021年高考数学一轮复习专题1.1 集合的概念及其基本运算(讲)文(含解析)【课前小测摸底细】1.【课本典型习题,P12第3题】设集合,,求,.【答案】当时,,;当时,,;当时,则,;当,,时,,.2. 【xx高考天津,文1】已知全集,集合,集合,则集合()(A) (B) (C) (D)【答案】B【解析】,,则,故选B.3. 【湖北省武汉市xx届高三9月调研测试1】设集合,,,则中元素的个数为()A.3 B.4 C.5 D.6【答案】B.4.【基础经典试题】集合,集合,则等于( )A. B. C. D.5.【改编自xx年江西卷理科】若集合,则集合中的元素的非空子集个数为( )A.7 B.6 C.5 D.4【答案】A【解析】由已知得,集合=,所以其非空子集个数为,故选A.【考点深度剖析】高考对集合知识的考查要求较低,均是以小题的形式进行考查,一般难度不大,要求考生熟练掌握与集合有关的基础知识.纵观近几年的高考试题,主要考查以下两个方面:一是考查具体集合的关系判断和集合的运算.解决这类问题的关键在于正确理解集合中元素所具有属性的含义,弄清集合中元素所具有的形式以及集合中含有哪些元素.二是考查抽象集合的关系判断以及运算.【经典例题精析】考点1 集合的概念【1-1】若,集合,求的值________.【答案】2【解析】由可知,则只能,则有以下对应关系:①或0,,1,a bb aba⎧⎪+=⎪=⎨⎪⎪=⎩②由①得符合题意;②无解.∴.【1-2】已知集合A={x|x2+mx+4=0}为空集,则实数m的取值范围是( )A.(-4,4) B.[-4,4] C.(-2,2) D.[-2,2]【答案】A【解析】依题意知一元二次方程无解,所以,解得.故选A.【1-3】已知A={a+2,(a+1)2,a2+3a+3},若1∈A,则实数a构成的集合B的元素个数是( ) A.0 B.1 C.2 D.3【课本回眸】1、集合的含义:某些指定的对象集在一起就成为一个总体,这个总体就叫集合,其中每一个对象叫元素。
2021年新高考数学一轮专题复习第01讲-集合(解析版)
![2021年新高考数学一轮专题复习第01讲-集合(解析版)](https://img.taocdn.com/s3/m/82cb7a0d284ac850ad0242bd.png)
8.(2020·江苏省泰州中学高三月考)已知集合 A {x | 0 x 2} , B {x | x 1} ,则 A B ______
【答案】{x |1 x 2}
【解析】因为集合 A {x | 0 x 2} , B {x | x 1} , 所以 A B {x |1 x 2}. 故答案为:{x |1 x 2}
2.子集的传递性:A⊆B,B⊆C⇒A⊆C.
3.A⊆B⇔A∩B=A⇔A∪B=B⇔∁UA⊇∁UB. 4.∁U(A∩B)=(∁UA)∪(∁UB),∁U(A∪B)=(∁UA)∩(∁UB).
三、 经典例题
考点一 集合的基本概念
【例 1-1】(2020·全国高三一模(文))已知集合 A x x2 2ax 2a 0 ,若 A 中只有一个元素,则实数 a
④如果 a1 M , a2 M ,那么 a1 a2 M
其中,正确结论的序号是__________. 【答案】①③
【解析】对①:对 b 2n 1, n N ,
总是有 b 2n 1 n 12 n2 , n 1, n z ,故 B M ,则①正确;
对② c 2n, n N ,若 c 2n M ,则存在 x, y Z ,使得
A.30
B.31
C.62
【答案】A
【解析】因为集合 A x | x 6 且 x N* 1, 2,3, 4,5 ,
D.63
所以 A 的非空真子集的个数为 25 2 30 .
故选:A
【例 2-3】(2020·北京牛栏山一中高三月考)已知集合 A={-2,3,1},集合 B={3,m²}.若 B A,则实数 m 的
解不等式 lg x 1 1,得 0 x 1 10 ,解得 1 x 9 .
A x x 1或x 3 , B x 1 x 9 ,则 ðR A x 1 x 3 ,
2021年高考数学一轮复习 专题1.1 集合的概念及其基本运算(测)理(含解析)
![2021年高考数学一轮复习 专题1.1 集合的概念及其基本运算(测)理(含解析)](https://img.taocdn.com/s3/m/3f36e8224693daef5ff73d68.png)
2021年高考数学一轮复习 专题1.1 集合的概念及其基本运算(测)理(含解析)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的。
)1. 【河北省“五个一名校联盟” xx 届高三教学质量监测(一)1】设集合,,则 ( )A. B. C. D.【答案】B2. 【xx 届太原五中模拟】已知集合,,若,则( )A .B .C .或D .或 【答案】C .3. 已知集合,若,则实数的取值范围为 ( ) A .B .C .D .【答案】A4. 在实数集上定义运算:.若关于的不等式的解集是集合 的子集,则实数的取值范围是( ). A. B. C. D. 【答案】D5. 若集合{}{}2|,|2,M x y x N y y x x R ====-∈,则 ( )A. B. C. D. 【答案】A6.【xx 届北京市西城区二模】已知集合,,若,则实数的 取值范围是( )A .B .C .D . 【答案】D7.设和是两个集合,定义集合或且.若, ,那么等于( )A.[-1,4]B.(-∞,-1]∪[4,+∞)C.(-3,5)D.(-∞,-3)∪[-1,4]∪(5,+∞) 【答案】D8.【xx 届湖南省长沙市二模】 已知集合}{22(,)1,(,)()94x y M x y N x y y k x b ⎧⎫=+===-⎨⎬⎩⎭,若,使得成立,则实数b 的取值范围是( ) A . B . C . D . 【答案】B9.设集合,,则满足且的集合S 的个数是( ) A .57 B .56 C .49 D .8【答案】B10.【xx届江西师大附中高三三模】设集合,,集合中所有元素之和为8,则实数的取值集合为()A.B. C. D.【答案】C11.【xx届内蒙古北方重工业集团三中模拟】如图所示的韦恩图中,、是非空集合,定义*表示阴影部分集合.若,,,则*B=().A. B. C. D.【答案】C12.【xx届北京东城区示范校模拟】设集合,集合,若,则实数的取值范围是()A. B. C. D.【答案】C二、填空题(本大题共4小题,每小题5分,共20分。
集合题型归纳讲义高三数学一轮复习(原卷版)
![集合题型归纳讲义高三数学一轮复习(原卷版)](https://img.taocdn.com/s3/m/84b4e48c783e0912a3162a80.png)
专题二《集合》讲义知识梳理.集合1.集合的有关概念(1)集合元素的三个特性:确定性、无序性、互异性(2)集合的三种表示方法:列举法、描述法、图示法.(3)元素与集合的两种关系:属于,记为∈;不属于,记为∉.(4)五个特定的集合及其关系图:N*或N+表示正整数集,N表示自然数集,Z表示整数集,Q表示有理数集,R表示实数集.2.集合间的基本关系(1)子集:一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,则称A是B的子集,记作A⊆B(或B⊇A).(2)真子集:如果集合A是集合B的子集,但集合B中至少有一个元素不属于A,则称A是B的真子集.(3)集合相等:如果A⊆B,并且B⊆A,则A=B.(4)空集:不含任何元素的集合.空集是任何集合A的子集,是任何非空集合B的真子集.记作∅.3.集合间的基本运算(1)交集:一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A∩B,即A∩B={x|x∈A,且x∈B}.(2)并集:一般地,由所有属于集合A或属于集合B的元素组成的集合,称为A与B的并集,记作A∪B,即A∪B={x|x∈A,或x∈B}.(3)补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,简称为集合A的补集,记作∁U A,即∁U A={x|x∈U,且x∉A}.1.设集合A={2,1﹣a,a2﹣a+2},若4∈A,则a=()A.﹣3或﹣1或2B.﹣3或﹣1C.﹣3或2D.﹣1或22.设a,b∈R,集合{1,a+b,a}={0,ba,b},则b﹣a=()A.1B.﹣1C.2D.﹣23.已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为()A.9B.8C.5D.44.设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为()A.3B.4C.5D.65.已知集合A={1,2,3},B={1,m},若3﹣m∈A,则非零实数m的数值是.6.若集合A={x∈R|ax2+ax+1=0}其中只有一个元素,则a=()A.4B.2C.0D.0或4题型二.集合的基本关系——子集个数1.已知集合A={0,1,a2},B={1,0,3a﹣2},若A=B,则a等于()A.1或2B.﹣1或﹣2C.2D.12.设集合A={x|1<x≤2},B={x|x<a},若A⊆B,则a的取值范围是()A.{a|a≥1}B.{a|a≤1}C.{a|a≥2}D.{a|a>2}3.已知集合M={x|x2=1},N={x|ax=1},若N⊆M,则实数a的取值集合为()A.{1}B.{﹣1,1}C.{1,0}D.{1,﹣1,0} 4.已知集合A={x|x2﹣3ax﹣4a2>0,(a>0)},B={x|x>2},若B⊆A,则实数a的取值范围是.5.已知集合A={x∈Z|x2+3x<0},则满足条件B⊆A的集合B的个数为()A.2B.3C.4D.86.设集合A={1,0},集合B={2,3},集合M={x|x=b(a+b),a∈A,b∈B},则集合M 的真子集的个数为()A.7个B.12个C.16个D.151.设集合A={1,2,4},B={x|x2﹣4x+m﹣1=0},若A∩B={1},则B=()A.{1,﹣3}B.{1,0}C.{1,3}D.{1,5}2.已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=﹣x},则A∩B中元素的个数为()A.3B.2C.1D.03.已知集合A={x|0<log4x<1},B={x|e x﹣2≤1},则A∪B=()A.(﹣∞,4)B.(1,4)C.(1,2)D.(1,2]4.满足M⊆{a1,a2,a3},且M∩{a1,a2,a3}={a3}的集合M的子集个数是()A.1B.2C.3D.45.设集合A={x∈Z||x|≤2},B={x|32x≤1},则A∩B=()A.{1,2} B.{﹣1,﹣2} C.{﹣2,﹣1,2} D.{﹣2,﹣1,0,2}6.已知集合A={1,2,3},B={x|x2﹣3x+a=0,a∈A},若A∩B≠∅,则a的值为()A.1B.2C.3D.1或27.设集合A={x|x2﹣2x≤0,x∈R},B={y|y=﹣x2,﹣1≤x≤2},则∁R(A∩B)等于()A.R B.{x|x∈R,x≠0}C.{0}D.φ8.设集合A={x|x(4﹣x)>3},B={x|x|≥a},若A∩B=A,则a的取值范围是()A.a≤1B.a<1C.a≤3D.a<3题型四.用韦恩图解决集合问题——新定义问题1.已知全集U=R,集合A={1,2,3,4,5},B={x∈R|y=lg(x﹣3)},则图中阴影部分表示的集合为()A.{1,2,3,4,5}B.{1,2,3}C.{1,2}D.{3,4,5} 2.设全集U={x|0<x<10,x∈N*},若A∩B={3},A∩∁U B={1,5,7},∁U A∩∁U B={9},则A=,B=.3.(2021•全国模拟)已知M,N均为R的子集,且∁R M⊆N,则M∪(∁R N)=()A.∅B.M C.N D.R4.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%5.已知集合M={1,2,3,4},集合A、B为集合M的非空子集,若∀x∈A、y∈B,x<y恒成立,则称(A,B)为集合M的一个“子集对”,则集合M的“子集对”共有个.6.任意两个正整数x、y,定义某种运算⊗:x⊗y={x+y(x与y奇偶相同)x×y(x与y奇偶不同),则集合M={(x,y)|x⊗y=6,x,y∈N*}中元素的个数是.。
专题01 集合的概念与运算-2021年新高考数学基础考点一轮复习
![专题01 集合的概念与运算-2021年新高考数学基础考点一轮复习](https://img.taocdn.com/s3/m/80bff591d4bbfd0a79563c1ec5da50e2524dd19a.png)
专题01 集合的概念与运算【考点总结】1.集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法2.A B(或B A)3.∁A={x|x∈U,且x∉1.三种集合运用的性质(1)并集的性质:A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔B⊆A.(2)交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B.(3)补集的性质:A∪(∁U A)=U;A∩(∁U A)=∅;∁U(∁U A)=A;∁U(A∩B)=(∁U A)∪(∁U B);∁U(A∪B)=(∁U A)∩(∁U B).2.集合基本关系的四个结论(1)空集是任意一个集合的子集,是任意一个非空集合的真子集.(2)任何一个集合是它本身的子集,即A ⊆A .空集只有一个子集,即它本身. (3)集合的子集和真子集具有传递性:若A ⊆B ,B ⊆C ,则A ⊆C ;若AB ,BC ,则AC .(4)含有n 个元素的集合有2n 个子集,有2n -1个非空子集,有2n -1个真子集,有2n -2个非空真子集. 【易错总结】(1)忽视集合中元素的互异性致误; (2)忽视空集的情况致误; (3)忽视区间端点值致误.例1.已知集合A ={1,3,m },B ={1,m },若B ⊆A ,则m =________.解析:因为B ⊆A ,所以m =3或m =m ,即m =3或m =0或m =1,根据集合元素的互异性可知,m ≠1,所以m =0或3.答案:0或3例2.已知集合M ={x |x -2=0},N ={x |ax -1=0},若M ∩N =N ,则实数a 的值是________.解析:易得M ={2}.因为M ∩N =N ,所以N ⊆M ,所以N =∅或N =M ,所以a =0或a =12.答案:0或12例3.已知集合A ={x |x 2-4x +3<0},B ={x |2<x <4},则A ∩B =________,A ∪B =________,(∁R A )∪B =________.解析:由已知得A ={x |1<x <3},B ={x |2<x <4},所以A ∩B ={x |2<x <3},A ∪B ={x |1<x <4}, (∁R A )∪B ={x |x ≤1或x >2}.答案:(2,3) (1,4) (-∞,1]∪(2,+∞) 【考点解析】【考点】一、集合的概念例1.设集合A ={x ∈Z ||x |≤2},B ={y |y =x 2+1,x ∈A },则B 中的元素有( )A .5个B .4个C .3个D .无数个解析:选C.依题意有A ={-2,-1,0,1,2},代入y =x 2+1得到B ={1,2,5},故B 中有3个元素.例2.若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a =________.解析:当a =0时,显然成立;当a ≠0时,Δ=(-3)2-8a =0,即a =98.答案:0或98例3.已知集合A ={x ∈N |1<x <log 2k },集合A 中至少有3个元素,则k 的取值范围为________.解析:因为集合A 中至少有3个元素,所以log 2k >4,所以k >24=16.答案:(16,+∞)例4.已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________.解析:由题意得m +2=3或2m 2+m =3, 则m =1或m =-32.当m =1时,m +2=3且2m 2+m =3,根据集合中元素的互异性可知不满足题意; 当m =-32时,m +2=12,而2m 2+m =3,符合题意,故m =-32.答案:-32求解与集合中的元素有关问题的注意事项(1)如果题目条件中的集合是用描述法表示的集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型的集合.(2)如果是根据已知列方程求参数值,一定要将参数值代入集合中检验是否满足元素的互异性. 【考点】二、集合的基本关系例1、(1)已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则( )A .B ⊆A B .A =BC .ABD .BA(2)已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4(3)已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,则实数m 的取值范围为________. 【解析】 (1)由x 2-3x +2=0得x =1或x =2,所以A ={1,2}.由题意知B ={1,2,3,4},比较A ,B 中的元素可知AB ,故选C.(2)因为A ={1,2},B ={1,2,3,4},A ⊆C ⊆B ,则集合C 可以为{1,2},{1,2,3},{1,2,4},{1,2,3,4},共4个.(3)因为B ⊆A ,所以①若B =∅,则2m -1<m +1,此时m <2. ②若B ≠∅,则⎩⎪⎨⎪⎧2m -1≥m +1,m +1≥-2,2m -1≤5.解得2≤m ≤3.由①②可得,符合题意的实数m 的取值范围为m ≤3. 【答案】 (1)C (2)D (3)(-∞,3] 【迁移探究1】 (变条件)本例(3)中,若BA ,求m 的取值范围?解:因为BA ,①若B =∅,成立,此时m <2.②若B ≠∅,则⎩⎪⎨⎪⎧2m -1≥m +1,m +1≥-2,2m -1≤5,且边界点不能同时取得,解得2≤m ≤3.综合①②,m 的取值范围为(-∞,3].【迁移探究2】 (变条件)本例(3)中,若A ⊆B ,求m 的取值范围.解:若A ⊆B ,则⎩⎪⎨⎪⎧m +1≤-2,2m -1≥5,即⎩⎪⎨⎪⎧m ≤-3,m ≥3.所以m 的取值范围为∅.【迁移探究3】 (变条件)若将本例(3)中的集合A 改为A ={x |x <-2或x >5},试求m 的取值范围.解:因为B ⊆A ,所以①当B =∅时,2m -1<m +1,即m <2,符合题意.②当B ≠∅时,⎩⎪⎨⎪⎧m +1≤2m -1,m +1>5或⎩⎪⎨⎪⎧m +1≤2m -1,2m -1<-2,解得⎩⎪⎨⎪⎧m ≥2,m >4或⎩⎪⎨⎪⎧m ≥2,m <-12.即m >4.综上可知,实数m 的取值范围为(-∞,2)∪(4,+∞). (1)判断两集合关系的方法①对描述法表示的集合,把集合化简后,从表达式中寻找两集合间的关系; ②对于用列举法表示的集合,从元素中寻找关系. (2)根据两集合间的关系求参数的方法已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、V enn 图等来直观解决这类问题.[提醒] 空集是任何集合的子集,当题目条件中有B ⊆A 时,应分B =∅和B ≠∅两种情况讨论.例1.(2020·河北唐山第一次模拟)设集合M ={x |x 2-x >0},N =⎩⎨⎧x ⎪⎪⎭⎬⎫1x <1,则( ) A .M N B .N MC .M =ND .M ∪N =R解析:选C.集合M ={x |x 2-x >0}={x |x >1或x <0},N =⎩⎨⎧x ⎪⎪⎭⎬⎫1x <1={x |x >1或x <0},所以M =N .故答案为C.例2.设M 为非空的数集,M ⊆{1,2,3},且M 中至少含有一个奇数元素,则这样的集合M 共有( )A .6个B .5个C .4个D .3个解析:选A.由题意知,M ={1},{3},{1,2},{1,3},{2,3},{1,2,3},共6个.例3.若集合A ={1,2},B ={x |x 2+mx +1=0,x ∈R },且B ⊆A ,则实数m 的取值范围为________.解析:①若B =∅,则Δ=m 2-4<0, 解得-2<m <2,符合题意; ②若1∈B ,则12+m +1=0,解得m =-2,此时B ={1},符合题意; ③若2∈B ,则22+2m +1=0,解得m =-52,此时B =⎩⎨⎧⎭⎬⎫2,12,不合题意.综上所述,实数m 的取值范围为[-2,2). 答案:[-2,2)【考点】三、集合的基本运算 角度一 集合的运算例1、(1)(2019·高考全国卷Ⅰ)已知集合M ={x |-4<x <2},N ={x |x 2-x -6<0},则M ∩N =( )A .{x |-4<x <3}B .{x |-4<x <-2}C .{x |-2<x <2}D .{x |2<x <3}(2)(2020·河南焦作模拟)若集合A ={x |2x 2-9x >0},B ={y |y ≥2},则(∁R A )∪B =( ) A.⎣⎡⎦⎤2,92 B .∅C .[0,+∞)D .(0,+∞)【解析】 (1)通解:因为N ={x |-2<x <3},M ={x |-4<x <2},所以M ∩N ={x |-2<x <2},故选C. 优解:由题可得N ={x |-2<x <3}. 因为-3∉N ,所以-3∉M ∩N ,排除A ,B ; 因为2.5∉M ,所以2.5∉M ∩N ,排除D.故选C.(2)因为A ={x |2x 2-9x >0}=⎩⎨⎧⎭⎬⎫x ⎪⎪x >92或x <0,所以∁RA =⎩⎨⎧⎭⎬⎫x ⎪⎪0≤x ≤92,又B ={y |y ≥2},所以(∁R A )∪B =[0,+∞).故选C.【答案】 (1)C (2)C 角度二 利用集合的运算求参数例2、(1)(2020·江西上饶重点中学六校联考)已知A =[1,+∞),B =[0,3a -1],若A ∩B ≠∅,则实数a 的取值范围是( )A .[1,+∞)B .⎣⎡⎦⎤12,1 C.⎣⎡⎭⎫23,+∞D .(1,+∞)(2)集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为________.(3)已知集合A ={x |x 2-x -12>0},B ={x |x ≥m }.若A ∩B ={x |x >4},则实数m 的取值范围是________.【解析】 (1)由题意可得3a -1≥1,解得a ≥23,即实数a 的数值范围是⎣⎡⎭⎫23,+∞.故选C. (2)根据并集的概念,可知{a ,a 2}={4,16},故只能是a =4.(3)集合A ={x |x <-3或x >4},因为A ∩B ={x |x >4},所以-3≤m ≤4. 【答案】 (1)C (2)4 (3)[-3,4] (1)集合运算的常用方法①若集合中的元素是离散的,常用Venn 图求解;②若集合中的元素是连续的实数,则用数轴表示,此时要注意端点的情况. (2)利用集合的运算求参数的值或取值范围的方法①与不等式有关的集合,一般利用数轴解决,要注意端点值能否取到;②若集合能一一列举,则一般先用观察法得到不同集合中元素之间的关系,再列方程(组)求解. [提醒] 在求出参数后,注意结果的验证(满足互异性).例1.(2020·江西吉安一中、新余一中等八所中学联考)已知集合M =[-1,1],N ={y |y =x 2,x ∈M },则M ∩N =( )A .[0,1]B .[-1,1]C .[0,1)D .(0,1]解析:选A.由于M =[-1,1],N ={y |y =x 2,x ∈M },所以N =[0,1],所以M ∩N =[0,1].故选A. 例2.(2020·安徽宣城八校联考)如图,设全集U =N ,集合A ={1,3,5,7,8},B ={1,2,3,4,5},则图中阴影部分表示的集合为( )A .{2,4}B .{7,8}C .{1,3,5}D .{1,2,3,4,5}解析:选A.由题图可知阴影部分表示的集合为(∁U A )∩B ,因为集合A ={1,3,5,7,8},B ={1,2,3,4,5},U =N ,所以(∁U A )∩B ={2,4}.故选A.例3.已知集合A ={x |-1<x <2},B ={x |y =-x 2-2x },则A ∩B =( )A .{x |-1<x <0}B .{x |-1<x ≤0}C .{x |0<x <2}D .{x |0≤x <2}解析:选B.因为函数y =-x 2-2x 有意义,所以-x 2-2x ≥0,解得-2≤x ≤0,所以集合B ={x |-2≤x ≤0}.又集合A ={x |-1<x <2},所以A ∩B ={x |-1<x ≤0}.故选B. 【技巧总结】集合新定义问题中的核心素养例1、(1)(2020·河南南阳第一中学第十四次考试)定义集合运算:A ⊙B ={Z |Z =xy ,x ∈A ,y ∈B },设集合A ={-1,0,1},B ={sin α,cos α},则集合A ⊙B 的所有元素之和为( )A .1B .0C.-1 D.sin α+cos α(2)(2020·河北保定一模)设P和Q是两个集合,定义集合P-Q={x|x∈P,且x∉Q},如果P={x|1<2x<4},Q={y|y=2+sin x,x∈R},那么P-Q=()A.{x|0<x≤1} B.{x|0≤x<2}C.{x|1≤x<2} D.{x|0<x<1}【解析】(1)因为x∈A,所以x的可能取值为-1,0,1.同理,y的可能取值为sin α,cos α,所以xy的所有可能取值为(重复的只列举一次):-sin α,0,sin α,-cos α,cos α,所以所有元素之和为0.故选B.(2)由题意得P={x|0<x<2},Q={y|1≤y≤3},所以P-Q={x|0<x<1}.故选D.【答案】(1)B(2)D(1)以集合为背景的新定义问题常以“问题”为核心,以“探究”为途径,以“发现”为目的,这类试题只是以集合为依托,考查考生对新概念的理解,充分体现了核心素养中的数学抽象.(2)解决集合的新定义问题的两个切入点①正确理解新定义.这类问题不是简单的考查集合的概念或性质问题,而是以集合为载体的有关新定义问题.常见的命题形式有新概念、新法则、新运算等;②合理利用集合性质.运用集合的性质(如元素的性质、集合的运算性质等)是破解新定义型集合问题的关键.在解题时要善于从题设条件给出的数式中发现可以使用集合性质的一些因素,但关键之处还是合理利用集合的运算与性质.。
高考数学一轮复习讲义第一章集合概念和其基本运算
![高考数学一轮复习讲义第一章集合概念和其基本运算](https://img.taocdn.com/s3/m/7b3c66f0af45b307e9719720.png)
高考数学一轮复习讲义第 一章集合概念与其基本运
A 中不等式的解集应分三种情况讨论:
①若 a=0,则 A=R; ②若 a<0,则 A=x|4a≤x<-1a;
③若 a>0,则 A=x|-1a<x≤4a.
(1)当 a=0 时,若 A⊆B,此种情况不存在. 当 a<0 时,若 A⊆B,如图,
当(a+1)2=1,即 a=0 或 a=-2 时, ①a=0 符合要求. ②a=-2 时,a2+3a+3=1 与(a+1)2 相同,不符合题意. 当 a2+3a+3=1,即 a=-2 或 a=-1. ①当 a=-2 时,a2+3a+3=(a+1)2=1,不符合题意. ②当 a=-1 时,a2+3a+3=a+2=1,不符合题意. 综上所述,a=0.∴2 013a=1.
,∴00<<aa≤≤22 .
又∵a>0,∴0<a≤2.
综上知,当 B⊆A 时,-12<a≤2.
(3)当且仅当 A、B 两个集合互相包含时,A=B.
由(1)、(2)知,a=2.
高考数学一轮复习讲义第 一章集合概念与其基本运
探究提高
在解决两个数集关系问题时,避免出错的一个有效手段是 合理运用数轴帮助分析与求解,另外,在解含有参数的不 等式(或方程)时,要对参数进行分类讨论.分类时要遵循 “不重不漏”的分类原则,然后对每一类情况都要给出问 题的解答. 分类讨论的一般步骤:①确定标准;②恰当分类;③逐类 讨论;④归纳结论.
A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔B⊆A. 交集的性质:
A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B. 补集的性质:
2021年高考数学一轮复习 第一章 集合与常用逻辑用语 第1课 集合的概念及运算 文(含解析)
![2021年高考数学一轮复习 第一章 集合与常用逻辑用语 第1课 集合的概念及运算 文(含解析)](https://img.taocdn.com/s3/m/ada28ee70b4c2e3f5627638b.png)
2021年高考数学一轮复习第一章集合与常用逻辑用语第1课集合的概念及运算文(含解析)1.集合的含义与表示①集合中元素的三个特征:确定性、互异性、无序性.②集合中元素与集合的关系意义符号表示属于集合是集合的元素不属于集合不是集合的元素③集合的表示法:列举法、描述法、韦恩图.④常用数集的表示集合自然数集正整数集整数集有理数集实数集表示2.集合间的基本关系①子集:若对∀x∈A,都有x∈B,则A⊆B.②真子集:若A⊆B,但∃x∈B,且x∉A,则A B.③相等:若A⊆B,且B⊆A,则A=B.④空集是任何集合的子集,是任何非空集合的真子集.3.集合的基本运算4.集合A元素的个数为n则①A的子集个数为.②A的真子集个数为.5. 集合的运算及性质,.【例1】(xx延庆一模)已知集合,,,则()A.或 B.或 C.或 D.或【答案】B【解析】∵,∴,∴或.若,则,满足.若,解得或.若,则,满足.若,显然不成立,综上:或.【变式】(xx黑龙江质检)设集合,,则()A. B. C. D.【答案】B【解析】∵,∴.【例2】(xx惠州调研)已知集合,,若,则实数的所有可能取值的集合为()A. B. C. D.【答案】D【解析】(1)若时,得,满足;(2)若时,得.,∴或,解得,或.故所求实数的值为,或,或.【变式】已知集合,且,则实数的取值范围是()A. B. C. D.【答案】C【解析】∵,∴.(1)当时,则,解得.(2)当时,则,解得.∴实数的取值范围是.【例3】(xx揭阳一模)已知集合,集合,则()A .B .C .D .【答案】D【解析】∵,,∴.【变式】(xx 山东高考)已知集合、均为全集的子集,且,,则( )A .B .C .D .【答案】A【解析】∵,∴且,∵,∴,,∴,或,或,或,∴,.【例4】(xx 珠海一模)设为全集,对集合,定义运算“”,满足,则对于任意集合,()A .B .C .D .【答案】D【解析】()[()]()()U U U X Y Z X Y Z X Y Z ⊕⊕=⊕=.【变式】设、为两个非空实数集合,定义集合,若,,则中元素的个数为( )A .9B .8C .7D .6【答案】B【解析】∵,,,∴当时,的值为1,2,6;当时,的值为3,4,8;当时,的值为6,7,11,∴,∴中有8个元素.第1课 集合的概念及运算的课后作业1.(xx 福建高考)若集合,则的子集个数为( )A .2B .3C .4D .16【答案】C【解析】∵,∴的子集为.2.(xx 惠州调研)已知集合,,则( )A .B .C .D .【答案】C【解析】,故.3.(xx 全国高考)设集合则中的元素个数为( )A .B .C .D .【答案】B【解析】,有4个元素.4.(xx 中山质检)设全集,集合,,则图中的阴影部分表示的集合为( )AB .C .D . .5.(xx·惠州一模)若集合 , ,则A∩B=( )A .-1B .{-1}C .{-1,5}D .{1,-1}【答案】B【解析】由集合A 中的方程,解得: 或,所以集合 ,由集合B 中的方程,解得: 或,所以集合 ,则 .故选B.6. (xx·新课标全国卷Ⅰ)已知集合 ,,则 ( )A .{1,4}B .{2,3}C .{9,16}D .{1,2}【答案】A【解析】因为,所以 .所以 .所以,故选A.7.(xx·梅州二模)已知集合 ,集合,且A∩B={1},则A∪B=( )A .{0,1,3}B .{1,2,4}C .{0,1,2,3}D .{0,1,2,3,4}【答案】C【解析】因为,集合 ,且A∩B={1},所以,解得: 或 ,当 时, ,不合题意,舍去;当 时, ,此时,所以 ,集合 ,则 .故选C.8.若全集 ,集合 ,则 ________.【答案】{x|0<x<1}9.(xx·上海卷)若集合 , ,则A∩B=________.【答案】⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 12<x <1 【解析】解得集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x >12,集合B ={x|-1<x <1},求得A∩B=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 12<x <1. 10.(xx·河南调研)设全集 , ,, ,则集合 的所有子集是________________.【答案】 、{1}、{2}、{1,2}【解析】因为,所以 ,所以|a +1|=3,且 ,解得 或 .所以 .11.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 6x +1≥1,x∈R , ,若 ,求实数m 的值. 【解析】由6x +1>1,得x -5x +1≤0,所以-1<x≤5,即A ={x|-1<x≤5}, 又A∩B={x|-1<x <4},所以4是方程 的根,于是,解得m=8.此时,符合题意,故实数m的值为8.12.设全集,已知集合,.(1)求;(2)记集合,已知集合,若B∪A=A,求实数的取值范围.【解析】(1)∵,,∴,.(2) ,∵,,∴或,当时,,∴;当时,,解得从而,综上所述,所求的取值范围为.t30464 7700 眀28956 711C 焜 28147 6DF3 淳L-23767 5CD7 峗25830 64E6 擦,ugt。
【赢在课堂】2021届高考数学一轮复习 1.1 第1讲 集合的概念与运算 理 新人教A版
![【赢在课堂】2021届高考数学一轮复习 1.1 第1讲 集合的概念与运算 理 新人教A版](https://img.taocdn.com/s3/m/a3efd8929b6648d7c0c74630.png)
第一章集合与常用逻辑用语第1讲集合的概念与运算基础巩固1.设集合A={-1,0,1},B={0,1,2},若x∈A,且x∉B,则x等于( )A.-1B.0C.1D.2【答案】A【解析】由题意可知x=-1.2.若集合A={x|-2<x<1},B={x|0<x<2},则集合A∩B等于( )A.{x|-1<x<1}B.{x|-2<x<1}C.{x|-2<x<2}D.{x|0<x<1}【答案】D【解析】画出数轴如图所示,从图中可以看出A∩B={x|0<x<1}.故选D.3.若集合P={x|x<4},Q={x|x2<4},则( )A.Q⫋PB.P⫋QC.P⫋∁R QD.Q⫋∁R P【答案】A【解析】∵x2<4,∴-2<x<2.∴Q={x|-2<x<2}.∴Q⫋P.故选A.4.设全集U是实数集R,M={x|x2>4},N=,则右图中阴影部分所表示的集合是( )A.{x|-2≤x<1}B.{x|-2≤x≤2}C.{x|1<x≤2}D.{x|x<2}【答案】C【解析】题图中阴影部分可表示为(∁U M)∩N,集合M={x|x>2或x<-2},集合N={x|1<x≤3},由集合的运算,知(∁U M)∩N={x|1<x≤2}.5.(2012·辽宁卷,1)已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则(∁U A)∩(∁U B)=( )A.{5,8}B.{7,9}C.{0,1,3}D.{2,4,6}【答案】B【解析】由已知条件可得∁U A={2,4,6,7,9},∁U B={0,1,3,7,9},所以(∁U A)∩(∁U B)={7,9},故选B.6.(2012·浙江卷,1)设集合A={x|1<x<4},集合B={x|x2-2x-3≤0},则A∩(∁R B)=( )A.(1,4)B.(3,4)C.(1,3)D.(1,2)∪(3,4)【答案】B【解析】由已知,得B={x|x2-2x-3≤0}={x|-1≤x≤3},所以∁R B={x|x<-1或x>3}.所以A∩(∁R B)={x|3<x<4}.7.(2012·北京东城综合练习(一))非空集合G关于运算⊕满足:(1)对任意a,b∈G,都有a⊕b∈G;(2)存在c∈G,使得对一切a∈G,都有a⊕c=c⊕a=a,则称集合G关于运算⊕为“融洽集”.现给出下列集合和运算:①G={非负整数},⊕为整数的加法;②G={偶数},⊕为整数的乘法;③G={平面向量},⊕为平面向量的加法;④G={二次三项式},⊕为多项式的加法.其中G关于运算⊕为“融洽集”的是( )A.①②B.①③C.②③D.②④【答案】B【解析】②错,因为不满足条件(2);④错,因为不满足条件(1).故选B.8.已知集合A={3,,2,a},B={1,a2},若A∩B={2},则a的值为.【答案】 -【解析】因为A∩B={2},所以a2=2,所以a=或a=-.当a=时,集合A中元素不符合互异性,故舍去,所以a=-.9.已知集合A={x∈R||x-1|<2},Z为整数集,则集合A∩Z中所有元素的和等于.【答案】 3【解析】∵|x-1|<2,即-2<x-1<2,-1<x<3,∴A={x∈R|-1<x<3}.又∵Z为整数集,∴A∩Z={0,1,2}.∴A∩Z中所有元素的和等于3.10.已知集合A={x∈R|ax2-3x+2=0,a∈R}.(1)若A是空集,求a的取值范围;(2)若A中只有一个元素,求a的值,并把这个元素写出来.【解】集合A是方程ax2-3x+2=0在实数范围内的解组成的集合.(1)A是空集,即方程ax2-3x+2=0无解,得解得a>.即实数a的取值范围是.(2)当a=0时,方程只有一解,方程的解为x=.当a≠0且Δ=0,即a=时,方程有两个相等的实数根,A中只有一个元素.故当a=0或a=时,A中只有一个元素,分别是.11.已知集合A={x|x2-6x+8<0},B={x|(x-a)(x-3a)<0}.(1)若A⊆B,求a的取值范围;(2)若A∩B={x|3<x<4},求a的值.【解】由题意,知A={x|2<x<4}.(1)当a>0时,B={x|a<x<3a},则应满足≤a≤2.当a<0时,B={x|3a<x<a},则应满足不等式组无解.当a=0时,B=⌀,显然不符合条件.故若A⊆B,则a的取值范围为.(2)要满足A∩B={x|3<x<4},显然a>0,则B={x|a<x<3a}.由题意易得a=3,B={x|3<x<9}.从而A∩B={x|3<x<4},故所求的a值为3.拓展延伸12.集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.(1)若B⊆A,求实数m的取值范围;(2)当x∈Z时,求A的非空真子集的个数;(3)当x∈R时,若A∩B=⌀,求实数m的取值范围.【解】(1)①当m+1>2m-1,即m<2时,B=⌀,满足B⊆A.②当m+1≤2m-1,即m≥2时,要使B⊆A成立,需可得2≤m≤3.综上,m的取值范围是m≤3.(2)当x∈Z时,A={-2,-1,0,1,2,3,4,5},所以A的非空真子集个数为28-2=254.(3)因为x∈R,且A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},又A∩B=⌀,则①若B=⌀,即m+1>2m-1,得m<2,满足条件.②若B≠⌀,则要满足的条件是解得m>4.综上,m的取值范围是m<2或m>4.附:什么样的考试心态最好大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。
2021新高考数学(江苏专用)一轮复习课件:第一章第1节 集合的概念与运算
![2021新高考数学(江苏专用)一轮复习课件:第一章第1节 集合的概念与运算](https://img.taocdn.com/s3/m/3102734e49649b6649d74723.png)
所以A∩B={-1,0,1}.
答案 A
12
基础知识诊断
考点聚焦突破
5.(2019·全国Ⅱ卷改编)已知集合A={x|x2-5x+6>0},B={x|x-1≥0},全集U=R,
则A∩(∁UB)=( ) A.(-∞,1)
B.(-2,1)
C.(-3,-1)
D.(3,+∞)
解 析 由 题 意 A = {x|x<2 或 x>3}. 又 B = {x|x≥1} , 知 ∁UB = {x|x<1} , ∴A∩(∁UB) =
1
基础知识诊断
考点聚焦突破
第1节 集合的概念与运算
考试要求 1.通过实例了解集合的含义,理解元素与集合的属于关系;针对具体 问题能在自然语言、图形语言的基础上,用符号语言刻画集合;2.理解集合之间 包含与相等的含义,能识别给定集合的子集;在具体情境中了解全集与空集的 含义;3.理解两个集合的并集与交集的含义,能求两个简单集合的并集与交集; 4.理解在给定集合中一个子集的补集的含义,能求给定子集的补集;5.能使用韦 恩(Venn)图表达集合间的基本关系及集合的基本运算,体会图形对理解抽象概念 的作用.
解析 由题意得P={x|0<x<2},Q={y|1≤y≤3},
∴P-Q={x|0<x<1}.
答案 D
14
基础知识诊断
考点聚焦突破
考点一 集合的基本概念
【例 1】 (1)定义 P⊙Q=z|z=yx+xy,x∈P,y∈Q,已知 P={0,-2},Q={1, 2},则 P⊙Q=( )
A.{1,-1}
B.{1,-1,0}
4
基础知识诊断
考点聚焦突破
3.集合的基本运算
2021届全国高考数学复习 集合的概念与运算
![2021届全国高考数学复习 集合的概念与运算](https://img.taocdn.com/s3/m/e9014b5559eef8c75fbfb3ae.png)
方程(x-1)(x-2)2=0的解集表示为_{_1_,__2_}__,而不是{1,2,2}.
(3)无序性:集合中的元素是_没__有__顺__序_的.
A.9
B.8
C.5
D.4
【解析】A={(x,y)|x2+y2≤3,x∈Z,y∈Z}={(-1,-1), (-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1), (1,0),(1,1)},共9个元素.故选A.
【答案】A
第1节 集合的概念与运算
2.[课标全国Ⅲ2017·1]已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中
C.{-1,0} D.{-1,0,1}
【解析】图中阴影部分表示的集合为A∩( A∩( )={-1,0},故选C.
【答案】C
). 因为
={x|x<1},所以
第1节 集合的概念与运算
必备知识 整合提升
1.集合的定义
一般地,确定的某些对象的全体称为集合,简称集,通常用大写拉丁字母A,B,C,… 表示.其中常用数集的记法如下:
【答案】D
第1节 集合的概念与运算
6.[浙江2019·1]已知全集U={-1,0,1,2,3},集合A={0,1,2},
B={-1,0,1},则
()
A.{-1}
B.{0,1}
C.{-1,2,3}
D.{-1,0,1,3}
【解析】由题知 【答案】A
,则
故选A.
第01讲 集合的概念与运算(解析版)-2021届新课改地区高三数学一轮专题复习
![第01讲 集合的概念与运算(解析版)-2021届新课改地区高三数学一轮专题复习](https://img.taocdn.com/s3/m/337762f5b84ae45c3b358cfe.png)
第 1 讲:集合的概念与运算一、课程标准1、通过实例,了解集合的含义,体会元素与集合的“属于”关系.2、.理解集合之间包含与相等的含义,能识别给定集合的子集.了解全集与空集的含义.3、.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.4、.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.二、基础知识回顾1、元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性。
(2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉。
2、集合间的基本关系(1)子集:若对任意x∈A,都有x∈B,则A⊆B或B⊇A。
(2)真子集:若A⊆B,且集合B中至少有一个元素不属于集合A,则A B或B A。
(3)相等:若A⊆B,且B⊆A,则A=B。
(4)空集的性质:∅是任何集合的子集,是任何非空集合的真子集。
3、集合的基本运算(1)交集:一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A∩B,即A∩B={x|x∈A,且x∈B}.(2)并集:一般地,由所有属于集合A或属于集合B的元素组成的集合,称为A与B的并集,记作A∪B,即A∪B={x|x∈A,或x∈B}.(3)补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,简称为集合A的补集,记作∁U A,即∁U A={x|x∈U,且x∉A}.4、集合的运算性质(1)A∩A=A,A∩∅=∅,A∩B=B∩A。
(2)A∪A=A,A∪∅=A,A∪B=B∪A。
A⊆B⇔A∩B=A⇔A∪B=B⇔∁U A⊇∁U B(3)A∩(∁U A)=∅,A∪(∁U A)=U,∁U(∁U A)=A。
(4)∁U(A∩B)=(∁U A)∪(∁U B),∁U(A∪B)=(∁U A)∩(∁U B)。
5、相关结论:(1)若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个。
(2)不含任何元素的集合.空集是任何集合A的子集,是任何非空集合B的真子集.记作∅.三、自主热身、归纳总结1、已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=()A.{3}B.{5}C.{3,5} D.{1,2,3,4,5,7}【答案】C【解析】因为A∩B={1,3,5,7}∩{2,3,4,5}={3,5},故选C.2、已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}【答案】D【解析】∵A={x|x≤0},B={x|x≥1},∴A∪B={x|x≤0或x≥1},在数轴上表示如图.∴∁U (A ∪B )={x |0<x <1}.3、已知集合A ={x |x 2-2x -3≤0},B ={x |0<x ≤4},则A ∪B =( ) A .[-1,4] B .(0,3] C .(-1,0]∪(1,4] D .[-1,0]∪(1,4]【答案】A【解析】 A ={x |x 2-2x -3≤0}={x |-1≤x ≤3},所以A ∪B ={x |-1≤x ≤4}. 4、已知集合A ={1,2,3},B ={y |y =2x -1,x ∈A },则A ∩B =________. 【答案】 {1,3}【解析】 由A ={1,2,3},B ={y |y =2x -1,x ∈A },∴B ={1,3,5},因此A ∩B ={1,3}. 5、已知集合A ={x |x 2-2x +a >0},且1∉A ,则实数a 的取值范围是________. 【答案】(-∞,1]【解析】∵1∉{x |x 2-2x +a >0}, ∴1∈{x |x 2-2x +a ≤0}, 即1-2+a ≤0,∴a ≤1. 6、(多选题)已知全集U R=,集合A ,B 满足A B Ü,则下列选项正确的有()A .AB B =I B .A B B =UC .()U A B =∅I ðD .()U A B =∅I ð【答案】B 、D【解析】A B Q Ü,A B A ∴=I ,A B B =U ,()U C A B =≠∅I ,()U A C B =∅I , 7、(多选题)已知集合[2A =,5),(,)B a =+∞.若A B ⊆,则实数a 的值可能是()A .3-B .1C .2D .5【答案】、A 、B 【解答】解:A B⊆Q,2a ∴<,四、例题选讲、变式突破考点一 集合的基本概念例1、已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈Z ⎪⎪⎪x +1x -2≤0,则集合A 的子集的个数为( ) A . 7 B . 8 C . 15 D .16 【答案】B【解析】由x +1x -2≤0,可得(x +1)(x -2)≤0,且x ≠2,解得-1≤x <2.又x ∈Z ,可得x =-1,0,1,∴A ={-1,0,1}.∴集合A 的子集的个数为23=8.【变式1】若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a =( )A.92B.98C.0D.0或98【答案】D【解析】若集合A 中只有一个元素,则方程ax 2-3x +2=0只有一个实根或有两个相等实根.当a =0时,x =23,符合题意;当a ≠0时,由Δ=(-3)2-8a =0,得a =98,所以a 的取值为0或98.【变式2】设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =( ) A .1 B .-1 C .2D .-2【答案】选C【解析】因为{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,a ≠0,所以a +b =0,则b a =-1,所以a =-1,b =1,所以b -a =2.故选C.【变式3】已知P ={x |2<x <k ,x ∈N },若集合P 中恰有3个元素,则k 的取值范围为________. 【答案】(5,6]【解析】因为P 中恰有3个元素,所以P ={3,4,5},故k 的取值范围为5<k ≤6. 方法总结:1.研究集合问题时,首先要明确构成集合的元素是什么,即弄清该集合是数集、点集,还是其他集合;然后再看集合的构成元素满足的限制条件是什么,从而准确把握集合的含义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 讲:集合的概念与运算一、课程标准1、通过实例,了解集合的含义,体会元素与集合的“属于”关系.2、.理解集合之间包含与相等的含义,能识别给定集合的子集.了解全集与空集的含义.3、.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.4、.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.二、基础知识回顾1、元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性。
(2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉。
2、集合间的基本关系(1)子集:若对任意x∈A,都有x∈B,则A⊆B或B⊇A。
(2)真子集:若A⊆B,且集合B中至少有一个元素不属于集合A,则A B或B A。
(3)相等:若A⊆B,且B⊆A,则A=B。
(4)空集的性质:∅是任何集合的子集,是任何非空集合的真子集。
3、集合的基本运算(1)交集:一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A∩B,即A∩B={x|x∈A,且x∈B}.(2)并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为A 与B 的并集,记作A ∪B ,即A ∪B ={x |x ∈A ,或x ∈B }.(3)补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作∁U A ,即∁U A ={x |x ∈U ,且x ∉A }. 4、集合的运算性质(1)A ∩A =A ,A ∩∅=∅,A ∩B =B ∩A 。
(2)A ∪A =A ,A ∪∅=A ,A ∪B =B ∪A 。
A ⊆B ⇔A ∩B =A ⇔A ∪B =B ⇔∁U A ⊇∁U B (3)A ∩(∁U A )=∅,A ∪(∁U A )=U ,∁U (∁U A )=A 。
(4)∁U (A ∩B )=(∁U A )∪(∁U B ),∁U (A ∪B )=(∁U A )∩(∁U B )。
5、相关结论:(1)若有限集A 中有n 个元素,则A 的子集有2n 个,真子集有2n -1个。
(2)不含任何元素的集合.空集是任何集合A 的子集,是任何非空集合B 的真子集.记作∅.三、自主热身、归纳总结1、已知集合A ={1,3,5,7},B ={2,3,4,5},则A ∩B =( ) A .{3} B .{5} C .{3,5}D .{1,2,3,4,5,7}2、已知全集U =R ,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )=( ) A.{x |x ≥0} B.{x |x ≤1} C.{x |0≤x ≤1}D.{x |0<x <1}3、已知集合A ={x |x 2-2x -3≤0},B ={x |0<x ≤4},则A ∪B =( ) A .[-1,4] B .(0,3] C .(-1,0]∪(1,4]D .[-1,0]∪(1,4]4、已知集合A ={1,2,3},B ={y |y =2x -1,x ∈A },则A ∩B =________.5、已知集合A ={x |x 2-2x +a >0},且1∉A ,则实数a 的取值范围是________.6、(多选题)已知全集U R =,集合A ,B 满足A B Ü,则下列选项正确的有( )A .AB B =IB .A B B =UC .()U A B =∅I ðD .()U A B =∅I ð7、(多选题)已知集合[2A =,5),(,)B a =+∞.若A B ⊆,则实数a 的值可能是()A .3-B .1C .2D .5四、例题选讲、变式突破考点一 集合的基本概念例1、已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈Z ⎪⎪⎪x +1x -2≤0,则集合A 的子集的个数为( ) A . 7 B . 8 C . 15 D .16【变式1】若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a =( )A.92 B.98C.0D.0或98【变式2】设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =( ) A .1 B .-1 C .2D .-2【变式3】已知P ={x |2<x <k ,x ∈N },若集合P 中恰有3个元素,则k 的取值范围为________. 方法总结:1.研究集合问题时,首先要明确构成集合的元素是什么,即弄清该集合是数集、点集,还是其他集合;然后再看集合的构成元素满足的限制条件是什么,从而准确把握集合的含义。
2.利用集合元素的限制条件求参数的值或确定集合中元素的个数时,要注意检验集合中的元素是否满足互异性。
特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性 考点2、集合间的基本关系例2、已知集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪ x =k π4+π4,k ∈Z ,集合N =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k π8-π4,k ∈Z ,则( )A .M ∩N =∅B .M ⊆NC .N ⊆MD .M ∪N =M例3、已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是________. 【变式】已知集合A ={x |-1<x <3},B ={x |-m <x <m },若B ⊆A ,则m 的取值范围为________. 方法总结(1)若B ⊆A ,应分B =∅和B ≠∅两种情况讨论.(2)已知两个集合间的关系求参数时,关键是将两个集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系.解决这类问题常常要合理利用数轴、Venn 图,化抽象为直观进行求解. 考点三:集合的运算例4、若集合A ={x |2x 2-9x >0},B ={y |y ≥2},则A ∩B =________,(∁R A )∪B =________. 【变式1】设集合A =⎩⎨⎧⎭⎬⎫x ∈N |14≤2x ≤16,B ={x |y =ln(x 2-3x )},则A ∩B 中元素的个数是________. 【变式2】已知集合M ={x |-4<x <2},N ={x |x 2-x -6<0},则M ∩N =( ) A .{x |-4<x <3} B .{x |-4<x <-2} C .{x |-2<x <2}D .{x |2<x <3}【变式3】已知集合A ={x |x 2-x -2>0},则∁R A =( ) A .{x |-1<x <2} B .{x |-1≤x ≤2}C .{x |x <-1}∪{x |x >2}D .{x |x ≤-1}∪{x |x ≥2} 方法总结:集合运算的常用方法①若集合中的元素是离散的,常用Venn 图求解;②若集合中的元素是连续的实数,则用数轴表示,此时要注意端点的情况.例5、设集合A ={0,-4},B ={x |x 2+2(a +1)x +a 2-1=0,x ∈R}.若A ∩B =B ,则实数a 的取值范围是________.【变式】已知集合A ={1,2},B ={x |x 2+mx +1=0,x ∈R },若B ⊆A ,则实数m 的取值范围为________. 方法总结:利用集合的运算求参数的值或取值范围的方法①与不等式有关的集合,一般利用数轴解决,要注意端点值能否取到;②若集合能一一列举,则一般先用观察法得到不同集合中元素之间的关系,再列方程(组)求解. 考点五:集合的新定义问题例6、.若x ∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M =⎩⎨⎧⎭⎬⎫-1,0,12,2,3的所有非空子集中具有伙伴关系的集合的个数是( ) A.1 B.3 C.7D.31【变式】.给定集合A ,若对于任意a ,b ∈A ,有a +b ∈A ,且a -b ∈A ,则称集合A 为闭集合,给出如下三个结论:①集合A ={-4,-2,0,2,4}为闭集合; ②集合A ={n |n =3k ,k ∈Z }为闭集合;③若集合A 1,A 2为闭集合,则A 1∪A 2为闭集合. 其中正确结论的序号是________.方法总结:正确理解新定义:耐心阅读,分析含义,准确提取信息是解决这类问题的前提,剥去新定义、新法则、新运算的外表,利用所学的集合性质等知识将陌生的集合转化为我们熟悉的集合,是解决这类问题的突破口。
五、优化提升与真题演练1、设集合A ={x |x 2-4x +3<0},B ={x |2x -3>0},则A ∩B =________. A.⎝⎛⎭⎫-3,-32B.⎝⎛⎭⎫-3,32C.⎝⎛⎭⎫1,32D.⎝⎛⎭⎫32,32、设全集U ={x |x ∈N *,x <6},集合A ={1,3},B ={3,5},则∁U (A ∪B )等于( ) A.{1,4} B.{1,5} C.{2,5}D.{2,4}3、已知集合2{2}A x x x =,5{|1}3B x x =+<,则A B =U ( )A .20,3⎛⎫⎪⎝⎭B .(,2)-∞C .(0.)+∞D .2,23⎛⎫⎪⎝⎭4、若全集0,1,,,则A .B .C .D .1,5、已知集合2{1,0,1,2},{|1}A B x x =-=≤,则A B ⋂=( ) A .{}1,0,1- B .{}0,1 C .{}1,1-D .{}0,1,26、设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤<R ,则(A ∩C )∪B =( ) A .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,47、已知集合A ={x |x -1≥0},B ={0,1,2},则A ∩B =( ) A.{0} B.{1} C.{1,2} D.{0,1,2}8、已知集合M ={(x ,y )|y =f (x )},若对于任意实数对(x 1,y 1)∈M ,都存在(x 2,y 2)∈M ,使得x 1x 2+y 1y 2=0成立,则称集合M 是“垂直对点集”.给出下列四个集合:①M =⎩⎨⎧⎭⎬⎫?x ,y ?b\lc|\rc (a\vs4al\co1(y =1x ));②M ={(x ,y )|y =log 2x }; ③M ={(x ,y )|y =e x -2}; ④M ={(x ,y )|y =sin x +1}. 其中是“垂直对点集”的序号是( ) A .①④ B .②③ C .③④D .②④9、(多选题)已知{A =第一象限角},{B =锐角},{C =小于90︒的角},那么A 、B 、C 关系是( )A .B AC =IB .BC C =UC .B A B =ID .A B C ==10、已知集合A ={(x ,y )|x ,y ∈R ,且x 2+y 2=1},B ={(x ,y )|x ,y ∈R ,且y =x },则A ∩B 的元素个数为________.11、.集合A ={x |x <0},B ={x |y =lg[x (x +1)]},若A -B ={x |x ∈A ,且x ∉B },则A -B =________.12、已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),则m +n =________. 13(2019年江苏高考)、已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则A B =I_____.14(2018年江苏高考)、.已知集合{}0,1,2,8A =,{}1,1,6,8B =-,那么A B ⋂=________.。