气体实验定律
问题1三大气体实验定律内容是什么

理想气体的状态方程
例题2: 一水银气压计中混进了空气,因而在27℃,外
界大气压为758mmHg时,这个水银气压计的读数为 738mmHg,此时管中水银面距管顶80mm,当温度降 至-3℃时,这个气压计的读数为743mmHg,求此时的 实际大气压值为多少毫米汞柱? (1)该题研究对象是什么? (2)画出该题两个状态的示意图:
末态:p′A=?,V′A=2V/3 根据玻意耳定律:pAVA=p′AV′A得 p′A=1.5×105 Pa.
(2)对B部分气体,其p、V、T均发生变化: 初态:pB=2.0×105 Pa,VB=V,TB=300 K 末态:p′B=2.5×105 Pa V′B=4V/3 ,T′B=? 由理想气体状态方程: pAVA / TA=p′AV′A/T′B 解得T′B=500 K.
主页
理想气体的状态方程
我的收获 1、什么是理想气体?
2、理想气体的状态方程 3、应用理想气体状态方程解题的一 般步骤
主页
山东省临沂第一中学
学以致用
(3)分别写出两个状态的状态 参量:
主页
理想气体的状态方程
解:以混进水银气压计的空气为研究对象 初状态: T1=273+27=300 K P 1 P 0 gh 1 20mmHg ,V 1 l1S 80S 末状态: P 2 P gh2 (h2 743mmHg ),V2 l2 S 75S T2=270K p1V1 p2V2 由理想气体状态方程得:
主页
理想气体的状态方程
学 以 致 用
一圆柱形汽缸直立在地面上,内有一个具有质 量、无摩擦的绝热活塞,把汽缸分成容积相同的 A、B 两部分,如图所示.两部分气体的温度相同,均为 T0 =27 ℃,A 部分气体的压强 pA=1.0×105 Pa,B 部分气 体的压强 pB=2.0×105 Pa,现对 B 部分气体加热,使活 塞上升,保持 A 部分气体的温度不变,体积减小为原来 2 的 .求此时: 3 (1)A 部分气体的压强. (2)B 部分气体的温度
气体三大定律公式

气体三大定律公式
气体是物质的一种形式,它有着独特的物理性质和化学性质,在物理和化学实验中经常拿来做实验以研究它们的性质。
气体的研究,最重要的就是气体三大定律,它们是:热力学第一定律、热力学第二定律和热力学第三定律。
接下来我们将从三大定律介绍它们的定律公式。
热力学第一定律,也叫开普勒第一定律或热守恒定律,定义了热能的守恒定律,即热能的总量是恒定的,它的定律公式如下:
Q_0=Q
其中,Q_0是初始热能,Q是最终热能。
热力学第二定律,也叫吉布斯定律,定义了热机的运行原则,即热能转换成工作的本质,它的定律公式如下:
Q = W +U
其中,Q表示热能,W表示系统做出的功,ΔU表示系统内部能量变化。
最后一个定律是热力学第三定律,也叫临界温度第三定律,它定义了温度变化是热力学反应的关键因素。
它的定律公式是:
T_0 S_0 = T S
其中,T_0表示初始温度,S_0表示初始熵,T表示最终温度,S 表示最终熵。
从气体实验的角度来看,上述的三大定律公式是不可缺少的,它们是研究气体的关键部分。
气体的变化受到上述三大定律的约束,只
有理解其三大定律公式,才能根据实验结果,对气体的变化现象正确解释。
气体的研究,除了研究气体的变化现象外,还有通过实验探索气体的基本特性,如温度、压力等等。
实验中,在运用上述三大定律公式的同时,既要探究系统内部的能量变化,又要研究气体的流动性。
气体的变化影响着它的性质,也会影响它的环境,因此理解气体的变化至关重要,而上述三大定律公式可以帮助我们正确地对气体的变化现象作出解释,并且可以为我们研究气体的本质特性提供更多有价值的信息。
理想气体遵循的三大实验定律

理想气体遵循的三大实验定律第一定律:博伊尔定律在研究理想气体性质时,博伊尔定律是一个重要的实验定律。
它表明,在一定温度下,理想气体的体积与压强成反比,即当温度不变时,气体的体积与压强呈现出明显的正相关关系。
当我们将理想气体装入一个可变体积的容器中,通过改变容器的体积,可以观察到气体压强的变化。
实验证明,当容器体积减小时,气体压强增加;反之,当容器体积增加时,气体压强减小。
这种反比关系可以用博伊尔定律来描述,即P与V成反比关系。
第二定律:查理定律理想气体的第二个重要特性是查理定律,它描述了理想气体在一定压强下的体积与温度的关系。
实验结果表明,当气体的压强不变时,气体的体积与温度成正比关系,即当温度升高时,气体的体积也会相应增加。
通过改变理想气体的温度,我们可以观察到气体体积的变化。
实验结果显示,当温度升高时,气体分子的平均动能增加,分子之间的碰撞频率和力度增加,导致气体体积膨胀。
这种正比关系可以用查理定律来描述,即V与T成正比。
第三定律:盖吕萨克定律盖吕萨克定律是理想气体的第三个重要特性。
它描述了理想气体在一定温度和压强下的体积与物质的量的关系。
实验结果表明,在相同的温度和压强下,理想气体的体积与物质的量成正比,即当物质的量增加时,气体的体积也会相应增加。
通过改变理想气体的物质的量,我们可以观察到气体体积的变化。
实验结果显示,当物质的量增加时,气体分子的数量增加,分子之间的碰撞频率和力度增加,导致气体体积膨胀。
这种正比关系可以用盖吕萨克定律来描述,即V与n成正比。
以上就是理想气体遵循的三大实验定律:博伊尔定律、查理定律和盖吕萨克定律。
这些定律为我们研究理想气体的性质提供了重要的实验基础,也为我们理解气体行为的规律提供了重要的理论依据。
通过这些实验定律,我们可以更好地理解理想气体的特性,探索气体的性质和行为规律。
在工程、化学、物理等领域,这些定律的应用也是非常广泛的。
例如,在工业生产中,通过控制温度、压强和物质的量,可以实现气体的压缩、膨胀、混合等过程,从而实现各种化学反应和工艺操作。
气体实验定律图象

气体实验定律图象过程 两条图线等温变化 等温变化在pV远离原点的等温线对应的温度就高,即等温变化在直线,由与温度成正比,所以等容变化等容变化在-同一气体压强越大,气体的体积就越小,所以等容变化在的直线,由时图线斜率小,所以等压变化等压变化在-273.15 一气体体积越大,所以等压变化在的直线,由大时斜率小,所以1.理想气体状态方程与气体实验定律的关系2.几个重要的推论(1)查理定律的推论:Δp =p 1T 1ΔT (2)盖—吕萨克定律的推论:ΔV =V 1T 1ΔT(3)理想气体状态方程的推论:p 0V 0T 0=p 1V 1T 1+p 2V 2T 2+…… 1.一定质量理想气体的状态经历了如图所示的ab 、bc 、cd 、da 四个过程,其中bc 的延长线通过原点,cd 垂直于ab 且与水平轴平行,da 与bc 平行,则气体体积在( ) A .ab 过程中不断增加 B .bc 过程中保持不变 C .cd 过程中不断增加 D .da 过程中保持不变【解析】 由图象可知a →b 温度不变,压强减小,所以体积增大,b →c 是等容变化,体积不变,因此A 、B 正确.2.(多选)一定质量的理想气体经历如图所示的一系列过程,ab 、bc 、cd 和da 这四段过程在p -T 图上都是直线段,ab 和dc 的延长线通过坐标原点O ,bc 垂直于ab ,由图可以判断( )A .ab 过程中气体体积不断减小B .bc 过程中气体体积不断减小C .cd 过程中气体体积不断增大D .da 过程中气体体积不断增大解析:选BD.在p -T 图上,过原点的倾斜直线表示气体做等容变化,体积不变,故有V a =V b ,V c =V d ,而图线的斜率越大,气体的体积越小,故有V a =V b >V c =V d ,可判断B 、D 选项正确.3.如图所示,两端封闭、粗细均匀的细玻璃管,中间用长为h 的水银柱将其分为两部分,分别充有空气,现将玻璃管竖直放置,两段空气柱长度分别为L 1、L 2,已知L 1>L 2,如同时对它们均匀加热,使之升高相同的温度,这时出现的情况是( ) A .水银柱上升 B .水银柱下降 C .水银柱不动 D .无法确定【解析】假定两段空气柱的体积不变,即V 1,V 2不变,初始温度为T ,当温度升高ΔT 时,空气柱1的压强由p 1增至p ′1,Δp 1=p ′1-p 1,空气柱2的压强由p 2增至p ′2,Δp 2= p ′2-p 2.由查理定律得:Δp 1=p 1T ΔT ,Δp 2=p 2TΔT ,因为p 2=p 1+h >p 1,所以Δp 1<Δp 2,即水银柱应向上移动.所以正确答案为A. 4. 如图所示,一圆柱形容器竖直放置,通过活塞封闭着摄氏温度为t 的理想气体.活塞的质量为m ,横截面积为S ,与容器底部相距h .现通过电热丝给气体加热一段时间,结果活塞又缓慢上升了h ,若这段时间内气体吸收的热量为Q ,已知大气压强为p 0,重力加速度为g ,不计器壁向外散失的热量及活塞与器壁间的摩擦,求:(1)容器中气体的压强;(2)这段时间内气体的内能增加了多少? (3)这段时间内气体的温度升高了多少?【解析】(1)p =⎝⎛⎭⎪⎫p 0+mg S (2)气体对外做功为W =pSh =⎝⎛⎭⎪⎫p 0+mg S Sh =(p 0S +mg )h由热力学第一定律得:ΔU =Q -W =Q -(p 0S +mg )h (3)由盖—吕萨克定律得:V 1T 1=V 2T 2,hS 273.15+t =2hS273.15+t ′解得:t ′=273.15+2t Δt =t ′-t =273.15+t 12.(2013·南昌模拟)(1)用力拉活塞,使封闭在汽缸内的气体的体积迅速增大为原来的两倍,若汽缸不漏气,那么此时汽缸内气体压强p 2和原来的压强p 1相比较有________.A .p 2=p 1/2B .p 2>p 1/2C .p 2<p 1/2D .无法确定(2)内壁光滑的导热汽缸竖直浸入在盛有冰水混合物的水槽中,用不计质量的活塞封闭压强为1.0×105 Pa ,体积为2.0×10-3 m 3的理想气体,现在活塞上缓慢倒上沙子,使封闭气体的体积变为原来的一半.①求汽缸内气体的压强;②若封闭气体的内能仅与温度有关,在上述过程中外界对气体做功145 J ,封闭气体吸收还是放出热量?热量是多少?解析:(1)迅速拉活塞可看做绝热膨胀过程,由于气体对外做功,内能减小,温度降低,将体积加倍,代入pVT=恒量,故p 2<p 1/2,故C 正确.(2)①导热汽缸中的气体缓慢变化,可认为温度保持0 ℃不变,由p 1V 1=p 2V 2得:p 2=p 1V 1V 2=1.0×105×11/2Pa =2.0×105 Pa②温度不变,ΔU =0,由Q +W =0得 Q =-W =-145 J ,即放出热量145 J.答案:(1)C (2)①2.0×105 Pa ②放出热量145 J气体实验定律图象过程 两条图线等温变化 等温变化在pV远离原点的等温线对应的温度就高,即等温变化在直线,由与温度成正比,所以等容变化等容变化在-273.15 ℃的直线.在同一温度下,同一气体压强越大,气体的体积就越小,所以等容变化在的直线,由时图线斜率小,所以等压变化等压变化在-273.15 一气体体积越大,所以等压变化在的直线,由大时斜率小,所以1.理想气体状态方程与气体实验定律的关系2.几个重要的推论(1)查理定律的推论:Δp =p 1T 1ΔT (2)盖—吕萨克定律的推论:ΔV =V 1T 1ΔT(3)理想气体状态方程的推论:p 0V 0T 0=p 1V 1T 1+p 2V 2T 2+…… 1.一定质量理想气体的状态经历了如图所示的ab 、bc 、cd 、da 四个过程,其中bc 的延长线通过原点,cd 垂直于ab 且与水平轴平行,da 与bc 平行,则气体体积在( ) A .ab 过程中不断增加 B .bc 过程中保持不变 C .cd 过程中不断增加 D .da 过程中保持不变2.(多选)一定质量的理想气体经历如图所示的一系列过程,ab、bc、cd和da这四段过程在p-T图上都是直线段,ab和dc的延长线通过坐标原点O,bc垂直于ab,由图可以判断( )A.ab过程中气体体积不断减小B.bc过程中气体体积不断减小C.cd过程中气体体积不断增大D.da过程中气体体积不断增大3.如图所示,两端封闭、粗细均匀的细玻璃管,中间用长为h的水银柱将其分为两部分,分别充有空气,现将玻璃管竖直放置,两段空气柱长度分别为L1、L2,已知L1>L2,如同时对它们均匀加热,使之升高相同的温度,这时出现的情况是( )A.水银柱上升 B.水银柱下降C.水银柱不动 D.无法确定4. 如图所示,一圆柱形容器竖直放置,通过活塞封闭着摄氏温度为t的理想气体.活塞的质量为m,横截面积为S,与容器底部相距h.现通过电热丝给气体加热一段时间,结果活塞又缓慢上升了h,若这段时间内气体吸收的热量为Q,已知大气压强为p0,重力加速度为g,不计器壁向外散失的热量及活塞与器壁间的摩擦,求:(1)容器中气体的压强;(2)这段时间内气体的内能增加了多少?(3)这段时间内气体的温度升高了多少?5.(2013·南昌模拟)(1)用力拉活塞,使封闭在汽缸内的气体的体积迅速增大为原来的两倍,若汽缸不漏气,那么此时汽缸内气体压强p2和原来的压强p1相比较有________.A.p2=p1/2B.p2>p1/2C.p2<p1/2 D.无法确定(2)内壁光滑的导热汽缸竖直浸入在盛有冰水混合物的水槽中,用不计质量的活塞封闭压强为1.0×105Pa,体积为2.0×10-3m3的理想气体,现在活塞上缓慢倒上沙子,使封闭气体的体积变为原来的一半.①求汽缸内气体的压强;②若封闭气体的内能仅与温度有关,在上述过程中外界对气体做功145 J,封闭气体吸收还是放出热量?热量是多少?。
13.2-气体实验定律1

试在P-1/V 图上、 P-T图上、
V-T图上分别画出相应的状态变
p
化曲线。
1、P-1/V图 P
1 0
2 V
0
1/V
2、P-T图 P
1 2
0
T
3、V-T图
V 2
1
0
T
练习1、如图所示,水平放置的玻管被h=5cm的水银柱封闭的 空气柱长L1=16cm,当开口向上竖直放置时,空气柱L2多长?( 已知大气压为75cmHg)
L1
h
(1)
h
L2
(2)
练习2、内壁光滑的水平放置的气缸被质量为m的活塞封闭 了体积为V1的空气,当气缸按如图所示放置时,被封空气体 积为V2 。求大气压强(已知活塞的横截面积为S)。
甲
乙
5、图象 P-V图 p
1 O
2 V
(1)在p-V图上,等温线的特征:双曲线;
(2)曲线上的每一点表示一个状态;
p T1 T2<T3
o
v
(3)一定质量的某种气体在不同温度下的等温线 是不同的,温度越高,双曲线顶点离坐标原点越远。
例1、在温度不变的情况下,把一根100cm的上端封闭的 粗细均匀的玻璃管竖直插入水银槽中,管口跟槽内水银面的距 离为管长的一半,如图所示。水银进入管中的深度为25cm,求: 大气压强是多少?
13.2 气体实验定律
(一)玻意耳定律
1、内容:一定质量的某种气体在温度不变的情况下压 强P与体积V成反比
2、公式:p 1/V 写成等式为 PV=C(恒量)
或 P1V1=P2V2 或P1/P2=V2/V1
3、条件:1)质量一定。2)温度不变。
4、等温过程(变化)——气体在温度不变的情况下,发 生的状态变化。
理想气体遵循的三大实验定律

理想气体遵循的三大实验定律1. 定律一:波义尔定律(Boyle's Law)波义尔定律是理想气体的第一个基本定律,描述了在恒温条件下,理想气体的压力与体积之间的关系。
根据波义尔定律,当温度不变时,气体的压力与其体积成反比关系。
换句话说,当气体的体积增加时,其压力会减小,反之亦然。
这个定律可以用以下公式表示:P₁V₁= P₂V₂,其中P₁和V₁表示初始状态下的压力和体积,P₂和V₂表示变化后的压力和体积。
2. 定律二:查理定律(Charles's Law)查理定律是理想气体的第二个基本定律,描述了在恒压条件下,理想气体的体积与温度之间的关系。
根据查理定律,当压力保持不变时,理想气体的体积与其温度成正比关系。
简而言之,当气体的温度增加时,其体积也会增加,反之亦然。
这个定律可以用以下公式表示:V₁/T₁= V₂/T₂,其中V₁和T₁表示初始状态下的体积和温度,V₂和T₂表示变化后的体积和温度。
3. 定律三:盖-吕萨克定律(Gay-Lussac's Law)盖-吕萨克定律是理想气体的第三个基本定律,描述了在恒体积条件下,理想气体的压力与温度之间的关系。
根据盖-吕萨克定律,当体积保持不变时,理想气体的压力与其温度成正比关系。
简单来说,当气体的温度增加时,其压力也会增加,反之亦然。
这个定律可以用以下公式表示:P₁/T₁= P₂/T₂,其中P₁和T₁表示初始状态下的压力和温度,P₂和T₂表示变化后的压力和温度。
这三大实验定律为理想气体提供了基本的物理规律。
它们的发现和理解对于理解和预测气体行为以及工程和科学应用非常重要。
然而,需要注意的是,这些定律只适用于理想气体的近似模型,而在实际情况中,气体的行为可能会受到其他因素的影响,例如压力过高或温度过低等。
因此,在特定的条件下,这些定律可能需要结合其他因素进行修正。
气体实验定律

)A D
A . 两次管中气体压强相等
B . T1时管中气体压强小于T2时管中气体压强
C . T1<T2 D . T1>T2
MN A
4.对于一定质量的理想气体,可能发生的过程是 ( C)
A.压强和温度不变,体积变大 B.温度不变,压强减少,体积减少 C.体积不变,温度升高,压强增大, D.压强增大,体积增大,温度降低
• (1)等容线:一定质量的某种气体在等容变化过
程中,压强p跟热力学温度T的正比关系p-T在直
角坐标系中的图象叫做等容线.
• (2)一定质量气体的等容线p-T图象,其延长线
经过坐标原点,斜率反映体积大小,如图所示.
• (3)一定质量气体的等容线的物理意义.
• ①图线上每一个点表示气体一个确定的状 态,同一根等容线上各状态的体积相
一、等容过程
• 1.等容过程:气体在体积不变 的情况下发生的状态变化过程叫 做等容过程.
• 2.一定质量气体的等容变化
演示:
• 如图所示,研究瓶中一 定质量的气体,先使U 型管中两侧水银液面等 高,在左侧液面处标上 标记P,然后改变瓶内 气体温度(可分别放入 热水和冰水中),上下 移动A管,使左侧水银 面保持在P处(即使瓶 中气体体积不变).
• 3.盖·吕萨克定律:一定质量的某种气 体, 在压强不变的情况下,体积V与热力学温度成 正比( V T ).
可写成 V1 V2 或 V C
T1 T2
T
(1)盖·吕萨克定律是实验定律,由法国科学家 盖·吕萨克通过实验发现的.
(2)成立条件:气体质量一定,压强不变.
• (3)在 V/t=C 中的C与气体的种类、质量、压 强有关.
• (2)一定质量气体的等压线的V-T图象,其
气体实验定律-PPT课件

C.气体分子平均速率变大
D.单位时间单位面积器壁上受到气体分子撞击的次 数减少
小结:
• 一定质量的气体在等容变化时,遵守查理定 律. 一定质量的气体在等压变化时,遵守盖 · 吕萨 克定律.
•
气体实验定律(Ⅱ)
一、等容过程
1.等容过程:气体在体积不变的情况下发 生的状态变化过程叫做等容过程. 2.一定质量气体的等容变化
演示:
• 如图所示,研究瓶中一 定质量的气体,先使U 型管中两侧水银液面等 高,在左侧液面处标上 标记P,然后改变瓶内 气体温度(可分别放入 热水和冰水中),上下 移动A管,使左侧水银 面保持在P处(即使瓶 中气体体积不变).
4.等容线 ( l )等容线:一定质量的某种气体在等容变化 过程中,压强p跟热力学温度 T的正比关系 p- T在直角坐标系中的图象叫做等容线. (2)一定质量气体的等容线 p- T图象,其延长 线经过坐标原点,斜率反映体积大小,如图所 示.
(3)一定质量气体的等容线的物理意义. ①图线上每一个点表示气体一个确定的状态 ,同一根等容线上各状态的体积相 ②不同体积下的等容线,斜率越大,体积越 小(同一温度下,压强大的体积小)如图所 示,V2<V1.
查理定律的微观解释:
一定质量(m)的气体的总分子数(N) 是一定的,体积(V)保持不变时,其单 位体积内的分子数(n)也保持不变,当 温度(T)升高时,其分子运动的平均速 率(v)也增大,则气体压强(p)也增大; 反之当温度(T)降低时,气体压强(p) 也减小。
二、等压过程
1 .等压过程:气体在压强不变的情况下发 生的状态变化过程叫做等压过程. 2.一定质量气体的等压变化.
可得到,气体温度升 高,压强增大;气体 温度降低,压强减小.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
气体实验定律专题一:密闭气体压强的计算一、平衡态下液体封闭气体压强的计算 1. 理论依据① 液体压强的计算公式 gh p ρ=。
② 液面与外界大气相接触。
则液面下h 处的压强为 gh + p = p 0ρ 帕斯卡定律:加在密闭静止液体(或气体)上的压强能够大小不变地由液体(或气体)向各个方向传递(注意:适用于密闭静止的液体或气体)③ 连通器原理:在连通器中,同一种液体(中间液体不间断)的同一水平面上的压强是相等的。
2、计算的方法步骤(液体密封气体)① 选取假想的一个液体薄片(其自重不计)为研究对象② 分析液体两侧受力情况,建立力的平衡方程,消去横截面积,得到液片两面侧的压强平衡方程③ 解方程,求得气体压强 例1:试计算下述几种情况下各封闭气体的压强,已知大气压P 0,水银的密度为ρ,管中水银柱的长度均为h 。
均处于静止状态练1:计算下图中各种情况下,被封闭气体的压强。
(标准大气压强0p =76cmHg ,图中液体为水银θθ练2、如图二所示,在一端封闭的U 形管内,三段水银柱将空气柱A 、B 、C 封在管中,在竖直放置时,AB 两气柱的下表面在同一水平面上,另两端的水银柱长度分别是h 1和h 2,外界大气的压强为0p ,则A 、B 、C 三段气体的压强分别是多少?练3、 如图三所示,粗细均匀的竖直倒置的U 型管右端封闭,左端开口插入水银槽中,封闭着两段空气柱1和2。
已知12cm Hg =h 1,15cm Hg =h 2,外界大气压强76cm Hg =p 0,求空气柱1和2的压强。
二、平衡态下活塞、气缸密闭气体压强的计算 1. 解题的基本思路(1)对活塞(或气缸)进行受力分析,画出受力示意图; (2)列出活塞(或气缸)的平衡方程,求出未知量。
注意:不要忘记气缸底部和活塞外面的大气压。
例2 如下图所示,一个横截面积为S 的圆筒形容器竖直放置,金属圆板A 的上表面是水平的,下表面是倾斜的,下表面与水平面的夹角为θ,圆板的质量为M 。
不计圆板与容器内壁之间的摩擦。
若大气压强为P 0,则被圆板封闭在容器中的气体压强P 等于( )AB.C. D.P Mg S 0+cos θP MgS 0cos cos θθ+P Mg S 02+cos θP Mg S 0+练4:三个长方体容器中被光滑的活塞封闭一定质量的气体。
如图五所示,M 为重物质量,F 是外力,0p 为大气压,S 为活塞面积,m 为活塞质量,则压强各为:练5图 练习5、(多选)如上图所示,活塞质量为m ,缸套质量为M ,通过弹簧吊在天花板上,气缸内封住了一定质量的空气,而活塞与缸套间无摩擦,活塞面积为S ,则下列说法正确的是(P 0为大气压强)( )A 、内外空气对缸套的总作用力方向向上,大小为MgB 、内外空气对缸套的总作用力方向向下,大小为mgC 、气缸内空气压强为P 0-Mg/SD 、气缸内空气压强为P 0+mg/S练习6、如图所示,水平放置的气缸A 和B 的活塞面积分别为:a s 、b s 且b a s s <,它们可以无摩擦地沿器壁自由滑动,气缸内封有气体。
当活塞处于平衡状态时,气缸A 、B 内气体的压 强分别为(大气压不为零),则下列正确的是( )A. B.C.D.三、非平衡态下密闭气体压强的计算 1. 解题的基本思路(1)恰当地选取研究对象(活塞、气缸、水银柱、试管或某个整体等),并对其进行受力分析;(2)对研究对象列出牛顿第二定律方程,结合相关方程求解。
2. 典例例3 如图所示,有一段12cm 长的汞柱,在均匀玻璃管中封住一定质量的气体,若开口向上将光滑玻璃管放置在倾角为30°的光滑斜面上,在下滑的过程中被封住气体的压强P 为(大气压强cmHg p 760=)( )。
A. 76cm HgB. 82cm HgC. 88cmHgD. 70cmHgP P a b和P P S S a b b a ::=P P a b >P P a b<P P a b=练7、 如图所示,质量为M 的汽缸放在光滑水平地面上,活塞质量为m ,面积为S 。
封住一部分气体,不计摩擦,大气压强为,若在活塞上加一水平向左的恒力F ,求汽缸、活塞共同加速运动时,缸内气体的压强。
(设温度不变)四、密闭气体动态问题精析1、玻璃管上提、下压或倾斜 例4如左图所示,开口向下并插入水银槽中的粗细均匀的玻璃管内封闭着长为H 的空气柱,管内水银柱高h ,若将玻璃管竖直向上缓慢地提起(管下端未离开槽内水银面),则H 和h 的变化情况为( )A .H 和h 都增大 B.H 和h 都减小 C.H 减小,h 增大 D.H 增大,h 减小练8、 如上右图所示,一端封闭的玻璃管开口向下竖直插入水银槽中,管的上部封有部分空气,玻璃管露出槽中水银面的长度为L ,两水银面 的高度差为h ,现保持L 不变,使玻璃管向右转过一个 小角度,则( )A.h 将增大 B .h 将减小 C.h 不变 D.空气柱的长度会增大2、给气体升高或降低温度例5、如图所示,两端封闭的粗细均匀的、竖直放置的玻璃管内有一长为h 的水银柱,将管内气体分为两部分,122l l =,开始两部分气体温度相同,若使两部分气体同时降低相同的温度,管内水银柱将如何运动?分析与解: 思路一:假设法 思路二:图象法 思路三:极限法练9、如图所示,左右两容器容积相同,装有同种气体,连通两容器的水平细管中部有一段水银柱,在图示温度下,管中水银柱静止不动,如果使两容器中气体温度同时升高100C ,那么水银将( )A.向左移动B.向右移动C.不动D.无法判断思路四:定性分析法 原理:从气体分子动理论的观点看来,气体压强是由大量的气体分子频繁地碰撞而产生的.气体压强的大小是由单位体积内的分子数n 和分子的平均速率V 决定的(对于理想气体,可以证明七压强公式为p=nRT ,R 为玻耳兹曼常量).可见,气体单位体积内的分子数n 越多,气体的温度越高,气体的压强就越大.利用这个结论,就可以通过定性分析判断出水银柱的移动方向.练10、一根两端封闭粗细均匀的直玻璃中有一段长57厘米的水银柱,在水银柱两边各有一段空气柱(如右图)。
当玻璃管水平放置,两段空气柱长度均为30厘米,压强都是一个标准大气压,cmHg p 760=,现将玻璃管缓慢竖立起来,则上下两段空气柱的长度分别为?H hLh l 2l1h3、运动状态和放置方式的改变例5、如图所示,a 、b 、c 三根完全相同的玻璃管,一端封闭,管内各用相同长度的一段水银柱封闭了质量相等的空气,a 管竖直向下做自由落体运动,b 管竖直向上 做加速度为g 的匀加速运动,c 管沿倾角为 450的光滑斜面下滑。
若空气温度始终不变,当水银柱相对管壁静止时,a 、b 、c 三管内的空气柱长度的关系为( )A.L b =L c =L aB.L b <L c <L aC.L b >L c >L aD.L b <L c =L a分析与解:当玻璃管自由下落时,水银完全失重,水银对气体不产生压强,而沿光滑斜面自由下滑时,下滑的加速度为gsin θ。
水银对气体仍不产生压强,所以有p a =p c =p 0,又因为p b >p 0,所以三管内气柱的长度关系为l a =l c >l b 。
练11、(多选)如图所示,粗细均匀的玻璃管,两端封闭,中间一段小水银柱将空气分隔成A 、B 两部分,竖直放置时,水银柱刚好在正中,下列现象中 能使A 空气柱增长的有(两部分初温相同)( )A.升高相同的温度B.降低相同的温度C.使管有竖直向上的加速度D.使管有竖直向下的加速度【参考答案】例1:01p p =;gh p p ρ+=02;gh p p ρ-03=;θρsin -04gh p p =;θρsin 05gh p p += 练1:cmHg p 761=;cmHg p 512=;cmHg p 5.633=;cmHg p 514=;cmHg p 1015= 练2:20gh p p A ρ+=;20gh p p B ρ+=;120gh gh p p C ρρ-+=练3:cmHgp 644=;cmHgp 794=。
例2:D 练4:1p p =;s g m M p p )(02++=;s mgs F p p -+=03练5:AC练6:B 例3:A 练7:S M M MFp p )(0++=例4:A ;练8:B ;练9:A ;练10:10cm,20cm;例5:D ;练11:BCa b cg l g l lAB【专题二】气体实验定律例1.(2015·山东卷)扣在水平桌面上的热杯盖有时会发生被顶起的现象.如图所示,截面积为S 的热杯盖扣在水平桌面上,开始时内部封闭气体的温度为300 K ,压强为大气压强p 0.当封闭气体温度上升至303 K 时,杯盖恰好被整体顶起,放出少许气体后又落回桌面,其内部气体压强立即减为p 0,温度仍为303 K .再经过一段时间,内部气体温度恢复到300 K .整个过程中封闭气体均可视为理想气体.求:(1)当温度上升到303 K 且尚未放气时,封闭气体的压强; (2)当温度恢复到300 K 时,竖直向上提起杯盖所需的最小力.例2.(2014·全国卷Ⅰ)一定质量的理想气体被活塞封闭在竖直放置的圆柱形汽缸内,汽缸壁导热良好,活塞可沿汽缸壁无摩擦地滑动.开始时气体压强为p ,活塞下表面相对于汽缸底部的高度为h ,外界的温度为0T .现取质量为m 的沙子缓慢地倒在活塞的上表面,沙子倒完时,活塞下降了h4.若此后外界的温度变为T ,求重新达到平衡后气体的体积.已知外界大气的压强始终保持不变,重力加速度大小为g .例3.如图所示,一上端开口、下端封闭的细长玻璃管竖直放置.玻璃管的下部封有长1l =25.0 cm 的空气柱,中间有一段长2l =25.0 cm 的水银柱,上部空气柱的长度l 3=40.0 cm.已知大气压强p 0=75.0 cmHg.现将一活塞(图中未画出)从玻璃管开口处缓慢往下推,使管下部空气柱长度变为l ′1=20.0 cm.假设活塞下推过程中没有漏气,求活塞下推的距离.例4.如图所示,由U 型管和细管连接的玻璃泡A 、B 和C 浸泡在温度均为0 ℃的水槽中,B 的容积是A 的3倍.阀门S 将A 和B 两部分隔开.A 内为真空,B 和C 内都充有气体.U型管内左边水银柱比右边的低60 mm.打开阀门S ,整个系统稳定后,U 型管内左右水银柱高度相等.假设U 型管和细管中的气体体积远小于玻璃泡的容积.(1)求玻璃泡C 中气体的压强(以mmHg 为单位);(2)将右侧水槽的水从0 ℃加热到一定温度时,U 型管内左右水银柱高度差又为60 mm ,求加热后右侧水槽的水温.【专题二参考答案】例1:(1)101100p 0 (2)20110 100p 0S例2:9mghT4pT 0;例3:15cm ;例4:答案: (1)180 mmHg (2)364 K【专题三】气体变质量的问题分析变质量问题时,可通过巧妙地选择研究对象,使这类问题转化为一定质量的气体问题,用气体实验定律求解.(1)打气问题:向球、轮胎中充气是一个典型的变质量的气体问题,只要选择球内原有气体和即将充入的气体作为研究对象,就可把充气过程中的气体质量变化问题转化为定质量气体的状态变化问题. (2)抽气问题:从容器内抽气的过程中,容器内的气体质量不断减小,这属于变质量问题.分析时,将每次抽气过程中抽出的气体和剩余气体作为研究对象,质量不变,故抽气过程可以看做是等温膨胀过程.(3)灌气问题:将一个大容器里的气体分装到多个小容器中的问题也是一个典型的变质量问题.分析这类问题时,把大容器中的剩余气体和多个小容器中的气体视为整体作为研究对象,可将变质量问题转化为定质量问题.(4)漏气问题:容器漏气过程中气体的质量不断发生变化,属于变质量问题. 如果选容器内剩余气体和漏出气体整体作为研究对象,便可使问题变成一定质量气体的状态变化,可用理想气体的状态方程求解.【典例1】 一太阳能空气集热器,底面及侧面为隔热材料,顶面为透明玻璃板, 集热器容积为V 0,开始时内部封闭气体的压强为p 0.经过太阳曝晒,气体温度 由T 0=300 K 升至T 1=350 K.(1)求此时气体的压强;(2)保持T 1=350 K 不变,缓慢抽出部分气体,使气体压强再变回到p 0.求集 热器内剩余气体的质量与原来总质量的比值.判断在抽气过程中剩余气体是吸 热还是放热,并简述原因.【典例2】 (2015·河南郑州一中期中)用真空泵抽出某容器中的空气,若某容器 的容积为V ,真空泵一次抽出空气的体积为V 0,设抽气时气体温度不变,容 器里原来的空气压强为p ,求抽出n 次空气后容器中空气的压强是多少?【参考答案】例题1:解析 (1)由题意知气体体积不变,由查理定律得p 0T 0=p 1T 1得p 1=T 1T 0p 0=350300p 0=76p 0(2)抽气过程可等效为等温膨胀过程,设膨胀后气体的总体积为V 2,由玻意 耳定律可得p 1V 0=p 0V 2 则V 2=p 1V 0p 0=76V 0所以集热器内剩余气体的质量与原来总质量的比值为 ρV 0ρ·76V 0=67因为抽气过程中剩余气体温度不变,故内能不变,而剩余气体的体积膨胀对 外做功.由热力学第一定律ΔU =W +Q 可知,气体一定从外界吸收热量.答案 (1)76p 0 (2)67;吸热,原因见解析例题2:解析 设第1次抽气后容器内的压强为p 1,以整个气体为研究对象.因为抽气 时气体温度不变,则由玻意耳定律得 pV =p 1(V +V 0),所以p 1=VV +V 0p以第1次抽气后容器内剩余气体为研究对象,设第2次抽气后容器内气体压 强为p 2,由玻意耳定律有 p 1V =p 2(V +V 0),所以p 2=VV +V 0p 1=(VV +V 0)2p 以第n -1次抽气后容器内剩余气体为研究对象,设第n 次抽气后容器内气体 压强为p n ,由玻意耳定律得p n -1V =p n (V +V 0) 所以p n =V V +V 0p n -1=(VV +V 0)n p故抽出n 次空气后容器内剩余气体的压强为(V V +V 0)n p .答案(VV+V0)n p[巩固练习]1.(2015·湖北六校调考)(1)下列说法正确的是()A.显微镜下观察到墨水中的小炭粒在不停的作无规则运动,这反映了液体分子运动的无规则性B.分子间的相互作用力随着分子间距离的增大,一定先减小后增大C.分子势能随着分子间距离的增大,可能先减小后增大D.在真空、高温条件下,可以利用分子扩散向半导体材料掺入其它元素E.当温度升高时,物体内每一个分子热运动的速率一定都增大2.(2015·河北“五个一名校联盟”监测)(1)下列说法正确的是()A.布朗运动就是液体分子的运动B.两分子之间同时存在着引力和斥力,引力和斥力都随分子间的距离增大而减小,但斥力比引力减小得更快C.热力学温标的最低温度为0 K,它没有负值,它的单位是物理学的基本单位之一D.气体的温度越高,每个气体分子的动能越大(2)如图所示,一直立的气缸用一质量为m的活塞封闭一定量的理想气体,活塞横截面积为S,气缸内壁光滑且缸壁是导热的,开始活塞被固定在A点,打开固定螺栓K,活塞下落,经过足够长时间后,活塞停在B点,已知AB=h,大气压强为p0,重力加速度为g.①求活塞停在B 点时缸内封闭气体的压强;②设周围环境温度保持不变,求整个过程中通过缸壁传递的热量Q (一定量 理想气体的内能仅由温度决定).解析 (1)布朗运动是固体微粒的运动,是液体分子无规则热运动的反映, 故A 错误;两分子之间同时存在着引力和斥力,引力和斥力都随分子间的距 离增大而减小,但斥力比引力减小得更快,故B 正确;热力学温标的最低温 度为0 K ,它没有负值,它的单位是物理学的基本单位之一,故C 正确;气体的温度越高,气体分子的平均动能越大,平均速率越高,满足气体分子的 速率分布率,但并非每个气体分子的动能都增大,故D 错误. (2)①设封闭气体的压强为p ,活塞受力平衡,则p 0S +mg =pS 解得p =p 0+mgS②由于气体的温度不变,则内能的变化ΔU =0 外界对气体做的功W =(p 0S +mg )h 由热力学第一定律ΔU =W +Q 可得Q =-W =-(p 0S +mg )h 即气体通过缸壁放热(p 0S +mg )h答案 (1)BC (2)①p 0+mgS②(P 0S +mg )h3.(2015·云南三校联考)(1)关于分子动理论的规律,下列说法正确的是()A.扩散现象说明物质分子在做永不停息的无规则运动B.压缩气体时气体会表现出抗拒压缩的力是由于气体分子间存在斥力的缘故C.两个分子距离减小时,分子间引力和斥力都在增大D.如果两个系统分别于第三个系统达到热平衡,那么这两个系统彼此之间也必定处于热平衡,用来表征它们所具有的“共同热学性质”的物理量叫做内能E.两个分子间的距离为r0时,分子势能最小(2)如图所示,竖直放置的圆柱形气缸内有一不计质量的活塞,可在气缸内作无摩擦滑动,活塞下方封闭一定质量的气体.已知活塞截面积为100 cm2,大气压强为1.0×105Pa,气缸内气体温度为27℃,试求:①若保持温度不变,在活塞上放一重物,使气缸内气体的体积减小一半,这时气体的压强和所加重物的重力;②在加压重物的情况下,要使气缸内的气体恢复原来体积,应对气体加热,使温度升高到多少摄氏度.解析(1)扩散现象是分子无规则运动的宏观表现,故A正确;压缩气体时气体会表现出抗拒压缩的力是由于气体压强的原因,故B错误;两个分子距离减小时,分子间引力和斥力都增大,故C正确;处于热平衡表明没有热量交换,而没有热量交换意味着两者的温度是一样的,但总的内能不一定一样,故D错误;当分子间r>r0时,分子势能随分子间的距离增大而增大, 当分 子间r <r 0时,随距离减小而增大, 当r =r 0时,分子势能最小,故E 正确.(2)①若保持温度不变,在活塞上放一重物,使气缸内气体的体积减小一半, 根据理想气体的等温变化有p 1V 1=p 2V 2 其中p 1=1×105 PaV 1=V V 2=V2解得p 2=2×105 Pa 由p 2=p 0+G S其中S =100×10-4 m 2=10-2m 2 解得所加重物的重力G =1 000 N②在加压重物的情况下,保持气缸内压强不变,要使气缸内的气体恢复原来 体积,应对气体加热,已知p 3=2×105 Pa ,V 3=VT 3=T 1=(273+27) K =300 K 根据理想气体状态方程得p 3V 3T 3=p 1V 1T 1解得T 3=600 K所以t =T 3-273℃=327℃答案 (1)ACE (2)①2×105 Pa 1 000 N ②327 ℃ 4.(2014·湖北八市联考)(1)(多选)关于一定量的理想气体,下列说法正确的 是 .A.气体分子的体积是指每个气体分子平均所占有的空间体积B.只要能增加气体分子热运动的剧烈程度,气体的温度就可以升高C.在完全失重的情况下,气体对容器壁的压强为零D.气体从外界吸收热量,其内能不一定增加E.气体在等压膨胀过程中温度一定升高(2)“拔火罐”是一种中医疗法,为了探究“火罐”的“吸力”,某人设计 了如图实验.圆柱状汽缸(横截面积为S )被固定在铁架台上,轻质活塞通过细线与重物m 相连,将一团燃烧的轻质酒精棉球从缸底的开关K 处扔到汽缸内,酒精棉球熄灭时(设此时缸内温度为t ℃)密闭开关K ,此时活塞下的细线刚好拉直且拉力为零,而这时活塞距缸底为L .由于汽缸传热良好,重物 被吸起,最后重物稳定在距地面L /10处.已知环境温度为27 ℃不变,mg /S 与1/6大气压强相当,汽缸内的气体可看做理想气体,求t 值.解析 (2)对汽缸内封闭气体,Ⅰ状态:p 1=p 0V 1=LS ,T 1=(273+t ) K Ⅱ状态:p 2=p 0-mg S =56p 0V 2=910LS ,T 2=300 K由理想气体状态方程得p 1V 1T 1=p 2V 2T 2解得t =127 ℃答案 (1)BDE (2)127 ℃5.[2013·陕西西工大附中测试,33(2)]如图所示为一简易火灾报警装置,其原理 是:竖直放置的试管中装有水银,当温度升高时,水银柱上升,使电路导通,蜂鸣器发出报警的响声.27 ℃时,被封闭的理想气体气柱长L 1为20 cm ,水 银上表面与导线下端的距离L 2为5 cm.(1)当温度达到多少℃时,报警器会报警?(2)如果大气压降低,试分析说明该报警器的报警温度会受到怎样的影响?解析 (1)温度升高时,下端气体做等压变化:T 1T 2=V 1V 2300 K T 2=20S 25S,解得:T 2=375 K ,即t 2=102 ℃.(2)由玻意耳定律,同样温度下,大气压降低则下端气柱变长,即V 1变大. 而刚好报警时V 2不变,由T 1T 2=V 1V 2可知,T 2变小,即报警温度降低.答案 (1)102 ℃ (2)降低3.(2015·中原名校豫南九校一模)(1)关于物体内能和热力学定律的说法正确的 是( )A.物体内所有分子动能和分子势能的总和就是分子的内能B.第二类永动机的构想违背了热力学第二定律C.做功和热传递具有相同的物理本质D.物体没有做功时,物体吸热,物体的内能一定增加E.若一定质量的某理想气体的内能增加,则其温度一定升高(2)如图所示,一根长l=75 cm、一端封闭的粗细均匀的玻璃管,管内有一段长h=25 cm的水银柱,当玻璃管开口向上竖直放置时,管内水银柱封闭气柱的长度l1=36 cm.已知外界大气压强p =75 cmHg,管内、外气体的温度不变.如果将玻璃管倒置,使开口竖直向下,问水银柱长度将是多少厘米?解析(1)物体内所有分子的动能和分子势能的总和就是物体的内能,A项错误;第二类永动机的构想违背了热力学第二定律,B 项正确;做功和热传递具有不同的物理本质,C项错误;物体没有做功,即W=0,物体吸热,Q >0,由热力学第一定律得知,物体的内能一定增加,D项正确;一定质量的理想气体的内能只与温度有关,E项正确.(2)若水银没有流出管外,管倒置后管内空气柱的长度为x0,管的横截面积为S,则倒置前、后有:p0=100 cmHg,V0=L1S,p0′=50 cmHg,V0′=x0S0由玻意耳定律得p0V0=p0′V0′,即100×36S=50x0S解得x0=72 cm因为x0+h>l=75 cm,可知有水银从管口流出设管倒置后空气柱长为x′,则剩下的水银柱的长度必为(75-x′)cm,有:初态:p1=100 cmHg,V1=36S末态:p1′=[75-(75-x′)] cmHg=x′ cmHg,V1′=x′S 由玻意耳定律得:p1V1=p1′V1′,即100×36S=x′·x′S解得:x 1′=60 cm ,x 2′=-60 cm (舍去) 即水银柱长度是:(75-60) cm =15 cm. 答案 (1)BDE (2)15 cm5.(2014·云南第一次检测)如图所示,一端开口、内壁光滑的玻璃管竖直放置, 管中用一段长H 0=38 cm 的水银柱封闭一段长L 1=20 cm 的空气,此时水银 柱上端到管口的距离为L 2=4 cm ,大气压强恒为p 0=76 cmHg ,开始时封闭 气体温度为t 1=27 ℃,取0 ℃为273 K.求:(1)缓慢升高封闭气体温度至水银开始从管口溢出,此时封闭气体的温度;(2)保持封闭气体温度不变,在竖直平面内缓慢转动玻璃管至水银开始从管 口溢出,玻璃管转过的角度. 解析 (1)设玻璃管横截面积为S , 初状态:V 1=L 1S ,T 1=t 1+273 K 末状态:V 2=(L 1+L 2)S ,T 2=t 2+273 K据盖—吕萨克定律有:V 1T 1=V 2T 2代入数据解得:t 2=87 ℃.(2)初状态:V 1=L 1S ,p 1=p 0+38 cmHg 设玻璃管转过角度θ后水银开始溢出末状态:V 2=(L 1+L 2)S ,p 2=p 0+38 cos θ cmHg 据玻意尔定律有:p 1V 1=p 2V 2解得:θ=60°答案 (1)87 ℃ (2)60°6.[2013·湖北七市联考,33(2)]如图,竖直平面内有一直角形内径相同的细玻璃 管,A 端封闭,C 端开口,AB =BC =l 0,且此时A 、C 端等高.平衡时,管内 水银总长度为l 0,玻璃管AB 内封闭有长为l 02的空气柱.已知大气压强为l 0汞柱 高.如果使玻璃管绕B 点在竖直平面内顺时针缓慢地转动到BC 管水平,求此 时AB 管内气体的压强为多少汞柱高?管内封入的气体可视为理想气体且温 度不变.解析 因为BC 长度为l 0,故顺时针旋转到BC 水平时水银未流出.设BC 管水平时,管内空气柱长为x ,管的横截面积为S , 对管内气体,玻璃管转动前:p 1=l 0 cmHg ,V 1=l 02·S玻璃管转动后:由p 2+(p l 0-p x )=p l 0,得p 2=x cmHg ,V 2=x ·S 对A 中密闭气体,由玻意耳定律得l 0·l 02·S =x ·x ·S联立解得x =22l 0即:p2=22l0 cmHg答案22l0 cmHg)7.如图所示,导热的汽缸固定在水平地面上,用活塞把一定质量的理想气体封闭在汽缸中,汽缸的内壁光滑.现用水平外力F作用于活塞杆,使活塞缓慢地向右移动,由状态①变化到状态②,在此过程中,如果环境温度保持不变,下列说法正确的是()(填入正确选项前的字母)A.气体分子平均动能不变B.气体内能减少C.气体吸收热量D.气体内能不变,却对外做功,此过程违反热力学第一定律,不可能实现E.气体是从单一热源吸热,全部用来对外做功,但此过程不违反热力学第二定律(2)如图所示,两端开口的U形玻璃管两边粗细不同,粗管横截面积是细管的2倍.管中装入水银,两管中水银面与管口距离均为12 cm,大气压强为p0 =75 cmHg.现将粗管管口封闭,然后将细管管口用一活塞封闭并使活塞缓慢推入管中,直至两管中水银面高度差达6 cm为止.求:①左端液面下降多少?②活塞下移的距离.(环境温度不变)解析 (1)汽缸是导热的,封闭气体的温度始终与环境温度相同,保持不变, 而温度是分子平均动能的标志,故A 正确;一定质量的理想气体的内能仅仅 与温度有关,内能不变,B 错误;气体内能不变,对外做功,根据热力学第 一定律ΔU =W +Q ,可知气体吸收热量,C 正确;气体是从单一热源吸热, 全部用来对外做功,同时伴随着外力F 的作用,即引起了其他的变化,所以 此过程不违反热力学第二定律,E 正确、D 错误.(2)①设细管的液面下降了x ,则粗管液面上升了x2,根据题意:x +x2=6`cm , 得x =4`cm②对粗管内的气体应用玻意耳定律:p 1V 1=p 1′V 1′ 75×12S =p 1′×(12-2)S解得末状态粗管中气体的压强p 1′=90`cmHg 则细管中气体末状态的压强为(90+6)`cmHg 设活塞下移y ,对细管中的气体用玻意耳定律:p 2V 2=p 2′V 2′75×12S ′=(90+6)×(12+4-y )S ′ 解得:y =6.625`cm答案(1)ACE (2)①4`cm ②6.625`cm10.[2015·新课标全国Ⅱ,33(2),10分](难度★★★)如图,一粗细均匀的U 形管竖直放置,A 侧上端封闭,B 侧上端与大气相通,下端开口处开关K 关 闭;A 侧空气柱的长度为l =10.0 cm ,B 侧水银面比A 侧的高h =3.0 cm.现将 开关K 打开,从U 形管中放出。