自动控制原理习题全解及matlab实验第5章习题解答

合集下载

自动控制原理(第2版)(余成波_张莲_胡晓倩)习题全解及MATLAB实验第5章习题解答

自动控制原理(第2版)(余成波_张莲_胡晓倩)习题全解及MATLAB实验第5章习题解答

第5章频率特性法频域分析法是一种图解分析法,可以根据系统的开环频率特性去判断闭环系统的性能,并能较方便地分析系统参量对系统性能的影响,从而指出改善系统性能的途径,已经发展成为一种实用的工程方法,其主要内容是:1)频率特性是线性定常系统在正弦函数作用下,稳态输出与输入的复数之比对频率的函数关系。

频率特性是传递函数的一种特殊形式,也是频域中的数学模型。

频率特性既可以根据系统的工作原理,应用机理分析法建立起来,也可以由系统的其它数学模型(传递函数、微分方程等)转换得到,或用实验法来确定。

2)在工程分析和设计中,通常把频率特性画成一些曲线。

频率特性图形因其采用的坐标不同而分为幅相特性(Nyquist图)、对数频率特性(Bode图)和对数幅相特性(Nichols图)等形式。

各种形式之间是互通的,每种形式有其特定的适用场合。

开环幅相特性在分析闭环系统的稳定性时比较直观,理论分析时经常采用;波德图可用渐近线近似地绘制,计算简单,绘图容易,在分析典型环节参数变化对系统性能的影响时最方便;由开环频率特性获取闭环频率指标时,则用对数幅相特性最直接。

3)开环对数频率特性曲线(波德图)是控制系统分析和设计的主要工具。

开环对数幅频特性L(ω)低频段的斜率表征了系统的型别(v),其高度则表征了开环传递系数的大小,因而低频段表征系统稳态性能;L(ω)中频段的斜率、宽度以及幅值穿越频率,表征着系统的动态性能;高频段则表征了系统抗高频干扰的能力。

对于最小相位系统,幅频特性和相频特性之间存在着唯一的对应关系,根据对数幅频特性,可以唯一地确定相应的相频特性和传递函数。

4)奈奎斯特稳定性判据是利用系统的开环幅相频率特性G(jω)H(jω)曲线,又称奈氏曲线,是否包围GH平面中的(-l,j0)点来判断闭环系统的稳定性。

利用奈奎斯特稳定判据,可根据系统的开环频率特性来判断闭环系统的稳定性,并可定量地反映系统的相对稳定性,即稳定裕度。

稳定裕度通常用相角裕量和幅值裕量来表示。

自动控制原理考试试题第五章习题及答案

自动控制原理考试试题第五章习题及答案

第五章 线性系统的频域分析与校正练习题及答案——25-12 已知)(1s G 、)(2s G 和)(3s G 均为最小相角传递函数,其近似对数幅频特性曲线如图5-79所示。

试概略绘制传递函数 G s G s G s G s G s 412231()()()()()=+的对数幅频、对数相频和幅相特性曲线。

解:(1) ✈L K 11204511()lg .ω== ∴=K 1180则: G s K 11()=(2) G s K s s 22081()(.)=+20201022lg /lg K K ω== , K 21= (3) ✈L K K 333202001110()lg lg .ωω===s s K s G K 9)(,9111.01333====∴(4) ✈G s G G G G 412231()=+ 将G G G 123,,代入得:G s s s 41801251()(.)=+对数频率特性曲线如图解5-12(a)所示,幅相特性曲线如图解5-12(b)所示:图解5-12 (a) Bode图 (b) Nyquist图5-13 试根据奈氏判据,判断题5-80图(1)~(10)所示曲线对应闭环系统的稳定性。

已知曲线(1)~(10)对应的开环传递函数如下(按自左至右顺序)。

题号开环传递函数P N NPZ2-=闭环稳定性备注1G sKT s T s T s()()()()=+++1231110-12不稳定2G sKs T s T s()()()=++1211000稳定3G sKs Ts()()=+210-12不稳定4 G s K T s s T s T T ()()()()=++>12212110 0 0 稳定 5 G s K s ()=30 -1 2 不稳定 6 G s K T s T s s ()()()=++123110 0 0 稳定 7 G s K T s T s s T s T s T s T s ()()()()()()()=++++++5612341111110 0 0 稳定 8 G s KT s K ()()=->1111 1/2 0 稳定 9 G s KT s K ()()=-<1111 0 1 不稳定 10G s Ks Ts ()()=-11-1/22不稳定5-14 已知系统开环传递函数,试根据奈氏判据,确定其闭环稳定的条件:)1)(1()(++=s Ts s Ks G ; )0,(>T K(1)2=T 时,K 值的范围; (2)10=K 时,T 值的范围; (3)T K ,值的范围。

自动控制原理_第5章_3

自动控制原理_第5章_3
5.3 控制系统的频率特性
在绘制各个典型环节频率特性的基础上, 可以绘制控制系统的频率特性。
5.3.1 控制系统开环频率特性的Nyquist图
一个控制系统的开环传递函数可以写成典型
环节的连乘积形式。
1
举例 一个开环传递函数为
K ( s 1) G( s) 2 2 s(T1s 1)(T2 s 2 T2 s 1)
27
2
对于非单位反馈系统, 在其开环频率特性幅值
G( j)H ( j) 很大的频段内, 闭环频率特性
1 ( j ) H ( j )
即近似等于反馈环节频率特性的倒数。
对于开环放大倍数 K 很大的闭环系统,在低频段
具有这个特点。
28
3
对于非单位反馈系统, 一般来说, 其开环
频率特性的高频段幅值很小。在这一频段内, 闭环
1
当 0 时,放大环节、惯性环节、振荡环节、
一阶微分环节、二阶微分环节的幅角均为 00 。
。 只有积分环节, 0 时,相角为 900 当
如果开环传递函数中含有 v 个积分环节,开环频率 特性的Nyquist图在 0 的起始处幅角为 v 900 。


6
2
当 0 时, 放大环节的幅值为 K ,
21
[例5-5] 控制系统的开环传递函数为
10( s 1) G( s) s(2.5s 1)(0.04s 2 0.24s 1)
绘制系统的渐近开环对数幅频特性和相频特性。
22
100 Magnitude (dB)
Asymptotic Bode Diagram
-20dB/dec
50
20
频率特性近似等于系统前向通道的频率特性。 一般来说,闭环系统在高频段内显示这一性质。 在工程实践中, 当开环幅频特性

自控原理第五章习题参考答案

自控原理第五章习题参考答案

5-1 5()0.251G s s =+5()0.251G j j ωω=+()A ω=()arctan(0.25)ϕωω=-输入 ()5cos(430)5sin(460) =4r t t t ω=-︒=+︒(4)A ==(4)arctan(0.25*4)45ϕ=-=-︒系统的稳态输出为()(4)*5cos[430(4)]3045)17.68cos(475)17.68sin(415)c t A t t t t ϕ=-︒+=-︒-︒=-︒=+︒ sin cos(90)cos(90)cos(270)αααα=︒-=-︒=+︒或者,()(4)*5sin[460(4)]6045) 17.68sin(415)c t A t t t ϕ=+︒+=+︒-︒=+︒所以,对于cos 信号输入下的稳态输出计算规律与sin 信号作用下计算相同。

5-3(2)1()(1)(12)G s s s =++ 1()(1)(12)G j j j ωωω=++()A ω=()arctan arctan 2ϕωωω=--起点:0ω= (0)1;(0)0A ϕ==︒ 位于正实轴上。

终点:ω→∞ ()0;()180A ϕ∞=∞=-︒+∆ 从第三象限趋于原点因此,,Nyquist 曲线与虚轴有交点,并且满足:()arctan arctan 290ϕωωω=--=-︒ arctan arctan 290ωω+=︒所以有,1/(2)ωω= 21/2ω=()0.473A ω=== 因此,与虚轴的交点为(0,-j0.47)()ω(3)1()(1)(12)G s s s s =++ 1()(1)(12)G j j j j ωωωω=++()A ω=()90arctan arctan 2ϕωωω=-︒--起点:0ω= (0);(0)90A ϕ=∞=︒∆-- 位于负虚轴(左侧)无穷远方向终点:ω→∞ ()0;()270A ϕ∞=∞=-︒+∆ 从第二象限趋于原点因此,,Nyquist 曲线与实轴有交点,并且满足:()90arctan arctan 2180ϕωωω=-︒--=-︒ arctan arctan 290ωω+=︒1/(2)ωω= 21/2ω=2()0.673A ω===与实轴的交点为(-0.67,-j0))ω(4)21()(1)(12)G s s s s =++ 21()()(1)(12)G j j j j ωωωω=++()A ω=()180arctan arctan 2ϕωωω=-︒--起点:0ω= (0);(0)180A ϕ=∞=︒∆-- 位于负实轴(上侧)无穷远方向终点:ω→∞ ()0;()360A ϕ∞=∞=-︒+∆ 从第一象限趋于原点因此,,Nyquist 曲线与虚轴有交点,并且满足:()180arctan arctan 2270ϕωωω=-︒--=-︒ arctan arctan 290ωω+=︒1/(2)ωω= 21/2ω=()0.94A ω===与虚轴的交点为(0,j0.94))ω=5-4(2)10.5ω=,21ω=,1K =,0ν=(3)10.5ω=,21ω=,1K =,1ν=低频段直线(延长线)与0db 线交点的频率为:1/cK νω'=。

《自动控制原理》5章课后习题参考答案.

《自动控制原理》5章课后习题参考答案.
G S S S =
+
1(
10000(6
.311
2e +=
S S S G
1001.0(11.0(1(1.0(d +++=
S S S S S G 61
.054
.0154.0,
11(2
2
=+==+=
K K
A ω
ωω010
s
900.257.3180 2.16rad
tg ωωω----∙︒=-=,(
(
5
.1,
(5
(6 (7
5.12
K增大和T减少
((1(1(1m K
K s s Ts Ts K
s T s K
Φ=

+++++
K
T m 21=
ζ ,不变(稳定裕度不变
2
22
(12(121b n ωωξξ=-+
-+
5.13
11=+=
p
ssr K e 35
.01
12
416==
=
v
ssr K e %
8.4%100%2
1=⨯=--ξ
πξ
σe 05
.006.13
==≈
ቤተ መጻሕፍቲ ባይዱεξ
ω,S t n s s
rad n n c 8.2707.0707.02=∙=ωωω=0
63
=γdB K g s rad g ∞=∞=ω0,1==r r M ωs
rad n b 4==ωω0
1
1
11006
.787.53.841001.01001.0180180=-=∙-=-+-=----tg

自动控制原理第五章课后答案

自动控制原理第五章课后答案

五 频域分析法2-5-1 系统单位阶跃输入下的输出)0(8.08.11)(94≥+-=--t e e t c tt ,求系统的频率特性表达式。

【解】: 98.048.11)]([L )(1+++-==-s s s t c s C 闭环传递函数)9)(4(36198.048.11)()()(++=+++-==s s ss s s s R s C s G )9tg 4(tg 2211811636)9)(4(36)(ωωωωωωω--+-+⨯+=++=j ej j j G2-5-2系统时,系统的稳态输出(1))30sin()(0+=t t r ; (2))452cos(2)(0+=t t r ;(3))452cos(2)30sin()(00--+=t t t r 。

【解】:求系统闭环传递函数5tg 21254)5(4)(54)(1)()()()(14)(ωωωω--+=+=+=+==+=j B K K B K ej j G s s G s G s R s C s G s s G根据频率特性的定义,以及线性系统的迭加性求解如下:(1)︒===30,1,11θωr A︒--====-3.1151tg )1(178.0264)1()(1j j j B e eeA j G θωω[])7.18sin(78.0)1(sin )1()sin()(12︒+=++=+=t t A A t A t c r c s θθθ(2)︒===45,2,21θωr A︒--==+=-8.2152tg 274.02544)(1j j B e ej G ωω)2.232cos(48.1)(︒+=t t c s(3))8.662cos(48.1)7.18sin(78.0)(︒--︒+=t t t c s2-5-3 试求图2-5-3所示网络的频率特性,并绘制其幅相频率特性曲线。

【解】:(1)网络的频率特性1)(111)(212212+++=+++=ωωωωωC R R j C jR C j R R C j R j G(2)绘制频率特性曲线)tg (tg 22212121111)(1)(11)(ωωωωωωωT T j eT T jT jT j G ---++=++= 其中1221221,)(,T T C R R T C R T >+==。

《自动控制原理》习题及解答05

《自动控制原理》习题及解答05

第五章习题与解答5-1 试求题5-1图(a)、(b)网络的频率特性。

cu rc(a) (b)题5-1图 R-C 网络解 (a)依图:⎪⎪⎪⎩⎪⎪⎪⎨⎧+==+=++=++=2121111212111111221)1(11)()(R R C R R T C R RR R K s T s K sCR sC R R R s U s U r c ττ ωωτωωωωω11121212121)1()()()(jT j K C R R j R R C R R j R j U j U j G r c a ++=+++== (b)依图:⎩⎨⎧+==++=+++=CR R T CR s T s sCR R sC R s U s U r c )(1111)()(2122222212ττ ωωτωωωωω2221211)(11)()()(jT j C R R j C R j j U j U j G r c b ++=+++==5-2 某系统结构图如题5-2图所示,试根据频率特性的物理意义,求下列输入信号作用时,系统的稳态输出)(t c s 和稳态误差)(t e s (1) t t r 2sin )(=(2) )452cos(2)30sin()(︒--︒+=t t t r题5-2图 反馈控制系统结构图解 系统闭环传递函数为: 21)(+=Φs s 频率特性: 2244221)(ωωωωω+-++=+=Φj j j 幅频特性: 241)(ωω+=Φj相频特性: )2arctan()(ωωϕ-= 系统误差传递函数: ,21)(11)(++=+=Φs s s G s e则 )2arctan(arctan )(,41)(22ωωωϕωωω-=++=Φj j e e(1)当t t r 2sin )(=时, 2=ω,r m =1 则 ,35.081)(2==Φ=ωωj 45)22arctan()2(-=-=j ϕ4.1862arctan )2(,79.085)(2====Φ=j j e e ϕωω )452sin(35.0)2sin()2(-=-Φ=t t j r c m ss ϕ)4.182sin(79.0)2sin()2(+=-Φ=t t j r e e e m ss ϕ (2) 当 )452cos(2)30sin()(︒--︒+=t t t r 时: ⎩⎨⎧====2,21,12211m m r r ωω5.26)21arctan()1(45.055)1(-=-===Φj j ϕ 4.18)31arctan()1(63.0510)1(====Φj j e e ϕ )]2(452cos[)2()]1(30sin[)1()(j t j r j t j r t c m m ss ϕϕ+-⋅Φ-++⋅Φ=)902cos(7.0)4.3sin(4.0--+=t t)]2(452cos[)2()]1(30sin[)1()(j t j r j t j r t e e e m e e m ss ϕϕ+-⋅Φ-++⋅Φ=)6.262cos(58.1)4.48sin(63.0--+=t t5-3 若系统单位阶跃响应h t e e t tt()..=-+≥--11808049试求系统频率特性。

自动控制原理及其应用课后习题第五章答案

自动控制原理及其应用课后习题第五章答案
40 20 0 -20 -20dB/dec 10 1 2ωc -40dB/dec -60dB/dec 40 -40dB/dec
ω
20 0 -20
10 ωc
1
2 -20dB/dec
ω
-60dB/dec
10 ≈1 ω2 0.5 c
ω c=4.5
5 ≈1 ω c=7.9 ω 0.01 c3
第五章习题课 (5-17)
-20
低频段曲线: 低频段曲线: 20lgK=20dB φ (ω ) 0 ω1=5 ω2=15 -90 相频特性曲线: 相频特性曲线: -180 -270 φ ( )= -90o ω ω=0 φ ( )= -270o ω ω=∞
-60dB/dec
ω
第五章习题课 (5-2)
10(s+0.2) 1.33(5s+1) (5) G(s)= s2(s+0.1)(s+15)=s2(10s+1)(0.67s+1) 解: 低频段曲线: 低频段曲线: 20lgK=2.5dB
第五章习题课 (5-7)
5-7 已知奈氏曲线,p为不稳定极点个数, 已知奈氏曲线, 为不稳定极点个数 为不稳定极点个数, υ为积分环节个数,试判别系统稳定性。 为积分环节个数,试判别系统稳定性。 Im υ=2 (b) p=0 (a) p=0 Im υ=0
ω=0 Re -1 0 ω=0+ -1 0 ω=0 Re
第五章习题课 (5-1)
5-1(1) 已知单位负反馈系统开环传递函数, 已知单位负反馈系统开环传递函数, 当输入信号r(t)=sin(t+30o),试求系统的稳态 当输入信号 , 输出。 输出。 10 G(s)=(s+1) 10 解: φ(s)= (s+11) 10 = 10 = 10 ω A( )= 2 2 112+1√ 122 =0.905 √ 11 +( ) √ ω φ ( )=-tg-1ω =-tg-1 1 =-5.2o ω 11 11 cs(t)=0.9sin(t+24.8o)

自动控制原理第五章课后习题答案(免费)[1]

自动控制原理第五章课后习题答案(免费)[1]

自动控制原理第五章课后习题答案(免费)5-1设单位反馈系统的开环传递函数为对系统进行串联校正,满足开环增益 及 解:① 首先确定开环增益K,00()12lim v s K SG S k →===② 未校正系统开环传函为:012()(1)G s s s =+M a g n i t u d e (d B )1010101010P h a s e (d e g )Bode DiagramGm = 70.5 dB (at 200 rad/sec) , P m = 16.5 deg (at 3.39 rad/sec)Frequency (rad/sec)③ 绘制未校正系统的开环对数频率特性,得到幅穿频率 3.4c ω=,对应相位角'0()164,16c G j ωγ∠=-∴=,采用超前校正装置,最大相角 0(180())4016630m c G j ϕγωγ=-+∠+=-+=④ 11sin ,31m αϕαα--=∴=+ 0()(1)KG s s s =+40γ=︒112K s -=⑤ 在已绘图上找出10lg 10lg3 4.77α-=-=-的频率 4.4m ω=弧度/秒 令c m ωω=⑥0.128/,0.385/m T s T s ωα=⇒==∴=校正装置的传函为:110.385()110.128Ts s G s Ts s α++==++校正后的开环传函为:012(10.39)()()()(1)(10.13)c s G s G s G s s s s +==++ 校正后1801374340γ=-=>,满足指标要求.-100-50050100M a g n i t u d e (d B )101010101010P h a s e (d e g )Bode DiagramGm = 99.2 dB (at 1.82e+003 rad/sec) , P m = 42.4 deg (at 4.53 rad/sec)Frequency (rad/sec)5-2设单位反馈系统的开环传递函数为要求 设计串联迟后校正装置。

《自动控制原理》第5章习题答案

《自动控制原理》第5章习题答案

G0 ( s ) =
1 s (0.1s + 1)
特征方程为, D( s ) = 0.1s 2 + s + 1 = 0 ,即,s + 10 s + 10 = 0 ,
2
ω n = 10 = 3.162 , ζ =
10 = 1.58 ,原系统为过阻尼系统, 2ω n
2
σ % = 0 , ts >
4
ζω n
解: G ( jω ) =
ω=0 时, G (0) = 0.4 ,在低频段, L(ω ) = 20 lg 0.4 = −8dB ; ω → ∞ 时, G ( j∞) = 1 ,
在高频段, L(ω ) = 20 lg1 = 0dB 。转折频率 ω1 = 2 ,ω 2 = 5 。串联校正装置是超前校正装 置。
-j 3.46
②计算期望主导极点位置。 系统期望闭环主导极点具有阻尼系数 ζ =
2 ,自然振荡频率 ω n = 4 2 , 2
θ = arccosζ = arccos
2 = 450 , 则 一 个 具 有 期 望 极 点 的 2 阶 系 统 特 征 方 程 为 , 2
s 2 + 8s + 32 = 0

期望极点
期望极点
− p3
j
600
j0.58
− p2
-1
− p1
0 -j
-3
-2
σ
-2
19.150 -1
40.880 0.33 0
119.640
校核相角条件: 根据在图中主导极点位置的近似值-0.33 ± j 0.58 和开环极点的位置, 作由各开环极点到期望主导极点的向量,
Φ = -119.640 -40.880 -19.150 = -179.670≈-1800

自动控制原理课后习题答案第五章

自动控制原理课后习题答案第五章

第 五 章5-2 若系统单位阶跃响应为49()1 1.80.8tth t ee--=-+试确定系统的频率特性。

分析 先求出系统传递函数,用j ω替换s 即可得到频率特性。

解:从()h t 中可求得:(0)0,(0)0h h '==在零初始条件下,系统输出的拉普拉斯变换()H s 与系统输出的拉普拉斯变换()R s 之间的关系为()()()H s s R s =Φ⋅即()()()H s s R s Φ=其中()s Φ为系统的传递函数,又1 1.80.836()[()]49(4)(9)H s L h t s s s s s s ==-+=++++1()[()]R s L r t s ==则()36()()(4)(9)H s s R s s s Φ==++令s j ω=,则系统的频率特性为()36()()(4)(9)H j j R j j j ωωωωωΦ==++5-7 已知系统开环传递函数为)1s T (s )1s T (K )s (G 12++-=;(K、T1、T2>0)当取ω=1时, o180)j (G -=ω∠,|G(jω)|=0.5。

当输入为单位速度信号时,系统的稳态误差为0.1,试写出系统开环频率特性表达式G(jω)。

分析:根据系统幅频和相频特性的表达式,代入已知条件,即可确定相应参数。

解: 由题意知:()G j ω=21()90arctan arctan G j T T ωωω∠=---因为该系统为Ⅰ型系统,且输入为单位速度信号时,系统的稳态误差为0.1,即1()lim ()0.1ss s e E s K→∞===所以:10K =当1ω=时,(1)0.5G j ==21(1)90arctan arctan 180G j T T ∠=---=-由上两式可求得1220,0.05T T ==,因此10(0.051)()(201)j G j j j ωωωω-+=+5-14 已知下列系统开环传递函数(参数K 、T 、T i>0,i=1,2,…,6)(1))1s T )(1s T )(1s T (K)s (G 321+++=(2))1s T )(1s T (s K)s (G 21++=(3))1Ts (s K )s (G 2+=(4))1s T (s )1s T (K )s (G 221++=(5)3s K )s (G =(6)321s)1s T )(1s T (K )s (G ++=(7))1s T )(1s T )(1s T )(1s T (s )1s T )(1s T (K )s (G 432165++++++=(8)1Ts K)s (G -=(9)1Ts K )s (G +--=(10))1Ts (s K)s (G -=其系统开环幅相曲线分别如图5-6(1)~(10)所示,试根据奈氏判据判定各系统的闭环稳定性,若系统闭环不稳定,确定其s 右半平面的闭环极点数。

自控原理习题解答第五章

自控原理习题解答第五章
4 3 2


dk 3 2 4s 18s 20s 8 0 ds


s 1.5s 0.5 3 2 s 3 s 4.5s 5s 2
2
s 3s
3
2 2 2
1.5s 5s 1.5s 4.5s 0.5s 2 0.5s 1.5 0.5
s 0.5s 3 3 2 s 4 s 4.5s 5s 2
1
4 95.58
6求与虚轴的交点
s 1.1s 1.3s 0.5s k 0
4 3 2
s4 s3 s s
2
1 1.1 0.93 0.465 1.21k 1.1k
1.3 0.5 1.1k 0
k
s1
0
2 0.465 1.21k 0,0 k 0.38;0.93s 1.1k 0



4
j
45; l 1 : 3, 4 3 (135)
4
m i 1 i
a
p z
j1
nm

0.5 0.3 j0.96- 0.3 - j0.96- 0 0.275 4
4分离点 2 ss 0.5s 0.6s 1 k 0
试绘制系统的根轨迹图。
2实轴上的根轨迹: 0,0.5 3n m 4, 渐近线的倾角和渐近线 与实轴的交点 2l 1 , l 0,1,2
nm l 0 : 1, 2
n
k 答5 - 4Gs Hs ss 0.5 s 2 0.6s 1 1n 4, m 0, p1 0, p 2 -0.5, p 3 0.3 j0.96, p 4 0.3 j0.96

自动控制原理_第5章习题解答-

自动控制原理_第5章习题解答-

第5章频率特性法教材习题同步解析一放大器的传递函数为:G (s )=1+Ts K测得其频率响应,当ω=1rad/s 时,稳态输出与输入信号的幅值比为12/2,稳态输出与输入信号的相位差为-π/4。

求放大系数K 及时间常数T 。

解:系统稳态输出与输入信号的幅值比为A ==222172K T ω=+ 稳态输出与输入信号的相位差arctan 45T ϕω=-=-︒,即1T ω=当ω=1rad/s 时,联立以上方程得T =1,K =12放大器的传递函数为:G (s )=121s +已知单位负反馈系统的开环传递函数为5()1K G s s =+ 根据频率特性的物理意义,求闭环输入信号分别为以下信号时闭环系统的稳态输出。

(1)r (t )=sin (t +30°); (2)r (t )=2cos (2t -45°);(3)r (t )= sin (t +15°)-2cos (2t -45°); 解:该系统的闭环传递函数为65)(+=Φs s 闭环系统的幅频特性为365)(2+=ωωA闭环系统的相频特性为6arctan )(ωωϕ-=(1)输入信号的频率为1ω=,因此有37375)(=ωA ,()9.46ϕω︒=- 系统的稳态输出537()sin(20.54)37ss c t t ︒=+ (2)输入信号的频率为2ω=,因此有10()A ω=,()18.43ϕω︒=- 系统的稳态输出10()cos(263.43)2ss c t t ︒=- (3)由题(1)和题(2)有对于输入分量1:sin (t +15°),系统的稳态输出如下5371()sin( 5.54)37ss c t t ︒=+ 对于输入分量2:-2cos (2t -45°),系统的稳态输出为102()cos(263.43)ss c t t ︒=-- 根据线性系统的叠加定理,系统总的稳态输出为)4363.632cos(210)537.5sin(37375)(︒︒--+=t t t c ss绘出下列各传递函数对应的幅相频率特性与对数频率特性。

自动控制原理--第5章 频域分析法

自动控制原理--第5章 频域分析法
例如,惯性环节对数幅频特性和相频特性分别为
L() 20lg | G( j) | 20lg 2T 2 1
arctanT
当=0时,L()=0dB, =0, 曲线起始于坐标原点;当=1/T时, L()=-3dB, =-45;
自动控制原理
30
5-4 频域稳定性判据
一、映射定理
闭环特征函数 F(s)=1+G(s)H(s)
T
如果τ>T,则∠G(j)>0°,极坐标曲线在第Ⅰ象限变化;如果τ<T, 则∠G(j)<0°,极坐标曲线在第Ⅳ象限变化,如图所示。
自动控制原理
16
5.3.2 对数坐标图
通过半对数坐标分别表示幅频特性和相频特性的图形, 称为对数坐称图或波德(Bode)图。
1.对数坐标 对数频率特性曲线由对数幅频特性和相频特性两部分
系统的传递函数为 C(s) G(s)
R(s)
假定输入信号r(t)为
r(t) Asint
R(s) L[ Asint] A
A
s 2 2 (s j)(s j)
自动控制原理
7
G(s)
K (s z1 )(s z2 )(s zm ) (s s1 )(s s2 )(s sn )
nm
2j
AG( j) sin(t )
B sin(t )
G( j ) G( j ) e jG( j) G( j) e j

G( j) G(s) s j
这里的结论同RC网络讨论的结果是一致的。
自动控制原理
10
5.3 频率特性的图示方法
频率特性的图示方法主要有三种,即极坐标图、对数坐 标图和对数幅相图,现分述如下。
所以K=10。因此,所求开环传递函数

《自动控制原理》答案 李红星 第五章

《自动控制原理》答案 李红星  第五章
5-1
某系统结构图如题 5-1 图所示,试根据频率特性的物理意义,求下列输入信号作用时,
系统的稳态输出 c s (t ) 和稳态误差 e s (t ) (1) (2)
r (t ) = sin 2t r (t ) = sin(t + 30°) − 2 cos( 2t − 45°)
题 5-1 图
解:
系统闭环传递函数为: Φ ( s ) =
(T1 > 0, T2 > 0, T3 > 0, T4 > 0)
又知它们的奈奎斯特曲线如题 5-7 图(a)(b)(c)所示。 找出各个传递函数分别对应的奈奎斯 特曲线,并判断单位反馈下闭环系统的稳定性
145
题 5-7 图 解:三个传递函数对应的奈奎斯特曲线分别为 b, c, a 对 G1 ( s ) =
要求画出以下 4 种情况下的奈奎斯特曲线,并判断闭环系统的稳定性: a. T2 = 0 ;
141
b. 0 < T2 < T1 ; c. 0 < T2 = T1 ; d. 0 < T1 < T2 。 解: a. 当 T2 = 0 时, Q ( s ) =
K , s (T1 s + 1)
2
其开环幅相曲线如题 5-5 解图 a 所示, P = 0 ,N=2 则 Z=P+N=2,故在 s 平面右半平面有 2 个闭环极点,闭环系统不稳定; b.当 0 < T2 < T1 时, Q( jω ) =
当 τ > T 时,开环幅相曲线始终处于第三象限,如题 5-4 解图 a 所示; 当 T > τ 时,开环幅相曲线始终处于第二象限,如题 5-4 解图 b 所示。
题 5-4 解图 a 开环幅相曲线

《自动控制原理》课后习题答案(5章)

《自动控制原理》课后习题答案(5章)

《自动控制原理》课后习题答案(5章)5.1 系统的结构图如图5-68所示。

试依据频率特性的物理意义,求下列输入信号作用时,系统的稳态输出ss c 和稳态误差ss e 。

⑴()t t r 2sin =⑵()()()︒︒--+=452cos 230sin t t t r图5-1解 系统的传递函数:()()()21+==Φs s R s C s ()()()21++==Φs s s R s E s e 幅频特性及相频特性:()()2,2122ωωωωarctgj j -=Φ+=Φ()()2,21222ωωωωωωarctgarctg j e e -=Φ++=Φ(1)()2,2sin ==ωt t r 稳态输出:()()︒︒-=-+=452sin 221452sin 441t t c ss()︒-≈452sin 354.0t稳态误差:⎪⎭⎫ ⎝⎛-+++=2222sin 2221222arctg arctg t e ss()()︒︒+≈+=43.182sin 791.043.182sin 225t t(2)()()()()()︒︒︒︒+-+=--+=452sin 230sin 452cos 230sin t t t t t r⎪⎪⎭⎫ ⎝⎛+∠+++•-⎪⎪⎭⎫ ⎝⎛+∠+++=︒︒221452sin 221212130sin 211222j t j t c ss ()t t 2sin 225.3sin 55-+=︒ ()t t 2sin 708.05.3sin 447.0-+≈︒⎪⎭⎫ ⎝⎛-++++•-⎪⎭⎫ ⎝⎛-++++=︒︒222452sin 2221221130sin 12112222222arctg arctg t arctg arctg t e ss ()()︒︒︒︒︒︒-++•--++=4543.63452sin 410257.264530sin 510t t ()()︒︒+-+≈43.632sin 582.143.48sin 632.0t t ()()︒︒--+=57.1162sin 582.143.48sin 632.0t t5.2 若系统的单位阶跃响应:()t t e e t h 948.08.11--+-=()0≥t 试求系统的频率特性。

自动控制原理参考答案-第5章

自动控制原理参考答案-第5章

第五章题5-1:试绘制下列开环传递函数的幅相频率特性曲线。

(1) 10G(s)H(s)(s 1)(0.2s 1)=++ (2) 25(s 1)G(s)H(s)(s 3)(s 2s 2)+=+++(3) 100G(s)H(s)(s 1)(s 3)(s 4)=+++ 题5-6:试绘制题5-1各开环传递函数的对数幅频特性渐近线和半对数相频特性曲线。

(1) 2221010122()()(1)(0.21)(1)(10.04)j G j H j j j ωωωωωωωω--==++++实频特性:)04.01)(1(210)(222ωωωω++-=P虚频特性:)04.01)(1(12)(22ωωωω++-=Q 相频特性:()arctan arctan 0.2ϕωωω=-- Nyqist 曲线:起点:0ω=(0)10P ⇒=,(0)0Q =,(0)0ϕ=终点:ω=∞()0P ⇒∞=,()0Q ∞=,()180ϕ∞=- 与虚轴交点:()0P ω= 2.236ω⇒=() 3.73Q ω⇒=- Nyqist 曲线如下:转折频率1:111T ω==;转折频率2:215T ω==对数幅频特性:()20lg ()20lg10L A ωω==-半对数相频特性:()arctan arctan 0.2ϕωωω=-- Bode 图如下:(2) 25(1)()()(3)(22)j G j H j j j ωωωωωω+=+-+ 222222225(3)(2)202(12)(9)[(2)4]j ωωωωωωωω+-+-+=+-+ 实频特性:]4)2)[(9(20)2)(3(5)(2222222ωωωωωωω+-++-+=P 虚频特性:]4)2)[(9()21(10)(22222ωωωωωω+-++-=Q相频特性:2()arctan arctan arctan 310.5ωωϕωωω=--- Nyqist 曲线:起点:0ω=5(0)6P ⇒=,(0)0Q =,(0)0ϕ=终点:ω=∞()0P ⇒∞=,()0Q ∞=,()180ϕ∞=-与虚轴交点:()0P ω= 2.09ω⇒=()0.66Q ω⇒=- Nyqist 曲线如下:225(1)0.83(1)()()(3)(22)(0.331)[(0.7)1]j j G j H j j j j j j ωωωωωωωωωω++==+-++++ 转折频率1:11 1.414T ω==;转折频率2:213T ω==对数幅频特性:5()20lg ()20lg 6L A ωω==+半对数相频特性:2()arctan arctanarctan310.5ωωϕωωω=---Bode 图如下:(3) 23222100100[128(19)]()()(1)(3)(4)(1)(3)(4)j G j H j j j j ωωωωωωωωωωω-+-==++++++实频特性:)4)(3)(1()812(100)(2222ωωωωω+++-=P虚频特性:)4)(3)(1()19(100)(2223ωωωωωω+++-=Q 相频特性:()arctan arctan 0.33arctan 0.25ϕωωωω=--- Nyqist 曲线:起点:0ω=(0)8.33P ⇒=,(0)0Q =,(0)0ϕ= 终点:ω=∞()0P ⇒∞=,()0Q ∞=,()270ϕ∞=- 与虚轴交点:()0P ω= 1.22ω⇒=() 4.77Q ω⇒=- 与实轴交点:()0Q ω= 4.36ω⇒=()0.71P ω⇒=- Nyqist 曲线如下:8.33()()(1)(0.331)(0.251)G j H j j j j ωωωωω=+++转折频率1:111T ω==;转折频率2:213T ω==;转折频率3:314T ω==对数幅频特性:()20lg ()18.4L A ωω==-半对数相频特性:()arctan arctan 0.33arctan 0.25ϕωωωω=--- Bode 图如下:题5-2:已知某一控制系统的单位阶跃响应为4t 9t c(t)1 1.8e 0.8e --=-+试求该系统的开环频率特性。

自动控制原理的MATLAB仿真与实践第5章 线性系统的频域分析

自动控制原理的MATLAB仿真与实践第5章  线性系统的频域分析
本节分别介绍利用MATLAB进行频域绘图和频 率分析的基本方法。
7
【例5-1】 试绘制惯性环节G(jω)=1/(2s+1)的Nyquist曲线 和Bode图。
解:程序如下:
>>clear
G=tf(1,[2,1]); %建立模型
nyquist (G); %绘制Nyquist图
figure(2); bode (G); %绘制Bode图
4
ngrid;ngrid(‘new’):绘制尼科尔斯坐标网格即等 20lgM圆和等角曲线组成的网格。‘new’代表清除以前 的图形,与后一个nichols()一起绘制网格。
semilogx(w,20*log10(mag)):绘制半对数坐标下的幅 频特性曲线。
semilogx(w,phase*180/pi):绘制半对数坐标下的相频 特性曲线。
MATLAB提供了许多用于线性系统频率分析 的函数命令,可用于系统频域的响应曲线、参数分析 和系统设计等。常用的频率特性函数命令格式及其功 能见表5-1。 bode (G):绘制传递函数的伯德图。其中:G为传递
函数模型,如:tf(), zpk(), ss()。 bode(num,den):num,den分别为传递函数的分子与
本节分别介绍利用MATLAB进行频域绘图和频 率分析的基本方法。
6
5.2.1 Nyquist曲线和Bode图
MATLAB频率特性包括幅频特性和相频特性。 当用极坐标图描述系统的幅相频特性时,通常称为 奈奎斯特(Nyquist)曲线;用半对数坐标描述系 统的幅频特性和相频特性时,称为伯德(Bode) 图;在对数幅值-相角坐标系上绘制等闭环参数( M和N)轨迹图,称为尼克尔斯(Nichols)图。
运行结果如图5-2所示。

自动控制原理第五章课后答案2

自动控制原理第五章课后答案2

① 0=ν② )1)(12()12()(32222211221+++++=s T s T s T s T s T K s G k ξξ③32.0116.340lg 10lg 201111==⇒=⇒=-ωωωT032.016.314010lg lg 202222==⇒=⇒=-ωωωT025.040013==T 2.0821lg 2011≈⇒=ζζ 1621lg2022≈⇒-=ζζ④ 1.020lg 20=⇒-=K K)10025.0)(1064.0001.0()113.01.0(1.0)(22+++++=∴s s s s s s G k【解】:(1)504.12lg 2021===ωνK 其伯德图如解图(1)所示。

剪切频率204.121lg40≈⇒=c cωω相角裕量︒-≈⨯-︒⨯-︒=-8.2122.0tg 9021801γ 系统不稳定(特征方程漏项),相角裕量为负数。

(2)系统传递函数为)12.0()1(4)(2++=s s s s G其伯德图如解图(2)所示。

剪切频率(1)(2) 题2-5-12解图404.121lg20≈⇒=c cωω相角裕量︒≈⨯-=-︒⨯-+︒=----3.3742.0tg 4tg 2.0tg 902tg 1801111c c ωωγ系统稳定。

(3)一阶微分环节的介入,增加了剪切频率附近的相位,即增加了相位裕量,提高了系统的稳定性。

(4)希望中频段折线斜率为-20db/十倍频程,且该斜线的频宽越大越好。

【解】:方法一[])1()1()1()1()1)(1()1)(1(1)1)(1()1(1)(31231212321311+++-+=-+-++-++=+=s T K s T s T s T K K s T s T s T s T K s T s T s T K K GH G K s G k二阶系统,有一个右半平面的开环极点,0,1==v p 。

由开环幅相曲线可知21,1==b a 。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自动控制原理(第2版)(余成波_张莲_胡晓倩)习题全解及M A T L A B实验第5章习题解答(共38页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第5章频率特性法频域分析法是一种图解分析法,可以根据系统的开环频率特性去判断闭环系统的性能,并能较方便地分析系统参量对系统性能的影响,从而指出改善系统性能的途径,已经发展成为一种实用的工程方法,其主要内容是:1)频率特性是线性定常系统在正弦函数作用下,稳态输出与输入的复数之比对频率的函数关系。

频率特性是传递函数的一种特殊形式,也是频域中的数学模型。

频率特性既可以根据系统的工作原理,应用机理分析法建立起来,也可以由系统的其它数学模型(传递函数、微分方程等)转换得到,或用实验法来确定。

2)在工程分析和设计中,通常把频率特性画成一些曲线。

频率特性图形因其采用的坐标不同而分为幅相特性(Nyquist 图)、对数频率特性(Bode 图)和对数幅相特性(Nichols 图)等形式。

各种形式之间是互通的,每种形式有其特定的适用场合。

开环幅相特性在分析闭环系统的稳定性时比较直观,理论分析时经常采用;波德图可用渐近线近似地绘制,计算简单,绘图容易,在分析典型环节参数变化对系统性能的影响时最方便;由开环频率特性获取闭环频率指标时,则用对数幅相特性最直接。

3)开环对数频率特性曲线(波德图)是控制系统分析和设计的主要工具。

开环对数幅频特性L (ω)低频段的斜率表征了系统的型别(v ),其高度则表征了开环传递系数的大小,因而低频段表征系统稳态性能;L (ω)中频段的斜率、宽度以及幅值穿越频率,表征着系统的动态性能;高频段则表征了系统抗高频干扰的能力。

对于最小相位系统,幅频特性和相频特性之间存在着唯一的对应关系,根据对数幅频特性,可以唯一地确定相应的相频特性和传递函数。

4)奈奎斯特稳定性判据是利用系统的开环幅相频率特性G (j ω)H (j ω)曲线,又称奈氏曲线,是否包围GH 平面中的(-l ,j0)点来判断闭环系统的稳定性。

利用奈奎斯特稳定判据,可根据系统的开环频率特性来判断闭环系统的稳定性,并可定量地反映系统的相对稳定性,即稳定裕度。

稳定裕度通常用相角裕量和幅值裕量来表示。

5)利用开环频率特性或闭环频率特性的某些特征量,均可对系统的时域性能指标作出间接的评估。

其中开环频域指标主要是相位裕量γ、穿越频率c ω。

闭环频域指标则主要是谐振峰值r M 、谐振频率r ω以及带宽频率b ω,这些特征量和时域指标σ%、s t 之间有密切的关系。

这种关系对于二阶系统是确切的,而对于高阶系统则是近似的,然而在工程设计中精度完全可以满足要求。

教材习题同步解析一放大器的传递函数为:G (s )=1+Ts K测得其频率响应,当ω=1rad/s 时,稳态输出与输入信号的幅值比为12/2,稳态输出与输入信号的相位差为-π/4。

求放大系数K 及时间常数T 。

解:系统稳态输出与输入信号的幅值比为A ==222172K T ω=+ 稳态输出与输入信号的相位差arctan 45T ϕω=-=-︒,即1T ω=当ω=1rad/s 时,联立以上方程得T =1,K =12放大器的传递函数为:G (s )=121s +已知单位负反馈系统的开环传递函数为5()1K G s s =+ 根据频率特性的物理意义,求闭环输入信号分别为以下信号时闭环系统的稳态输出。

(1)r (t )=sin (t +30°); (2)r (t )=2cos (2t -45°);(3)r (t )= sin (t +15°)-2cos (2t -45°); 解:该系统的闭环传递函数为65)(+=Φs s 闭环系统的幅频特性为365)(2+=ωωA闭环系统的相频特性为6arctan )(ωωϕ-=(1)输入信号的频率为1ω=,因此有37375)(=ωA ,()9.46ϕω︒=- 系统的稳态输出537()sin(20.54)37ss c t t ︒=+ (2)输入信号的频率为2ω=,因此有10()4A ω=,()18.43ϕω︒=- 系统的稳态输出10()cos(263.43)2ss c t t ︒=- (3)由题(1)和题(2)有对于输入分量1:sin (t +15°),系统的稳态输出如下5371()sin( 5.54)37ss c t t ︒=+ 对于输入分量2:-2cos (2t -45°),系统的稳态输出为102()cos(263.43)2ss c t t ︒=-- 根据线性系统的叠加定理,系统总的稳态输出为)4363.632cos(210)537.5sin(37375)(︒︒--+=t t t c ss绘出下列各传递函数对应的幅相频率特性与对数频率特性。

(1) 11.010)(±=s s G (2) G (s )=101) (3) )2(4)(+=s s s G(4) )2)(1(4)(++=s s s G (5))02.0(2.0)(++=s s s s G(6))1)(1(10)(2+++=s s s s G (7)1)(2.0+=-s e s G 解: (1)11.010)(±=s s G幅相频率特性 开环系统110()0.11G s s =-是一个不稳定的惯性环节,频率特性为110()10.1G j j ωω=-+相频特性为1()(180arctan 0.1)arctan 0.1180ϕωωω=-︒-=-︒相频特性从-180连续变化至-90。

可以判断开环奈氏曲线起点为(-10,j0)点,随的增加,A 1()逐渐减小至0,而1()逐渐增加至-90°,绘制出系统开环频率特性G 1(j )的轨迹,如图(a )虚线所示,是一个直径为10的半圆。

(a) 幅相频率特性Im-10 Re→0→→(b) 对数频率特性图 题(1)系统频率特性10 / (rad ·s-L ()/(dB ) 20()/-90 -45 0 0 [-20]/ (rad ·s-101001[0]-180135 1()G j ω2()G j ω2()1()而开环系统210()0.11G s s =+则是一个典型的惯性环节,其幅相频率特性G 2(j)如图(a )实线所示。

对数频率特性 开环系统110()0.11G s s =-与210()0.11G s s =+的对数幅频特性完全相同,仅对数相频特性不同,如图(b )所示。

(2)G (s )=101)幅相频率特性开环系统G 1(s )=10-1)的频率特性为1()10(0.11)G j j ωω=-,其相频特性为1()180arctan 0.1ϕωω=︒-相频特性从180连续变化至90。

其开环频率特性G 1(j)的轨迹,如图(a )虚线所示。

而开环系统G 2(s )=10+1) 则是一个典型的一阶微分环节,其幅相频率特性G 2(j )如图(a )实线所示。

对数频率特性同题(1),二者的对数幅频特性完全相同,仅对数相频特性不同,如图(b )所示。

(3))2(4)(+=s s s G(a) 幅相频率特性Im-10Re→0 →→(b) 对数频率特性图 题(2)系统频率特性10/ (rad ·s-L ()/(dB ) 20()/90 45 00 [-20]/ (rad ·s-10 1001 [0]180135 1()G j ω2()G j ω2()1()→系统开环传递函数的时间常数表达式为2()(0.51)G s s s =+幅相频率特性1)系统为Ⅰ型系统,A (0)=∞,(0)=-90º,低频特性始于平行于负虚轴的无穷远处。

低频渐近线如下确定:将频率特性表达式分母有理化为22222(10.5)2()(0.51)(10.5)(10.5)(10.25)1210.25(10.25)j j j G j j j j j j ωωωωωωωωωωωωω----===++-+-=-++则低频渐近线为20001lim Re[()]lim ()lim110.25x G j R ωωωσωωω+++→→→-====-+ 同时可知,频率特性实部与虚部均<0,故曲线只在第三象限。

2)n -m =2,则()=-180,幅相特性沿负实轴进入坐标原点。

3)此系统无开环零点,因此在由0增大到过程中,特性的相位单调连续减小,从-90º连续变化到-180。

奈氏曲线是平滑的曲线,从低频段开始幅值逐渐减小,沿顺时针方向连续变化最后终于原点。

系统的幅相频率特性G (j )见图(a )。

对数频率特性(a) 幅相频率特性Im-1Re→→(b) 对数频率特性图 题(3)系统频率特性/ (rad ·s-L ()/(dB )20()/-90[-20]/ (rad ·s-1102-180-135 ()G j ω[-40]1 101)可知系统包含有放大、积分、一阶惯性环节,转折频率为 T =2 rad ·s-1。

低频段斜率为-20dB/dec ,低频段表达式为L (ω)=20lg2-20lg ω,并通过点L (2)= 0dB 。

经过转折频率T 后斜率为-40dB/dec 。

2)系统的相频特性为积分环节(-90º)与惯性环节(0º ~-90º)相频特性的叠加,为()90arctan 0.5ϕωω=-︒-转折频率处相位为(2)=-135°,对数相频特性曲线对应于该点斜对称。

绘制开环伯德图L ()、(),如图(b )所示。

(4))2)(1(4)(++=s s s G系统开环传递函数的时间常数表达式为2()(1)(0.51)G s s s =++幅相频率特性1)系统为0型系统,A (0)=2,(0)= 0º,开环奈氏曲线起点为(2,j0)点;n -m =2,则()=-180。

随的增加,A ()逐渐单调连续减小至0,而()滞后逐渐增加至-180°,幅相特性沿负实轴进入坐标原点。

2)将频率特性表达式分母有理化为222222222(1)(10.5)()(1)(10.5)(1)(10.25)2(10.5)3(1)(10.25)(1)(10.25)j j G j j j jωωωωωωωωωωωωω--==++++-=-++++频率特性虚部均<0,故曲线在第三、第四象限。

3)相位有()=-90,因此与虚轴的交点为22222(10.5)Re[()]0(1)(10.25)2/,Im[()]0.94G j rad s G j ωωωωωωω-==++==此系统无开环零点,因此在由0增大到过程中,奈氏曲线是平滑的曲线,G (j )见图(a )。

相关文档
最新文档