局部放电测试方法

合集下载

局放试验

局放试验
一、超声波局部放电测量原理
超声波是一种振荡频率高于20kHz的声波,超 声波的波长较短,可以在气体、液体和固体等 媒介中传播,传播的方向性较强、故能量较集 中,因此通过超声波测试技术可以测定局部放 电的位置和放电程度。
超声波局部放电测量特点: 1. 可以较准确的测定局部放电的位置。 2. 测量简便。可在被测设备外壳任意安装传感器。 3. 不受电源信号的干扰。
如采用示波器观察脉冲,应先调节宽带放大器的增益, 得到一个高度为L0mm的脉冲,然后计算单位刻度的放电量 q0/ L 0,此时L0= q0。试品册得的视在放电量q= UN.Cq (L/ L0)若放大器变档则:
q= UN.Cq(L/ L0)×10(N1-N2) 示波器读数 L:测量信号高度 ;L0:校正信号高度 N1:测量档位 N2:校 正档位
低压施加3相倍频电源。
试验方法:测量A相,B、C分别接地,其他两相同 理。判定时取最大值。试验时铁心接地。
第六节 局部放电波形图谱识别 1.内部放电:
单气隙
多气隙
2.表面放电:
3.电晕放电: 4.干扰放电波形:
接触不良
可控硅元件动作
磁饱和产生的谐振波形
调制或非调制的干扰波形
荧光灯产生的干扰
第七节 局部放电试验应注意的事项:
三、放电量与各参数间的关系 一个脉冲真实放电量qr,Ug、Ur等参数在实际试品中 是不可知的,同时绝缘缺陷各不相同,故真实放电量 是不可以直接测量的。 局部放电将引起绝缘上所施加电压的变化,产生一个 ΔU,同时也引起绝缘介质中电荷q的转移,我们称之为视 在放电量。
第二节 局部放电测量方法
局部放电会产生各种物理、化学变化,如发生 电荷转移交换,发射电磁波、声波、发热、发 光、产生分解物等,所以有很多测量局部放电 的方法,一般分为电测法和非电测法。

局部放电测试方法

局部放电测试方法

局部放电测试方法局部放电测试方法随着电力设备电压等级的提高,人们对电力设备运行可靠性提出了更加苛刻的要求。

我国近年来110kV以上的大型变压器事故中50%是属正常运行下发生匝间或段间短路造成突发事故,原因也是局部放电所致。

局部放电检测作为一种非破坏性试验,越来越得到人们的重视。

虽然局部放电一般不会引起绝缘的穿透性击穿,但可以导致电介质(特别是有机电介质)的局部损坏。

若局部放电长期存在,在一定条件下会导致绝缘劣化甚至击穿。

对电力设备进行局部放电试验,不但能够了解设备的绝缘状况,还能及时发现许多有关制造与安装方面的问题,确定绝缘故障的原因及其严重程度。

因此,高压绝缘设备都把局部放电的测量列为检查产品质量的重要指标,产品不但在出厂时要做局部放电试验,而且在投入运行之后还要经常进行测量。

对电力设备进行局部放电测试是一项重要预防性试验。

根据局部放电产生的各种物理、化学现象,如电荷的交换,发射电磁波、声波、发热、光、产生分解物等,可以有很多测量局部放电的方法。

总的来说可分为电测法和非电测法两大类,电测法包括脉冲电流法、无线电干扰法、介质损耗分析法等,非电测法包括声测法、光测法、化学检测法和红外热测法等。

一、电测法局部放电最直接的现象即引起电极间的电荷移动。

每一次局部放电都伴有一定数量的电荷通过电介质,引起试样外部电极上的电压变化。

另外,每次放电过程持续时间很短,在气隙中一次放电过程在10 ns量级;在油隙中一次放电时间也只有1μs。

根据Maxwell电磁理论,如此短持续时间的放电脉冲会产生高频的电磁信号向外辐射。

局部放电电检测法即是基于这两个原理。

常见的检测方法有脉冲电流法、无线电干扰法、介质损耗分析法等。

1.脉冲电流法脉冲电流法是一种应用最为广泛的局部放电测试方法。

脉冲电流法的基本测量回路见图3-5 。

图中C x代表试品电容,Z m(Z'm)代表测量阻抗,C k代表耦合电容,它的作用是为C x与Z m之间提供一个低阻抗的通道。

中压交联电缆局部放电试验方法和问题分析

中压交联电缆局部放电试验方法和问题分析

中压交联电缆局部放电试验方法和问题分析中压交联电缆是亨通力缆公司的主导产品,电缆品质的好坏直接影响公司的荣誉。

作为检验人员,一定要要掌握正确的试验方法。

亨通力缆公司为了保证中压电缆的出厂质量,制定了严格的质量考核体系,其中局部放电测试就是最重要的一环。

下面介绍一些常见的试验方法:一、电缆终端和端头处理在进行中压电缆局部放电试验时,电缆两端的外屏蔽层需要剥除一定的长度。

剥去外屏蔽的终点处是电场强度最集中的地方。

如果端头处理不好,会造成端部放电和多次击穿。

这样,如果将击穿的长度剪去,再重复做试验,会造成经济损失。

所以使用油杯终端应注意一下几点:1.电缆外屏蔽层剥去的长度:10kV电缆为10-15cm左右,30kV电缆35-40cm左右;电缆外屏蔽层浸入变压器油中的长度:10kV电缆3-4cm左右,35kV电缆15-20cm 左右。

2.外屏蔽层剥切处必须整齐,不得有毛刺,绝缘表面必须干净,铜带应在近端良好的接地。

内容来自:3.剥切好的绝缘表面不得污染。

4.要保持变压器油的清洁,特别是做35kV电缆耐压试验时,要求变压器油非常纯洁、干燥,不然的话,会打坏油杯或者造成电缆端部击穿。

在做试验之前,可将变压器油放置于烘箱内,60℃下烘30-60min取出,在未完全冷却前使用二、背景噪声大中电易展网在做中压电缆耐压试验时,一定要搞清楚背景噪声偏大的原因。

背景噪声分为空载背景噪声和负载背景噪声,一般情况下负载背景噪声大于空载背景噪声。

负载噪声主要来源于机器本身和外界干扰信号。

外界干扰信号主要通过空间耦合、电源回路传导入地线后再进入系统。

要降低背景噪声,在做试验时还要注意一下几个方面:信息来源:1.局放设备的接地方式:必须遵循单点接地的原则,不要循环接地。

2.试验室附近的照明设施和通风设备,都不能借用局放试验的电源线,如果有的话,在做试验时应关闭。

3.在做试验时,应检查设备中的信号线和接地线是否接触良好。

三、电缆局部放电量超标:可根据放电图形从五个方面来分析原因1. 检查空载升压局放量是否偏大:空载升压局放偏大的原因,主要是设备高压绝缘表面受到污染或受潮,均压环或高压连接处有接触不良现象。

变压器局部放电测试方法-精品

变压器局部放电测试方法-精品

第6章变压器局部放电测试方法6.1 放电脉冲在线圈中的衰减特性对于局部放电脉冲信号,不能把变压器线圈看作一个集中参数电路,而应看为一分布参 数电路,并可用图 6.1的简化等值回路来表示,图中。

为对地电容,K 为纵向电容,L 为导线 寄生电感,A 为线圈高压端,。

为线圈中性点。

图6.3图6.2的简化等值回路如果变压器中某一点发生局部放电时,在放电的瞬间,可以忽略寄生电感L 并用图6.2来研究其起始电压分布,图中Q .为放电气隙电容;。

〃为与气隙串联部分绝缘介质的等效电容,人为气隙两端电压。

当变压器高压线圈首端工频电压升到匕(瞬时值)时,P 点处的工频电压为(工频电压沿线圈为直线分布),此时邻近P 点的绝缘内部发生放电。

可以推出气 隙两端的引燃电压心(瞬时值)为〃—包xkF1气隙放电终止后,其两端的熄灭电压为乙(瞬时值)。

在此放电过程中,气隙两端的电压变化%-盯,由此而引起尸点的电压变化\u p 为(6.2)式中可上图6.3来计算,图中的C,〃为图6.2中P 与A 之间〃?段的入口电容,。

“为「与。

(6.1)图6.2气隙放电时的等值回路△%之间〃段的入口电容,C P =C m +C n o在图 6.2中,由P 点的电压变化p 而引起机段的电位分布可计算如下:在电容K/上的电荷。

为八K 〃2=—(即1nxax在电容Cdx 上的电荷等于电荷。

在了方向的增量dQ,^dQ=Cclx-\u ntx ,所以Q=Jc △"心公(6.3)(6.4)由(63)、(6.4)得K^f'=C l^dx(6.5)(6.5)对x 微分得(6.6)其通解解为(6.7)式中a=JC/K 。

(6.4)的特解为:(1)由于A 点开路,当工=/时,Q=K 也”=0,即四也=0,所以dx dxA-—Be"=0(6.8)(2)当X=M )时,即(6.9)因此可以解得△〃厂△u /㈤且B= ---------------------------/~0)+.4~0)(6.10)将A 、3代入(6.7)可得cha(\-x)/八△、二刈西匚M(%"口(6.11)同样,由P 点的电压变化△〃〃而引起〃段的电位分布△〃而可计算如下:对于〃段,(6.7)仍然正确,即加几.=4^+&一《)在中性点开路的情况下,当x=x0时,当工=0时,也二=(),同理可计算出dx八A chax由图6.3可知,气隙Q 放电时所中和的实际电荷4为q=©+£^JC#Cp(0Wo)(6.12))△((6.13)图6.3'|>P 点的视在放电电荷Q 为根据以上分析可知:变压器内部某点发生放电时,其对应线圈部位上所产生的脉冲电压将 沿线圈两端进行衰减性传播,沿线圈的起始电位分布与2的关系可用(6.22)、(6.23)表示。

电力变压器局部放电测试方法

电力变压器局部放电测试方法

电力变压器局部放电试验方法一、电力变压器 通常有两种试验方法一种是如图(1)所示的接法,它主要用于试验绕组间的绝缘。

为提高测试灵敏度,耦合电容Ck 应比被试变压器初、次级间电容大得多。

这种试验不是用于检查各个绕组,每个绕组的两端就可连接在一起,铁芯和外壳应和低压绕组一起牢固接地。

图(2)的电路可对变压器进行自激励试验,高压套管上的轴头与高压端的电容可以作为耦合电前现时简化试验电路,输入单元初级A-B 接在套管抽头与接地法蓝之间。

不过,需排除高压管本身放电的可能性。

如无套管抽头可用,则仍需外接耦合电容Ck 。

图(1)测试变压器初、次级间绝缘的试验电路图(2)自激励条件下变压器局部放电试验电路输入单元至放大器至定标至放大器至定标IEC76-3(1980)规定校正方波发生器的前沿小于0.1μs,注入电容Cq为50pf。

校正方波发生器经匹配电缆将匹配接线盒放在尽量靠近测量的高压端上经Cq注入。

对于试验时的加压时间程序,IEC的规定见图(3)5 秒5分30 秒U2图(3)变压器试验的加压时间程序其中线和中性端间试验电压用Um/3表示如下:U1=3Um/3= UmU2=1.5Um/3 = Um此时规定放电量q=500pc=1.3Um/3此时规定放电量q=300pc变电器局部放电测试中应注意以下一些问题:1)IEC规定视在电荷(或放电量)主要根据最高的稳定状态的重复脉冲读出。

偶然的高脉冲可不予理会。

2)对不同线端的测量通道都要各自进行校正。

3)背景噪音电平应低于规定的允许放电量q的一半。

4)对高大的变压器测试时,方波发生器应通过有电阻匹配的同轴电缆,并将Cq靠近试品线端用JEE-1时应将线盒靠近试品测量端,可减小测量误差。

5)变压器绕组是具有分布参数的试品,和旋转电机一样。

变压器绕组中产生的局部放电脉冲波先是在检测端出现直达波,然后传输波一面传输一面到达。

α大的饼式绕组和α小的园筒式绕组的起始电位分布和传输波的衰减情况是不一样的。

第三章 局部放电试验

第三章 局部放电试验

第三章局部放电试验随着电力系统电压的不断提高,电气设备在工作电压下的局部放电是使绝缘老化并发展到击穿的重要原因。

局部放电试验是检测绝缘内部局部放电的极好的方法。

因此,局部放电试验已被定为高压设备绝缘试验的重要项目之一。

第一节局部放电特征及原理一、局部放电的特征局部放电是指发生在电极之间但并未贯穿电极的放电,它是由于设备绝缘内部存在弱点或生产过程中造成的缺陷,在高电场强度作用下发生重复击穿和熄灭的现象。

它表现为绝缘内气体的击穿、小范围内固体或液体介质的局部击穿或金属表面的边缘及尖角部位场强集中引起局部击穿放电等。

这种放电的能量是很小的,所以它的短时存在并不影响到电气设备的绝缘强度。

但若电气设备绝缘在运行电压下不断出现局部放电,这些微弱的放电将产生累积效应会使绝缘的介电性能逐渐劣化并使局部缺陷扩大,最后导致整个绝缘击穿。

局部放电是一种复杂的物理过程,除了伴随着电荷的转移和电能的损耗之外,还会产生电磁辐射、超声波、光、热以及新的生成物等。

从电性方面分析,产生放电时,在放电处有电荷交换、有电磁波辐射、有能量损耗。

最明显的是反映到试品施加电压的两端,有微弱的脉冲电压出现。

当试品中的气隙放电时,相当于试品失去电荷q,并使其端电压突然下降△U,这个一般只有微伏级的电源脉冲叠加在千伏级的外施电压上。

所有局部放电测试设备的工作原理,就是将这种电压脉冲检测出来。

其中电荷q称为视在放电量。

二、局部放电的机理1.局部放电的发生机理局部放电的发生机理可以用三电容模型来描述图3-1 电极组合的电气等值回路描述局部放电几个主要参量。

(1)视在放电电荷q。

它是指将该电荷瞬时注入试品两端时,引起试品两端电压的瞬时变化量与局部放电本身所引起的电压瞬时变化量相等的电荷量,视在电荷一般用pC(皮库)来表示。

(2)局部放电的试验电压。

它是指在规定的试验程序中施加的规定电压,在此电压下,试品不呈现超过规定量值的局部放电。

(3)局部放电能量w。

电缆局部放电试验学习资料分解

电缆局部放电试验学习资料分解

电缆局部放电试验学习资料保定华电电气有限公司电缆局部放电试验学习资料目录一、电工原理的有关基本概念1.什么叫交流电?2.什么叫正弦电流和电压及其有效值?3.放电脉冲信号基本特征4.什么叫容抗、感抗?5.什么叫电场强度、击穿场强?二、局部放电的基本概念1. 什么叫局部放电2. 局部放电的基本名词概念3. 局部放电出现的部位4. 局部放电产生的危害5. 局部放电产生的过程三、局部放电测试方法1.局部放电测试原理2. 局部放电测试设备3.局部放电测量步骤4.产品标准对局部放电考核指标要求的变化5. 典型的放电谱图一、电工原理的有关基本概念 1.什么叫交流电?在实际电路中(如仪器设备的工作回路、电力传输线路)电流、电压都随着时间而变动,有时不仅大小随时间在变动,而且方向也可能不断反复交替地变动着。

工程上所常遇到的变动电流,其方向和大小均随时间作周期性变化,这种电流称为周期电流。

图1中的曲线就表示一种周期电流,通常把这种曲线称为波形。

图1:周期电流i 的波形周期电流经过一定时间T ,电流的变动就完成一个循环,故T 称为周期;周期以秒(s )为单位。

单位时间内电流变动所完成的循环(或周期)数称为频率,用字母f 表示。

根据这个定义,频率恰好是周期的倒数,即Tf 1频率的单位为1/秒,又称为赫兹(Hz ),简称赫。

大小和方向都随时间变动,而在一定周期内平均值等于零的周期电流称为交变电流,简称交流。

当然如果上述是电压波形时我们称为交变电压,也简称交流电。

变动电流或电压在任何一个时刻的值叫它们的瞬时值,瞬时值是时间的函数。

在交流电路中,欧姆定律仍然适用。

2.什么叫正弦电流和电压及其有效值?电力工程中所用的交变电流和电压是按照正弦规律变动的,换句话説,这些交变量是时间的正弦函数,波形如图2。

例如交变电流的数学表达式为:i=I m sin(ωt+ψ) 式中i 是电流的瞬时值。

图2:正弦波形周期电流、电压的瞬时值都随时间而变,计算时很不方便。

气体局部放电实验报告(3篇)

气体局部放电实验报告(3篇)

第1篇一、实验目的本实验旨在研究气体绝缘设备中局部放电的特性,通过实验观察和分析不同气体介质中局部放电的现象,探究局部放电对气体绝缘性能的影响,为提高气体绝缘设备的安全性和可靠性提供理论依据。

二、实验原理局部放电是指在高压电场作用下,气体介质中出现的电击穿现象。

当电场强度超过气体的击穿场强时,气体介质中的分子会发生电离,产生自由电子和正离子,形成导电通道,从而发生局部放电。

局部放电会对气体绝缘设备的绝缘性能造成损害,甚至引发设备故障。

本实验采用直流高压电源对气体介质施加电场,通过测量放电电流、电压等参数,分析不同气体介质中局部放电的特性。

三、实验设备1. 直流高压电源:输出电压0~30kV,输出电流0~1mA。

2. 电流探头:测量范围0~10mA。

3. 电压探头:测量范围0~30kV。

4. 气体介质:空气、氮气、SF6等。

5. 实验室气瓶:用于存储实验用气体。

6. 电压表、电流表、示波器等测量仪器。

四、实验步骤1. 准备实验用气体:将空气、氮气、SF6等气体分别充入实验室气瓶中,确保气体纯净、无杂质。

2. 安装实验设备:将直流高压电源、电流探头、电压探头等设备连接好,确保连接牢固、接触良好。

3. 选择实验气体:依次选择空气、氮气、SF6等气体作为实验介质,分别进行实验。

4. 施加电场:调整直流高压电源输出电压,使气体介质中的电场强度逐渐增加。

5. 观察放电现象:通过示波器观察放电电流、电压波形,记录放电开始、结束时间,分析放电特性。

6. 数据处理:将实验数据整理成表格,分析不同气体介质中局部放电的特性。

五、实验结果与分析1. 空气介质实验结果显示,空气介质在电场强度较低时,不易发生局部放电;随着电场强度的增加,放电电流、电压逐渐增大,放电频率逐渐降低。

2. 氮气介质实验结果显示,氮气介质在电场强度较低时,局部放电现象与空气介质相似;随着电场强度的增加,放电电流、电压逐渐增大,放电频率逐渐降低。

3. SF6气体介质实验结果显示,SF6气体介质在电场强度较低时,不易发生局部放电;随着电场强度的增加,放电电流、电压逐渐增大,放电频率逐渐降低。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

局部放电测试方法随着电力设备电压等级的提高,人们对电力设备运行可靠性提出了更加苛刻的要求。

我国近年来110kV以上的大型变压器事故中50%是属正常运行下发生匝间或段间短路造成突发事故,原因也是局部放电所致。

局部放电检测作为一种非破坏性试验,越来越得到人们的重视。

虽然局部放电一般不会引起绝缘的穿透性击穿,但可以导致电介质(特别是有机电介质)的局部损坏。

若局部放电长期存在,在一定条件下会导致绝缘劣化甚至击穿。

对电力设备进行局部放电试验,不但能够了解设备的绝缘状况,还能及时发现许多有关制造与安装方面的问题,确定绝缘故障的原因及其严重程度。

因此,高压绝缘设备都把局部放电的测量列为检查产品质量的重要指标,产品不但在出厂时要做局部放电试验,而且在投入运行之后还要经常进行测量。

对电力设备进行局部放电测试是一项重要预防性试验。

根据局部放电产生的各种物理、化学现象,如电荷的交换,发射电磁波、声波、发热、光、产生分解物等,可以有很多测量局部放电的方法。

总的来说可分为电测法和非电测法两大类,电测法包括脉冲电流法、无线电干扰法、介质损耗分析法等,非电测法包括声测法、光测法、化学检测法和红外热测法等。

一、电测法局部放电最直接的现象即引起电极间的电荷移动。

每一次局部放电都伴有一定数量的电荷通过电介质,引起试样外部电极上的电压变化。

另外,每次放电过程持续时间很短,在气隙中一次放电过程在10 ns量级;在油隙中一次放电时间也只有1μs。

根据Maxwell电磁理论,如此短持续时间的放电脉冲会产生高频的电磁信号向外辐射。

局部放电电检测法即是基于这两个原理。

常见的检测方法有脉冲电流法、无线电干扰法、介质损耗分析法等。

1.脉冲电流法脉冲电流法是一种应用最为广泛的局部放电测试方法。

脉冲电流法的基本测量回路见图3-5 。

图中Cx 代表试品电容,Zm(Z'm)代表测量阻抗,C k代表耦合电容,它的作用是为C x与Z m之间提供一个低阻抗的通道。

Z代表接在电源与测量回路间的低通滤波器,Z可以让工频电压作用到试品上,但阻止被测的高频脉冲或电源中的高频分量通过。

图3-5(a)为并联测量回路,试验电压U经Z施加于试品C x,测量回路由C k与Z m串联而成,并与C x并联,因此称为并联测量回路。

试品上的局部放电脉冲经C k耦合到Z m上,经放大器A送到测量仪器M。

这种测量回路适合于试品一端接地的情况,在实际工作中应用较多。

图3-5(b)为串联测量回路,测量阻抗Z m串联接在试品C x低压端与地之间,并经由C k形成放电回路。

因此,试品的低压端必须与地绝缘。

图3-5(c)为桥式测量回路,又称平衡测量回路。

试品C x与耦合电容C k均与地绝缘,测量阻抗Z m与Z m分别接在C x与C k的低压端与地之间。

测量仪器M测量Z m与Z m’上的电压差。

2.无线电干扰电压法(RIV )无线电干扰电压法,包括射频检测法,最早可追溯到1925年,Schwarger 发现电晕放电会发射电磁波,通过无线电干扰电压表可以检测到局部放电的发生。

国外目前仍有采用无线电干扰电压表检测局部放电的运用,在国内,常用射频传感器检测放电,故又叫射频检测法。

较常用射频传感器有电容传感器、Rogowski 线圈电流传感器和射频天线传感器等。

RIV 方法能定性检测局部放电是否发生,甚至可以根据电磁信号的强弱对电机线棒和没有屏蔽层的长电缆进行局部放电定位;采用Rogowski 线圈传感器也能定量检测放电强度,且测试频带较宽(1~30MHz )。

3.介质损耗分析法(DLA )局部放电对绝缘材料的破坏作用是与局部放电消耗的能量直接相关的,因此对放电消耗功率的测量很早就引起人们的重视。

在大多数绝缘结构中,随着电压的升高,绝缘中气隙(或气泡)的数目将增加。

此外局部放电的现象将导致介质的损坏,从而使得tg δ大大增加。

因此可以通过测量tg δ的值来测量局部放电能量从而判断绝缘材料和结构的性能情况。

介质损耗分析法特别适用于测量低气压中存在的辉光或者亚辉光放电。

由于辉光放电不产生放电脉冲信号,而亚辉光放电的脉冲上升时间太长,普通的脉冲电流法检测装置中难以检测出来。

但这种放电消耗的能量很大,使得∆tg δ很大,故只有采用电桥法检测∆tg δ才能判断这种放电的状态和带来的危害。

但是,DLA 方法只能定性的测量局部放电是否发生,基本不能检测局部放电量的大小,这限制了DLA 方法的运用。

二、非电检测法局部放电发生时,常伴有光、声、热等现象的发生,对此,局部放电检测技术中也相应出现了光测法、声测法、红外热测法等非电量检测方法。

较之电检测法,非电量检测方法具有抗电磁干扰能力强、与试样电容无关等优点。

1.超声波法测试局部放电利用测超声波检测技术来测定局部放电的位置及放电程度,这种方法较简单,不受环境条件限制。

但灵敏度较低,不能直接定量。

在进行局部放电测量中当发现变压器有大于5000pc 的故障放电,超声波声测量方法常用于放电部位确定及配合电测法的补充手段。

但声测法有它独特的优点,即它可在试品外壳表面不带电的任意部位安置传感器,可较准确地测定放电位置,且接收的信号与系统电源没有电的联系,不会受到电源系统的电信号的干扰;因此进行局部放电测量时,以电测法和声测法同时运用。

两种方法的优点互补,再配合一些信号处理分析手段,则可得到很好的测量效果。

局部放电测量通常选用密封结构的超声传感器,其结构原理见图3-6。

它是直接把压电陶瓷安装在金属外壳之上,带动外壳一起振动,并在金属壳里填充树脂作为密封。

'm 图4-10 测量局部放电的基本回路图3-5测量局部放电的基本回路图3-6 超声传感器的原理结构图1-金属外壳;2-陶瓷振动子;3-底座;4-填充树脂;5-引出脚用超声探头获得由局部放电引起的超声信号,并用数字式局部放电仪或波形记录仪记录波形作定位测试。

声测法原理框图如图3-7所示。

压电超声传感器阻抗变换前置放大750欧同轴电缆滤波放大器数字局部放电测试仪图3-7 声测法原理框图如将1-4个声探头的信号同时记录下并在屏上显示所测到的波形,对局部放电作定位测量很有利。

当与电测法联合测量时,有助于判断所测到的信号是否为内部放电。

当仪器对变压器进行超声测量时,屏上按所探测的声通道数在屏上同时显示1-4路波形,测量人员移动光标到认为是放电声信号的位置,程序即自行计算出放电点距探头的位置。

若为3个以上的测量点,则由给定的各探头光标计算出放电点的光标位置。

ΔΔ图3-8 超声测量信号波形用于互感器等试品时,在靠近高压部分则用光纤连接,有时装设1-2个传感器即可,前置放大器仅用一个。

当设备内部有故障放电时(几千到几万皮库),这时利用电信号作为仪器触发信号,也即以电信号作为时间参考零点,然后以1-3个通道采集声信号,仪器A/D采样频率可选在500kHz或1MHz并移动传感器位置,使能有效地测到超声信号,见图3-8。

测得电信号与声信号的时间差Δt就可计算出放电点与传感器的位置的距离,s=vΔt,一般计算取v=1.42mm/μs。

2.光检测法对于绝缘内部的局部放电,只有透明介质才宜用光检测法,例如聚乙烯绝缘电缆芯通过水介质扫描用光电倍增管观察。

但该方法灵敏度较低,局限性大,较适宜于检测暴露在外表面的电晕放电。

利用视觉检测局部放电,要在眼睛对于黑暗习惯了以后,在黑暗的环境中进行。

这时,为了增强视力和对高压保持一定间隔距离,使用大倍率的望远镜是很有效的。

为了记录发生放电的位置,采用长时间曝光的照相机进行拍照是有效的。

而且,还有在预先想到可能发生放电的位置,先放好感光胶片,通过直接感光进行放电的记录。

3.热检测法由于局部放电在放电点会发热,当故障较严重时,局部热效应是明显的,可用预先埋入的热电偶来测量各点温升,从而确定局部放电部位。

这种方法既不灵敏也不能定量,因而在现场测量中一般不用这种方法。

4.放电产物分析法油纸绝缘材料在局部放电作用下会分解产生各种气体,分析局部放电时产生的化学生成物,例如用色谱分析仪测量高压电气设备的油中,由于放电产生的微量可燃性气体。

从而推断局部放电的程度,从而判断故障类型,已在生产实际中广泛应用,并取得较好的效果。

各种气体中对判断故障有价值的气体有甲烷(CH4)、乙烷(C2H6)、乙烯(C4H4)、乙炔(C2H2)、氢(H2)、一氧化碳(CO)、二氧化碳(CO2)等。

绝缘中存在局部放电时,当放电较小并在故障点引起的温度高于正常温度不多时,由油裂解的产物主要是甲烷和氧;当局部放电故障扩大,形成局部爬电或火花、电弧放电时,会引起局部高温,产生乙炔、乙烯和一氧化碳、二氧化碳。

如利用四种特征气体的三比值法,可用来判断变压器故障性质,但实际上对电力设备进行绝缘故障判断时,仅根据一次测量数据往往是不够的,宜利用色谱分析,观察各有害气体随时间的增量。

并和局部放电超声测量和电测法数据作比较,进行综合判断,才能更加有效地判断故障性质。

当故障涉及到固体绝缘时,会引起一氧化碳和二氧化碳含量的明显增长。

但根据现有统计资料,固体绝缘的正常老化过程与故障情况下劣化分解,表现在油中一氧化碳的含量上,一般情况下没有严格的界限;二氧化碳含量的规律更不明显。

因此,在考察这两种气体含量时更应注意结合具体变压器的结构特点,如油保护方式、运行温度、负荷情况、运行历史等情况加以分析,以尽可能得出正确的结论。

相关文档
最新文档