【压轴题】初二数学下期中试卷带答案

合集下载

【压轴题】八年级数学下期中试卷(附答案)

【压轴题】八年级数学下期中试卷(附答案)
(2) AB 表示的实际意义是 ;
(3)小颖本次从学校回家的整个过程中,走的路程是多少米? (4)买到彩笔后,小颖从文具用品店回到家步行的速度是多少米/分?
24.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.
已知:在 Rt ABC 中, BAC 90,斜边 BC 5 ,直角边 AB 3,Rt ABC 的准外心 P 在 AC 边上,试求 PA 的长. 25.如图,直线 L:y=﹣ 1 x+2 与 x 轴、y 轴分别交于 A、B 两点,在 y 轴上有一点 C(0,
10.C
解析:C 【解析】 【分析】 设绳索长为 x 尺,根据勾股定理列出方程解答即可. 【详解】 解:设绳索长为 x 尺,可列方程为(x-3)2+82=x2, 故选:C. 【点睛】 本题考查了勾股定理的应用,找准等量关系,正确列出一元二次方程是解题的关键.
11.C
解析:C 【解析】 【分析】 根据菱形的性质,四条边相等且对角线互相平分且互相垂直,由勾股定理得出 BO 的长, 进而得其对角线 BD 的长,再根据菱形的面积等于对角线乘积的一半计算即可. 【详解】 解:如图:四边形 ABCD 是菱形,对角线 AC 与 BD 相交于点 O,
三、解答题
21.如图,正方形网格中的每个小正方形边长都是 l,每个小格的顶点叫做格点.以格点为 顶点分别按下列要求画图:
(1)画出一个平行四边形,使其面积为 6; (2)画出一个菱形,使其面积为 4. (3)画出一个正方形,使其面积为 5. 22.在如图所示的正方形网格中,每个小正方形的边长都是 1,正方形的顶点称为格
42 x2 (4 1)2 (x 1)2 , 解得 x 3 ,
AB 42 32 5 , 答:梯子 AB 的长为 5m . 故选: A .

【压轴题】初二数学下期中试卷(及答案)

【压轴题】初二数学下期中试卷(及答案)
平均数为: (9.5 9.6 9.7 9.7 9.8 10.110.2) 7 9.8 m ,
故选:B. 【点睛】
考查中位数、算术平均数的计算方法,将一组数据从小到大排列后处在中间位置的一个数 或两个数的平均数就是这组数据的中位数,平均数则是反映一组数据的集中水平.
2.C
解析:C 【解析】 解:A.小丽从家到达公园共用时间 20 分钟,正确; B.公园离小丽家的距离为 2000 米,正确; C.小丽在便利店时间为 15﹣10=5 分钟,错误; D.便利店离小丽家的距离为 1000 米,正确. 故选 C.
3.如图,把一张矩形纸片 ABCD 沿 EF 折叠后,点 A 落在 CD 边上的点 A′处,点 B 落在
点 B′处,若∠2=40°,则图中∠1 的度数为( )
A.115°
B.120°
C.130°
D.140°
4.如图,函数 y=2x 和 y=ax+4 的图象相交于 A(m,3),则不等式 2x <ax+4 的解集为( )
, 0.82 =
, (3)2 =

2 3
2

(2)根据计算结果,回答: a2 一定等于 a 吗?你发现其中的规律了吗?并请你把得到
的规律描述出来?
(3)利用你总结的规律,计算: ( 3.15)2
15.当直线 y=kx+b 与直线 y=2x-2 平行,且经过点(3,2)时,则直线 y=kx+b 为______. 16.已知菱形 ABCD 的边长为 5cm,对角线 AC=6cm,则其面积为_____cm2. 17.在矩形 ABCD 中,对角线 AC、BD 交于点 O,AB=1,∠AOB=60°,则 AD= ________.
()

【压轴卷】初二数学下期中试卷含答案

【压轴卷】初二数学下期中试卷含答案

【压轴卷】初二数学下期中试卷含答案一、选择题1.如图,数轴上点A ,B 表示的数分别是1,2,过点B 作PQ ⊥AB ,以点B 为圆心,AB 长为半径画弧,交PQ 于点C ,以原点O 为圆心,OC 长为半径画弧,交数轴于点M ,则点M 表示的数是( )A .3B .5C .6D .72.下列条件中,不能判断△ABC 为直角三角形的是A .21a =,22b =,23c =B .a :b :c=3:4:5C .∠A+∠B=∠CD .∠A :∠B :∠C=3:4:53.把式子1a a-号外面的因式移到根号内,结果是( ) A .aB .a -C .a -D .a --4.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为,CE 且D 点落在对角线'D 处.若3,4,AB AD ==则ED 的长为( )A .32B .3C .1D .435.下列计算正确的是( ) A .a 2+a 3=a 5 B .3221-= C .(x 2)3=x 5 D .m 5÷m 3=m 2 6.若一次函数y =(k -3)x -k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k <3B .k <0C .k >3D .0<k <37.如图,在Rt ABC ∆中,90ACB ∠=︒,CD ,CE 分别是斜边上的高和中线,30B ∠=︒,4CE =,则CD 的长为( )A .25B .4C .23D .5 8.有一个直角三角形的两边长分别为3和4,则第三边的长为( ) A .5 B .7 C .5 D .5或7 9.菱形ABCD 中,AC =10,BD =24,则该菱形的周长等于( ) A .13B .52C .120D .24010.下列各式正确的是( )A .()255-=- B .()20.50.5-=- C .()2255-=D .()20.50.5-=11.下列二次根式:34,18,,125,0.4823-,其中不能与12合并的有( ) A .1个B .2个C .3个D .4个12.小带和小路两个人开车从A 城出发匀速行驶至B 城.在整个行驶过程中,小带和小路两人车离开A 城的距离y (km)与行驶的时间t (h)之间的函数关系如图所示.有下列结论;①A ,B 两城相距300 km ;②小路的车比小带的车晚出发1 h ,却早到1 h ;③小路的车出发后2.5 h 追上小带的车;④当小带和小路的车相距50 km 时,t =54或t =154.其中正确的结论有( )A .①②③④B .①②④C .①②D .②③④二、填空题13.一组数据1,2,a 的平均数为2,另一组数据﹣1,a ,1,2,b 的唯一众数为﹣l ,则数据﹣1,a ,1,2,b 的中位数为 _________. 14.计算2(2233)+的结果等于_____.15.如图,□ABCD 的周长为16cm ,AC 、BD 相交于点O ,OE ⊥AC 交AD 于E ,则△DCE 的周长为________16.如图,在ABC ∆中,D 、E 分别为AB 、AC 的中点,点F 在DE 上,且AF CF⊥,若3AC=,5BC=,则DF=__________.17.已知实数m、n满足221121n nmn-+-+=+,则m+n=__.18.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=__________度.19.如图,在平行四边形ABCD中,P是CD边上一点,且AP和BP分别平分∠DAB和∠CBA,若AD=5,AP=8,则△APB的周长是.20.如图,若▱ABCD的周长为22 cm,AC,BD相交于点O,△AOD的周长比△AOB的周长小3 cm,则AB=________。

【压轴卷】初二数学下期中试卷(附答案)

【压轴卷】初二数学下期中试卷(附答案)

【压轴卷】初二数学下期中试卷(附答案)一、选择题1.一次函数1y ax b =+与2y bx a =+在同一坐标系中的图像可能是( )A .B .C .D .2.如图,由四个全等的直角三角形拼成的图形,设CE =a ,HG =b ,则斜边BD 的长是( )A .a+bB .a ﹣bC .222a b + D .222a b - 3.估计26的值在( ) A .2和3之间 B .3和4之间C .4和5之间D .5和6之间 4.如图,在菱形ABCD 中,AB =6,∠ABC =60°,M 为AD 中点,P 为对角线BD 上一动点,连接PA 和PM ,则PA +PM 的最小值是( )A .3B .2C .3D .6 5.平行四边形的对角线长为x 、y ,一边长为12,则x 、y 的值可能是( ) A .8和14 B .10和14 C .18和20D .10和34 6.为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使50%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说法正确的是( )①每人乘坐地铁的月均花费最集中的区域在80~100元范围内;②每人乘坐地铁的月均花费的平均数范围是40~60元范围内;③每人乘坐地铁的月均花费的中位数在60~100元范围内;④乘坐地铁的月均花费达到80元以上的人可以享受折扣.A .①②④B .①③④C .③④D .①②7.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为,CE 且D 点落在对角线'D 处.若3,4,AB AD ==则ED 的长为( )A .32B .3C .1D .438.如图,ABC V 中,CD AB ⊥于,D E 是AC 的中点.若6,5,AD DE ==则CD 的长等于( )A .5B .6C .8D .109.如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm 、3dm 、2dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点的最短路程是( )A .3B .2C .20D .2510.如图1,∠DEF =25°,将长方形纸片ABCD 沿直线EF 折叠成图2,再沿折痕GF 折叠成图3,则∠CFE 的度数为( )A .105°B .115°C .130°D .155°11.若x < 0,则2x x -的结果是( ) A .0 B .-2 C .0或-2 D .212.如图,在Rt ABC △中,90B ∠=︒,6AB =,9BC =,将ABC △折叠,使点C 与AB 的中点D 重合,折痕交AC 于点M ,交BC 于点N ,则线段BN 的长为( )A .3B .4C .5D .6二、填空题13.如图,平面直角坐标系中,点A 、B 分别是x 、y 轴上的动点,以AB 为边作边长为2的正方形ABCD ,则OC 的最大值为_____.14.若实数,,x y z ()22130x y z -++-=,则x y z ++的平方根是______.15.482x x 可取的最小正整数为________.16.计算:662)=________.17.△ABC 中,AB =13cm ,BC =10cm ,BC 边上的中线AD =12cm .则AC =______cm .18.甲、乙两人分别从A ,B 两地相向而行,匀速行进甲先出发且先到达B 地,他们之间的距离s(km)与甲出发的时间t(h)的关系如图所示,则乙由B 地到A 地用了______h .19.在△ABC 中,∠C=90°,AC=1,BC=2,则AB 边上的中线CD=______.20.如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于点E ,F ,连接PB ,PD .若AE =2,PF =8.则图中阴影部分的面积为___.三、解答题21.已知a ,b ,c 在数轴上如图:化简:()22a a b c a b c -++-++.22.计算(1)1148183273-- (2) ()()2(325)4545+-+-23.先化简,再求值:2222211()a ab b a b a b-+÷--,其中21a =+,21b =- 24.“龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD 和折线OABC 表示“龟兔赛跑”时路程与时间的关系,请你根据图中给出的信息,解决下列问题.(1)填空:折线OABC 表示赛跑过程中 的路程与时间的关系,线段OD 表示赛跑过程中 的路程与时间的关系.赛跑的全程是 米.(2)兔子在起初每分钟跑 米,乌龟每分钟爬 米.(3)乌龟用了 分钟追上了正在睡觉的兔子.(4)兔子醒来,以48千米/时的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了多少分钟?25.“五一”节假期间, 小亮一家到某度假村度假.小亮和他妈妈坐公交车先出发,他爸爸自驾车沿着相同的道路后出发,他爸爸到达度假村后,发现忘了东西在家里,于是立即返回家里取,取到东西后又马上驾车前往度假村,如图是他们离家的距离()s km 与小亮离家的时间()t h 的关系图,请根据图回答下列问题:(1)小亮和妈妈坐公交车的速度为 /km h ;爸爸自驾的速度为 /km h (2)小亮从家到度假村期间,他离家的距离()s km 与离家的时间()t h 的关系式为 ;小亮从家到度假村的路途中,当他与他爸爸相遇时,离家的距离是 km (3)当小亮和妈妈与他爸爸第2次相遇后,一直到全家会和为止,t 为多少时小亮和妈妈与爸爸相距10km ?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】可用排除法,对各选项中函数图象的特点逐一分析即可.【详解】A.由y 1的图象可知a< 0,b> 0;由y 2的图象可知a>0,b>0,两结论相矛盾,故错误;B.由y 1的图象可知a< 0,b> 0;由y 2的图象可知a=0,b<0,两结论相矛盾,故错误;C. 正确;D.由y 1的图象可知a> 0,b> 0;由y 2的图象可知a<0,b<0,两结论相矛盾,故错误; 故选:C.【点睛】此题考查一次函数的图象,熟记一次函数的图象与k 及b 值的关系是解题的关键.2.C解析:C【解析】【分析】解:设CD=x ,则DE=a-x ,求得AH=CD=AG-HG=DE-HG=a-x-b=x ,求得CD=2a b - ,得到BC=DE=22a b a b a -+-=,根据勾股定理即可得到结论. 【详解】设CD =x ,则DE =a ﹣x ,∵HG =b ,∴AH =CD =AG ﹣HG =DE ﹣HG =a ﹣x ﹣b =x ,∴x =2a b -, ∴BC =DE =a ﹣2a b -=2a b +, ∴BD 2=BC 2+CD 2=(2a b +)2+(2a b -)2=222a b +,∴BD 故选:C .【点睛】本题考查了勾股定理,全等三角形的性质,正确的识别图形,用含,a b 的式子表示各个线段是解题的关键.3.D解析:D【解析】【分析】寻找小于26的最大平方数和大于26的最小平方数即可.【详解】解:小于26的最大平方数为25,大于26的最小平方数为3656,故选择D.【点睛】本题考查了二次根式的相关定义.4.C解析:C【解析】【分析】首先连接AC ,交BD 于点O ,连接CM ,则CM 与BD 交于点P ,此时PA+PM 的值最小,由在菱形ABCD 中,AB=6,∠ABC=60°,易得△ACD 是等边三角形,BD 垂直平分AC ,继而可得CM ⊥AD ,则可求得CM 的值,继而求得PA+PM 的最小值.【详解】解:连接AC ,交BD 于点O ,连接CM ,则CM 与BD 交于点P ,此时PA+PM 的值最小,∵在菱形ABCD 中,AB=6,∠ABC=60°,∴∠ADC=∠ABC=60°,AD=CD=6,BD 垂直平分AC ,∴△ACD 是等边三角形,PA=PC ,∵M 为AD 中点,∴DM=AD=3,CM ⊥AD ,∴CM==3, ∴PA+PM=PC+PM=CM=3. 故选:C .【点睛】此题考查了最短路径问题、等边三角形的判定与性质、勾股定理以及菱形的性质.注意准确找到点P 的位置是解此题的关键. 5.C解析:C【解析】【分析】【详解】解:平行四边形的两条对角线的一半,和平行四边形的一边能够构成三角形, ∴2x 、y 2、6能组成三角形,令x>y ∴x-y<6<x+y20-18<6<20+18 故选C .【点睛】本题考查平行四边形的性质.6.C解析:C【解析】【分析】根据频数分布直方图中的数据,求得众数,平均数,中位数,即可得出结论.【详解】解:①根据频数分布直方图,可得众数为60−80元范围,故每人乘坐地铁的月均花费最集中的区域在60−80元范围内,故①不正确; ②每人乘坐地铁的月均花费的平均数=876001000=87.6=87.6元,所以每人乘坐地铁的月均花费的平均数范围是80~100元,故②错误;③每人乘坐地铁的月均花费的中位数约为80元,在60~100元范围内,故③正确; ④为了让市民享受到更多的优惠,若使50%左右的人获得折扣优惠,则乘坐地铁的月均花费达到80元以上的人可以享受折扣,故④正确.故选:C【点睛】本题主要考查了频数分布直方图,平均数以及中位数的应用,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.A解析:A【解析】【分析】首先利用勾股定理计算出AC 的长,再根据折叠可得DEC V ≌'V D EC ,设ED x =,则'=D E x ,''2=-=AD AC CD ,4AE x =-,再根据勾股定理可得方程2222(4)x x +=-,解方程即可求得结果.【详解】解:∵四边形ABCD 是长方形,3,4AB AD ==,∴3,4====AB CD AD BC ,90ABC ADC ∠=∠=︒,∴ABC V 为直角三角形,∴5AC ===,根据折叠可得:DEC V ≌'V D EC ,∴'3==CD CD ,'DE D E =,'90∠=∠=︒CD E ADC ,∴'90∠=︒AD E ,则AD'E △为直角三角形,设ED x =,则'=D E x ,''2=-=AD AC CD ,4AE x =-,在'V Rt AD E 中,由勾股定理得:222''+=AD D E AE ,即2222(4)x x +=-, 解得:32x =, 故选:A .【点睛】此题主要考查了轴对称的折叠问题,以及勾股定理的应用,关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.8.C解析:C【解析】【分析】先根据直角三角形的性质求出AC 的长,再根据勾股定理即可得出结论.【详解】解:∵ABC V 中,CD AB ⊥于D ,∴∠ADC =90°,则ADC V 为直角三角形,∵E 是AC 的中点,DE =5,∴AC =2DE =10,在Rt ADC V 中,AD =6,AC =10, ∴22221068CD AC AD =-=-=, 故选:C .【点睛】本题考查的是直角三角形斜边上的中线,熟知在直角三角形中,斜边上的中线等于斜边的一半是解答此题的关键. 9.D解析:D【解析】分析:本题考查的是利用勾股定理求线段的长度.解析:根据题意,得出如下图形,最短路径为AB 的长,AC=20,BC=15,∴AB=25故选D.点睛:本题的关键是变曲为直,画出矩形,利用勾股定理得出对角线的长度.10.A解析:A【解析】【分析】由矩形的性质可知AD ∥BC ,由此可得出∠BFE=∠DEF=25°,再根据翻折的性质可知每翻折一次减少一个∠BFE 的度数,由此即可算出∠CFE 度数.【详解】解:∵四边形ABCD 为长方形,∴AD ∥BC ,∴∠BFE=∠DEF=25°.由翻折的性质可知:图2中,∠EFC=180°-∠BFE=155°,∠BFC=∠EFC-∠BFE=130°,图3中,∠CFE=∠BFC-∠BFE=105°.故选:A .【点睛】本题考查翻折变换以及矩形的性质,解题的关键是找出∠CFE=180°-3∠BFE .解决该题型题目时,根据翻折变换找出相等的边角关系是关键.11.D解析:D【解析】∵x < 0x x =-,∴x x=()22x x x x x x x x ---===. 故选D.12.B解析:B【解析】【分析】由折叠的性质可得DN CN =,根据勾股定理可求DN 的长,即可求BN 的长.【详解】D Q 是AB 中点,6AB =,3AD BD ∴==,根据折叠的性质得,DN CN =,9BN BC CN DN ∴=-=-,在Rt DBN V 中,222DN BN DB =+,22(9)9DN DN ∴=-+,5DN ∴=4BN ∴=,故选B .【点睛】本题考查了翻折变换,折叠的性质,勾股定理,熟练运用折叠的性质是本题的关键.二、填空题13.【解析】如图取AB 的中点E 连接OECE 则BE=×2=1在Rt△BCE 中由勾股定理得CE=∵∠AOB=90°点E 是AB 的中点∴OE=BE=1由两点之间线段最短可知点OEC 三点共线时OC 最大∴OC 的最大【解析】如图,取AB 的中点E ,连接OE 、CE ,则BE=12×2=1,在Rt△BCE 中,由勾股定理得,=∵∠AOB=90°,点E 是AB 的中点,∴OE=BE=1,由两点之间线段最短可知,点O 、E 、C 三点共线时OC 最大,∴OC 的最大值..【点睛】运用了正方形的性质,直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记各性质并确定出OC 最大时的情况是解题的关键.14.【解析】【分析】根据二次根式平方绝对值的非负性即可得出xyz 的值求和后再求平方根即可【详解】解:由题意可得:解得:∴∴4的平方根是故答案为:【点睛】本题考查的知识点求代数式的平方根解此题的关键是根据 解析:2±【解析】【分析】根据二次根式、平方、绝对值的非负性即可得出x 、y 、z 的值,求和后再求平方根即可.【详解】解:由题意可得:20,10,30x y z -=+=-=解得:2,1,3x y z ==-=∴4x y z ++=∴4的平方根是2±.故答案为:2±.【点睛】本题考查的知识点求代数式的平方根,解此题的关键是根据二次根式的非负性、绝对值的非负性、平方数的非负性,求出x 、y 、z 的值.15.6【解析】【分析】直接利用二次根式的性质化简再利用二次根式乘法运算法则求出答案【详解】解:∵是一个整数∴∴是一个整数∴x 可取的最小正整数的值为:6故答案为:6【点睛】此题主要考查了二次根式的乘除正确 解析:6【解析】【分析】直接利用二次根式的性质化简,再利用二次根式乘法运算法则求出答案.【详解】 解:∵482x ⨯是一个整数, ∴34824246x x x ⨯=⨯=,∴46x 是一个整数,∴x 可取的最小正整数的值为:6.故答案为:6.【点睛】此题主要考查了二次根式的乘除,正确化简二次根式是解题关键.16.2【解析】试题解析:原式=()2-22=6-4=2解析:2【解析】试题解析:原式=(6)2-22=6-4=2.17.13【解析】【分析】在△ABD 中根据勾股定理的逆定理即可判断AD ⊥BC 然后根据线段的垂直平分线的性质即可得到AC=AB 从而求解【详解】∵AD 是中线AB=13BC=10∴∵52+122=132即BD2解析:13【解析】【分析】在△ABD 中,根据勾股定理的逆定理即可判断AD ⊥BC ,然后根据线段的垂直平分线的性质,即可得到AC=AB ,从而求解.【详解】∵AD 是中线,AB=13,BC=10,∴152BD BC ==. ∵52+122=132,即BD 2+AD 2=AB 2,∴△ABD 是直角三角形,则AD ⊥BC ,又∵BD=CD ,∴AC=AB=13.故答案为13.【点睛】本题考查的知识点是勾股定理的逆定理与线段的垂直平分线的性质,解题关键是利用勾股定理的逆定理证得AD ⊥BC .18.10【解析】【分析】根据函数图象中的数据可以求得甲的速度和乙的速度从而可以求得乙由B 地到A 地所用的时间【详解】解:由图可得甲的速度为:36÷6=6(km/h)则乙的速度为:=36(km/h)则乙由B解析:10【解析】【分析】根据函数图象中的数据可以求得甲的速度和乙的速度,从而可以求得乙由B 地到A 地所用的时间.【详解】解:由图可得,甲的速度为:36÷6=6(km/h), 则乙的速度为:366 4.54.52-⨯-=3.6(km/h), 则乙由B 地到A 地用时:36÷3.6=10(h), 故答案为:10.【点睛】 本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.19.【解析】【分析】先运用勾股定理求出斜边AB 然后再利用直角三角形斜边上的中线等于斜边的一半解答即可【详解】解:由勾股定理得AB∵∠C=90°CD 为AB 边上的中线∴CD=AB=故答案为【点睛】本题考查的【解析】【分析】先运用勾股定理求出斜边AB ,然后再利用直角三角形斜边上的中线等于斜边的一半解答即可.【详解】解:由勾股定理得,=∵∠C=90°,CD 为AB 边上的中线,∴CD=12 . 【点睛】 本题考查的是勾股定理和直角三角形的性质,掌握直角三角形斜边上的中线是斜边的一半是解答本题的关键.20.16【解析】【分析】作PM⊥AD 于M 交BC 于N 则有四边形AEPM 四边形DFPM 四边形CFPN 四边形BEPN 都是矩形可得S△PEB=S△PFD=8则可得出S 阴【详解】作PM⊥AD 于M 交BC 于N 则有四边解析:16【解析】【分析】作PM⊥AD于M,交BC于N,则有四边形AEPM、四边形DFPM、四边形CFPN、四边形BEPN都是矩形,可得S△PEB=S△PFD=8,则可得出S阴.【详解】作PM⊥AD于M,交BC于N,则有四边形AEPM、四边形DFPM、四边形CFPN、四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∴S△DFP=S△PBE=12×2×8=8,∴S阴=8+8=16.故答案是:16.【点睛】考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.三、解答题21.a-【解析】【分析】直接利用数轴得出a<0,a+b<0,c-a>0,b+c<0,进而化简得出答案.【详解】解:如图所示:∴a<0,a+b<0,c-a>0,b+c<0,()22a abc a b c+-+=-+++---a abc a b c=a-;【点睛】此题主要考查了二次根式的性质和数轴,正确得出各部分符号是解题关键.22.(132)5【解析】【分析】(1)根据二次根式的混合运算顺序,首先计算开方,再计算乘法,最后从左向右依次计算即可.(2)根据二次根式的混合运算顺序,平方差公式和完全平方公式进行计算,最后从左向右依次计算即可.【详解】(1=183=(2)(2(344+-(16-5)【点睛】此题考查二次根式的混合运算,解题关键在于掌握运算法则.23.ab a b -+,- 【解析】【分析】首先通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.【详解】 解:原式=a b ab ab a b b a a b -⋅=-+-+.∵ab =)111=,a +b =4=-. 24.(1)兔子、乌龟、1500;(2)700,50;(3)14;(4)28.5【解析】试题分析:此题要数形结合,根据兔子与乌龟的奔跑路程和时间的图象来求解. 试题解析:(1)∵乌龟是一直跑的而兔子中间有休息的时刻;∴折线OABC 表示赛跑过程中兔子的路程与时间的关系;线段OD 表示赛跑过程中乌龟的路程与时间的关系;由图象可知:赛跑的路程为1500米;(2)结合图象得出:兔子在起初每分钟跑700米.1500÷30=50(米)乌龟每分钟爬50米.(3)700÷50=14(分钟)乌龟用了14分钟追上了正在睡觉的兔子.(4)∵48千米=48000米∴48000÷60=800(米/分)(1500-700)÷800=1(分钟)30+0.5-1×2=28.5(分钟)兔子中间停下睡觉用了28.5分钟.考点:函数的图象.25.(1)20,60;(2)()2003s t t =≤≤,30或45;(3)198t =或236t =时,小亮和妈妈与爸爸相距10km【解析】【分析】(1)根据函数图象可以分别求得小亮和妈妈坐公交车的速度和爸爸自驾的速度; (2)根据题意可以求得相应的函数解析式;(3)根据函数图象和各段对应的函数解析式可以解答本题.【详解】解:(1)由图可得,小亮和妈妈坐公交车的速度为:60÷3=20km/h ,爸爸自驾的速度为:60×(2-1)=60km/h ,故答案为:20,60;(2)∵小亮和妈妈坐公交车的速度为20km/h ,∴小亮从家到度假村期间,他离家的距离s (km )与离家的时间(h )的关系式为:s=20t ,当1≤t≤2时,设小亮爸爸离家的距离s (km )与离家的时间(h )的关系式为:s=kt+b ,则0260k b k b +=⎧⎨+=⎩,得6060k b =⎧⎨=-⎩, 即当1≤t≤2时,小亮爸爸离家的距离s (km )与离家的时间(h )的关系式为:s=60t-60, 当2≤t≤3时,设小亮爸爸离家的距离s (km )与离家的时间(h )的关系式为:s=ct+d ,则 30260c d c d +=⎧⎨+=⎩,得60180c d =-⎧⎨=⎩, 即当2≤t≤3时,小亮爸爸离家的距离s (km )与离家的时间(h )的关系式为:s=-60t+180,令20t=60t-60,得t=1.5,此时,s=20×1.5=30, 20t=-60t+180,得t=2.25,此时s=20×2.25=45,故答案为:()2003s t t =≤≤,30或45;(3)解:由题意:第2次相遇时,小明离家45km ,离家的时间(h )为45÷20=94h , ①当爸爸在回家途中当94≤t≤3时,20t-(-60t+180)=10,解得,198t =, 即小明离家198h ,小亮和妈妈与爸爸相距10km ②当爸爸再次返回,3≤t≤4时,设小亮爸爸离家的距离s (km )与离家的时间(h )的关系式为:s=et+f ,则30460e f e f +=⎧⎨+=⎩,得60180e f =⎧⎨=-⎩, ∴当3≤t≤4时,小亮爸爸离家的距离s (km )与离家的时间(h )的关系式为: s=60t-180,令60-(60t-180)=10,得236t =, 即小明离家236h ,小亮和妈妈与爸爸相距10km , 综上:198t =或236t =时,小亮和妈妈与爸爸相距10km . 【点睛】本题考查函数图象以及常量与变量、函数关系式,利用函数图象获取正确信息是解题关键.。

【压轴题】初二数学下期中一模试题带答案

【压轴题】初二数学下期中一模试题带答案

压轴题】初二数学下期中一模试题带答案一、选择题1.按图(1)﹣(3)的方式摆放餐桌和椅子,照这样的方式维续摆放,如果摆放的餐桌为x张,摆放的椅子为y把,则y与x 之间的关系式为()3.在学校的体育训练中,小杰投掷实心球的7 次成绩如统计图所示,则这7 次成绩的中位数和平均数分别是()A.9.7 m ,9.9 m B.9.7 m ,9.8 m C.9.8 m ,9.7m D.9.8 m ,9.9 m4.估计26 的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间5.如图,在边长为a的正方形ABCD中,把边BC绕点B逆时针旋转60 ,得到线段BM . 连接AM 并延长交CD 于点N ,连接MC ,则MNC 的面积为()6.如图,在平行四边形ABCD中,AC、BD相交于点O,下列结论:① OA =OC;② ∠BAD =∠ BCD;③AC⊥BD;④ ∠ BAD+∠ ABC=180°中,正确的个数有()A.C.y=5x﹣1)2.y=6x 下列二次根式中B.y=4x﹣2,最简二次根式是(D.y=4x+2A.10 B.12 C.D.8B. 2 1a22 C.D.2 1a22图象过点 0, 11 图象与 x 轴的交点坐标为 ( ,0)2m ≠0)的图象经过点 A增大而减小,则 m 等于( ) m , 4),且 y 的值随 x 值的A . 8. 2B .﹣ 2 下列各式正确的是( )C .D .﹣ 4A . 55B . 0.5 20.5 C .25 52 D .0.5 20.59. 列各组数据中,不可以构成直角三角形的是( A . 7,24,25 B .)32,42,52 5,1,3 44 10. 对于次函数 y 2x 1,下列结论错误的是 ( C . D .1.5,2,2.5 C . 图象沿 y 轴向上平移 1个单位长度,得到直线 y 2xD . 11.如图是自动测温仪记录的图象,它反映了齐齐哈尔市的春季某天气温( )图象经过第一、二、三象限 T 如何随时间 tA .0 点时气温达到最低 C .0点到 14 点之间气温持续上升 12.如图 ,在矩形 ABCD 中,AB=4,BC=6, 矩形内点 F 处,连接 CF,则 CF 的长为(B .最低气温是零下 4℃ D .最高气温是 8℃点E 为 BC 的中点,将 ABE 沿AE 折叠,使点 B 落在B .16.如图,在△ ABC 中,AB = 6, AC = 10,点 D ,E ,38 4 = .18. 果字成熟后从树上落到地面,它落下的高度与经过的时间有如下的关系:时间t (秒)0.5 0.6 0.7 0.8 0.9 1 落下的高度 h (米)5 0.25 5 0.36 5 0.49 5 0.64 5 0.8151如果果子经过 2 秒落到地上,那么此果子开始落下时离地面的高度大约是 ______________________ 米.19.如图,已知一次函数 y=kx+b 的图象与 x 轴交于点 (3,0),与y 轴交于点 (0,2),不等式20.如图,已知 ?ABCO 的顶点 A 、C 分别在直线 x =2和 x =7上, O 是坐标原点,则对角 线 OB 长的最小值为 _________________ .9 A .5 二、填空题 18B .516C .512D .513. 一组数据 1 数据﹣ 1, a ,1, 2,a 的平均数为 2,另一组数据﹣ 1, 2, b 的中位数为 ___________ . 2(n 1)2 0 ,则 m+n 的值为 . 14. 若 m 315.如图, △ABC 中,∠ ACB =90°,CD 是斜边上的高, a ,1,2,b 的唯一众数为﹣ l ,则AC =4,BC =3,则 CD =F 分别是 AB ,BC ,AC 的中点,则21.如图,已知AC是矩形ABCD 的对角线,AC 的垂直平分线EF分别交BC、AD 于点E 和F,EF 交AC 于点O .(1)求证:四边形AECF 是菱形;(2)若AB =6,AD =8,求四边形AECF 的周长.22.星期五小颖放学步行从学校回家,当她走了一段路后,想起要去买彩笔做画报,于是原路返回到刚经过的文具用品店,买到彩笔后继续往家走.如图是她离家的距离与所用时间的关系示意图,请根据图中提供的信息回答下列问题:(1)(2)(3)(4)小颖家与学校的距离是AB 表示的实际意义是小颖本次从学校回家的整个过程中,走的路程是多少米?买到彩笔后,小颖从文具用品店回到家步行的速度是多少米米;/分?23.在平面直角坐标系中, A 3,3 ,B 7,3 ,C 3,6 是ABC 的三个顶点,求AB,BC,AC 的长,并判断24.已知,如图,BD 平分连接DE ,且DE/ / BC. (1)求证: BE CF ;(2)连接DF ,若AB BCABC的形状.ABC交AC于点D,点E、F分别是AB 、BC的中点,5 ,AC6 ,求四边形BEDF 的面积.25. 观察下列各式及验证过程:(1)按照上述三个等式及其验证过程中的基本思想,猜想 1 1 1的变形结果并进行 4 5 6验证.(2)针对上述各式反映的规律,写出用 n (n 为自然数,且 n ≥2)表示的等式,不需要证明.参考答案】 *** 试卷处理标记,请不要删除一、选择题1.D 解析: D【解析】 【分析】观察可得,第一张餐桌上可以摆放 6 把椅子,进一步观察发现:多一张餐桌,多放 4 把椅 子.第 x 张餐桌共有 6+4(x-1)=4x+2 ,由此即可解答 . 【详解】有 1 张桌子时有 6 把椅子,有 2 张桌子时有 10 把椅子, 10=6+4× 1,有 3 张桌子时有 14 把椅子, 14=6+4× 2, ∵多一张餐桌,多放 4 把椅子, ∴第 x 张餐桌共有 6+4( x-1) =4x+2 . ∴y 与 x 之间的关系式为: y =4x +2. 故选 D .3,验证2 3 2 3 22 3 2 3 ,13 83,验证 12 31 1 41113 4 52242【点睛】本题考查了图形的变化类问题,注意结合图形进行观察,发现数字之间的运算规律,利用规律即可求得y 与x 之间的关系式.2.A解析:A【解析】【分析】根据最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,结合选项求解即可.【详解】A10是最简二次根式,本选项正确..B.12 2 3,故12 不是最简二次根式,本选项错误;C.12,故1不是最简二次根式,本选项错误;222A.8 2 2,故8 不是最简二次根式,本选项错误.故选A .【点睛】本题考查了最简二次根式的知识,解答本题的关键在于掌握最简二次根式的概念,对各选项进行判断.3.B解析:B【解析】【分析】将这7 个数据从小到大排序后处在第4位的数是中位数,利用算术平均数的计算公式进行计算即可.【详解】把这7个数据从小到大排列处于第4位的数是9.7m ,因此中位数是9.7m ,平均数为:(9.5 9.6 9.7 9.7 9.8 10.1 10.2) 7 9.8m ,故选:B.【点睛】考查中位数、算术平均数的计算方法,将一组数据从小到大排列后处在中间位置的一个数或两个数的平均数就是这组数据的中位数,平均数则是反映一组数据的集中水平.4.D解析:D【解析】【分析】寻找小于26的最大平方数和大于26 的最小平方数即可【详解】解:小于26的最大平方数为25,大于26的最小平方数为36,故25< 26< 36 ,即:5< 26<6 ,故选择D.【点睛】本题考查了二次根式的相关定义.5.C 解析:C 【解析】MH⊥CD于H,∴AM=MN ,∵MH ⊥CD,∠ D=90°,∴MH ∥AD ,∴NH=HD ,由旋转变换的性质可知,△MBC 是等边三角形,∴MC=BC=a ,∠ MCD=3°0 ,1 1 3∴MH= MC= a,CH= a,2 2 2∴DH=a ﹣3 a,2∴CN=CH ﹣NH= 3 a﹣(a﹣3 a)=(3﹣1)a,22∴△MNC 的面积=1×a×(3﹣1)a= 3 1a2.2 2 4 故选C.6.C解析:C【解析】试题分析:根据平行四边形的性质依次分析各选项即可作出判断∵平行四边形ABCD∴OA=OC,∠ BAD=∠ BCD,∠ BAD+∠ ABC=180°,但无法得到AC⊥BD 故选C.考点:平行四边形的性质点评:平行四边形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.7.B 解析:B 【解析】【分析】利用待定系数法求出m,再结合函数的性质即可解决问题.【详解】解:∵ y=mx(m 是常数,m≠0)的图象经过点A (m,4),∴m2=4,∴m=±2,∵y 的值随x 值的增大而减小,∴m<0,∴ m=﹣2,故选:B.【点睛】本题考查待定系数法,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.D 解析:D 【解析】【分析】【详解】解:因为5 5,0.5 20.520.5 ,所以A,B,C 选项均错,故选D9.B 解析:B 【解析】【分析】由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可.【详解】解:A 、72+24 2=625=25 2,故是直角三角形,不符合题意;2 2 2 2 2 2B、(32)2(42)281 256 337 (52)2,故不是直角三角形,符合题意;3 25 5C、12+()2=25=(5)2,故是直角三角形,不符合题意;4 16 4D、1.52+22=6.25=2.52,故是直角三角形,不符合题意;故选:B.5【点睛】 本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的 长,只要利用勾股定理的逆定理加以判断即可.10.D解析: D 【解析】 【分析】根据一次函数的性质对 D 进行判断;根据一次函数图象上点的坐标特征对 A 、B 进行判 断;根据一次函数的几何变换对 C 进行判断. 【详解】1函数的图象与 x 轴的交点坐标是 ( ,0) ,不符合题意;2图象沿 y 轴向上平移 1个单位长度,得到直线 y 2x ,不符合题意;图象经过第一、三、四象限,符合题意;故选: D . 【点睛】本题考查了一次函数的性质、一次函数图象上点的坐标特征和一次函数图象的几何变换, 属于基础题.11.D解析: D 【解析】 【分析】根据气温 T 如何随时间 t 的变化而变化图像直接可解答此题 【详解】A.根据图像 4时气温最低,故 A 错误;B.最低气温为零下 3℃,故 B 错误;C. 0点到 14点 之间气温先下降后上升,故 C 错误; D 描述正确 .【点睛】 本题考查了学生看图像获取信息的能力,掌握看图像得到有用信息是解决此题的关键 .12.B解析: B 【解析】 【分析】连接 BF ,由折叠可知 AE 垂直平分 BF ,根据勾股定理求得 AE=5 ,利用直角三角形面积的12 24两种表示法求得 BH= 152 ,即可得 BF= 254 ,再证明∠ BFC=90°,最后利用勾股定理求得18 CF= .A 、图象过点 0, 1 ,不符合题意; B 、C D 、【详解】连接 BF ,由折叠可知 AE 垂直平分 BF ,∵BC=6 ,点 E 为 BC 的中点, ∴BE=3 , 又∵ AB=4 , ∴AE= AB 2 BE 242 32=5,∵1 AB BE 1 AE BH ,22∴BH= 12,5则BF=245∵FE=BE=EC ,∴∠ BFC=90° , ∴CF= BC 2 BF 262 (24)2=18.55故选 B .【点睛】 本题考查的是翻折变换的性质、矩形的性质及勾股定理的应用,掌握折叠是一种对称变 换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是 解题的关键.二、填空题13.1【解析】【分析】根据平均数求得 a 的值然后根据众数求得 b 的值后再确定新数据的中位数【详解】试题分析:∵一组数据 12a 的平均数为2∴1+2+a=3×2解得 a=3∴数据﹣ la12b 的唯一众数为﹣ l ∴b= 解析: 1【解析】【分析】 根据平均数求得 a 的值,然后根据众数求得 b 的值后再确定新数据的中位数. 【详解】 试题分析:∵一组数据 1,2,a 的平均数为 2, ∴1+2+a=3×2 解得 a=3∴数据﹣ l ,a ,1,2,b 的唯一众数为﹣ l , ∴b=﹣1,∴数据﹣ 1,3,1,2,b 的中位数为 1. 故答案为 1.【点睛】 本题考查了平均数、众数及中位数的定义,解题的关键是正确的利用其定义求得未知数的 值.14.2【解析】试题分析:几个非负数之和为零则每个非负数都为零根据非负数3415BH ,的性质可得:m-3=0且n+1=0解得:m=3n=-1则m+n=3+(-1)=2 考点:非负数的性质解析:2【解析】试题分析:几个非负数之和为零,则每个非负数都为零.根据非负数的性质可得:m-3=0且n+1=0,解得:m=3 ,n=-1,则m+n=3+(-1)=2.考点:非负数的性质15.4【解析】【分析】在Rt 中由勾股定理可求得AB的长进而可根据三角形面积的不同表示方法求出CD的长【详解】解:Rt 中AC=4mBC=3mAB=m∵∴m=24m 故答案为24m【点睛】本题考查勾股定理掌握解析:4【解析】【分析】在Rt V ABC 中,由勾股定理可求得AB 的长,进而可根据三角形面积的不同表示方法求出CD 的长.【详解】解:Rt VABC 中,AC=4m ,BC=3mAB= AC 2BC25m11∵S VABC AC BC AB CD22AC BC 12∴ CD m=2.4mAB 5故答案为2.4 m【点睛】本题考查勾股定理,掌握勾股定理的公式结合利用面积法是解题关键.16.16【解析】【分析】首先证明四边形ADEF是平行四边形根据三角形中位线定理求出DEEF即可解决问题【详解】解:∵BD=ADBE=E∴CDE=AC=5D∥EAC∵CF=FACE=B∴EEF=AB=3E解析:16【解析】【分析】首先证明四边形ADEF 是平行四边形,根据三角形中位线定理求出DE、EF 即可解决问题.【详解】解:∵ BD=AD ,BE=EC ,1∴DE= AC=5 ,DE∥AC ,2∵CF=FA ,CE=BE ,1∴EF= AB=3 ,EF∥ AB ,2∴四边形ADEF 是平行四边形,∴四边形ADEF 的周长=2(DE+EF )=16,故答案为16.【点睛】本题考查三角形中位线定理、平行四边形的判定和性质等知识,熟练掌握三角形中位线定理是解题的关键.17.【解析】【分析】(1)根据是负数根据负数绝对值等于它的相反数可得到答案;(2)根据立方根和算术平方根的求法可得到答案【详解】==﹣2+2=0 故答案为:;0【点睛】去绝对值要考虑绝对值符号内的正负正数解析: 5 2【解析】【分析】(1)根据2 5 是负数,根据负数绝对值等于它的相反数可得到答案;(2)根据立方根和算术平方根的求法可得到答案【详解】| 2 5|= 5 2 ,38 4 =﹣2+2 =0 ,故答案为:5 2 ;0.【点睛】去绝对值要考虑绝对值符号内的正负,正数的绝对值等于其本身,负数的绝对值等于其相反数;立方根的符号与原数相同,算术平方根为非负数18.20【解析】【分析】分析表格中数据得到物体自由下落的高度随着时间的增大而增大与的关系为:把代入再进行计算即可【详解】解:由表格得用时间表示高度的关系式为:当时所以果子开始落下时离地面的高度大约是20 解析:20【解析】【分析】分析表格中数据,得到物体自由下落的高度h随着时间t 的增大而增大,h与t的关系为:h 5t2,把t 2代入h 5t 2,再进行计算即可.【详解】解:由表格得,用时间t(s)表示高度h(m)的关系式为:h 5t2,当t 2时,h 5 22 5 4 20 .所以果子开始落下时离地面的高度大约是20 米.故答案为:20.【点睛】本题考查了根据图表找规律,并应用规律解决问题,要求有较强的分析数据和描述数据的能力.能够正确找到h和t 的关系是解题的关键.19.x≤0【解析】【分析】由一次函数y=kx+b 的图象过点(02)且y 随x 的增大而减小从而得出不等式kx+b≥2的解集【详解】解:由一次函数的图象可知此函数是减函数即y 随x 的增大而减小∵一次函数y=kx 解析:x≤0【解析】【分析】由一次函数y=kx+b 的图象过点(0,2),且y随x的增大而减小,从而得出不等式kx+b ≥2的解集.【详解】解:由一次函数的图象可知,此函数是减函数,即y 随x 的增大而减小,∵一次函数y=kx+b 的图象与y 轴交于点(0,2),∴当x≤0时,有kx+b≥2.故答案为x≤0.【点睛】本题考查的是一次函数与一元一次不等式的关系,能利用数形结合求出不等式的解集是解答此题的关键.20.9【解析】【分析】过点B作BD⊥直线x=7交直线x=7于点D过点B 作BE⊥x轴交x 轴于点 E 则OB=由于四边形OABC是平行四边形所以OA=BC又由平行四边形的性质可推得∠ OAF=∠ BCD则可证明△O 解析:9【解析】【分析】过点B作BD⊥直线x=7,交直线x=7于点D,过点B作BE⊥ x轴,交x轴于点E.则OB=OE2 2.由于四边形OABC 是平行四边形,所以OA =BC,又由平行四边形的性质可推得∠ OAF =∠BEBCD ,则可证明△ OAF≌△ BCD ,所以OE的长固定不变,当BE 最小时,OB 取得最小值,即可得出答案.【详解】解:过点B作BD⊥直线x=7,交直线x=7于点D,过点B作BE⊥x轴,交x轴于点E,直线x=2与OC交于点M,与x 轴交于点F,直线x=7与AB 交于点N,如图:∵四边形OABC 是平行四边形,∴∠ OAB=∠ BCO ,OC∥ AB ,OA =BC ,∵直线x=2与直线x=7 均垂直于x轴,∴AM ∥CN ,∴四边形ANCM 是平行四边形,∴∠ MAN =∠ NCM ,∴∠ OAF =∠ BCD ,∵∠ OFA=∠ BDC=90°,∴∠ FOA =∠ DBC ,FOA DBC 在△ OAF 和△ BCD 中,OA BC ,OAF BCD∴△ OAF ≌△ BCD (ASA ).∴BD =OF=2,∴OE=7+2=9,∴OB =OE2BE2.∵OE 的长不变,∴当BE 最小时(即B 点在x 轴上),OB 取得最小值,最小值为OB =OE=9.本题考查了平行四边形的性质、坐标与图形性质、全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.三、解答题21.(1)见解析;(2)25【解析】【分析】(1)根据四边相等的四边形是菱形即可判断;(2)设AE=EC 为x,利用勾股定理解答即可.【详解】(1)证明:∵四边形ABCD 是矩形∴AD ∥BC ,∴∠ DAC= ∠ACB ,∵EF 垂直平分AC ,∴AF=FC ,AE=EC ,∴∠ FAC= ∠ FCA ,∴∠ FCA= ∠ ACB ,∵∠ FCA+ ∠ CFE=90°,∠ ACB+ ∠CEF=90°,∴∠ CFE=∠ CEF,∴CE=CF ,∴AF=FC=CE=AE ,∴四边形AECF 是菱形.(2)设AE=EC 为x,则BE= (8-x)在Rt△ABE 中,AE 2=AB 2+BE 2,即x2=62+(8-x )2,25解得:x= ,425所以四边形AECF 的周长= ×4=25.4【点睛】考查矩形的性质、线段的垂直平分线的性质、菱形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题.22.(1)2600;(2)小颖在文具用品店停留了10分钟;(3)小颖本次在从学校回家的整个过程中,走的路程是3400米;(4)小颖从文具用品店回到家步行的速度是90米/分.【解析】【分析】(1)根据函数图象,可知小颖家与学校的距离是2600 米;(2)由函数图象可知,20~30分钟的路程没变,所以AB 表示的实际意义是小颖在文具用品店停留了10 分钟;(3)小颖本次从学校回家的整个过程中,走的路程为2600 (2 1800 1400)3400(米)(4)用小颖从文具用品店回到家的路程除以所用时间即可.【详解】(1)根据函数图象,可知小颖家与学校的距离是2600 米;(2)AB 表示的实际意义是小颖在文具用品店停留了10分钟;(3)2600 (2 1800 1400)3400(米).(列的式子只要合理都可)小颖本次在从学校回家的整个过程中,走的路程是3400 米.(4)1800 (50 30)9(0 米/ 分). 小颖从文具用品店回到家步行的速度是90 米/分.【点睛】考查一次函数的应用,读懂函数的图象,明确每一段图象所表示的实际意义是解题的关键23.AB 4,BC 5,AC 3,直角三角形【解析】【分析】在直角坐标系中分别根据坐标和勾股定理求出三条线段的长,然后用勾股定理逆定理判定△ABC 的形状为直角三角形.【详解】解:Q A 3,3 , B 7,3 两点的纵坐标相等,线段AB/ /x轴,AB 7 3 4 ,Q A 3,3 ,C 3,6 两点的横坐标相等,线段AC / /y 轴,AC 6 3 3 ,而BC 7 3 26 3 25 ,AB 4,BC 5,AC 3 ,222AB2AC2BC2,∴ ABC 为直角三角形.【点睛】本题考查了勾股定理及勾股定理的逆定理,解题的关键是根据提供的三点的坐标求出线段的长.24.(1)见解析;(2)6【解析】【分析】(1)由平行线的性质和角平分线的概念可得BE=DE ,易证四边形DEFC 是平行四边形,可得DE=CF ,等量代换即可得出结论;(2)易证四边形BEDF 是平行四边形,再由BE=DE 证得四边形BEDF 是菱形,由等腰三角形“三线合一”可得BD ⊥ EF,根据勾股定理求得BD,根据三角形中位线定理求得EF ,根据菱形的面积公式即可得出答案.【详解】(1)证明:∵ DE∥ BC,∴∠ DBC =∠BDE ,∵BD 平分∠ ABC ,∴∠ EBD=∠DBC ,∴∠ BDE =∠ EBD ,∴BE =DE ,∵E、F 是AB、BC 的中点,∴EF∥AC,∵DE∥BC,∴四边形DEFC 是平行四边形,∴DE=CF,∴BE =CF ;(2)∵ AB=BC=5,BD 平分∠ ABC ,1∴BD ⊥AC,CD= AC=3.2在Rt△ BDC 中,BD = BC2CD2=4.∵E、F 是AB、BC 的中点,1∴EF = AC=3.2∵F 是BC 中点,∴BF =CF ,∴DE=BF,DE∥BF,∴四边形BEDF 是平行四边形,又∵ BE= DE,∴四边形BEDF 是菱形,1∴S菱形BEDF = BD·EF21=× 4 × 32=6.【点睛】本题主要考查了等腰三角形的判定和性质,平行四边形的判定和性质,菱形的判定和性质,三角形中位线定理,根据三角形中位线定理和平行四边形的判定证出平行四边形是解决(1)的关键,证出四边形BEDF 是菱形是解决(2)的关键.25.(1)见解析;(2)见解析. 【解析】【分析】(1)类比题目中所给的运算方法即可解答;(2)观察题目所给的算式,根据算式总结出般规律即可求解详解】点睛】 本题是阅读理解题,能够从所给的案例中找出相应的规律是解决该类题型的关键2) 4 52 6 n 为自然数,且 n ≥2)。

解答题压轴题训练(一)(解析版)-2020-2021学年八年级数学下学期期中考试压轴题专练(北师大版

解答题压轴题训练(一)(解析版)-2020-2021学年八年级数学下学期期中考试压轴题专练(北师大版

2021年八下期中考试金牌解答题压轴题训练(一)(时间:60分钟 总分:100) 班级 姓名 得分 一、解答题1.已知在ABC 中,AB AC =,射线BM 、BN 在ABC ∠内部,分别交线段AC 于点G 、H .(1)如图1,若60ABC ∠=︒,30MBN =︒∠,过点A 作AE BN ⊥于点D ,分别交BC 、BM 于点E 、F ;①求证:CE AG =;①若2BF AF =,连接CF ,求CFE ∠的度数;(2)如图2,点E 为BC 上一点,AE 交BM 于点F ,连接CF .若2∠=∠=∠BFE BAC CFE ,请直接写出=ABF ACFSS________.【答案】(1)①见解析;①30°;(2)2 【分析】(1)①根据题意可得60BFD ∠=︒,ABC 为等边三角形,从而综合三角形的外角定理得到ABF CAF ∠=∠,最终运用“角边角”证明ABG CAE △≌△即可; ①取BF 的中点K ,连接AK ,由2BF AF =推出FAK 是等腰三角形,根据等腰三角形的性质得到FAK FKA ∠=∠,并求出1302FKA BFD ∠=∠=︒,然后结合①的结论证明GAK EFC △≌△,从而得到30CFE AKF ∠=∠=︒;(2)在BF 上取BK =AF ,连接AK ,推出①EAC =①FBA ,根据全等三角形的性质得到CF ABKA SS =△,①AKB =①AFC ,证得①F AK 是等腰三角形,根据等腰三角形的性质得到AF =FK ,即可得到结论. 【详解】(1)①①AE BN ⊥,30MBN =︒∠, ①60BFD ∠=︒,即:60ABF BAF ∠+∠=︒, ①60ABC ∠=︒,AB AC =, ①ABC 为等边三角形,则60BAF CAF BAC ∠+∠=∠=︒,60BAG C ∠=∠=︒, ①ABF CAF ∠=∠, 在ABG 和CAE 中,ABF CAF AB ACBAG C ∠=∠⎧⎪=⎨⎪∠=∠⎩①()ABG CAE ASA △≌△, ①CE AG =;①如图所示,取BF 的中点K ,连接AK , ①2BF AF =, ①12AF BK FK BF ===, ①FAK 是等腰三角形,①FAK FKA ∠=∠,①2BFD FAK FKA FKA ∠=∠+∠=∠, ①1302FKA BFD ∠=∠=︒, 由①可得:AG CE =,BG AE =,AGB AEC ∠=∠, ①KG BG BK AE AF FE =-=-=, 在GAK 与EFC 中,AG CE AGB AEC KG FE =⎧⎪∠=∠⎨⎪=⎩①()GAK EFC SAS △≌△, ①30CFE AKF ∠=∠=︒;(2)如图所示,在BF 上取BK =AF ,连接AK , ①①BFE =①BAF +①ABF ,①BFE =①BAC , ①①BAF +①EAC =①BAF +①ABF , ①①EAC =①FBA , 在①ABK 和①ACF 中,AB AC ABK FAC BK AF =⎧⎪∠=∠⎨⎪=⎩①①ABK ①①ACF (SAS ), ①CF ABKA SS =△,①AKB =①AFC ,①①BFE =2①CFE , ①①BFE =2①AKF ,①①BFE =2①AKF =①AKF +①KAF , ①①AKF =①KAF ,①F AK 是等腰三角形, ①AF =FK , ①BK =AF =FK , ①FK ABKA S S =△, ①22FAFK ABFABKABKAC SSS SS=+==△,①2ABF ACFS S=,故答案为:2.【点睛】本题考查了全等三角形的判定与性质,等边三角形的性质,等腰三角形的判定与性质等,正确结合题意作出辅助线是解题关键.2.某市出租车的起步价是7元(起步价是指不超过3km 行程的出租车价格),超过3km 行程后,其中除3km 的行程按起步价计费外,超过部分按每千米1.6元计费(不足1km 按1km 计算).如果仅去程乘出租车而回程时不乘坐此车,并且去程超过3km ,那么顾客还需付回程的空驶费,超过3km 部分按每千米0.8元计算空驶费(即超过部分实际按每千米2.4元计费).如果往返都乘同一出租车并且中间等候时间不超过3分钟,则不收取空驶费而加收1.6元等候费.现设小文等4人从市中心A 处到相距km x (12x )的B 处办事,在B 处停留的时间在3分钟以内,然后返回A 处.现在有两种往返方案:方案一:去时4人同乘一辆出租车,返回都乘公交车(公交车票为每人2元); 方案二:4人乘同一辆出租车往返. 问选择哪种计费方式更省钱?(写出过程)【答案】当x 小于5时,方案二省钱;当x=5时,两种方案费用相同;当x 大于5且不大于12时时,方案一省钱 【分析】先根据题意列出方案一的费用:起步价+超过3km 的km 数×1.6元+回程的空驶费+乘公交的费用,再求出方案二的费用:起步价+超过3km 的km 数×1.6元+返回时的费用1.6x+1.6元的等候费,最后分三种情况比较两个式子的大小. 【详解】 方案一的费用:7+(x -3)×1.6+0.8(x -3)+4×2 =7+1.6x -4.8+0.8x -2.4+8=7.8+2.4x,方案二的费用:7+(x-3)×1.6+1.6x+1.6=7+1.6x-4.8+1.6x+1.6=3.8+3.2x,①费用相同时x的值7.8+2.4x=3.8+3.2x,解得x=5,所以当x=5km时费用相同;①方案一费用高时x的值7.8+2.4x>3.8+3.2x,解得x<5,所以当x<5km方案二省钱;①方案二费用高时x的值7.8+2.4x<3.8+3.2x,解得x>5,所以当x>5km方案一省钱.【点睛】此题考查了应用类问题,解答本题的关键是根据题目所示的收费标准,列出x的关系式,再比较.3.已知:如图,①AOB=α,OC平分①AOB,D是边OA上一点,将射线OB沿OD平移至射线DE,交OC于点F,E在F右侧.M是射线DA上一点(与D不重合),N是线段DF上一点(与D,F不重合),连接MN,①OMN=β.(1)请在图1中根据题意补全图形;(2)求①MNE的度数(用含α,β的式子表示);(3)点G在线段OF上(与O,F不重合),连接GN并延长交OA于点T,且满足2①NGO +①OMN=180°,画出符合题意的图形,并探究①ENM与①ENG的数量关系.【答案】(1)见解析;(2)①MNE=β+α,(3)见解析,①ENM=180°﹣2①ENG 【分析】(1)根据要求画出图形即可;(2)利用三角形的外角的性质以及平行线的性质解决问题即可;(3)结论:①ENM=180°﹣2①ENG.利用三角形的外角的性质解决问题即可.【详解】解:(1)图形如图所示.(2)①DE①OB,①①MDN=①AOB,①①MNE=①OMN+①MDN=β+α.(3)结论:①ENM=180°﹣2①ENG.理由:如图,设①NGO=γ.①2①NGO+①OMN=180°,①2γ+β=180°,即β=180°-2γ,①①ENM=α+β=α+180°﹣2γ=180°+α﹣2γ,①①ENG=①DNT=①MTN﹣①ADF=①AOC+①NGO﹣①ADF=12α+γ﹣α =γ﹣12α,即2γ=2①ENG+α,①①ENM=180°+α﹣(2①ENG+α)= 180°﹣2①ENG . 【点睛】本题考查了平移变换,平行线的性质,三角形的外角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 4.综合与实践如图①,已知直线33y x =+与x 轴,y 轴分别交于B ,A 两点以B 为直角顶点在第二象限内部作等腰Rt ABC ,完成下列任务:(1)点C 的坐标为______________; (2)求直线AC 的关系式;(3)如图①,直线AC 交x 轴于M ,点()3,P a -是线段BC 上一点,在线段BM 上是否存在一点N ,使直线PN 平分BCM 的面积?若存在,请求出点N 的坐标;若不存在,请说明理由.【答案】(1)(4,1)C -;(2)132=+AC y x ;(3)存在,19(,0)4-N 【分析】(1)如图1,作CQ①x 轴,垂足为Q ,利用等腰直角三角形的性质证明①ABO①①BCQ (AAS ),根据全等三角形的性质求OQ ,CQ 的长,确定C 点坐标; (2)由待定系数法,即可求出答案;(3)依题意确定P 点坐标,可知①BPN 中BN 边上的高,再由S ①PBN =12S ①BCM ,求BN ,进而得出ON .【详解】解:(1)①33y x =+,令x=0,则y=3,令y=0,则x=1-, ①点A 为(0,3),点B 为(1-,0), ①OA=3,OB=1;如图,作CQ①x 轴,垂足为Q ,①①OBA+①OAB=90°,①OBA+①QBC=90°, ①①OAB=①QBC ,又①AB=BC ,①AOB=①Q=90°, ①①ABO①①BCQ (AAS ),①BQ=AO=3,OQ=BQ+BO=4,CQ=OB=1, ①C (-4,1);(2)设直线AC 的解析式为:AC y kx b =+, 由A (0,3),C (4-,1)可知,341b k b =⎧⎨-+=⎩,解得123k b ⎧=⎪⎨⎪=⎩, ①直线AC :132=+AC y x ; (3)如图,①点B (1-,0),点C (-4,1), 直线BC :1133y x =--, ①()3,P a -是线段BC 上一点, ①23,3P ⎛⎫- ⎪⎝⎭,由132=+AC y x 知,点M 为(-6,0), ①BM=5,则S ①BCM =52.设点N (n ,0),且点N 在线段BM 上,则BN=1n --, 假设存在点N 使①BPN 面积等于①BCM 面积的一半, 则12BN•y P =12×52, ①125(1)234n ⨯--⨯=, 解得:194n =-,①点N 的坐标为(194-,0); 【点睛】本题考查了一次函数的综合运用.关键是根据等腰直角三角形的特殊性证明全等三角形,利用全等三角形的性质求解.5.小南根据学习函数的经验,对函数|2|y a x b =-+的图象与性质进行了探究.下表是小南探究过程中的部分信息:请按要求完成下列各小题:(1)该函数的解析式为 ,自变量 x 的取值范围为 ; (2)n 的值为 ;点11,22⎛⎫-⎪⎝⎭该函数图象上;(填“在”或“不在”) (3)在如图所示的平面直角坐标系中,描全上表中以各对对应值为 坐标的点,并画出该函数的图象;(4)结合函数的图象,解决问题: ①写出该函数的一条性质: ; ①如图,在同一坐标系中是一次函数1133y x =-+的图象,根据象回答,当11|2|33a xb x -+<-+时,自变量 x 的取值范围为 .【答案】(1)23y x =--;全体实数;(2)-3;不在;(3)见解析;(4)①函数有最小值为-3;①24x -<< 【分析】(1)把x=-4,y=3;x=-3,y=2代入2y a x b =-+得到二元一次方程组,解方程组求出a 、b 的值,即可求出解析式;自变量 x 没有限制,为全体实数; (2)把x=2代入(1)中的解析式,可求出n 的值;把x=12代入(1)中的解析式,可求出y 的值,即可判断点11,22⎛⎫-⎪⎝⎭在不在该函数图象上; (3)描点,顺次连接即可画出该函数的图象;(4)①观察图象即可得到函数的最小值;①根据图象即可求出11|2|33a xb x -+<-+时x 的取值范围.解:(1)把x=-4,y=3;x=-3,y=2代入2y a x b =-+, 得423322a b a b ⎧--+=⎪⎨--+=⎪⎩, 解得,13a b =⎧⎨=-⎩, ①该函数的解析式为23y x =--;自变量 x 的取值范围为全体实数; 故答案是:23y x =--;全体实数;(2)在23y x =--中,当x=2时,3y =-,①n=-3.当x=12时,32y =-, ①点11,22⎛⎫- ⎪⎝⎭不在函数23y x =--的图象上; 故答案为:-3;不在;(3)该函数的图象如图:(4)①从图象可以看出,该函数有最小值为-3;故答案为:函数有最小值为-3;①从图象可以看出,当24x -<<时23y x =--的图象位于1133y x =-+的图象的下方, ①当11|2|33a xb x -+<-+时,自变量 x 的取值范围为24x -<<. 故答案为:24x -<<.本题考查了一次函数的图象与性质,一次函数图象上点的坐标特征,利用图象求不等式的解集,正确画出函数的图象是解题的关键.6.如图1,已知①ABC中,①ACB=90°,AC=BC=6,点D在AB边的延长线上,且CD =AB.(1)求BD的长度;(2)如图2,将①ACD绕点C逆时针旋转α(0°<α<360°)得到①A'CD'.①若α=30°,A'D'与CD相交于点E,求DE的长度;①连接A'D、BD',若旋转过程中A'D=BD'时,求满足条件的α的度数.(3)如图3,将①ACD绕点C逆时针旋转α(0°<α<360°)得到①A'CD',若点M为AC 的中点,点N为线段A'D'上任意一点,直接写出旋转过程中线段MN长度的取值范围.【答案】(1)﹣;(2)﹣;①45°或225°;(3)+3【分析】(1)过点C作CH①AB于H,由等腰直角三角形的性质可得CH=BH=12AB,由勾股定理求出DH,则可求出答案;(2)①由旋转的性质可得CD=CD'=①DCD'=30°=①CDA=①CD'A',由等腰三角形的性质和直角三角形的性质可得CF=D'F=,EF,CE=2EF=,即可求解;①分两种情况讨论,由“SSS”可证①A'CD①①BCD',可得①A'CD=①BCD',即可求解;(3)当A'D'①AC时,N是AC与A'D'的交点时,MN的长度最小,当A'D'①AC时,N是AC与A'D'的交点时,MN的长度最小,即可求解.解:(1)如图1,过点C 作CH①AB 于H ,①①ACB =90°,AC =BC =6,CH①AB ,①AB =CD =,CH =BH =12AB =,①CAB =①CBA =45°,①DH ==①BD =DH ﹣BH =﹣;(2)①如图2,过点E 作EF①CD'于F ,①将①ACD 绕点C 逆时针旋转α(0°<α<360°)得到①A′CD′,①CD =CD'=,①图1中CD=2CH ,①①DCD'=30°=①CDA =①CD'A',①CE =D'E , 又①EF①CD',①CF =D'F =EF=CE =2EF =,①DE =DC ﹣CE =﹣;①如图2﹣1,①①ABC=45°,①ADC=30°,①①BCD=15°,①①ACD=105°,①将①ACD绕点C逆时针旋转α(0°<α<360°)得到①A′CD′,①AC=A'C,CD=CD',①ACA'=①DCD'=α,①CB=CA',又①A′D=BD′,①①A'CD①①BCD'(SSS),①①A'CD=①BCD',①105°﹣α=15°+α,①α=45°;如图2﹣2,同理可证:①A'CD①①BCD',①①A'CD=①BCD',①α﹣105°=360°﹣α﹣15°,①α=225°,综上所述:满足条件的α的度数为45°或225°;(3)如图3,当A'D'①AC时,N是AC与A'D'的交点时,MN的长度最小,①①A'=45°,A'D'①AC ,①①A'=①NCA'=45°,①CN =A'N =,①点M 为AC 的中点,①CM =12AC =3,①MN 的最小值=NC ﹣CM =﹣3;如图4,当点A ,点C ,点D'共线,且点N 与点D'重合时,MN 有最大值,此时MN =CM +CN =+3,①线段MN 的取值范围是﹣+3.【点睛】本题主要考查全等三角形的判定与性质、勾股定理、等腰直角三角形的性质、旋转的性质及二次根式的性质,熟练掌握全等三角形的判定与性质、勾股定理、等腰直角三角形的性质、旋转的性质及二次根式的性质是解题的关键.7.如图,ABC 中,CD AB ⊥于点 D ,CD BD =,点 E 在CD 上,DE DA =,连接BE .(1)求证:BE CA =;(2)延长BE 交AC 于点F ,连接DF ,求CFD ∠的度数;(3)过点C 作CM CA ⊥,CM CA =,连接BM 交CD 于点N ,若12BD =,5AD =,直接写出NBC 的面积.【答案】(1)见解析;(2)①CFD =135°;(3)①NBC 的面积为21.【分析】(1)由“SAS ”可证①BDE ①①CDA ,可得BE =CA ;(2)过点D 作DG ①AC 于G ,DH ①BF 于H ,由全等三角形的性质可得①DBE =①ACD ,S ①BDE =S ①ADC ,由面积关系可求DH =DG ,由角平分线的性质可得①DFG =①DFH =45°,即可求解;(3)在CD 上截取DE =AD =5,连接BE ,延长BE 交AC 于F ,由①BEN ①①MCN ,可得EN =CN ,由三角形的面积公式可求解.【详解】证明(1)在①BDE 和①CDA 中,90BD CD BDE CDA DE AD =⎧⎪∠=∠=︒⎨⎪=⎩,①①BDE ①①CDA (SAS ),①BE =CA ;(2)如图2,过点D 作DG ①AC 于G ,DH ①BF 于H ,①①BDE ①①CDA ,①①DBE =①DCA ,S ①BDE =S ①ADC ,①①DBE +①A =①ACD +①A =90°,①①AFB =①CFB =90°,①S ①BDE =S ①ADC , ①1122BE DH AC DG ⨯=⨯⨯, ①DH =DG ,又①DG ①AC ,DH ①BF ,①①DFG =①DFH =45°,①①CFD =135°;(3)如图3,在CD 上截取DE =AD =5,连接BE ,延长BE 交AC 于F ,由(1)、(2)可得BE =AC ,BF ①AC ,BD =CD =12,①CM ①CA ,①BF ①CM ,①①M =①FBN ,①CM =CA ,①CM =BE ,在①BEN 和①MCN 中,FBN M BNE MNC BE CM ∠=∠⎧⎪∠=∠⎨⎪=⎩,①①BEN ①①MCN (AAS ),①EN =CN ,①EC =CD -DE =12-5=7, ①72CN =,①①NBC的面积1171221 222NC BD=⨯⨯=⨯⨯=,故①NBC的面积为21.【点睛】本题是三角形综合题,考查了直角三角形的性质,全等三角形的判定和性质,角平分线的判定和性质,三角形的面积公式等知识,灵活运用这些性质解决问题是本题的关键.8.某农产品生产基地收获红薯192吨,准备运给甲、乙两地的承包商进行包销.该基地用大、小两种货车共18辆恰好能一次性运完这批红薯,已知这两种货车的载重量分别为14吨/吨和8吨/辆,运往甲、乙两地的运费如下表:(1)求这两种货车各用多少辆;(2)如果安排10辆货车前往甲地,其余货车前往乙地,其中前往甲地的大货车为a辆,总运费为w元,求w关于a的函数关系式;(3)在(2)的条件下,若甲地的承包商包销的红薯不少于96吨,请你设计出使总运费最低的货车调配方案,并求出最低总运费.【答案】(1)大货车用8辆,小货车用10辆;(2)w=70a+11400(0≤a≤8且为整数);(3)使总运费最少的调配方案是:3辆大货车、7辆小货车前往甲地;5辆大货车、3辆小货车前往乙地.最少运费为11610元.【分析】(1)根据大、小两种货车共18辆,以及两种车所运的货物的和是192吨,据此即可列方程或方程组即可求解;(2)首先表示出每种车中,每条路线中的费用,总运费为w元就是各个费用的和,据此即可写出函数关系式;(3)根据运往甲地的物资不少于96吨,即可列出不等式求得a的范围,再根据a是整数,即可确定a的值,根据(2)中的函数关系,即可确定w的最小值,确定运输方案.【详解】(1)设大货车用x 辆,则小货车用(18﹣x )辆,根据题意得:14x +8(18﹣x )=192,解得:x =8,18﹣x =18﹣8=10.答:大货车用8辆,小货车用10辆.(2)设运往甲地的大货车是a ,那么运往乙地的大货车就应该是(8﹣a ),运往甲地的小货车是(10﹣a ),运往乙地的小货车是10﹣(10﹣a ),w =720a +800(8﹣a )+500(10﹣a )+650[10﹣(10﹣a )]=70a +11400(0≤a ≤8且为整数);(3)14a +8(10﹣a )≥96,解得:a ≥83. 又①0≤a ≤8,①3≤a ≤8 且为整数.①w =70a +11400,k =70>0,w 随a 的增大而增大,①当a =3时,W 最小,最小值为:W =70×3+11400=11610(元).答:使总运费最少的调配方案是:3辆大货车、7辆小货车前往甲地;5辆大货车、3辆小货车前往乙地.最少运费为11610元.【点睛】本题主要考查了一次函数和一元一次不等式的应用.解题的关键是根据实际意义列出函数关系式,从实际意义中找到对应的变量的值,利用待定系数法求出函数解析式,再根据自变量的值求算对应的函数值.9.(1)如图①,在直角ABC 中,90BAC ∠=︒,AB AC =,点D 为BC 边上一动点(与点B 不重合),连接AD ,将ABD △绕点A 逆时针旋转90︒,得到ACE △,那么,CE BD 之间的位置关系为__________,数量关系为__________;(2)如图①,在ABC 中,90BAC ∠=︒,AB AC =,D ,E (点D ,E 不与点B ,C 重合)为BC 上两动点,且45DAE ∠=︒.求证:222BD CE DE +=.(3)如图①,在ABC 中,120CAB ∠=︒,AB AC =,60DAE ∠=︒,3BC =+D ,E (点D ,E 不与点B ,C 重合)为BC 上两动点,若以,,BD DE EC 为边长的三角形是以BD 为斜边的直角三角形时,求BE 的长.【答案】(1)CE①BD ;CE=BD ;(2)见解析;(3)BE 2=+【分析】(1)根据D CAE BA ∠=∠,AD=AE ,运用SAS 证明ABD ACE ≅,根据全等三角形性质得出对应边相等,对应角相等,即可得到线段CE 、BD 之间的关系;(2)把ACE 绕点A 顺时针旋转90︒,得到 ABG ,连接DG ,由SAS 得到ADG ADE ≅,可得DE=DG ,即可把EF 、BE 、FC 放到一个直角三角形中,从而根据勾股定理即可证明;(3)把AEC 绕点A 顺时针旋转120︒,得到AFB ,可得AF=AE ,ABF ACB ∠=∠,EC=BF ,EAF 120∠=︒,由SAS 可证ADE ADF ≅,可得DF=DE ,由以BD 、DE 、EC 为边的三角形是直角三角形,分两种情况讨论,由直角三角形的性质可求解.【详解】解:(1)CE 与BD 位置关系是CE①BD ,数量关系是CE=BD①ABD △绕点A 逆时针旋转90︒,得到ACE △①DAE 90BAC ∠=∠=︒①D 90DAC BA ∠=︒-∠,CAE 90DAC ∠=︒-∠①D CAE BA ∠=∠①BA=CA ,AD=AE①ABD ACE ≅①ACE 45B ∠=∠=︒且CE=BD①ACB 45B ∠=∠=︒①ECB=4545=90∠︒+︒︒,即CE①BD故答案为:CE①BD ;CE=BD ;(2)如图①,把ACE 绕点A 顺时针旋转90︒,得到ABG ,连接DG ,则ACE ABG ≅①AG=AE ,BG=CE ,ABG ACF 45∠=∠=︒①BAC 90∠=︒,GAE 90∠=︒①GAD DAE 45∠=∠=︒在ADG 和ADE 中,AG AE GAD DAE AD AD =⎧⎪∠=∠⎨⎪=⎩①ADG ADE ≅①ED=GD①GBD 90∠=︒①222BD BG DG +=即222BD EC DE +=(3)如图①,把AEC 绕点A 顺时针旋转120︒,得到AFB ,①AEC AFB ≅①AF=AE ,ABF ACB ∠=∠,EC=BF ,EAF 120∠=︒①CAB 120∠=︒,AB=AC①ABC ACB ABF 30∠=∠=∠=︒①FBD 60∠=︒①EAF 120∠=︒,EAD 60∠=︒①DAE DAF 60∠=∠=︒,且AF=AE ,AD=AD①ADE ADF ≅①DF=DE①以BD 、DE 、EC 为边的三角形是直角三角形①以BD 、DF 、BF 为边的三角形是直角三角形①BDF 是直角三角形若BDF 90∠=︒,且FBD 60∠=︒①BF=2BD=EC ,DF DE ==①(BC BD DE EC BD 2BD 33BD =++=+==①BD 1=①DE =①BE BD DE 1=+=+若BFD 90∠=︒,且FBD 60∠=︒①BD=2BF=2EC ,DF DE ==①(BC BD DE EC 2BF BF 33BF =++=+==①BF 1=①BD=2,DE =①BE 2=+【点睛】此题是几何变换综合题,考查了等腰三角形的性质、全等三角形的判定和性质、旋转的性质、勾股定理,添加恰当辅助线构造全等三角形是本题的关键.。

【压轴题】八年级数学下期中试卷(带答案)

【压轴题】八年级数学下期中试卷(带答案)

∴③不正确;
令|y 小带-y 小路|=50, 可得|60t-100t+100|=50,即|100-40t|=50, 当 100-40t=50 时,
可解得 t= 5 , 4
当 100-40t=-50 时,
可解得 t= 15 , 4
又当 t= 5 时,y 小带=50,此时小路还没出发, 6
当 t= 25 时,小路到达 B 城,y 小带=250. 6
9.B
解析:B 【解析】 【分析】
作 AR⊥BC 于 R,AS⊥CD 于 S,根据题意先证出四边形 ABCD 是平行四边形,再由 AR=
AS 推出 BC=CD 得平行四边形 ABCD 是菱形,再根据根据勾股定理求出 AB 即可.
【详解】
作 AR⊥BC 于 R,AS⊥CD 于 S,连接 AC、BD 交于点 O.
4.B
解析:B 【解析】解:正方形和菱形都满足:四条边都相等,对角线平分一组对角,对角线垂直且 互相平分; 菱形的四个角不一定相等,而正方形的四个角一定相等.故选 B.
5.D
解析:D 【解析】 分析:本题考查的是利用勾股定理求线段的长度. 解析:根据题意,得出如下图形,最短路径为 AB 的长,AC=20,BC=15,∴AB=25
2
A. 5 5
C.②③④
D.①③④
B. 0.52 0.5
C. 5 2 52
D. 0.52 0.5
8.如图 1,∠DEF=25°,将长方形纸片 ABCD 沿直线 EF 折叠成图 2,再沿折痕 GF 折叠 成图 3,则∠CFE 的度数为( )
A.105°
B.115°
C.130°
D.155°
(1)如图,当点 O 在 ABC 的内部时,求证:四边形 DGFE 是平行四边形; (2)若四边形 DGFE 是菱形,则 OA 与 BC 应满足怎样的关系?若四边形 DGFE 是矩 形,则 OA 与 BC 应满足怎样的关系?(直接写出答案,不需要说明理由)

【压轴题】初二数学下期中第一次模拟试题(及答案)

【压轴题】初二数学下期中第一次模拟试题(及答案)

【压轴题】初二数学下期中第一次模拟试题(及答案)一、选择题1.如图,数轴上点A ,B 表示的数分别是1,2,过点B 作PQ ⊥AB ,以点B 为圆心,AB 长为半径画弧,交PQ 于点C ,以原点O 为圆心,OC 长为半径画弧,交数轴于点M ,则点M 表示的数是( )A .3B .5C .6D .7 2.在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是( )A .9.7m ,9.9mB .9.7m ,9.8mC .9.8m ,9.7mD .9.8m ,9.9m3.如图,直线y x m =-+与3y x =+的交点的横坐标为-2,则关于x 的不等式30x m x -+>+>的取值范围( )A .x>-2B .x<-2C .-3<x<-2D .-3<x<-14.如图,在正方形OABC 中,点A 的坐标是()3,1-,则C 点的坐标是( )A .()1,3B .()2,3C .()3,2D .()3,15.如图,已知圆柱底面的周长为4dm,圆柱的高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A.42dm B.22dm C.25dm D.45dm6.如图1,∠DEF=25°,将长方形纸片ABCD沿直线EF折叠成图2,再沿折痕GF折叠成图3,则∠CFE的度数为()A.105°B.115°C.130°D.155°7.下列各组数据中,不可以构成直角三角形的是()A.7,24,25B.2223,4,5C.53,1,44D.1.5,2,2.58.如图所示□ABCD,再添加下列某一个条件, 不能判定□ABCD是矩形的是()A.AC=BD B.AB⊥BCC.∠1=∠2D.∠ABC=∠BCD9.下列各组数是勾股数的是()A.3,4,5B.1.5,2,2.5C.32,42,52D.3,4,5 10.为了研究特殊四边形,李老师制作了这样一个教具(如图1):用钉子将四根木条钉成一个平行四边形框架ABCD,并在A与C、B与D两点之间分别用一根橡皮筋拉直固定,课上,李老师右手拿住木条BC,用左手向右推动框架至AB⊥BC(如图2)观察所得到的四边形,下列判断正确的是()A.∠BCA=45°B.AC=BDC.BD的长度变小D.AC⊥BD11.下列各式不成立的是( )A .8718293-=B .222233+= C .8184952+=+= D .13232=-+ 12.如图,在Rt ABC △中,90B ∠=︒,6AB =,9BC =,将ABC △折叠,使点C 与AB 的中点D 重合,折痕交AC 于点M ,交BC 于点N ,则线段BN 的长为( )A .3B .4C .5D .6二、填空题13.比较大小:52_____13.14.一次函数y =(m +2)x +3-m ,若y 随x 的增大而增大,函数图象与y 轴的交点在x 轴的上方,则m 的取值范围是____.15.已知菱形的周长为20㎝ ,两条对角线的比为3:4,则菱形的面积为___________.16.若由你选择一个喜欢的数值m ,使一次函数()2y m x m =-+的图象经过第一、二、四象限,则m 的值可以是___________.17.化简()2-2的结果是________;3.14π-的相反数是________;364-的绝对值是_________.18.如图,在ABC ∆中,D 、E 分别为AB 、AC 的中点,点F 在DE 上,且AF CF ⊥,若3AC =,5BC =,则DF =__________.19.()213-=_____________;20.如果最简二次根式2x-39-4x 是同类二次根式,那么x =______.三、解答题21.已知a ,b 分别为等腰三角形的两条边长,且a ,b 满足33652b a a =--求此三角形的周长.22.先化简,再求值:2222211()a ab b a b a b-+÷--,其中21a =,21b = 23.“龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD 和折线OABC 表示“龟兔赛跑”时路程与时间的关系,请你根据图中给出的信息,解决下列问题.(1)填空:折线OABC表示赛跑过程中的路程与时间的关系,线段OD表示赛跑过程中的路程与时间的关系.赛跑的全程是米.(2)兔子在起初每分钟跑米,乌龟每分钟爬米.(3)乌龟用了分钟追上了正在睡觉的兔子.(4)兔子醒来,以48千米/时的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了多少分钟?24.请阅读下列材料:问题:现有5个边长为1的正方形,排列形式如图①,在图中画出分割线,拼出如图②所示的新正方形.请你参考.上述做法,解决如下问题:(1)现有10个边长为1的正方形,排列形式如图③,请把它们分割后拼接成一个新的正方形,在图③中画出分割线,并在图④的正方形网格中用实线画出拼接成的新正方形;(图中每个小正方形的边长均为1)(2)如图⑤,现有由8个相同小正方形组成的十字形纸板,请在图中画出分割线,拼出一个新正方形.25.已知 90, 23,8,ACB BC AC CD ︒∠===是边AB 上的高,求CD 的长【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先依据勾股定理可求得OC 的长,从而得到OM 的长,于是可得到点M 对应的数.【详解】解:由题意得可知:OB=2,BC=1,依据勾股定理可知:22OB BC +5. ∴5故选:B .【点睛】本题考查勾股定理、实数与数轴,熟练掌握相关知识是解题的关键.2.B解析:B【解析】【分析】将这7个数据从小到大排序后处在第4位的数是中位数,利用算术平均数的计算公式进行计算即可.【详解】把这7个数据从小到大排列处于第4位的数是9.7m ,因此中位数是9.7m ,平均数为:(9.59.69.79.79.810.110.2)79.8++++++÷=m ,故选:B .【点睛】考查中位数、算术平均数的计算方法,将一组数据从小到大排列后处在中间位置的一个数或两个数的平均数就是这组数据的中位数,平均数则是反映一组数据的集中水平.3.C解析:C【解析】【分析】【详解】解:∵直线y x m =-+与3y x =+的交点的横坐标为﹣2,∴关于x 的不等式3x m x -+>+的解集为x <﹣2,∵y=x+3=0时,x=﹣3,∴x+3>0的解集是x >﹣3,∴3x m x -+>+>0的解集是﹣3<x <﹣2,故选C .【点睛】本题考查一次函数与一元一次不等式.4.A解析:A【解析】【分析】作CD ⊥x 轴于D ,作AE ⊥x 轴于E ,由AAS 证明△AOE ≌△OCD ,得出AE=OD ,OE=CD ,由点A 的坐标是(-3,1),得出OE=3,AE=1,∴OD=1,CD=3,得出C (1,3)即可.【详解】解:如图所示:作CD ⊥x 轴于D ,作AE ⊥x 轴于E ,则∠AEO=∠ODC =90°,∴∠OAE+∠AOE=90°,∵四边形OABC 是正方形,∴OA=CO ,∠AOC=90°,∴∠AOE+∠COD=90°,∴∠OAE=∠COD ,在△AOE 和△OCD 中,AEO ODC OAE COD OA CO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOE ≌△OCD (AAS ),∴AE=OD ,OE=CD ,∵点A的坐标是(-3,1),∴OE=3,AE=1,∴OD=1,CD=3,∴C(1,3),故选:A.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、坐标与图形性质;熟练掌握正方形的性质,证明三角形全等是解题的关键.5.A解析:A【解析】【分析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【详解】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度,Q圆柱底面的周长为4dm,圆柱高为2dm,BC BC dm\=,2=?,AB dm2222\=+=+=,AC22448\=,AC dm22∴这圈金属丝的周长最小为242=.AC dm故选:A.【点睛】本题考查了平面展开-最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.6.A解析:A【解析】【分析】由矩形的性质可知AD∥BC,由此可得出∠BFE=∠DEF=25°,再根据翻折的性质可知每翻折一次减少一个∠BFE的度数,由此即可算出∠CFE度数.【详解】解:∵四边形ABCD 为长方形,∴AD ∥BC ,∴∠BFE=∠DEF=25°.由翻折的性质可知:图2中,∠EFC=180°-∠BFE=155°,∠BFC=∠EFC-∠BFE=130°,图3中,∠CFE=∠BFC-∠BFE=105°.故选:A .【点睛】本题考查翻折变换以及矩形的性质,解题的关键是找出∠CFE=180°-3∠BFE .解决该题型题目时,根据翻折变换找出相等的边角关系是关键.7.B解析:B【解析】【分析】由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可.【详解】解:A 、72+242=625=252,故是直角三角形,不符合题意;B 、222222(3)(4)81256337(5)+=+=≠,故不是直角三角形,符合题意;C 、12+(34)2=2516=(54)2,故是直角三角形,不符合题意; D 、1.52+22=6.25=2.52,故是直角三角形,不符合题意;故选:B .【点睛】 本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.8.C解析:C【解析】【分析】根据矩形的判定定理逐项排除即可解答.【详解】解:由对角线相等的平行四边形是矩形,可得当AC=BD 时,能判定口ABCD 是矩形; 由有一个角是直角的平行四边形是矩形,可得当AB ⊥BC 时,能判定口ABCD 是矩形; 由平行四边形四边形对边平行,可得AD//BC ,即可得∠1=∠2,所以当∠1=∠2时,不能判定口ABCD 是矩形;由有一个角是直角的平行四边形是矩形,可得当∠ABC=∠BCD 时,能判定口ABCD 是矩形.故选答案为C .【点睛】本题考查了平行四边形是矩形的判定方法,其方法有①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线互相平分且相等的四边形是矩形.9.A解析:A【解析】【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证较小两数的平方和是否等于最大数的平方.【详解】A.32+42=52,是勾股数;B.1.5,2,2.5中,1.5,2.5不是正整数,故不是勾股数;C.(32)2+(42)2≠(52)2,不是勾股数;D2+22故选A.【点睛】本题考查了勾股数,解答此题要深刻理解勾股数的定义,并能够熟练运用.10.B解析:B【解析】【分析】根据矩形的性质即可判断;【详解】解:∵四边形ABCD是平行四边形,又∵AB⊥BC,∴∠ABC=90°,∴四边形ABCD是矩形,∴AC=BD.故选B.【点睛】本题考查平行四边形的性质.矩形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.11.C解析:C【解析】【分析】根据二次根式的性质、二次根式的加法法则、除法法则计算,判断即可.【详解】33==,A 选项成立,不符合题意;==B 选项成立,不符合题意;222==,C 选项不成立,符合题意;==D 选项成立,不符合题意; 故选C .【点睛】本题考查的是二次根式的混合运算,掌握二次根式的性质、二次根式的混合运算法则是解题的关键.12.B解析:B【解析】【分析】由折叠的性质可得DN CN =,根据勾股定理可求DN 的长,即可求BN 的长.【详解】D Q 是AB 中点,6AB =,3AD BD ∴==,根据折叠的性质得,DN CN =,9BN BC CN DN ∴=-=-,在Rt DBN V 中,222DN BN DB =+,22(9)9DN DN ∴=-+,5DN ∴=4BN ∴=,故选B .【点睛】本题考查了翻折变换,折叠的性质,勾股定理,熟练运用折叠的性质是本题的关键.二、填空题13.>【解析】【分析】根据实数大小比较的方法比较即可【详解】解:∵5=∴5故答案为>【点睛】本题考查实数大小的比较熟练掌握实数大小的比较方法是解题关键解析:>【解析】【分析】根据实数大小比较的方法比较即可.【详解】解:∵∴故答案为>.【点睛】本题考查实数大小的比较,熟练掌握实数大小的比较方法是解题关键14.-2<m <3【解析】【分析】【详解】解:由已知得:解得:-2<m <3故答案为:-2<m <3解析:-2<m <3【解析】【分析】【详解】解:由已知得:2030m m >>+⎧⎨-⎩, 解得:-2<m <3.故答案为:-2<m <3.15.【解析】【分析】【详解】解:已知菱形的周长为20㎝可得菱形的边长为5cm 设两条对角线长分别为3x4x 根据勾股定理可得()2+(2x )2=102解得x=2则两条对角线长分别为6cm8所以菱形的面积为故解析:224cm .【解析】【分析】【详解】解:已知菱形的周长为20㎝ ,可得菱形的边长为5cm ,设两条对角线长分别为3x ,4x , 根据勾股定理可得(32x )2+( 2x )2=102, 解得,x=2, 则两条对角线长分别为6cm 、8,所以菱形的面积为2168242cm ⨯⨯=. 故答案为:224cm .【点睛】本题考查菱形的性质;勾股定理. 16.(答案不唯一满足均可)【解析】【分析】一次函数的图象经过第一二四象限列出不等式组求解即可【详解】解:一次函数的图象经过第一二四象限解得:m 的值可以是1故答案为:1(答案不唯一满足均可)【点睛】此题主 解析:(答案不唯一,满足02m <<均可)【解析】【分析】一次函数()2y m x m =-+的图象经过第一、二、四象限,列出不等式组200,m m -<⎧⎨>⎩求解即可.【详解】解:一次函数()2y m x m =-+的图象经过第一、二、四象限, 200m m -<⎧⎨>⎩解得:02m <<m 的值可以是1.故答案为:1(答案不唯一,满足02m <<均可).【点睛】此题主要考查了一次函数图象,一次函数y kx b =+的图象有四种情况:①当0,0k b >>时,函数y kx b =+的图象经过第一、二、三象限;②当0,0k b ><时,函数y kx b =+的图象经过第一、三、四象限;③当0,0k b <>时,函数y kx b =+的图象经过第一、二、四象限;④当0,0k b <<时,函数y kx b =+的图象经过第二、三、四象限.17.4【解析】分析:根据二次根式的性质相反数的定义绝对值的意义解答即可详解:==2314﹣π的相反数为π﹣31=4故答案为2π﹣3144点睛:本题考查了二次根式的性质相反数的定义绝对值的意义是基础题熟记解析: 3.14π-4【解析】分析:根据二次根式的性质,相反数的定义,绝对值的意义解答即可.=2,3.14﹣π的相反数为π﹣3.14=-=4.故答案为2,π﹣3.14,4.点睛:本题考查了二次根式的性质,相反数的定义,绝对值的意义,是基础题,熟记概念是解题的关键.18.1【解析】【分析】根据三角形中位线定理求出DE 根据直角三角形的性质求出EF 计算即可【详解】解:∵DE 分别为ABAC 的中点∴DE=BC =25∵AF⊥CFE 为AC 的中点∴EF=AC =15∴DF=DE ﹣E解析:1【解析】【分析】根据三角形中位线定理求出DE ,根据直角三角形的性质求出EF ,计算即可.【详解】解:∵D 、E 分别为AB 、AC 的中点,∴DE=12BC=2.5,∵AF⊥CF,E为AC的中点,∴EF=12AC=1.5,∴DF=DE﹣EF=1,故答案为:1.【点睛】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.19.【解析】20.2【解析】由题意得:2x-3=9-4x解得:x=2故答案为:2【点睛】本题考查同类二次根式的概念同类二次根式是化为最简二次根式后被开方数相同的二次根式称为同类二次根式解析:2【解析】由题意得:2x-3=9-4x,解得:x=2,故答案为:2.【点睛】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.三、解答题21.三角形的周长为7或8【解析】【分析】根据二次根式的非负性,可求得a=2、b=3,根据等腰三角形的性质,可得三边长为2、2、3或2、3、3,从而求得三角形周长.【详解】∵3b=∴3a-6≥0,2-a≥0∴a=2∴b=3∵a,b分别为等腰三角形的两条边长∴等腰三角形的另一条边为2或3∴等腰三角形的周长为:2+2+3=7或2+3+3=8【点睛】本题考查二次根式的非负性和等腰三角形的多解问题,解题关键是利用二次根式的非负性,得出a=2.22.ab a b -+,4-. 【解析】【分析】首先通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.【详解】 解:原式=a b ab ab a b b a a b -⋅=-+-+.∵ab =)111=,a +b ==. 23.(1)兔子、乌龟、1500;(2)700,50;(3)14;(4)28.5【解析】试题分析:此题要数形结合,根据兔子与乌龟的奔跑路程和时间的图象来求解. 试题解析:(1)∵乌龟是一直跑的而兔子中间有休息的时刻;∴折线OABC 表示赛跑过程中兔子的路程与时间的关系;线段OD 表示赛跑过程中乌龟的路程与时间的关系;由图象可知:赛跑的路程为1500米;(2)结合图象得出:兔子在起初每分钟跑700米.1500÷30=50(米)乌龟每分钟爬50米.(3)700÷50=14(分钟)乌龟用了14分钟追上了正在睡觉的兔子.(4)∵48千米=48000米∴48000÷60=800(米/分)(1500-700)÷800=1(分钟)30+0.5-1×2=28.5(分钟)兔子中间停下睡觉用了28.5分钟.考点:函数的图象.24.(1)见解析;(2)见解析【解析】【分析】(1)根据面积为10,可得三个并列的小正方形的对角线的长为;(2)根据面积为8【详解】(1)如图所示即为所求.(2)如图所示即为所求.【点睛】本题主要考查了图形的设计,正确理解小正方形的面积的和等于拼成的正方形的面积是解题的关键.25230 【解析】【分析】已知两直角边,利用勾股定理求出斜边长,再利用面积法即可求出斜边上的高.【详解】解:Rt ABC ∆中,由勾股定理得221282025AB AC BC =+=+=1122ABC S AC AB AB CD ∆==Q g g 238230525AC BC CD AB ∴===g 【点睛】此题考查勾股定理,关键是利用勾股定理求出斜边长.。

初中八年级的下数学压轴题与包括答案.docx

初中八年级的下数学压轴题与包括答案.docx

---------.八年级下数学压轴题1.已知,正方形ABCD 中,∠MAN=45 °, MAN ∠绕点A顺时针旋转,它的两边分别交 CB 、 DC (或它们的延长线)于点M、N,AH ⊥MN于点H.( 1)如图①,当∠ MAN绕点A旋转到BM=DN时,请你直接写出AH 与 AB 的数量关系:;(2)如图②,当∠ MAN 绕点 A 旋转到 BM ≠DN 时,( 1)中发现的 AH 与 AB 的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;(3)如图③,已知∠ MAN=45 °AH ,⊥ MN 于点 H,且 MH=2 ,NH=3 ,求 AH 的长.(可利用( 2)得到的结论)专业资料-------------------.2.如图,△ ABC 是等边三角形,点 D 是边 BC 上的一点,以AD 为边作等边△ ADE ,过点 C 作 CF ∥DE 交 AB 于点 F.( 1)若点 D 是 BC 边的中点(如图①),求证:EF=CD ;(2)在( 1)的条件下直接写出△ AEF 和△ ABC 的面积比;(3)若点D 是BC 边上的任意一点(除B、C 外如图②),那么(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.专业资料-------------------.3.( 1)如图 1,在正方形ABCD 中, E 是 AB 上一点, F 是 AD 延长线上一点,且DF=BE .求证: CE=CF ;(2)如图 2,在正方形ABCD 中, E 是 AB 上一点, G 是 AD 上一点,如果∠GCE=45 °,请你利用( 1)的结论证明:GE=BE+GD .(3)运用( 1)( 2)解答中所积累的经验和知识,完成下题:如图 3,在直角梯形ABCD 中, AD ∥BC (BC > AD ),∠B=90 ° AB=BC ,, E 是AB 上一点,且∠DCE=45BE=4 °,, DE=10 ,求直角梯形 ABCD 的面积.专业资料-------------------.专业资料-------------------.4.如图,正方形ABCD 中, E 为 AB 边上一点,过点 D 作 DF ⊥DE ,与 BC 延长线交于点 F.连接 EF ,与 CD 边交于点G,与对角线BD 交于点 H.(1)若 BF=BD=,求BE的长;(2)若∠ ADE=2 ∠ BFE ,求证: FH=HE+HD.专业资料-------------------.5.如图,将一三角板放在边长为 1 的正方形ABCD 上,并使它的直角顶点P 在对角线AC 上滑动,直角的一边始终经过点B,另一边与射线DC 相交于 Q .探究:设 A 、P 两点间的距离为x.(1)当点 Q 在边 CD 上时,线段 PQ 与 PB 之间有怎样的数量关系?试证明你的猜想;(2)当点 Q 在边 CD 上时,设四边形 PBCQ 的面积为 y,求 y 与 x 之间的函数关系,并写出函数自变量 x 的取值范围;(3)当点 P 在线段 AC 上滑动时,△ PCQ 是否可能成为等腰三角形?如果可能,指出所有能使△ PCQ 成为等腰三角形的点Q 的位置.并求出相应的x 值,如果不可能,试说明理由.专业资料-------------------.6. Rt△ABC 与 Rt△FED 是两块全等的含30 °、60°角的三角板,按如图(一)所示拼在一起, CB 与 DE 重合.(1)求证:四边形ABFC 为平行四边形;(2)取 BC 中点 O,将△ ABC 绕点 O 顺时钟方向旋转到如图(二)中△A′ B′ C′位置,直线 B'C' 与 AB 、CF 分别相交于P、Q 两点,猜想OQ 、OP 长度的大小关系,并证明你的猜想;(3)在( 2)的条件下,指出当旋转角至少为多少度时,四边形PCQB为菱形?(不要求证明)专业资料-------------------.7.如图,在正方形ABCD 中,点 F 在 CD 边上,射线AF 交 BD 于点 E ,交 BC 的延长专业资料-------------------.线于点 G.(1)求证:△ ADE ≌△ CDE ;(2)过点 C 作 CH ⊥CE ,交 FG 于点 H,求证: FH=GH ;(3)设 AD=1 ,DF=x ,试问是否存在 x 的值,使△ ECG 为等腰三角形?若存在,请求出 x 的值;若不存在,请说明理由.专业资料-------------------.8.在平行四边形ABCD 中,∠ BAD 的平分线交直线BC 于点 E,交直线DC 于点 F.(1)在图 1 中证明 CE=CF ;(2)若∠ ABC=90 °G,是 EF 的中点(如图 2),直接写出∠ BDG 的度数;(3)若∠ABC=120 °FG ,∥ CE , FG=CE ,分别连接DB 、 DG(如图3),求∠ BDG 的度数.专业资料-------------------.9.如图,已知 ?ABCD 中, DE ⊥ BC 于点 E,DH ⊥ AB 于点 H,AF 平分∠ BAD ,分别交 DC 、DE 、 DH 于点 F、G、M,且 DE=AD .(1)求证:△ ADG ≌△ FDM .(2)猜想 AB 与 DG+CE 之间有何数量关系,并证明你的猜想.专业资料-------------------.10 .如图,在正方形ABCD 中, E 、F 分别为 BC 、 AB 上两点,且BE=BF ,过点 B 作专业资料-------------------.AE 的垂线交 AC 于点 G ,过点 G 作 CF 的垂线交BC 于点 H 延长线段AE 、 GH 交于点 M .(1)求证:∠ BFC= ∠BEA ;(2)求证: AM=BG+GM .专业资料-------------------.11 .如图所示,把矩形纸片OABC 放入直角坐标系xOy 中,使 OA 、OC 分别落在x、y 轴的正半轴上,连接AC ,且 AC=4,(1)求 AC 所在直线的解析式;(2)将纸片 OABC 折叠,使点 A 与点 C 重合(折痕为 EF ),求折叠后纸片重叠部分的面积.(3)求 EF 所在的直线的函数解析式.专业资料-------------------.12 .已知一次函数的图象与坐标轴交于A、B 点(如图), AE 平分∠ BAO ,交x 轴于点 E.(1)求点 B 的坐标;(2)求直线 AE 的表达式;(3)过点 B 作 BF ⊥AE ,垂足为 F,连接 OF ,试判断△ OFB 的形状,并求△ OFB 的面积.(4)若将已知条件“ AE 平分∠ BAO ,交 x 轴于点 E”改变为“点 E 是线段 OB 上的一个动点(点 E 不与点 O、 B 重合)”,过点 B 作 BF⊥AE ,垂足为F.设 OE=x ,BF=y ,试求 y 与 x 之间的函数关系式,并写出函数的定义域.专业资料-------------------.13 .如图,直线l1的解析表达式为:y=﹣3x+3 ,且 l1与 x 轴交于点 D,直线 l2经过点A,B,直线 l1,l2交于点 C.专业资料-------------------.(1)求点 D 的坐标;(2)求直线 l2的解析表达式;(3)求△ ADC 的面积;(4)在直线 l2上存在异于点 C 的另一点 P ,使得△ ADP 与△ ADC 的面积相等,请直接写出点P 的坐标.专业资料-------------------.14 .如图 1,在平面直角坐标系中,O 是坐标原点,长方形OACB 的顶点A、B 分别在 x 轴与 y 轴上,已知OA=6 ,OB=10 .点 D 为 y 轴上一点,其坐标为(0, 2),点 P 从点 A 出发以每秒 2 个单位的速度沿线段AC ﹣CB 的方向运动,当点P 与点B 重合时停止运动,运动时间为t 秒.(1)当点 P 经过点 C 时,求直线 DP 的函数解析式;(2)①求△ OPD 的面积 S 关于 t 的函数解析式;②如图②,把长方形沿着OP 折叠,点 B 的对应点B′恰好落在 AC 边上,求点P的坐标.(3)点 P 在运动过程中是否存在使△BDP 为等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.专业资料-------------------.15 .如图,在平面直角坐标系中,已知O为原点,四边形ABCD 为平行四边形, A、B、C的坐标分别是 A(﹣ 5,1), B(﹣ 2,4), C( 5, 4),点 D 在第一象限.(1)写出 D 点的坐标;(2 )求经过 B、D 两点的直线的解析式,并求线段BD 的长;(3 )将平行四边形ABCD 先向右平移 1 个单位长度,再向下平移 1 个单位长度所得的四边形 A1B1C1D1四个顶点的坐标是多少?并求出平行四边形ABCD 与四边A1B1 C1D 1重叠部分的面积.专业资料-------------------.16 .如图,一次函数的图象与x 轴、 y 轴交于点A、B ,以线段AB 为边在第一象限内作等边△ABC ,(1)求△ ABC 的面积;(2)如果在第二象限内有一点P(a,);试用含有 a 的代数式表示四边形ABPO 的面积,并求出当△ABP 的面积与△ ABC 的面积相等时 a 的值;专业资料-------------------.(3)在 x 轴上,是否存在点M,使△ MAB 为等腰三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.专业资料-------------------.专业资料-------------------.2018 年06月17日梧桐听雨的初中数学组卷参考答案与试题解析一.解答题(共16 小题)1.已知,正方形ABCD 中,∠MAN=45 °, MAN ∠绕点A顺时针旋转,它的两边分别交 CB 、DC (或它们的延长线)于点M、N, AH ⊥MN于点H.( 1)如图①,当∠ MAN 绕点 A 旋转到 BM=DN 时,请你直接写出AH 与 AB 的数量关系:AH=AB ;(2)如图②,当∠ MAN 绕点 A 旋转到 BM ≠DN 时,( 1)中发现的 AH 与 AB 的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;(3)如图③,已知∠ MAN=45 °, AH ⊥MN 于点 H,且 MH=2 ,NH=3 ,求 AH 的长.(可利用( 2)得到的结论)【解答】解:( 1)如图① AH=AB .( 2)数量关系成立.如图②,延长CB 至 E,使 BE=DN .∵ ABCD 是正方形,∴AB=AD ,∠ D= ∠ABE=90 °,在 Rt△AEB 和 Rt△AND 中,,∴Rt△ AEB ≌Rt△ AND ,∴AE=AN ,∠ EAB= ∠ NAD ,∵∠ DAN+ ∠BAN=45 °,专业资料-------------------.∴∠ EAB+ ∠ BAN=45 °,∴∠EAN=45 °,∴∠ EAM= ∠NAM=45 °,在△ AEM 和△ ANM中,,∴△ AEM ≌△ ANM .∴ S△AEM =S △ANM,EM=MN,∵ AB、AH 是△ AEM 和△ ANM对应边上的高,∴AB=AH .( 3)如图③分别沿AM 、AN 翻折△ AMH和△ ANH,得到△ ABM和△ AND,∴BM=2 ,DN=3 ,∠ B= ∠D= ∠BAD=90 °.分别延长BM 和 DN 交于点 C,得正方形ABCD ,由( 2)可知, AH=AB=BC=CD=AD.设 AH=x ,则 MC=x ﹣2,NC=x ﹣3,在 Rt△ MCN 中,由勾股定理,得MN 2=MC2+NC2∴52=( x﹣2)2+(x﹣3)2( 6 分)解得 x1=6 ,x2=﹣ 1.(不符合题意,舍去)∴AH=6 .专业资料-------------------.2.如图,△ ABC 是等边三角形,点 D 是边 BC 上的一点,以AD 为边作等边△ ADE ,过点 C 作 CF ∥ DE 交 AB 于点 F.( 1)若点 D 是 BC 边的中点(如图①),求证:EF=CD ;(2)在( 1)的条件下直接写出△ AEF 和△ ABC 的面积比;(3)若点 D 是 BC 边上的任意一点(除 B、C 外如图②),那么( 1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.【解答】( 1)证明:∵△ ABC 是等边三角形, D 是 BC 的中点,∴ AD ⊥BC ,且∠ BAD=∠BAC=30°,∵△ AED 是等边三角形,∴ AD=AE ,∠ADE=60 °,∴∠EDB=90 °﹣∠ADE=90 °﹣60 °=30 °,∵ ED ∥CF ,专业资料----------。

解答题压轴题训练(四)(解析版)-2020-2021学年八年级数学下学期期中考试压轴题专练(人教版)

解答题压轴题训练(四)(解析版)-2020-2021学年八年级数学下学期期中考试压轴题专练(人教版)

2021年八下期中考试金牌解答题压轴题训练(四)(时间:60分钟总分:100)班级姓名得分一、解答题1.观察下列等式:1 ========回答下列问题:(1(2;(3….【答案】(1(2(3)1【分析】(1)根据题目的运算,先将分式通分,然后化简计算,即可得答案;(2)根据题目的运算,先将分式通分,然后化简计算,即可得答案;(32121121n nn n,化简求值即可.【详解】(1257575222757552775=(222121212121n n n n n2222212121n n n n22212121n n n n22221n n2121n n(3)由(22121121n n n n53757573=15375757331537573717573175531【点睛】本题考查了利用平方差公式对二次根式进行有理化,熟悉相关运算法则是解题的关键. 2.(1)如图1,平面直角坐标系中A(0,a ),B(a ,0)(a >0).C 为线段AB 的中点,CD⊥x 轴于D ,若⊥AOB 的面积为2,则⊥CDB 的面积为 .(2)如图2,⊥AOB 为等腰直角三角形,O 为直角顶点,点E 为线段OB 上一点,且OB =3OE , C 与E 关于原点对称,线段AB 交x 轴于点D ,连CD ,若CD⊥AE ,试求ADDB的值.(3)如图3,点C 、E 在x 轴上,B 在y 轴上,OB =OC ,⊥BDE 是以B 为直角顶点的等腰直角三角形,直线CB 、ED 交于点A ,CD 交y 轴于点F ,试探究:CO EOBF-是否为定值?如果是定值,请求出该定值;如果不是,请求出其取值范围.【答案】(1)12;(2)2AD DB =;(3)是定值,2CO EO BF-=. 【分析】(1)根据等腰直角三角形的性质和勾股定理可得12DC BD a ==,分别表示∴AOB 和∴CDB 的面积,根据∴AOB 的面积为2即可得出结论;(2)连接AC ,作DM∴BC ,与BC 交于M ,证明∴ACO∴∴DCM 可得OE=CO=DM=MB ,设它们为m ,从而可得OB=3m ,借助勾股定理和线段的和差分别表示AD 和BD ,即可得出它们的比值;(3)作DN∴OB ,交y 轴与N ,证∴ACO∴∴DCM 和∴COF∴∴DNF 全等,借助全等三角形的性质和线段的和差可得2F C E B O O -=,由此可得结论. 【详解】解:(1)∴A(0,a ),B(a ,0),∴AO=OB=a ,∴ABO=45°,, ∴C 为线段AB 的中点,∴122BC AB ==, ∴CD∴x 轴,∴∴CDB=90°,∴DCB=90°-∴ABO=45°, ∴DC=BD ,∴222DC DB BC +=,∴12DC BD a ==, ∴∴AOB 的面积为2,即2122a =, ∴2111111222422CDB S a a a ∆=⋅⋅=⋅=, 故答案为:12; (2)如下图连接AC , ∴C 与E 关于原点对称, ∴CO=OE ,∴∴AOB 为等腰直角三角形, ∴∴OAB=∴B=45°,AO∴CB , ∴∴EAO+∴AEC=90°,AC=AE , ∴∴CAO=∴EAO , ∴AE∴CD ,∴∴BCD+∴AEC=90°, ∴∴CAO=∴EAO=∴BCD ,∴∴ADC=∴BCD+∴B ,∴CAB=∴CAO+∴OAB, ∴∴ADC=∴CAB , ∴AC=CD ,作DM∴BC ,与BC 交于M ,∴∴DMC=90°,∴∴MDB=∴B=45°,∴DM=MB,在∴ACO和∴DCM中,∴DMC AOCCAO BCDAC CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴∴ACO∴∴DCM(AAS),∴OE=CO=DM=MB,∴OB=3OE,设OE=CO=DM=MB=m,∴OB=3OE,∴OA=OB=3m,∴,BD AB====,∴AD=,∴2ADDB==;(3)是定值,作DN∴OB,交y轴与N,∴∴DNB=∴BOE=∴BOC=90°, ∴∴DBN+∴NBD=90°, ∴∴BDE 为等腰直角三角形, ∴∴DBN+∴OBE=90°,BD=BE , ∴∴NBD=∴OBE , 在∴NBD 和∴OEB 中∴90NBD OBE DNB BOE BD BE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩, ∴∴NBD∴∴OEB (AAS ), ∴ND=OB=OC ,NB=OE , 在∴COF 和∴DNF 中∴90CFO NFD DNB BOC CO ND ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴∴COF∴∴DNF (AAS ), ∴NF=OF ,∴OE BN NF BF OF BF ==-=-,OC OB OF BF ==+, ∴()2F CO E OF BF O O F BF B +-=--=,∴2CO EOBF-=.【点睛】本题考查等腰直角三角形的性质和判定,勾股定理,坐标与图形,全等三角形的性质和判定等.能正确作出辅助线,构造全等三角形建立线段之间的联系是解题关键. 3.在平面直角坐标系中点A 、B 的坐标分别为()0,A a ,(),0Bb .(1)如图1,若点C 、B 关于y 轴对称,126CAB ∠=︒,请直接写出ABC ∠的度数ABC ∠=___________;(2)如图2,点D 的坐标为()1,2D c a b c ⎛⎫< ⎪⎝⎭,ADO ABO ∠=∠,试用字母b 、c 表示线段AB 的长;(3)如图3,点D 的坐标为()(),0D a a b <,且EA ED EB EF ===,点F 的坐标分别为(),F m m ,试用字母a 、b 、m 表示线段AB 的长. 【答案】(1)27°;(2)AB=2c -b ;(3)2AB m a b =-- 【分析】(1)由点C 、B 关于y 轴对称可得AB=AC ,再根据等腰三角形的性质和三角形的内角和定理求解即可;(2)作辅助线如图,易得DE 是∴AOG 的中位线,可得AD=DG ,根据直角三角形的性质可得AD=OD=DG ,然后根据等腰三角形的性质、三角形的内角和以及等量代换可得∴BAD=∴BGD ,从而可得AB=BG ,进一步即可求出答案;(3)连接OE ,作EG∴DB 于G ,EH∴x 轴于H ,如图,易证O 、E 、F 三点共线,设E (n ,n ),根据两点间的距离公式可得)EF m n =-,由等腰三角形的性质可推出2a bn +=,然后在Rt∴BEG 中,由勾股定理结合上述结论即可得出结论. 【详解】解:(1)∴点C 、B 关于y 轴对称, ∴AB=AC , ∴126CAB ∠=︒, ∴ABC ∠=1801801262722CAB ︒-∠︒-︒==︒;故答案为:27°;(2)延长AD 交x 轴于点G ,作DE∴y 轴于E ,DF∴x 轴于F ,如图, ∴()1,2D c a b c ⎛⎫< ⎪⎝⎭,∴OE=DF=12a ,DE∴OG ,∴OA=a , ∴AE=OE=12a , ∴DE 是∴AOG 的中位线, ∴AD=DG , ∴AD=OD=DG , ∴∴DOG=∴DGO ,∴∴ADO=∴ABO ,∴AHD=∴OHB , ∴∴DAB=∴DOG , ∴∴BAD=∴BGD , ∴AB=BG ,∴DO=DG ,DF∴x 轴, ∴OG=2OF=2c ,又∴OG=OB+BG=b+AB=2c , ∴AB=2c -b ;(3)连接OE ,作EG∴DB 于G ,EH∴x 轴于H ,如图,∴EA=ED ,OA=OD=a ,OE=OE , ∴∴AOE∴∴DOE , ∴∴AOE=∴DOE=45°, ∴OE 平分∴AOD , ∴(),F m m ,∴F 在∴AOD 的平分线上, ∴O 、E 、F 三点共线,设E (n ,n ),则)EF m n ==-,∴ED=EB ,EG∴DB ,∴DG=BG ,即n -a=b -n ,可得2a bn +=, 在Rt∴BEG 中,由勾股定理得()222222222222a b a b a b BE BG EG n b n +-+⎛⎫⎛⎫=+=+-=+= ⎪ ⎪⎝⎭⎝⎭, ∴222AB a b =+,∴()222222AB BE EF m n ===-,∴()222442a b AB m n m +⎛⎫=-=- ⎪⎝⎭,∴2AB m a b =--. 【点睛】本题以平面直角坐标系为载体,主要考查了轴对称的性质、等腰三角形的判定和性质、三角形的中位线定理、全等三角形的判定和性质、直角三角形的性质、勾股定理以及整式的乘法运算等知识,综合性强、具有相当的难度,正确添加辅助线、熟练掌握上述知识、灵活应用数形结合的思想是解题的关键.4.阅读下述材料:我们在学习二次根式时,熟悉的分母有理化以及应用.其实,有一个类似的方法叫做“分子有理化”:与分母有理化类似,分母和分子都乘以分子的有理化因式,从而消掉分子中的根式比如:==分子有理化可以用来比较某些二次根式的大小,也可以用来处理一些二次根式的最值问题.例如:==><再例如:求y=的最大值.做法如下:解:由20,20x x+≥-≥可知2x≥,而y==当2x=2,所以的最大值是2.解决下述问题:(1)比较4和(2)求y=【答案】(1)4<;(2)y的最大值为21.【分析】(1)利用分子有理化得到4=然后比较4和的大小即可得到4与(2)利用二次根式有意义的条件得到01x ,而y 利用当0x =时,有最大值11得到所以y 的最大值;利用当1x =时,10得到y 的最小值.【详解】解:(1)4==,=,而>4>4∴>4∴<(2)由10x -,10x +,0x 得01x ,y =+∴当0x =11,所以y 的最大值为2;当1x =有最大值,1,0,所以y 1.【点睛】 本题考查了非常重要的一种数学思想:类比思想.解决本题关键是要读懂例题,然后根据例题提供的知识点和方法解决问题.同时要注意所解决的问题在方法上类似,但在细节上有所区别.5.已知:在⊥ABC 中,CA =CB ,⊥ACB =90º,D 为⊥ABC 外一点,且满足⊥ADB =90°. (1)如图1,若2AC =,AD =1,求DB 的长.(2)如图1,求证:DA DB +=.(3)如图2所示,过C 作CE ⊥AD 于E ,BD =2,AD =6,求CE 的长.【答案】(1)DB=(2)见解析;(3)2【分析】(1)在Rt∴ABC中,根据勾股定理,得AB=2,在Rt∴ABD中,根据勾股定理,得DB=;(2)过C点作CF∴CD,构造手拉手模型,运用等腰直角三角形的性质可得证;(3)过C点作CF∴CD,构造手拉手模型,运用三角形全等可得证.【详解】(1)解:在Rt∴ABC中,∴CA CB==∴2AB=,∴在Rt∴ABD中,DB==(2)证明:如图,过C点作CF∴CD交DB的延长线于点F.∴∴ACB=∴DCF=90°,∴∴ACD=∴BCF,∴∴CAD+∴CBD=360°-(∴ACB+∴ADB)=180°,∴CBF+∴CBD=180°,∴∴CAD=∴CBF,又∴CA=CB,∴∴CAD∴∴CBF(ASA),∴CD=CF,AD=BF,∴DF=,∴DF=DB+BF=DB+DA,∴DA DB+=.(3)解:如图,过C点作CF∴CD交AD与F点,∴∴ACB=∴DCF=90°,即∴ACF+∴BCF=∴BCD+∴BCF=90°,∴∴ACF=∴BCD,∴∴AFC=∴FCD+∴CDA=90°+∴CDA,∴CDB=∴CDA+∴ADB=90°+∴CDA,∴∴AFC=∴CDB,又∴CA=CB,∴∴CAF∴∴CBD(AAS),∴CF=CD,AF=BD,∴∴CDF是等腰直角三角形,又∴CE∴AD,∴E为DF中点,∴AD=6,AF=BD=2,∴FD=AD-AF=4,∴122CE DF==.【点睛】本题考查了勾股定理,等腰直角三角形的性质,等腰三角形的性质,三角形的全等,手拉手模型的构造,熟练构造手拉手模型是解题的关键.6.如图,平面直角坐标系xOy中,矩形OABC如图放置,点B(4,3),E,F分别为OA,BC边上的中点,动点P从点E出发以每秒2个单位速度沿EO方向向点O运动,同时,动点Q从点F出发以每秒1个单位速度沿FB方向向点B运动.当一个点到达终点时,另一个点随之停止.连接EF、PQ,且EF与PQ相交于点M,连接AM.(1)求线段AM的长度;(2)过点A作AH⊥PQ,垂足为点H,连接CH,求线段CH长度的最小值.【答案】(1)【分析】(1)证明∴FMQ∴∴EMP,且相似比为1=2=FM FQME PE,由EF=3求出FM=1,ME=2,再在Rt∴MEA中,由勾股定理即可求出AM的长度;(2)连接AM,取MA中点I,只要C、H、I,此时会形成∴ICH,根据三角形两边之差小于第三边可知,CH>IC-IH,当且仅当C、H、I三点共线时,有CH=IC-IH,此时CH有最小值,由此即可求解.【详解】解:(1)∴BC∥OA,∴∴FQM=∴EPM,且∴FMQ=∴EMP,∴∴FQM∴∴EPM,设运动时间为t,则FQ=t,PE=2t∴1=2=FM FQME PE,又FE=3,∴FM=1,ME=2,又E为OA的中点,∴EA=OE=2,∴在Rt∴MEA中,===MA故答案为:(2)如下图所示,连接AM,取AM中点I,当且仅当C、H、I三点共线时,有CH=IC-IH,此时CH有最小值,否则构成∴ICH,三角形两边之差小于第三边CH,过I点作IN∴BC于N,连接IH,∴FM ∥IN ∥AB ,且I 是AM 的中点,∴IN 是梯形MFBA 的中位线,∴IN=11()(13)222+=+=MF AB ,112==FN FB ,在Rt∴CIN 中,由勾股定理:CI又I 为直角∴AHM 斜边AM 上的中点,∴111222=====IH IM MA∴当C 、H 、I 三点共线时,CH 有最大值为=-=CH CI IH【点睛】本题考查了矩形的性质,勾股定理,梯形中位线,直角三角形斜边上的中线等于斜边的一半,三角形两边之差小于第三边等知识点,具有一定的综合性,熟练掌握各性质是解决本题的关键.7.阅读下列材料,然后回答问题.⊥一样的式子,其实我们还可以将其进一步化简:===1)2=1以上这种化简的步骤叫做分母有理化.⊥学习数学,最重要的是学习数学思想,其中一种数学思想叫做换元的思想,它可以简化我们的计算,比如我们熟悉的下面这个题:已知 a +b =2,ab = -3 ,求 a 2 + b 2 .我们可以把a +b 和ab 看成是一个整体,令 x =a +b , y = ab ,则 a 2 + b 2 = (a + b)2 - 2ab = x 2- 2y = 4+ 6=10.这样,我们不用求出a ,b ,就可以得到最后的结果.(1+...(2)已知 m 是正整数, a,b 2a 2+ 1823ab + 2b 2 = 2019 .求 m .(31=【答案】(1)12-;(2)2;(3)9 【分析】(1)先将式子的每一项进行分母有理化,再计算即可;(2)先求出,a b ab +的值,再用换元法计算求解即可;(31=的值,再对【详解】解:(1)原式12019+2222=+++12019122+++==(2)∴a ,b∴2(21),1a b m ab +==+= ∴2a 2+ 1823ab + 2b 2 = 2019∴222()18232019a b ++=∴2298a b +=∴24(21)100m +=∴251m =±-∴m 是正整数∴m=2.(31=得出21=20=∴2281=+=0≥≥9=.【点睛】本题考查的知识点是分母有理化以及利用换元思想求解,解此题的关键是读懂题意.理解分母有理化的方法以及利用换元方法解题的方法.8.已知ABC 中,60BAC ∠=︒,以AB 和BC 为边向外作等边ABD △和等边BCE .(1)连接AE 、CD ,如图1,求证:AE CD =;(2)若N 为CD 中点,连接AN ,如图2,求证:2CE AN =;(3)若AB BC ⊥,延长AB 交DE 于M ,DB =3,则BM = .(直接写出结果)【答案】(1)见解析;(2)见解析;(3)2. 【分析】(1)由等边ABD △和等边BCE .AB=DB ,BC=BE ,可推得∴ABE=∴DBC ,可证(SAS)ABE DBC △≌△由性质AE CD =即可;(2)延长AN 使NF AN =,连接FC ,由N 为CD 中点,可得CN=DN ,可证(SAS)ADN FCN △≌△,可得CF AD AB ==,NCF NDA ∠=∠,可求∴DAC=120°,可推出60ACF ∠=︒,可证(SAS)ABC CFA ≌,由性质得2CE BC AF AN ===即可;(3)过E 作EG∴BE ,交AM 延长线于G 由AB BC ⊥,60BAC ∠=︒,DB =∴EBM =30°,求得∴G==60°=∴CAB ,可证∴CAB∴∴BGE (AAS )由性质得GE=AB=DB =,利用30°角的直角边与斜边关系得,再证∴AD∴∴GME (AAS ),得AM=GM 可求得BG=即可.【详解】(1)证明:∴等边ABD △和等边BCE .AB=DB ,BC=BE ,∴ABD=∴CBE=60°,∴∴ABD+∴ABC=∴CBE+∴ABC ,∴∴ABE=∴DBC ,(SAS)ABE DBC △≌△,AE CD ∴=;(2)延长AN 使NF AN =,连接FC ,∴N 为CD 中点,∴CN=DN ,又∴AND=∴FNC ,(SAS)ADN FCN △≌△,CF AD AB ∴==,NCF NDA ∠=∠,∴60BAC ∠=︒,∴DAB=60°,∴∴DAC=120°,∴60ACF ACD NCF ACD ADN ∠=∠+∠=∠+∠=︒,BAC ACF ∴∠=∠,∴AC=CA ,(SAS)ABC CFA ≌,2CE BC AF AN ∴===;(3)过E 作EG∴BE ,交AM 延长线于G ,∴AB BC ⊥,60BAC ∠=︒,DB =,,由勾股定理得:=∴∴EBM=180°-∴ABC -∴CBE=30°,∴∴G=180°-∴GBE -∴BEG=60°=∴CAB ,∴BC=EB ,∴∴CAB∴∴BGE (AAS ),∴GE=AB=DB =,∴∴DAM=60°=∴G ,又∴∴AMD=∴GME ,∴∴AD∴∴GME (AAS ),∴AM=GM ,∴GM=AB+BM ,,,∴2BM =.故答案为:2.【点睛】本题考查等边三角形的性质,三角形全等判定与性质,直角三角形的性质,勾股定理,线段中点,线段和差,掌握等边三角形的性质,三角形全等判定与性质,直角三角形的性质,勾股定理应用,线段中点,线段和差计算是解题关键.9.定义:我们把对角线互相垂直的四边形叫做和美四边形,对角线交点称为和美四边形中心.(1)写出一种你学过的和美四边形________;(2)顺次连接和美四边形四边中点所得四边形是________A .矩形B .菱形C .正方形D .无法确定(3)如图1,点O 是和美四边形ABCD 的中心,E F G H 、、、分别是边AB BC CD DA 、、、的中点,连接OE OF OG OH 、、、,记四边形AEOH BEOF CGOF DHOG 、、、的面积为1234S S S S 、、、,用等式表示1234S S S S 、、、的数量关系(无需说明理由)(4)如图2,四边形ABCD 是和美四边形,若3,2,4AB BC CD ===,求AD 的长.【答案】(1)正方形;(2)A;(3)S1+S3=S2+S4;(4【分析】(1)根据正方形的对角线互相垂直解答;(2)根据矩形的判定定理解答;(3)根据三角形的中线把三角形分为面积相等的两部分解答;(4)根据和美四边形的定义、勾股定理计算即可.【详解】解:(1)正方形是学过的和美四边形,故答案为:正方形;(2)顺次连接和美四边形四边中点所得四边形是矩形,故选:A.(3)由和美四边形的定义可知,AC∴BD,则∴AOB=∴BOC=∴COD=∴DOA=90°,又E、F、G、H分别是边AB、BC、CD、DA的中点,∴∴AOE的面积=∴BOE的面积,∴BOF的面积=∴COF的面积,∴COG的面积=∴DOG的面积,∴DOH的面积=∴AOH的面积,∴S1+S3=∴AOE的面积+∴COF的面积+∴COG的面积+∴AOH的面积=S2+S4;(4)如图2,连接AC、BD交于点O,则AC∴BD,∴在Rt∴AOB中,AO2=AB2-BO2,Rt∴DOC中,DO2=DC2-CO2,AB=3,BC=2,CD=4,∴可得AD2=AO2+DO2=AB2-BO2+DC2-CO2=AB2+DC2-BC2=32+42-22=21,即可得AD.【点睛】本题考查的是和美四边形的定义、矩形的判定、勾股定理的应用,正确理解和美四边形的定义、掌握矩形的判定定理是解题的关键.。

八年级下压轴 50题(含答案及解析)

八年级下压轴 50题(含答案及解析)
②当AB=AE=2,∠B=60°时,将四边形ABCE向右平移a(a>0)个单位后,恰有两个顶点落在反比例函数y= 的图象上,求k的值.
29.如图1,在平面直角坐标系中,直线y=﹣ x+3与x轴、y轴相交于A、B两点,点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上,过点D作DE⊥x轴于点E.
(1)求证:∠BFC=∠BEA;
(2)求证:AM=BG+GM.
9.如图,正方形ABCD的对角线相交于点O.点E是线段DO上一点,连接CE.点F是∠OCE的平分线上一点,且BF⊥CF与CO相交于点M.点G是线段CE上一点,且CO=CG.
(1)若OF=4,求FG的长;
(2)求证:BF=OG+CF.
10.(1)如图①,两个正方形的边长均为3,求三角形DBF的面积.
①当t=秒时,以A、P、E、D、为顶点可以构成平行四边形.
②在P点运动过程中,是否存在以B、C、E、D为顶点的四边形是平行四边形?若存在,请求出t的值;若不存在,请说明理由.
23.如图,在平面直角坐标系中,直线y=x+2与x轴,y轴分别交于A,B两点,点C(2,m)为直线y=x+2上一点,直线y=﹣ x+b过点C.
13.如图,菱形ABCD中,点E、M在AD上,且CD=CM,点F为AB上的点,且∠ECF= ∠B.
(1)若菱形ABCD的周长为8,且∠D=67.5°,求△MCD的面积;
(2)求证:BF=EF﹣EM.
14.如图1,矩形OABC摆放在平面直角坐标系中,点A在x轴上,点C在y轴上,OA=3,OC=2,过点A的直线交矩形OABC的边BC于点P,且点P不与点B、C重合,过点P作∠CPD=∠APB,PD交x轴于点D,交y轴于点E.

湖北省武汉市八年级下学期期中数学压轴题整理

湖北省武汉市八年级下学期期中数学压轴题整理


【答案】 C 【解析】 EF AC , ①错误 正方形 ABCD 中, BAC 的平分线交 BC 于 E ,作 EF AC 于 F
CE 2 2 EF 2 2 BE 2 ,②正确 FAE BAE ,且 EF EB ABE≌ AFE , AF AB AB 2 AF 2 ( 2FG )2 2FG2 ,③正确
MCN 45 , 点 T 为 AB 的中点, 以下结论: ① AB 2 AC ; ② CM 2 TN 2 NC2 MT 2 ;
③ AM 2 BN 2 MN 2 ;④ S S S ,其中正确结论的序号是( CAM CBN CMN A.①②③④ B.只有①②③ C.只有①③④ C
6
【答案】 B 【解析】由题意,知 DE 垂直平分 AF ,①错误,②错误(风筝模型)
1 S四边形ADFE AF DE , ③正确 2
DA DF , EA EF BDF FEC 2BAF 2 FAE 2 BAC , ④正确
选 B
(08-09 洪山 12 题) 如图,一架 25 分米的梯子,斜立在一竖直的墙上,这时梯的底部距墙底端 7 分米,如果梯 子的顶端沿墙下滑 4 分米,那么梯的底部将平滑( ) A. 9 分米 B.15 分米 C.5 分米 D. 8 分米
1 1 S EF , ③正确 ADE S AFDE AD 2 4
AE AF ,且 CE BF , FB BC , FA AE CE 2 BE 2 BF 2 BE 2 EF 2 2 AE
选 A

2 AE
2
2
, ④正确。
(10-11 武珞 12 题) 在 Rt ABC 中, ACB 90 , BC a , AC b , AB c ,斜边上的高 CD h, ABE 是以

八年级数学下册 期中-综合大题必刷(压轴13考点33题)(解析版)

八年级数学下册  期中-综合大题必刷(压轴13考点33题)(解析版)

专题08期中-综合大题必刷(压轴13考点33题)一.分式的加减法(共2小题)1.深化理解:阅读下列材料,并解答问题:材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.解:由分母x+1,可设x2﹣x+3=(x+1)(x+a)+b;则x2﹣x+3=(x+1)(x+a)+b=x2+ax+x+a+b=x2+(a+1)x+a+b.∵对于任意x上述等式成立,∴解得:.∴=x﹣2+.这样,分式就拆分成一个整式x﹣2与一个分式的和的形式.(1)将分式拆分成一个整式与一个分式(分子为整数)的和的形式为x+7+;(2)已知整数x使分式的值为整数,则满足条件的整数x的值.【答案】(1)x+7+;(2)4或16或2或﹣10.【解答】解:(1)由分母x﹣1,可设x2+6x﹣3=(x﹣1)(x+a)+b,则x2+6x﹣3=(x﹣1)(x+a)+b=x2+ax﹣x﹣a+b=x2+(a﹣1)x﹣a+b.∵对于任意x上述等式成立,∴,解得:.∴==x+7+.故答案为:x+7+.(2)由分母x﹣3,可设2x2+5x﹣20=(x﹣3)(2x+a)+b,则2x2+5x﹣20=(x﹣3)(2x+a)+b=2x2+ax﹣6x﹣3a+b=2x2+(a﹣6)x﹣3a+b,∵对于任意x上述等式成立,∴,解得:.∴==2x+11+.∵x为整数,分式的值为整数,∴为整数,∴x=4或16或2或﹣10.2.阅读下面的材料,并解答后面的问题材料:将分式拆分成一个整式与一个分式(分子为整数)的和(差)的形式.解:由分母为x+1,可设3x2+4x﹣1=(x+1)(3x+a)+b.因为(x+1)(3x+a)+b=3x2+ax+3x+a+b=3x2+(a+3)x+a+b,所以3x2+4x﹣1=3x2+(a+3)x+a+b.所以,解得.所以==﹣=3x+1﹣.这样,分式就被拆分成了一个整式3x+1与一个分式的差的形式.根据你的理解决下列问题:(1)请将分式拆分成一个整式与一个分式(分子为整数)的和(差)的形式;(2)若分式拆分成一个整式与一个分式(分子为整数)的和(差)的形式为:5m﹣11+,求m2+n2+mn的最小值.【答案】(1)以=2x+5+;(2)27.【解答】解:(1)由分母为x﹣1,可设2x2+3x+6=(x﹣1)(2x+a)+b.因为(x﹣1)(2x+a)+b=2x2+ax﹣2x﹣a+b=2x2+(a﹣2)x﹣a+b,所以2x2+3x+6=2x2+(a﹣2)x﹣a+b,因此有,解得,所以==2x+5+;(2)由分母为x+2,可设5x2+9x﹣3=(x+2)(5x+a)+b,因为(x+2)(5x+a)+b=5x2+ax+10x+2a+b=5x2+(a+10)x+2a+b,所以5x2+9x﹣3=5x2+(a+10)x+2a+b,因此有,解得,所以==5x﹣1﹣,所以5m﹣11+=5x﹣1﹣,因此5m﹣11=5x﹣1,n﹣6=﹣x﹣2,所以m=x+2,n=﹣x+4,所以m2+n2+mn=x2﹣2x+28=(x﹣1)2+27,因为(x﹣1)2≥0,所以(x﹣1)2+27≥27,所以m2+n2+mn的最小值为27.二.分式的混合运算(共1小题)3.我们知道:分式和分数有着很多的相似点.如类比分数的基本性质,我们得到了分式的基本性质;类比分数的运算法则,我们得到了分式的运算法则,等等.小学里,把分子比分母小的分数叫做真分数.类似地,我们把分子整式的次数小于分母整式的次数的分式称为真分式;反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式,如:==+=1+;==+=2+(﹣).(1)下列分式中,属于真分式的是:③(填序号);①②③④(2)将假分式化成整式与真分式的和的形式为:=2+,若假分式的值为正整数,则整数a 的值为﹣2、1或3;(3)将假分式化成整式与真分式的和的形式:=a +1+.【答案】见试题解答内容【解答】解:(1)根据题意可得,、、都是假分式,是真分式,故答案为:③;(2)由题意可得,=,若假分式的值为正整数,则或2a ﹣1=1或2a ﹣1=5,解得,a =﹣2或a =1或a =3,故答案为:2、,﹣2、1或3;(3)=,故答案为:a +1+.三.分式的化简求值(共2小题)4.阅读理解材料:为了研究分式与分母x 的关系,小明制作了表格,并得到如下数据:x…﹣4﹣3﹣2﹣101234……﹣0.25﹣0.﹣0.5﹣1无意义10.50.0.25…从表格数据观察,当x >0时,随着x 的增大,的值随之减小,并无限接近0;当x <0时,随着x的增大,的值也随之减小.材料2:对于一个分子、分母都是多项式的分式,当分母的次数高于分子的次数时,我们把这个分式叫做真分式.当分母的次数不低于分子的次数时,我们把这个分式叫做假分式.有时候,需要把一个假分式化成整式和真分式的代数和,像这种恒等变形,称为将分式化为部分分式.如:.根据上述材料完成下列问题:(1)当x>0时,随着x的增大,的值减小(增大或减小);当x<0时,随着x的增大,的值减小(增大或减小);(2)当x>1时,随着x的增大,的值无限接近一个数,请求出这个数;(3)当0≤x≤2时,求代数式值的范围.【答案】(1)减小,减小;(2)2;(3)﹣8≤≤.【解答】解:(1)∵当x>0时随着x的增大而减小,∴随着x的增大,1+的值减小;∵当x<0时随着x的增大而减小,∵=1+,∴随着x的增大,的值减小,故答案为:减小,减小.(2)∵==2+,∵当x>1时,的值无限接近0,∴的值无限接近2.(3)∵==5+,又∵0≤x≤2,∴﹣13≤≤﹣,∴﹣8≤≤.5.已知(x+a)(x+b)=x2+mx+n.(1)若a=﹣3,b=2,则m=﹣1,n=﹣6;(2)若m=﹣2,,求的值;(3)若n=﹣1,当=0时,求m的值.【答案】(1)﹣1,﹣6;(2)﹣4;(3)m1=﹣2,m2=1.【解答】解:(1)将a=﹣3,b=2代入(x+a)(x+b)得:(x+a)(x+b)=(x﹣3)(x+2)=x2﹣x﹣6=x2+mx+n,∴m=﹣1,n=﹣6.故答案为:﹣1,﹣6.(2)∵(x+a)(x+b)=x2+(a+b)x+ab=x2+mx+n.∴,∴+====﹣4.(3)∵a+b=m,ab=n=﹣1,∴(+)+4(a+b)﹣16=0,+4m﹣16=0,4[(a+b)2﹣2ab]+4m﹣16=0,4(m2+2)+4m﹣16=0∴4m2+4m﹣8=0,(m+2)(m﹣1)=0,m1=﹣2,m2=1.四.分式方程的应用(共4小题)6.某镇道路改造工程,由甲、乙两工程队合作20天可完成,甲工程队单独施工完成的天数是乙工程队单独施工完天数的2倍.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)甲工程队独做a天后,再由甲、乙两工程队合作(20﹣)天(用含a的代数式表示)可完成此项工程;(3)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?【答案】见试题解答内容【解答】解:(1)设乙单独完成此项工程需要x天,则甲单独完成需要2x天,+=1,解得:x=30,经检验x=30是原方程的解.∴x+30=60,答:甲、乙两工程队单独完成此项工程各需要60天,30天;(2)(1﹣)÷(+)=(20﹣)天;故答案为:(20﹣);(3)设甲单独做了y天,y+(20﹣)×(1+2.5)≤64,解得:y≥36答:甲工程队至少要单独施工36天.7.甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校,乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的,公交车的速度是乙骑自行车速度的2倍.甲、乙两同学同时从家里出发去学校,结果甲同学比乙同学早到2分钟.(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?【答案】(1)300米/分钟;(2)600米.【解答】解:(1)设乙骑自行车的速度为x米/分钟,则甲步行速度是x米/分钟,公交车的速度是2x米/分钟,根据题意得+=﹣2,解得:x=300米/分钟,经检验x=300是方程的根,答:乙骑自行车的速度为300米/分钟;(2)∵300×2=600米,答:当甲到达学校时,乙同学离学校还有600米.8.育才文具店第一次用4000元购进某款书包,很快卖完,临近开学,又用3600元购进该款书包,但这次每个书包的进价是第一次进价的1.2倍,数量比第一次少了20个.(1)求第一次每个书包的进价是多少元?(2)若第二次进货后按80元/个的价格销售,恰好销售完一半时,根据市场情况,文具店决定对剩余的书包按同一标准一次性打折销售,但要求第二批书包的利润不少于960元,问最低可打几折?【答案】见试题解答内容【解答】解:(1)设第一次每个书包的进价是x元,根据题意得:﹣20=,解得x=50.经检验,x=50是原分式方程的解,且符合题意,答:第一次书包的进价是50元.(2)设可以打y折,则3600÷(50×1.2)=60(个).由80×30+80××30﹣3600≥960,解得y≥9,答:最低可打9折.9.列方程解应用题某水果批发市场苹果的价格如表:购买苹果(千克)不超过20千克20千克以上但不超过40千克40千克以上每千克的价格6元5元4元(1)小明分两次共购买40千克,第二次购买的数量多于第一次购买的数量,共付出216元,小明第一次和第二次各购买多少千克苹果?(2)小强分两次共购买100千克,第二次购买的数量多于第一次购买的数量,且两次购买每千克苹果的单价不相同,共付出432元,请问小强第一次,第二次分别购买苹果多少千克?【答案】(1)第一次买16千克,第二次买24千克;(2)第一次购买16千克苹果,第二次购买84千克苹果或第一次购买32千克苹果,第二次购买68千克苹果.【解答】解:(1)设第一次购买x千克苹果,则第二次购买(40﹣x)千克苹果,由题意可得6x+5(40﹣x)=216,解得:x=16,40﹣x=24.答:第一次买16千克,第二次买24千克.(2)设第一次购买x千克苹果,则第二次购买(100﹣x)千克苹果.分三种情况考虑:①第一次购买苹果少于20千克,第二次苹果20千克以上但不超过40千克;两次购买的质量不到100千克,不成立;②第一次购买苹果少于20千克,第二次苹果超过40千克.根据题意,得:6x+4(100﹣x)=432,解得:x=16.100﹣16=84(千克);③第一次购买苹果20千克以上但不超过40千克,第二次苹果超过40千克根据题意,得:5x+4(100﹣x)=432,解得:x=32.100﹣32=68千克;答:第一次购买16千克苹果,第二次购买84千克苹果或第一次购买32千克苹果,第二次购买68千克苹果.五.菱形的判定与性质(共3小题)10.如图,在矩形ABCD中,AB=4cm,BC=8cm,点P从点D出发向点A运动,运动到点A即停止;同时点Q从点B出发向点C运动,运动到点C即停止.点P、Q的速度的速度都是1cm/s,连接PQ,AQ,CP,设点P、Q运动的时间为t(s).(1)当t为何值时,四边形ABQP是矩形?(2)当t为何值时,四边形AQCP是菱形?(3)分别求出(2)中菱形AQCP的周长和面积.【答案】见试题解答内容【解答】解:(1)当四边形ABQP是矩形时,BQ=AP,即:t=8﹣t,解得t=4.答:当t=4时,四边形ABQP是矩形;(2)设t秒后,四边形AQCP是菱形当AQ=CQ,即=8﹣t时,四边形AQCP为菱形.解得:t=3.答:当t=3时,四边形AQCP是菱形;(3)当t=3时,CQ=5,则周长为:4CQ=20cm,面积为:4×8﹣2××3×4=20(cm2).11.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA 方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(2)当t为何值时,△DEF为直角三角形?请说明理由.【答案】见试题解答内容【解答】(1)证明:能.理由如下:在△DFC中,∠DFC=90°,∠C=30°,DC=4t,∴DF=2t,又∵AE=2t,∴AE=DF,∵AB⊥BC,DF⊥BC,∴AE∥DF,又∵AE=DF,∴四边形AEFD为平行四边形,当AE=AD时,四边形AEFD为菱形,即60﹣4t=2t,解得t=10.∴当t=10秒时,四边形AEFD为菱形.(2)①当∠DEF=90°时,由(1)知四边形AEFD为平行四边形,∴EF∥AD,∴∠ADE=∠DEF=90°,∵∠A=60°,∴∠AED=30°,∴AD=AE=t,又AD=60﹣4t,即60﹣4t=t,解得t=12;②当∠EDF=90°时,四边形EBFD为矩形,在Rt△AED中∠A=60°,则∠ADE=30°,∴AD=2AE,即60﹣4t=4t,解得t=.③若∠EFD=90°,则E与B重合,D与A重合,此种情况不存在.综上所述,当t=或12秒时,△DEF为直角三角形.12.如图所示,在等边三角形ABC中,BC=8cm,射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).(1)连接EF,当EF经过AC边的中点D时,求证:四边形AFCE是平行四边形;(2)①当t为何值时,四边形ACFE是菱形;②当t为何值时,△ACE的面积是△ACF的面积的2倍.【答案】(1)证明见解析;(2)①8;②或.【解答】(1)证明:如图1,∵AG∥BC,∴∠EAC=∠FCA,∠AED=∠CFD,∵EF经过AC边的中点D,∴AD=CD,∴△ADE≌△CDF(AAS),∴AE=CF,∵AE∥FC,∴四边形AFCE是平行四边形;(2)解:①如图2,∵△ABC是等边三角形,∴AC=BC=8cm,∵四边形ACFE是菱形,∴AE=CF=AC=BC=8cm,且点F在BC延长线上,由运动知,AE=t cm,BF=2t cm,∴CF=(2t﹣8)cm,∴2t﹣8=8,解得:t=8,将t=8代入CF=2t﹣8中,得CF=8=AC=AE,符合题意,即当t=8时,四边形ACFE是菱形;②设平行线AG与BC的距离为h cm,∴△ACE边AE上的高为h cm,△ACF的边CF上的高为h cm,∵△ACE的面积是△ACF的面积的2倍,∴AE=2CF,当点F在线段BC上时(0<t<4),CF=(8﹣2t),AE=t cm,∴t=2(8﹣2t),解得:t=;当点F在BC的延长线上时(t>4),CF=(2t﹣8)cm,AE=t cm,∴t=2(2t﹣8),解得:t=,即当t为或时,△ACE的面积是△ACF的面积的2倍.六.矩形的性质(共1小题)13.如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O→C→B→A→O的路线移动(移动一周).(1)写出点B的坐标;(2)当点P移动了4秒时,求出点P的坐标;(3)在移动过程中,当△OBP的面积是10时,直接写出点P的坐标.【答案】(1)B(4,6);(2)P(2,6);(3)(0,5)或(,6)或(4,1)或(,0).【解答】解:(1)∵A点的坐标为(4,0),C点的坐标为(0,6),∴OA=4,OC=6,∴点B(4,6);(2)∵点P移动了4秒时的距离是2×4=8,∴点P的坐标为(2,6);(3)如图,①当点P在OC上时,S△OBP=×OP1×4=10,∴OP1=5,∴点P(0,5);②当点P在BC上,S△OBP=×BP2×6=10,∴BP2=,∴CP2=4﹣=,∴点P(,6);③当点P在AB上,S△OBP=×BP3×4=10,∴BP3=5,∴AP3=6﹣5=1,∴点P(4,1);④当点P在AO上,S△OBP=×OP4×6=10,∴OP4=,∴点P(,0).综上,点P的坐标为(0,5)或(,6)或(4,1)或(,0).七.矩形的判定(共1小题)14.如图,在△ABC中,点O是AC边上的一动点,过O作直线MN∥BC,设MN交∠BCA 的平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当CE=12,CF=10时,求CO的长;(3)当O点运动到何处时,四边形AECF是矩形?并证明你的结论.【答案】见试题解答内容【解答】解:(1)证明:∵MN∥BC,CE平分∠ACB,CF平分∠ACD,∴∠BCE=∠ACE=∠OEC,∠OCF=∠FCD=∠OFC,∴OE=OC,OC=OF,∴OE=OF;(2)∵CE平分∠ACB,CF平分∠ACD,∴∠ECF=∠ACB+∠ACD=×180°=90°,∴Rt△CEF中,EF===2,又∵OE=OF,∴CO=EF=;(3)当O运动到AC中点时,四边形AECF是矩形,证明:∵AO=CO,OE=OF,∴四边形AECF是平行四边形,由(2)可得∠ECF=90°,∴四边形AECF是矩形.八.正方形的性质(共8小题)15.如图,已知正方形ABCD的边长是2,∠EAF=m°,将∠EAF绕点A顺时针旋转,它的两边分别交BC、CD于点E、F,G是CB延长线上一点,且始终保持BG=DF.(1)求证:△ABG≌△ADF;(2)求证:AG⊥AF;(3)当EF=BE+DF时:①求m的值;②若F是CD的中点,求BE的长.【答案】见试题解答内容【解答】解:(1)证明:在正方形ABCD中,AB=AD=BC=CD=2,∠BAD=∠C=∠D=∠ABC=∠ABG=90°.∵BG=DF,在△ABG和△ADF中,,∴△ABG≌△ADF(SAS);(2)证明:∵△ABG≌△ADF,∴∠GAB=∠FAD,∴∠GAF=∠GAB+∠BAF=∠FAD+∠BAF=∠BAD=90°,∴AG⊥AF;(3)①解:△ABG≌△ADF,∴AG=AF,BG=DF.∵EF=BE+DF,∴EF=BE+BG=EG.∵AE=AE,在△AEG和△AEF中.,∴△AEG≌△AEF(SSS).∴∠EAG=∠EAF,∴∠EAF=∠GAF=45°,即m=45;②若F是CD的中点,则DF=CF=BG=1.设BE=x,则CE=2﹣x,EF=EG=1+x.在Rt△CEF中,CE2+CF2=EF2,即(2﹣x)2+12=(1+x)2,得x=.∴BE的长为.16.如图①,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.(1)连接MN,△BMN是等边三角形吗?为什么?(2)求证:△AMB≌△ENB;(3)①当M点在何处时,AM+CM的值最小;②如图②,当M点在何处时,AM+BM+CM的值最小,请你画出图形,并说明理由.【答案】见试题解答内容【解答】(1)解:△BMN是等边三角形.理由如下:如图①,∵BM绕点B逆时针旋转60°得到BN,∴BM=BN,∠MBN=60°,∴△BMN是等边三角形;(2)证明:∵△ABE和△BMN都是等边三角形,∴AB=EB,BM=BN,∠ABE=∠MBN=60°,∴∠ABE﹣∠ABN=∠MBN﹣∠ABN,即∠ABM=∠EBN,在△AMB和△ENB中,,∴△AMB≌△ENB(SAS);(3)①由两点之间线段最短可知A、M、C三点共线时,AM+CM的值最小,∵四边形ABCD是正方形,∴点M为BD的中点;②当点M在CE与BD的交点时,AM+BM+CM的值最小,理由如下:如图②,∵△AMB≌△ENB,∴AM=EN,∵△BMN是等边三角形,∴BM=MN,∴AM+BM+CM=EN+MN+CM,由两点之间线段最短可知,点E、N、M、C在同一直线上时,EN+MN+CM,故,点M在CE与BD的交点时,AM+BM+CM的值最小.17.阅读下面材料:我遇到这样一个问题:如图1,在正方形ABCD中,点E、F分别为DC、BC边上的点,∠EAF=45°,连接EF,求证:DE+BF=EF.我是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段集中到同一条线段上.他先后尝试了平移、翻折、旋转的方法,发现通过旋转可以解决此问题.他的方法是将△ADE绕点A顺时针旋转90°得到△ABG(如图2),此时GF即是DE+BF.请回答:在图2中,∠GAF的度数是45°.参考我得到的结论和思考问题的方法,解决下列问题:(1)如图3,在直角梯形ABCD中,AD∥BC(AD>BC),∠D=90°,AD=CD=10,E是CD上一点,若∠BAE=45°,DE=4,求BE的长度.(2)如图4,△ABC中,AC=4,BC=6,以AB为边作正方形ADEB,连接CD.当∠ACB=135°时,线段CD有最大值,并求出CD的最大值.【答案】阅读材料:45°;(1)BE=;(2)135°.【解答】解:阅读材料:根据旋转△ABG≌△QDE,∴∠GAB=∠EAD,AG=AE,∵∠BAD=∠BAE+∠EAF+∠DAE=90°,∠EAF=45°,∴∠BAF+∠GAB=45°,即∠GAF=45°;(1)过点A作AF⊥CB交CB的延长线于点F,∵AD∥BC,∠D=90°,∴∠B=180°﹣∠D=90°,∵AD=CD=10,∴四边形AFCD是正方形,∴CF=10,根据上面结论,可知BE=DE+BF,设BE=x,∵DE=4,∴BF=BE﹣DE=x﹣4,∴CB=CF﹣BF=10﹣x+4=14﹣x,CE=CD﹣DE=10﹣4=6,∵∠C=90°,∴CE2+CB2=BE2,∴36+(14﹣x)2=x2,解得:x=,故BE=;(3)过点A作AF⊥CA,取AF=AC,连接BF,CF,∵∠BAF=∠BAC+∠CAF=90°+∠BAC,∠DAC=∠BAD+∠BAC=90°+∠BAC,∴∠BAF=∠DAC,又∵AC=AF,AB=AD,∴△FAB≌△CAD(SAS),∴BF=CD,∴线段CD有最大值时,只需BF最大即可,在△BCF中,BF≤BC+CF,当B、C、F三点共线时,BF取最大值,此时BF=BC+CF,在等腰直角三角形ACF中AC=AF=4,∠ACF=45°,∴CF=AC=4,∵CB=6,BF最大为:4+6,此时∠BCA=180°﹣∠ACF=135°.故答案为:135°.18.已知边长为2的正方形ABCD中,P是对角线AC上的一个动点(与点A,C不重合),过点P作PE⊥PB,PE交DC于点E,过点E作EF⊥AC,垂足为点F.(1)求证:PB=PE;(2)在点P的运动过程中,PF的长度是否发生变化?若不变,求出这个不变的值;若变化,试说明理由.【答案】(1)证明见解答;(2)点P在运动过程中,PF的长度不变,值为.【解答】(1)证明:过点P作PG⊥BC于G,过点P作PH⊥DC于H,如图1.∵四边形ABCD是正方形,PG⊥BC,PH⊥DC,∴∠GPC=∠ACB=∠ACD=∠HPC=45°.∴PG=PH,∠GPH=∠PGB=∠PHE=90°.∵PE⊥PB,即∠BPE=90°,∴∠BPG=90°﹣∠GPE=∠EPH.在△PGB和△PHE中,,∴△PGB≌△PHE(ASA),∴PB=PE.(2)解:PF的长度不变.连接BD,如图2.∵四边形ABCD是正方形,∴∠BOP=90°,∵PE⊥PB,即∠BPE=90°,∴∠PBO=90°﹣∠BPO=∠EPF,∵EF⊥PC,即∠PFE=90°,∴∠BOP=∠PFE,在△BOP和△PFE中,,∴△BOP≌△PFE(AAS),∴BO=PF.∵四边形ABCD是正方形,∴OB=OC,∠BOC=90°,∴BC=OB.∵BC=2,∴OB=,∴PF=OB=.∴点P在运动过程中,PF的长度不变,值为.19.如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于Q.(1)如图1,当点Q在DC边上时,探究PB与PQ所满足的数量关系;小明同学探究此问题的方法是:过P点作PE⊥DC于E点,PF⊥BC于F点,根据正方形的性质和角平分线的性质,得出PE=PF,再证明△PEQ≌△PFB,可得出结论,他的结论应是PB=PQ;(2)如图2,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想.【答案】见试题解答内容【解答】解:(1)结论:PB=PQ,理由:过P作PF⊥BC,PE⊥CD,∵P,C为正方形对角线AC上的点,∴PC平分∠DCB,∠DCB=90°,∴PF=PE,∴四边形PECF为正方形,∵∠BPF+∠QPF=90°,∠QPF+∠QPE=90°,∴∠BPF=∠QPE,在△PEQ和△PFB中,,∴Rt△PQE≌Rt△PBF,∴PB=PQ;故答案为PB=PQ.(2)PB=PQ,证明:过P作PE⊥BC,PF⊥CD,∵P,C为正方形对角线AC上的点,∴PC平分∠DCB,∠DCB=90°,∴PF=PE,∴四边形PECF为正方形,∵∠BPF+∠QPF=90°,∠BPF+∠BPE=90°,∴∠BPE=∠QPF,∴Rt△PQF≌Rt△PBE,∴PB=PQ.20.如图,四边形ABCD是正方形,点E是平面内异于点A的任意一点,以线段AE为边作正方形AEFG,连接EB,GD.(1)如图1,判断EB与GD位置关系,并证明你的结论;(2)如图2,若点E在线段DG上,∠DAE=15°,AG=4,求BE的长.【答案】(1)BE⊥DG,理由见解答;(2)2+2.【解答】解:(1)BE⊥DG;如图1,延长BE交DG于H,∵四边形ABCD和四边形AEFG是正方形,∴AE=AG,AB=AD,∠BAD=∠EAG=90°,∴△ABE≌△DAG(SAS),∴BE=DG,∠ABE=∠ADG,∵∠ADG+∠DGA=90°,∴∠ABE+∠DGA=90°,∴∠GHB=90°,∴BE⊥DG;(2)作AH⊥DG于H,∵四边形ABCD和四边形BEFG都是正方形,∴∠AGE=45°,∴GH=HA===2,∵∠AGE=45°,∴∠GAH=45°,∴∠HAE=45°,∵∠DAE=15°,∴∠HAD=∠HAE+∠DAE=60°,∴HD=AH•tan∠HAD=2=2,∴BE=DG=DH+GH=2+2.21.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB,DC(或它们的延长线)于点M,N.(1)当∠MAN绕点A旋转到BM=DN时(如图1),求证:BM+DN=MN;(2)当∠MAN绕点A旋转到BM≠DN时(如图2),则线段BM,DN和MN之间数量关系是BM+DN=MN;(3)当∠MAN绕点A旋转到如图3的位置时,猜想线段BM,DN和MN之间又有怎样的数量关系呢?并对你的猜想加以说明.【答案】(1)答案见证明;(2)BM+DN=MN;(3)DN﹣BM=MN.【解答】(1)证明:如图1,过A作AE⊥MN于E,∵四边形ABCD是正方形,∴AB=AD,∠D=∠ABC=90°,∠BAD=90°,∵∠MAN=45°,∴∠BAM+∠DAN=90°﹣45°=45°,在△ABM和△ADN中,∴△ABM≌△ADN(SAS),∴AM=AN,∠BAM=∠DAN=45°=22.5°,∵AE⊥MN,∴∠NAE=MAN=22.5°,MN=2EN,∴∠DAN=∠NAE,∵AE⊥MN,∠D=90°,∴DN=NE,即BM=DN=NE,∴BM+DN=MN;(2)解:线段BM,DN和MN之间数量关系是BM+DN=MN,理由如下:延长CB至E,使得BE=DN,连接AE,∵四边形ABCD是正方形,∴AB=AD,∠D=∠ABC=90°=∠ABE,在△ADN和△ABE中,∵,∴△ABE≌△ADN(SAS),∴∠BAE=∠DAN,AE=AN,∴∠EAN=∠BAE+∠BAN=∠DAN+∠BAN=90°,∵∠MAN=45°,∴∠EAM=∠MAN,∵在△EAM和△NAM中,∴△EAM≌△NAM,∴MN=ME,∵ME=BM+BE=BM+DN,∴BM+DN=MN,故答案为:BM+DN=MN;(3)DN﹣BM=MN,理由如下:如图3,在DC上截取DE=BM,连接AE,由(1)知△ADE≌△ABM(SAS),∴∠DAE=∠BAM,AE=AM,∴∠EAM=∠BAM+∠BAE=∠DAE+∠BAE=90°,∵∠MAN=45°,∴∠EAN=∠MAN.∵在△MAN和△EAN中,,∴△MAN≌△EAN(SAS),∴EN=MN,即DN﹣DE=MN,∴DN﹣BM=MN.22.(1)如图1,正方形ABCD中,点P为线段BC上一个动点,若线段MN垂直AP于点E,交线段AB于点M,交线段CD于点N,证明:AP=MN;(2)如图2,正方形ABCD中,点P为线段BC上一动点,若线段MN垂直平分线段AP,分别交AB,AP,BD,DC于点M,E,F,N.求证:EF=ME+FN.【答案】(1)见解答;(2)见解答.【解答】解:(1)如图1,过B点作BH∥MN交CD于H,则AP⊥BH,∵BM∥NH,∴四边形MBHN为平行四边形,∴MN=BH,∵四边形ABCD是正方形.∴AB=BC,∠ABP=90°=∠C,∴∠CBH+∠ABH=∠BAP+∠ABH=90°,∴∠BAP=∠CBH,∴△ABP≌△BCH(ASA),∴BH=AP,∴MN=AP;(2)如图2,连接FA,FP,FC∵正方形ABCD是轴对称图形,F为对角线BD上一点,∴FA=FC,又∵FE垂直平分AP,∴FA=FP,∴FP=FC,∴∠FPC=∠FCP,∴∠FAB=∠FPC,∴∠FAB+∠FPB=180°,∴∠ABC+∠AFP=180°,∴∠AFP=90°,∴FE=AP,由(1)知,AP=MN,∴MN=ME+EF+FN=AP=2EF,∴EF=ME+FN.九.正方形的判定与性质(共1小题)23.如图,正方形ABCD中,AB=3,点E是对角线AC上的一点,连接DE.过点E 作EF⊥ED,交AB于点F,以DE,EF为邻边作矩形DEFG,连接AG.(1)求证:矩形DEFG是正方形;(2)求AG+AE的值;(3)若F恰为AB的中点,求正方形DEFG的面积.【答案】(1)证明见解析;(2)6;(3).【解答】(1)证明:如图,作EM⊥AD于M,EN⊥AB于N.∵四边形ABCD是正方形,∵EM⊥AD于M,EN⊥AB于N,∴EM=EN,∵∠EMA=∠ENA=∠DAB=90°,∴四边形ANEM是矩形,∵EF⊥DE,∴∠MEN=∠DEF=90°,∴∠DEM=∠FEN,∵∠EMD=∠ENF=90°,∴△EMD≌△ENF(ASA),∴ED=EF,∵四边形DEFG是矩形,∴四边形DEFG是正方形;(2)解:∵四边形DEFG是正方形,四边形ABCD是正方形,∴DG=DE,DC=DA=AB=3,∠GDE=∠ADC=90°,∴∠ADG=∠CDE,∴△ADG≌△CDE(SAS),∴AG=CE,∴AE+AG=AE+EC=AC=AD=6;(3)解:连接DF,∵四边形ABCD是正方形,∴AB=AD=3,AB∥CD,∵F是AB中点,∴AF=FB=,∴DF===,∴正方形DEFG的面积=DF2=()2=.一十.旋转的性质(共5小题)24.如图,已知△ABC为等边三角形.P为△ABC内一点,PA=8,PB=6,PC=10,若将△PBC绕点B逆时针旋转后得到△P′BA.(1)求点P与点P′之间的距离;(2)求∠APB的度数.【答案】(1)6;(2)150°.【解答】解:(1)连接PP′由题意可知AP′=PC=10,BP′=BP,∠PBC=∠P′BA,而∠PBC+∠ABP=60°,所以∠PBP′=60度.故△BPP′为等边三角形,所以PP′=BP=BP′=6;(2)利用勾股定理的逆定理可知:PP′2+AP2=AP′2,所以△APP′为直角三角形,且∠APP′=90°,可求∠APB=90°+60°=150°.25.如图1,点E为正方形ABCD内一点,∠AEB=90°,将△ABE绕点B顺时针方向旋转90°,得到△CBE'(点A的对应点为点C),延长AE交CE'于点F,连接DE.(1)试判断四边形BEFE'的形状,并说明理由;(2)若DA=DE,如图2,请猜想线段CF与E'F的数量关系,并加以证明.【答案】(1)四边形BE′FE是正方形;(2)CF=FE'.【解答】解:(1)四边形BE′FE是正方形.理由如下:由旋转得,∠E′=∠AEB=90°,∠EBE′=90°,∵∠BEF=180°﹣∠AEB=90°,∴四边形BE′FE是矩形,由旋转得,BE′=BE,∴四边形BE′FE是正方形.(2)CF=FE',证明如下:如图,过点D作DG⊥AE于点G,则∠DGA=∠AEB=90°,∵DA=DE,∴AG=AE,∵四边形ABCD是正方形,∴DA=AB,∠DAB=90°,∴∠BAE+∠DAG=90°,∵∠ADG+∠DAG=90°,∴∠ADG=∠BAE,∴△ADG≌△BAE(AAS),∴AG=BE;∵四边形BE′FE是正方形,∴BE=FE′,∴AG=FE′,由旋转得,AE=CE′,∴AE=CE′,∴FE′=AE=CE′,∴CF=FE'.26.(1)如图1,O是等边△ABC内一点,连接OA、OB、OC,且OA=3,OB=4,OC=5,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.求:①旋转角的度数60°;②线段OD的长4;③求∠BDC的度数.(2)如图2所示,O是等腰直角△ABC(∠ABC=90°)内一点,连接OA、OB、OC,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.当OA、OB、OC满足什么条件时,∠ODC=90°?请给出证明.【答案】见试题解答内容【解答】解:(1)①∵△ABC为等边三角形,∴BA=BC,∠ABC=60°,∵△BAO绕点B顺时针旋转后得到△BCD,∴∠OBD=∠ABC=60°,∴旋转角的度数为60°;②∵△BAO绕点B顺时针旋转后得到△BCD,∴BO=BD,而∠OBD=60°,∴△OBD为等边三角形;∴OD=OB=4;③∵△BOD为等边三角形,∴∠BDO=60°,∵△BAO绕点B顺时针旋转后得到△BCD,∴CD=AO=3,在△OCD中,CD=3,OD=4,OC=5,∵32+42=52,∴CD2+OD2=OC2,∴△OCD为直角三角形,∠ODC=90°,∴∠BDC=∠BDO+∠ODC=60°+90°=150°;(2)OA2+2OB2=OC2时,∠ODC=90°.理由如下:∵△BAO绕点B顺时针旋转后得到△BCD,∴∠OBD=∠ABC=90°,BO=BD,CD=AO,∴△OBD为等腰直角三角形,∴OD=OB,∵当CD2+OD2=OC2时,△OCD为直角三角形,∠ODC=90°,∴OA2+2OB2=OC2,∴当OA、OB、OC满足OA2+2OB2=OC2时,∠ODC=90°.27.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α,将CO绕点C顺时针方向旋转60°得到CD,连接AD,OD.(1)当α=150°时,求证:△AOD为直角三角形;(2)求∠DAO的度数;(3)请你探究:当α为多少度时,△AOD是等腰三角形?【答案】(1)见解析;(2)50°;(3)140°或125°或110°.【解答】(1)证明:由旋转的性质得:OC=CD,∠DCO=60°,∴△COD是等边三角形,∴∠CDO=60°,∵△ABC是等边三角形,∴AC=BC,∠ACB=60°,∴∠ACD=∠BCO,∴△BOC≌△ADC(SAS),∴∠ADC=∠BOC=150°,∴∠ADO=90°,即△AOD是直角三角形;(2)解:∵△COD是等边三角形,∴∠COD=60°,∵∠AOB=110°,∠BOC=α,∴∠AOD=360°﹣110°﹣60°﹣α=190°﹣α,由(1)知:△ADC≌△BOC,∴∠ADC=∠BOC=α,∴∠ADO=α﹣60°,△ADO中,∠DAO=180°﹣∠ADO﹣∠AOD=180°﹣(α﹣60°)﹣(190°﹣α)=50°;(3)解:分三种情况:①当AO=AD时,∠AOD=∠ADO.∵∠AOD=360°﹣∠AOB﹣∠COD﹣α=360°﹣110°﹣60°﹣α=190°﹣α,∠ADO =α﹣60°,∴190°﹣α=α﹣60°,∴α=125°;②当OA=OD时,∠OAD=∠ADO.∵∠AOD=190°﹣α,∠ADO=α﹣60°,∴∠OAD=180°﹣(∠AOD+∠ADO)=50°,∴α﹣60°=50°,∴α=110°;③当OD=AD时,∠OAD=∠AOD.∵190°﹣α=50°,∴α=140°,综上所述:当α的度数为125°或110°或140°时,△AOD是等腰三角形.28.如图,四边形ABCD是正方形,点E在AB的延长线上,连接EC,EC绕点E逆时针旋转90°得到EF,连接CF、AF,CF与对角线BD交于点G.(1)若BE=2,求AF的长度;(2)求证:AF+2BG=AD.【答案】(1);(2)证明过程见解答.【解答】(1)解:连接AC,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∴∠EBC=90°,AC2=AB2+BC2=2BC2,∴CE2=BE2+BC2,∵EC绕点E逆时旋转90°得到EF,∴EF=EC,∠FEC=90°,∴∠EFC=∠ECF=45°,CF2=EF2+CE2=2CE2=2BE2+2BC2,∴∠EFC=∠EAC=45°,∴∠FAE=∠FCE=45°,∴∠FAC=90°,∴CF2=AF2+AC2=AF2+2BC2,∴AF2+2BC2=2BE2+2BC2,即AF2=2BE2,∵BE=2,∴AF2=2×22=8,解得AF=;(2)证明:连接AC,延长AF,CB交于点H,∵∠FAE=∠ABD=45°,∴AF∥BD,又∵AD∥BC,∴四边形ADBH是平行四边形,∴AD=BH=BC=AB,∴AH=AB=CD,∵AH∥BG,∴CG=FG,∴BG是△CHF的中位线,∴HF=2BG,∵AH=AF+FH,∴AD=AF+2BG,即AF+2BG=AD.一十一.频数(率)分布直方图(共1小题)29.某校为了了解本校1200名初中生对“防溺水”安全知识的掌握情况,随机抽取了60名初中生进行“防溺水”安全知识测试,并将测试成绩进行统计分析,绘制了如下不完整的频数分布表和频数分布直方图:组别成绩x分频数第1组50≤x<606第2组60≤x<7010第3组70≤x<80a第4组80≤x<90b第5组90≤x<10012请结合图表完成下列问题:(1)频数分布表中的a=18,b=14.(2)将频数分布直方图补充完整.(3)若测试成绩不低于80分定为“优秀”,则该校的初中生对“防溺水”安全知识的掌握情况为“优秀”的大约有多少人?【答案】(1)18,14;(2)见解答;(3)520人.【解答】解:(1)根据条形统计图所给出的数据可得:a=18,则b=60﹣6﹣10﹣18﹣12=14;故答案为:18,14;(2)根据(1)求出的b的值,补图如下:(3)“优秀”等级的人数大约为:1200×=520(人).答:“优秀”等级的人数大约为520人.一十二.条形统计图(共1小题)30.为了丰富学生的大课间活动,某校围绕着“你最喜欢的球类活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据.请根据两幅统计图中的信息,回答下列问题:(1)该校对多少名学生进行了抽样调查?(2)求本次抽样调查中最喜欢乒乓球活动的学生数,并补全条形图;(3)若该校共有1800名学生,请你估计全校学生中最喜欢足球活动的人数约为多少?【答案】见试题解答内容【解答】解:(1)根据题意得:=50(名),答:该校对50名学生进行了抽样调查;(2)本次抽样调查中最喜欢乒乓球活动的学生数是:50﹣20﹣10﹣15=5(人),补图如下:(3)根据题意得:1800×=360(人),答:全校学生中最喜欢足球活动的人数约为360人.一十三.利用频率估计概率(共3小题)31.在一个不透明的盒子里装有颜色不同的黑、白两种球共60个,它们除颜色不同外,其余都相同,王颖做摸球试验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中搅匀,经过大量重复上述摸球的过程,发现摸到白球的频率稳定于0.25,(1)请估计摸到白球的概率将会接近0.25;(2)计算盒子里白、黑两种颜色的球各有多少个?(3)如果要使摸到白球的概率为,需要往盒子里再放入多少个白球?【答案】见试题解答内容【解答】解:(1)根据题意得:当n很大时,摸到白球的概率将会接近0.25;假如你摸一次,你摸到白球的概率为0.25;故答案为:0.25;(2)60×0.25=15,60﹣15=45;答:盒子里白、黑两种颜色的球分别有15个、45个;(3)设需要往盒子里再放入x个白球;根据题意得:,解得:x=15;经检验x=15是原方程的解,答:需要往盒子里再放入15个白球.32.在一个不透明的口袋里装有若干个相同的红球,为了估计袋中红球的数量,八(1)班学生在数学实验室分组做摸球试验:每组先将10个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,不断重复.下表是这次活动统计汇总各小组数据后获得的全班数据统计表:摸球的次数s15030060090012001500摸到白球的频数n63a247365484606摸到白球的频率0.4200.4100.4120.4060.403b(1)按表格数据格式,表中的a=123;b=0.404;(2)请估计:当次数s很大时,摸到白球的频率将会接近0.4(精确到0.1);。

【压轴题】八年级数学下期中试卷(含答案)

【压轴题】八年级数学下期中试卷(含答案)
17.已知 ,则 的取值范围是________
18.如图,矩形ABCD中, ,点E在AD上,且 ,连接EC,将矩形ABCD沿直线BE翻折,点A恰好落在EC上的点A'处,则 ____________cm.
19.放学后,小刚和同学边聊边往家走,突然想起今天是妈妈的生日,赶紧加快速度,跑步回家.小刚离家的距离 和放学后的时间之间 的关系如图所示,给出下列结论:①小刚边走边聊阶段的行走速度是 ;②小刚家离学校的距离是 ;③小刚回到家时已放学 ;④小刚从学校回到家的平均速度是 .其中正确的是_____(把你认为正确答案的序号都填上)
22.甲、乙两座仓库分别有农用车12辆和6辆.现在需要调往 县10辆,需要调往 县8辆,已知从甲仓库调运一辆农用车到 县和 县的运费分别为40元和80元;从乙仓库调运一辆农用车到 县和 县的运费分别为30元和50元.
(1)设乙仓库调往 县农用车 辆,求总运费 关于 的函数关系式;
(2)若要求总运费不超过900元,问共有几种调运方案?试列举出来.
故选A.
【点睛】
本题考查了勾股数,解答此题要深刻理解勾股数的定义,并能够熟练运用.
9.B
解析:B
【解析】
【分析】
根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.
【详解】
如图,设大树高为AB=9m,小树高为CD=4m,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,
③乙用16分钟追上甲;
④乙到达终点时,甲离终点还有300米
其中正确的结论有( )
A.1个B.2个C.3个D.4个
11.如图所示,▱ABCD的对角线AC,BD相交于点O, , , ,▱ABCD的周长( )

【压轴卷】初二数学下期中试卷含答案(1)

【压轴卷】初二数学下期中试卷含答案(1)

【压轴卷】初二数学下期中试卷含答案(1)一、选择题1.如图,由四个全等的直角三角形拼成的图形,设CE =a ,HG =b ,则斜边BD 的长是( )A .a+bB .a ﹣bC .222a b +D .222a b - 2.下列二次根式中,最简二次根式是( )A .10B .12C .12D .83.估计26的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间 4.平行四边形的对角线长为x 、y ,一边长为12,则x 、y 的值可能是( ) A .8和14B .10和14C .18和20D .10和34 5.把式子1a a -号外面的因式移到根号内,结果是( ) A .a B .a - C .a - D .a --6.如图,在Rt ABC ∆中,90ACB ∠=︒,CD ,CE 分别是斜边上的高和中线,30B ∠=︒,4CE =,则CD 的长为( )A .5B .4C .23D 57.在▱ABCD 中,已知AB =6,AD 为▱ABCD 的周长的27,则AD =( ) A .4B .6C .8D .10 8.下列各组数据中能作为直角三角形的三边长的是( ) A .1,2,2 B .1,13C .4,5,6D .13,2 9.如图,四边形ABCD 是轴对称图形,且直线AC 是否对称轴,AB ∥CD ,则下列结论:①AC ⊥BD ;②AD ∥BC ;③四边形ABCD 是菱形;④△ABD ≌△CDB .其中结论正确的序号是( )A .①②③B .①②③④C .②③④D .①③④10.如图1,∠DEF =25°,将长方形纸片ABCD 沿直线EF 折叠成图2,再沿折痕GF 折叠成图3,则∠CFE 的度数为( )A .105°B .115°C .130°D .155°11.如图,点E F G H 、、、分别是四边形ABCD 边AB 、BC 、CD 、DA 的中点.则下列说法:①若AC BD =,则四边形EFGH 为矩形;②若AC BD ⊥,则四边形EFGH 为菱形;③若四边形EFGH 是平行四边形,则AC 与BD 互相平分;④若四边形EFGH 是正方形,则AC 与BD 互相垂直且相等.其中正确的个数是( )A .1B .2C .3D .4 12.如图,矩形ABCD 中,DE ⊥AC 于E ,且∠ADE :∠EDC=3:2,则∠BDE 的度数为( )A .36°B .18°C .27°D .9°二、填空题13.23(1)0m n -+=,则m+n 的值为 .14.如图,□ABCD 的周长为16cm ,AC 、BD 相交于点O ,OE ⊥AC 交AD 于E ,则△DCE 的周长为________15.若实数,,x y z 满足()22130x y z -+++-=,则x y z ++的平方根是______.16.菱形ABCD 中,对角线AC =8,BD =6,则菱形的边长为_____.17.化简()213-=_____________;18.如图,连接四边形ABCD 各边中点,得到四边形EFGH ,对角线AC ,BD 满足________,才能使四边形EFGH 是矩形.19.在平面直角坐标系中,(1,0)(4,0)(0,3),A B C -、、若以A B C D 、、、为顶点的四边形是平行四边形,则D 点坐标是________________.20.如图,已知一次函数y=kx+b 的图象与x 轴交于点(3,0),与y 轴交于点(0,2),不等式kx+b≥2解集是_______.三、解答题21.如图,正方形网格的每个小正方形的边长均为1,每个小正方形的顶点叫做格点,若C 在格点上,且满足13,32AC BC ==.(1)在图中画出符合条件的ABC V ;(2)若BD AC ⊥于点D ,则BD 的长为 .22.如图,∠MON=90°,正方形ABCD的顶点A、B分别在OM、ON上,AB=13,OB =5,E为AC上一点,且∠EBC=∠CBN,直线DE与ON交于点F.(1)求证BE=DE;(2)判断DF与ON的位置关系,并说明理由;(3)△BEF的周长为.23.甲、乙两座仓库分别有农用车12辆和6辆.现在需要调往A县10辆,需要调往B县8辆,已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元;从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元.(1)设乙仓库调往A县农用车x辆,求总运费y关于x的函数关系式;(2)若要求总运费不超过900元,问共有几种调运方案?试列举出来.(3)求出总运费最低的调运方案,最低运费是多少元?24.如图,直线L:y=﹣12x+2与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点M从A点以每秒1个单位的速度沿x轴向左移动.(1)求A、B两点的坐标;(2)求△COM的面积S与M的移动时间t之间的函数关系式;(3)当t为何值时△COM≌△AOB,请直接写出此时t值和M点的坐标.25.由于持续高温和连日无雨,水库蓄水量普遍下降,如图是某水库的蓄水量V(万立方米)与干旱持续时间t(天)之间的关系图,请根据此图,回答下列问题:(1)该水库原蓄水量为多少万立方米?持续干旱10天后,水库蓄水量为多少万立方米?(2)若水库的蓄水量小于400万立方米时,将发出严重干旱警报,请问持续干旱多少天后,将发出严重干旱警报?(3)按此规律,持续干旱多少天时,水库将干涸?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】解:设CD=x ,则DE=a-x ,求得AH=CD=AG-HG=DE-HG=a-x-b=x ,求得CD=2a b - ,得到BC=DE=22a b a b a -+-=,根据勾股定理即可得到结论. 【详解】设CD =x ,则DE =a ﹣x ,∵HG =b ,∴AH =CD =AG ﹣HG =DE ﹣HG =a ﹣x ﹣b =x ,∴x =2a b -, ∴BC =DE =a ﹣2a b -=2a b +, ∴BD 2=BC 2+CD 2=(2a b +)2+(2a b -)2=222a b +, ∴BD 222a b + 故选:C .【点睛】本题考查了勾股定理,全等三角形的性质,正确的识别图形,用含,a b 的式子表示各个线段是解题的关键.解析:A【解析】【分析】根据最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,结合选项求解即可.【详解】A 是最简二次根式,本选项正确.B =C 2=A =不是最简二次根式,本选项错误.故选A .【点睛】本题考查了最简二次根式的知识,解答本题的关键在于掌握最简二次根式的概念,对各选项进行判断.3.D解析:D【解析】【分析】寻找小于26的最大平方数和大于26的最小平方数即可.【详解】解:小于26的最大平方数为25,大于26的最小平方数为3656,故选择D.【点睛】本题考查了二次根式的相关定义.4.C解析:C【解析】【分析】【详解】解:平行四边形的两条对角线的一半,和平行四边形的一边能够构成三角形, ∴2x 、y 2、6能组成三角形,令x>y ∴x-y<6<x+y20-18<6<20+18 故选C .本题考查平行四边形的性质.5.D解析:D【解析】【分析】先根据二次根式有意义的条件求出a 的范围,再把根号外的非负数平方后移入根号内即可.【详解】Q 10a∴-≥ 0a ∴<∴==故选D .【点睛】本题考查了二次根式的意义,解题的关键是能正确把根号外的代数式或数字移到根号内部,它是开方的逆运算.从根号外移到根号内要平方,并且移到根号内与原来根号内的式子是乘积的关系.如果根号外的数字或式子是负数时,代表整个式子是负值,要把负号留到根号外再平方后移到根号内.6.C解析:C【解析】【分析】由直角三角形斜边上的中线求得AB 的长度,再根据含30°角直角三角形的性质求得AC 的长度,最后通过解直角△ACD 求得CD 的长度.【详解】Q 如图,在Rt ABC ∆中,90ACB ∠=︒,CE 是斜边上的中线,4CE =,28AB CE ∴==.30B Q ∠=︒,60A ∴∠=︒,142AC AB ==. CD Q 是斜边上的高,30ACD ∠=︒Q122AD AC ∴==22224223CD AC AD∴=-=-=故选:C.【点睛】考查了直角三角形斜边上的中线、含30度角直角三角形的性质.直角三角形斜边上的中线等于斜边的一半.7.C解析:C【解析】【分析】由平行四边形的性质和已知条件得出AD=27(AB+BC+CD+AD),求出AD即可.【详解】∵四边形ABCD是平行四边形,∴CD=AB=6,AD=BC,∵AD27=(AB+BC+CD+AD),∴AD27=(2AD+12),解得:AD=8,∴BC=8;故选C.【点睛】本题考查了平行四边形的性质以及周长的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.8.D解析:D【解析】【分析】根据勾股定理的逆定理对各选项进行逐一分析即可.【详解】解:A、∵12+22=5≠22,∴此组数据不能作为直角三角形的三边长,故本选项错误;B、∵12+12=2≠3)2,∴此组数据不能作为直角三角形的三边长,故本选项错误;C、∵42+52=41≠62,∴此组数据不能作为直角三角形的三边长,故本选项错误;D、∵12+(3)2=4=22,∴此组数据能作为直角三角形的三边长,故本选项正确.故选D.【点睛】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.9.B解析:B【解析】【分析】根据轴对称图形的性质,结合菱形的判定方法以及全等三角形的判定方法分析得出答案.【详解】解:如图,因为l是四边形ABCD的对称轴,AB∥CD,则AD=AB,∠1=∠2,∠1=∠4,则∠2=∠4,∴AD=DC,同理可得:AB=AD=BC=DC,所以四边形ABCD是菱形.根据菱形的性质,可以得出以下结论:所以①AC⊥BD,正确;②AD∥BC,正确;③四边形ABCD是菱形,正确;④在△ABD和△CDB中∵AB BC AD DC BD BD=⎧⎪=⎨⎪=⎩,∴△ABD≌△CDB(SSS),正确.故正确的结论是:①②③④.故选B.【点睛】此题考查了轴对称以及菱形的判断与菱形的性质,注意:对称轴垂直平分对应点的连线,对应角相等,对应边相等.10.A解析:A【解析】【分析】由矩形的性质可知AD∥BC,由此可得出∠BFE=∠DEF=25°,再根据翻折的性质可知每翻折一次减少一个∠BFE的度数,由此即可算出∠CFE度数.【详解】解:∵四边形ABCD为长方形,∴AD∥BC,∴∠BFE=∠DEF=25°.由翻折的性质可知:图2中,∠EFC=180°-∠BFE=155°,∠BFC=∠EFC-∠BFE=130°,图3中,∠CFE=∠BFC-∠BFE=105°.故选:A.【点睛】本题考查翻折变换以及矩形的性质,解题的关键是找出∠CFE=180°-3∠BFE.解决该题型题目时,根据翻折变换找出相等的边角关系是关键.11.A解析:A【解析】【分析】因为一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形.【详解】因为一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形,故④选项正确,故选A.【点睛】本题考查中点四边形、平行四边形、矩形、菱形的判定等知识,解题的关键是记住一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形.12.B解析:B【解析】试题解析:已知∠ADE:∠EDC=3:2⇒∠ADE=54°,∠EDC=36°,又因为DE ⊥AC ,所以∠DCE=90°-36°=54°,根据矩形的性质可得∠DOC=180°-2×54°=72°所以∠BDE=180°-∠DOC-∠DEO=18°故选B .二、填空题13.2【解析】试题分析:几个非负数之和为零则每个非负数都为零根据非负数的性质可得:m -3=0且n+1=0解得:m=3n=-1则m+n=3+(-1)=2考点:非负数的性质解析:2【解析】试题分析:几个非负数之和为零,则每个非负数都为零.根据非负数的性质可得:m -3=0且n+1=0,解得:m=3,n=-1,则m+n=3+(-1)=2.考点:非负数的性质14.cm 【解析】∵平行四边形ABCD ∴AD=BCAB=CDOA=OC ∵EO ⊥AC ∴AE=EC ∵AB+BC+CD+AD=16∴AD+DC=8cm ∴△DCE 的周长是:CD+DE+CE=AE+DE+CD=AD解析:cm【解析】∵平行四边形ABCD ,∴AD=BC ,AB=CD ,OA=OC ,∵EO ⊥AC ,∴AE=EC ,∵AB+BC+CD+AD=16,∴AD+DC=8cm ,∴△DCE 的周长是:CD+DE+CE=AE+DE+CD=AD+CD=8cm ,故答案为8cm.点睛:此题考查了平行四边形的性质以及线段的垂直平分线的性质,解答本题的关键是判断出EO 示线段BD 的中垂线.15.【解析】【分析】根据二次根式平方绝对值的非负性即可得出xyz 的值求和后再求平方根即可【详解】解:由题意可得:解得:∴∴4的平方根是故答案为:【点睛】本题考查的知识点求代数式的平方根解此题的关键是根据 解析:2±【解析】【分析】根据二次根式、平方、绝对值的非负性即可得出x 、y 、z 的值,求和后再求平方根即可.【详解】解:由题意可得:20,10,30x y z -=+=-=解得:2,1,3x y z ==-=∴4x y z ++=∴4的平方根是2±.故答案为:2±.【点睛】本题考查的知识点求代数式的平方根,解此题的关键是根据二次根式的非负性、绝对值的非负性、平方数的非负性,求出x、y、z的值.16.5【解析】【分析】根据菱形的对角线互相垂直平分求出OAOB再利用勾股定理列式进行计算即可得解【详解】如图∵四边形ABCD是菱形∴OAAC=4OBBD =3AC⊥BD∴AB5故答案为:5【点睛】本题主要解析:5【解析】【分析】根据菱形的对角线互相垂直平分求出OA、OB,再利用勾股定理列式进行计算即可得解.【详解】如图,∵四边形ABCD是菱形,∴OA12=AC=4,OB12=BD=3,AC⊥BD,∴AB22OA OB=+=5故答案为:5【点睛】本题主要考查了菱形的对角线互相垂直平分的性质,勾股定理的应用,熟记菱形的各种性质是解题的关键.17.【解析】18.AC⊥BD【解析】【分析】本题首先根据三角形中位线的性质得出四边形为平行四边形然后根据矩形的性质得出AC⊥BD【详解】解:∵GHE分别是BCCDAD 的中点∴HG∥BDEH∥AC∴∠EHG=∠1∠1=解析:AC⊥BD【解析】【分析】本题首先根据三角形中位线的性质得出四边形为平行四边形,然后根据矩形的性质得出AC⊥BD.【详解】解:∵G、H、E分别是BC、CD、AD的中点,∴HG∥BD,EH∥AC,∴∠EHG=∠1,∠1=∠2,∴∠2=∠EHG,∵四边形EFGH是矩形,∴∠EHG=90°,∴∠2=90°,∴AC⊥BD.故还要添加AC⊥BD,才能保证四边形EFGH是矩形.【点睛】本题主要综合考查了三角形中位线定理及矩形的判定定理,属于中等难度题型.解答这个问题的关键就是要明确矩形的性质以及中位线的性质.19.(-53)(53)(3−3)【解析】【分析】作出图形分ABBCAC为对角线三种情况进行求解【详解】如图所示①AC为对角线时AB=5∴点D的坐标为(-53)②BC为对角线时AB=5∴点D的坐标为(53解析:(-5,3)、(5,3)、(3,−3)【解析】【分析】作出图形,分AB、BC、AC为对角线三种情况进行求解.【详解】如图所示,①AC为对角线时,AB=5,∴点D的坐标为(-5,3),②BC为对角线时,AB=5,∴点D的坐标为(5,3),③AB为对角线时,C平移至A的方式为向左平移1个单位,向下平移3个单位,∴点B 向左平移1个单位,向下平移3个单位得到点D的坐标为(3,−3),综上所述,点D的坐标是(-5,3)、(5,3)、(3,−3).故答案为:(-5,3)、(5,3)、(3,−3).【点睛】本题考查了坐标与图形的性质,平行四边形的判定,根据题意作出图形,注意要分情况进行讨论.20.x≤0【解析】【分析】由一次函数y=kx+b的图象过点(02)且y随x的增大而减小从而得出不等式kx+b≥2的解集【详解】解:由一次函数的图象可知此函数是减函数即y随x的增大而减小∵一次函数y=kx解析:x≤0【解析】【分析】由一次函数y=kx+b的图象过点(0,2),且y随x的增大而减小,从而得出不等式kx+b≥2的解集.【详解】解:由一次函数的图象可知,此函数是减函数,即y随x的增大而减小,∵一次函数y=kx+b的图象与y轴交于点(0,2),∴当x≤0时,有kx+b≥2.故答案为x≤0.【点睛】本题考查的是一次函数与一元一次不等式的关系,能利用数形结合求出不等式的解集是解答此题的关键.三、解答题21.(1)见解析; (2)513 13【解析】【分析】(1)结合网格图利用勾股定理确定点C的位置即可得解;(2)根据三角形的面积列出关于BD方程,求解即可得到答案.【详解】解:(1)如图:∵小正方形的边长均为1∴3AE =,2CE =;3BF CF == ∴2213AC AE CE =+=;2232BC BF CF =+=∴ABC V 即为所求.(2)如图:∵由网格图可知5AB =,3CH =,13AC =32BC =22ABC AB CH AC BD S ⋅⋅==V 13532BD ⋅⨯= ∴1513BD =【点睛】本题考查了勾股定理在网格图中的的运用,本题需仔细分析题意,结合图形,利用勾股定理即可解决问题.22.(1)见解析;(2)DF ⊥ON ,理由见解析;(3)24【解析】【分析】(1)根据正方形的性质证明△BCE ≌△DCE 即可;(2)由第一题所得条件和已知条件可推出∠EDC =∠CBN ,再利用90°的代换即可证明;(3)过D 点作DG 垂直于OM ,交点为G ,结合已知条件推出DF 和BF 的长,再根据第一题结论得出△BEF 的周长等于DF 加BF 即可得出答案.【详解】解:(1)证明:∵四边形ABCD 正方形,∴CA 平分∠BCD ,BC =DC ,∴∠BCE=∠DCE=45°,∵CE=CE,∴△BCE≌△DCE(SAS);∴BE=DE;(2)DF⊥ON,理由如下:∵△BCE≌△DCE,∴∠EBC=∠EDC,∵∠EBC=∠CBN,∴∠EDC=∠CBN,∵∠EDC+∠1=90°,∠1=∠2,∴∠2+∠CBN=90°,∴∠EFB=90°,即DF⊥ON;(3)过D点作DG垂直于OM,交点为G,∵四边形ABCD是正方形,∴AD=AB,∠BAD=90°,∴∠DAG+∠BAO=90°,∵∠ABO+∠BAO=90°,∴∠DAG=∠ABO,又∵∠MON=90°,DG⊥OM,∴△ADG≌△ABO,∴DM=AO,GA=OB=5,∵AB=13,OB=5,根据勾股定理可得AO=12,由(2)可知DF ⊥ON ,又∵∠MON=90°,DG ⊥OM ,∴四边形OFDM 是矩形,∴OF=DG=AO=12,DF=OM=17,由(1)可知BE =DE ,∴△BEF 的周长=DF+BF=17+(12-5)=24.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,矩形的判定,掌握知识点是解题关键.23.(1)20860y x =+(06)x ≤≤;(2)3种;方案一:甲调往A :10辆;乙往A :0辆;甲调往B :2辆;乙调往B :6辆; 方案二:甲调往A :9辆;乙往A :1辆;甲调往B :3辆;乙调往B :5辆;方案三:甲调往A :8辆;乙往A :2辆;甲调往B :4辆;乙调往B :4辆;(3)方案一的总运费最少为860元.【解析】【分析】(1)若乙仓库调往A 县农用车x 辆,那么乙仓库调往B 县农用车、甲给A 县调农用车、以及甲县给B 县调车数量都可表示出来,然后依据各自运费,把总运费表示即可; (2)若要求总运费不超过900元,则可根据(1)列不等式确定x 的取值,从而求解; (3)在(2)的基础上,结合一次函数的性质求出最低运费即可.【详解】解:(1)乙仓库调往A 县农用车x 辆,则调往B 县农用车()6x -辆.(6)x ≤ A 县需10辆车,故甲给A 县调10x -辆,给B 县调车(2)x +辆∴40(10)80(2)3050(6)y x x x x =-++++-化简得20860y x =+(06)x ≤≤(2)总运费不超过900,即900y ≤代入(1)结果得20860900x +≤解得2x ≤又因为x 为非负整数∴012x =,,即如下三种方案方案一:甲调往A :10辆;乙往A :0辆;甲调往B :2辆;乙调往B :6辆. 方案二:甲调往A :9辆;乙往A :1辆;甲调往B :3辆;乙调往B :5辆. 方案三:甲调往A :8辆;乙往A :2辆;甲调往B :4辆;乙调往B :4辆. (3)总运费20860y x =+,其中06x ≤≤∵200k =>∴y 随x 的增大而增大∴当x 取最小时,运费y 最小代入0x =得200860860y =⨯+=∴方案为(2)中方案1:甲往A:10辆;乙往A:0辆;甲往B:2辆;乙往B:6辆.总运费最少为860元.【点睛】本题是贴近社会生活的应用题,赋予了生活气息,使学生真切地感受到“数学来源于生活”,体验到数学的“有用性”.这样设计体现了《新课程标准》的“问题情景-建立模型-解释、应用和拓展”的数学学习模式.24.(1)A(4,0)、B(0,2);(2)0≤t≤4时,S△OCM=8﹣2t;t>4时,S△OCM=2t﹣8;(3)当t=2或6时,△COM≌△AOB,此时M(2,0)或(﹣2,0)【解析】【分析】(1)由直线L的函数解析式,令y=0求A点坐标,x=0求B点坐标;(2)由面积公式S=12OM•OC求出S与t之间的函数关系式;(3)若△COM≌△AOB,OM=OB,则t时间内移动了AM,可算出t值,并得到M点坐标.【详解】(1)对于直线AB:y=﹣12x+2,当x=0时,y=2;当y=0时,x=4,则A、B两点的坐标分别为A(4,0)、B(0,2);(2)∵C(0,4),A(4,0)∴OC=OA=4,当0≤t≤4时,OM=OA﹣AM=4﹣t,S△OCM=12×4×(4﹣t)=8﹣2t;当t>4时,OM=AM﹣OA=t﹣4,S△OCM=12×4×(t﹣4)=2t﹣8;(3)∵OC=OA,∠AOB=∠COM=90°,∴只需OB=OM,则△COM≌△AOB,即OM=2,此时,若M在x轴的正半轴时,t=2,M在x轴的负半轴,则t=6.故当t=2或6时,△COM≌△AOB,此时M(2,0)或(﹣2,0).【点睛】本题考查了一次函数的性质和三角形的面积公式,以及全等三角形的判定与性质,理解全等三角形的判定定理是关键.25.(1)水库原蓄水量为1 000万立方米,持续干旱10天后,蓄水量为800万立方米;(2)当v=400时,t=30,∴持续干旱30天后将发出严重干旱警报;(3)持续干旱50天后水库将干涸.【解析】【分析】(1)原蓄水量即t=0时v的值,t=50时,v=0,得v与t的函数关系,持续干旱10天后的蓄水量即t=10时v的值;(2)即找到v=400时,相对应的t的值;(3)从第10天到第30天,水库下降了800−400=400万立方米,一天下降=20万立方米,第30天的400万立方米还能用=20天,即50天时干涸.【详解】解:(1)当t=0时,v=1000∴水库原蓄水量为1000万米3,干涸的速度为1000÷50=20,所以v=1000-20t,当t=10时,v=800,∴水库原蓄水量为1 000万立方米,持续干旱10天后,蓄水量为800万立方米.(2)当v=400时,t=30,∴持续干旱30天后将发出严重干旱警报.(3)从第10天到第30天,水库下降了(800﹣400)万立方米,一天下降=20万立方米,故根据此规律可求出:30+=50天,那么持续干旱50天后水库将干涸.【点睛】本题考查了函数图象的问题,解题的关键是正确理解函数图象横纵坐标表示的意义,理解问题的过程,得到相应的点的意义.。

【压轴卷】八年级数学下期中试卷(含答案)

【压轴卷】八年级数学下期中试卷(含答案)

【压轴卷】八年级数学下期中试卷(含答案)一、选择题1.下列四组线段中,可以构成直角三角形的是( ) A .1,2,3 B .2,3,4 C .1, 2,3 D .2,3,5 2.平行四边形的对角线长为x 、y ,一边长为12,则x 、y 的值可能是( )A .8和14B .10和14C .18和20D .10和343.已知P (x ,y )是直线y =1322x -上的点,则4y ﹣2x +3的值为( ) A .3 B .﹣3 C .1 D .04.如图,直线y x m =-+与3y x =+的交点的横坐标为-2,则关于x 的不等式30x m x -+>+>的取值范围( )A .x>-2B .x<-2C .-3<x<-2D .-3<x<-15.如图,在正方形OABC 中,点A 的坐标是()3,1-,则C 点的坐标是( )A .()1,3B .()2,3C .()3,2D .()3,16.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是( )A .小丽从家到达公园共用时间20分钟B .公园离小丽家的距离为2000米C .小丽在便利店时间为15分钟D .便利店离小丽家的距离为1000米7.如图,在正方形网格(每个小正方形的边长都是1)中,若将△ABC 沿A ﹣D 的方向平移AD 长,得△DEF (B 、C 的对应点分别为E 、F ),则BE 长为( )A.1B.2C.5D.3 8.菱形ABCD中,AC=10,BD=24,则该菱形的周长等于()A.13B.52C.120D.240 9.下列各组数据中,不可以构成直角三角形的是()A.7,24,25B.2223,4,5C.53,1,44D.1.5,2,2.510.如图,在菱形ABCD中,AB=5,对角线AC=6.若过点A作AE⊥BC,垂足为E,则AE的长为( )A.4B.2.4C.4.8D.511.如图,在正方形ABCD外侧,作等边三角形ADE,AC、BE相交于点F,则∠CFE为()A.150°B.145°C.135°D.120°12.小带和小路两个人开车从A城出发匀速行驶至B城.在整个行驶过程中,小带和小路两人车离开A城的距离y(km)与行驶的时间t(h)之间的函数关系如图所示.有下列结论;①A,B两城相距300 km;②小路的车比小带的车晚出发1 h,却早到1 h;③小路的车出发后2.5 h追上小带的车;④当小带和小路的车相距50 km时,t=54或t=154.其中正确的结论有()A .①②③④B .①②④C .①②D .②③④二、填空题13.如图,已知在Rt △ABC 中,AB =AC =3,在△ABC 内作第1个内接正方形DEFG ;然后取GF 的中点P ,连接PD 、PE ,在△PDE 内作第2个内接正方形HIKJ ;再取线段KJ 的中点Q ,在△QHI 内作第3个内接正方形…,依次进行下去,则第2019个内接正方形的边长为_____.14.在函数y=1x-中,自变量x 的取值范围是_____. 15.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D 在同一直线上.若AB=2,则CD=_____.16.()213-=_____________;17.在△ABC 中,∠C=90°,AC=1,BC=2,则AB 边上的中线CD=______. 18.在平行四边形ABCD 中,若∠A+∠C=140°,则∠B= .19.如图,在∠MON 的两边上分别截取OA 、OB ,使OA =OB ;分别以点A 、B 为圆心,OA 长为半径作弧,两弧交于点C ;连接AC 、BC 、AB 、OC .若AB =2cm ,四边形OACB 的面积为4cm 2.则OC 的长为_____cm .20.如图,已知函数y ax b =+和y kx =的图象交于点P, 则根据图象可得,关于y ax by kx =+⎧⎨=⎩的二元一次方程组的解是_____________。

【压轴卷】初二数学下期中试卷(及答案)

【压轴卷】初二数学下期中试卷(及答案)

【压轴卷】初二数学下期中试卷(及答案)一、选择题1.如图,在矩形ABCD 中,AB=2,BC=3.若点E 是边CD 的中点,连接AE ,过点B 作BF ⊥AE 交AE 于点F ,则BF 的长为( )A .310B .3105C .10D .35 2.下列条件中,不能判断△ABC 为直角三角形的是A .21a =,22b =,23c =B .a :b :c=3:4:5C .∠A+∠B=∠CD .∠A :∠B :∠C=3:4:53.如图,若点P 为函数(44)y kx b x =+-≤≤图象上的一动点,m 表示点P 到原点O 的距离,则下列图象中,能表示m 与点P 的横坐标x 的函数关系的图象大致是( )A .B .C .D .4.为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使50%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说法正确的是( )①每人乘坐地铁的月均花费最集中的区域在80~100元范围内;②每人乘坐地铁的月均花费的平均数范围是40~60元范围内;③每人乘坐地铁的月均花费的中位数在60~100元范围内;④乘坐地铁的月均花费达到80元以上的人可以享受折扣.A.①②④B.①③④C.③④D.①②5.如图,一个梯子AB斜靠在一竖直的墙AO上,测得4AO=米.若梯子的顶端沿墙下滑1米,这时梯子的底端也恰好外移1米,则梯子AB的长度为()A.5米B.6米C.3米D.7米6.如图,在平行四边形ABCD中,AC、BD相交于点O,下列结论:①OA=OC;②∠BAD =∠BCD;③AC⊥BD;④∠BAD+∠ABC=180°中,正确的个数有()A.1个 B.2个 C.3个 D.4个7.函数y=11xx+-中,自变量x的取值范围是()A.x>-1B.x>-1且x≠1C.x≥一1D.x≥-1且x≠18.如图,菱形ABCD的对角线AC,BD相交于点O,E,F分别是AB,BC边上的中点,连接EF.若3EF=BD=4,则菱形ABCD的周长为()A .4B .46C .47D .28 9.下列各式正确的是( ) A .()255-=- B .()20.50.5-=- C .()2255-= D .()20.50.5-=10.星期天晚饭后,小丽的爸爸从家里出去散步,如图描述了她爸爸散步过程中离家的距离(km )与散步所用的时间(min )之间的函数关系,依据图象,下面描述符合小丽爸爸散步情景的是( )A .从家出发,休息一会,就回家B .从家出发,一直散步(没有停留),然后回家C .从家出发,休息一会,返回用时20分钟D .从家出发,休息一会,继续行走一段,然后回家11.如图,矩形ABCD 中,DE ⊥AC 于E ,且∠ADE :∠EDC=3:2,则∠BDE 的度数为( )A .36°B .18°C .27°D .9°12.如图,在Rt ABC △中,90B ∠=︒,6AB =,9BC =,将ABC △折叠,使点C 与AB 的中点D 重合,折痕交AC 于点M ,交BC 于点N ,则线段BN 的长为( )A .3B .4C .5D .6二、填空题13.若23(1)0m n -++=,则m+n 的值为 .14.若菱形的两条对角线长分别是6㎝和8㎝,则该菱形的面积是 ㎝2.15.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多出1m ,当它把绳子的下端拉开旗杆4m 后,发现下端刚好接触地面,则旗杆的高为________16.如图,正方形ABCD 中,AE=AB ,直线DE 交BC 于点F ,则∠BEF=_____度.17.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,30ACB ∠=o ,则AOB ∠的大小为______ .18.矩形两条对角线的夹角为60°,矩形的较短的一边为5,则矩形的对角线的长是_____.19.比较大小:231320.果字成熟后从树上落到地面,它落下的高度与经过的时间有如下的关系: 时间t (秒)0.5 0.6 0.7 0.8 0.9 1 落下的高度h (米) 50.25⨯ 50.36⨯ 50.49⨯ 50.64⨯ 50.81⨯ 51⨯ 如果果子经过2秒落到地上,那么此果子开始落下时离地面的高度大约是__________米.三、解答题21.如图,已知一次函数y kx b =+的图象经过A (-2,-1),B (1,3)两点,并且交x 轴于点C ,交y 轴于点D .(1)求该一次函数的解析式;(2)△ABC 的面积.22.先化简,再求值:2222211()a ab b a b a b-+÷--,其中21a =+,21b =- 23.如图,在44⨯的方格子中,ABC ∆的三个顶点都在格点上,(1)在图1中画出线段CD ,使CD CB ⊥,其中D 是格点,(2)在图2中画出平行四边形ABEC ,其中E 是格点.24.阅读下面材料:在数学课上,老师请同学思考如下问题:如图1,我们把一个四边形ABCD 的四边中点E ,F ,G ,H 依次连接起来得到的四边形EFGH 是平行四边形吗.小敏在思考问题时,有如下思路:连接AC .结合小敏的思路作答:(1)若只改变图1中四边形ABCD 的形状(如图2),则四边形EFGH 还是平行四边形吗?说明理由,参考小敏思考问题的方法解决一下问题;(2)如图2,在(1)的条件下,若连接AC ,BD .①当AC 与BD 满足什么条件时,四边形EFGH 是菱形,写出结论并证明;②当AC 与BD 满足什么条件时,四边形EFGH 是矩形,直接写出结论.25.如图,在四边形ABCD 中, AB=4,BC=3,CD=12,AD=13,∠B =90°,连接AC .求四边形ABCD 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据S △ABE =12S 矩形ABCD =3=12•AE•BF ,先求出AE ,再求出BF 即可. 【详解】如图,连接BE .∵四边形ABCD 是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt △ADE 中,22AD DE +2231+10,∵S △ABE =12S 矩形ABCD =3=12•AE•BF , ∴BF=3105. 故选:B .【点睛】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.2.D解析:D【解析】【分析】【详解】试题分析:A 、根据勾股定理的逆定理,可知222+=a b c ,故能判定是直角三角形; B 、设a=3x ,b=4x ,c=5x ,可知222+=a b c ,故能判定是直角三角形;C 、根据三角形的内角和为180°,因此可知∠C=90°,故能判定是直角三角形;D 、而由3+4≠5,可知不能判定三角形是直角三角形.故选D考点:直角三角形的判定3.A解析:A【解析】【分析】当OP 垂直于直线y =kx +b 时,由垂线段最短可知:OP <2,故此函数在y 轴的左侧有最小值,且最小值小于2,从而得出答案.【详解】解:如图所示:过点O 作OP 垂直于直线y =kx +b ,∵OP 垂直于直线y =kx +b ,∴OP <2,且点P 的横坐标<0.故此当x <0时,函数有最小值,且最小值<2,根据选项可知A 符合题意.故选:A .【点睛】本题主要考查的是动点问题的函数图象,由垂线段最短判定出:当x <0时,函数有最小值,且最小值小于2是解题的关键.4.C解析:C【解析】【分析】根据频数分布直方图中的数据,求得众数,平均数,中位数,即可得出结论.【详解】解:①根据频数分布直方图,可得众数为60−80元范围,故每人乘坐地铁的月均花费最集中的区域在60−80元范围内,故①不正确; ②每人乘坐地铁的月均花费的平均数=876001000=87.6=87.6元,所以每人乘坐地铁的月均花费的平均数范围是80~100元,故②错误;③每人乘坐地铁的月均花费的中位数约为80元,在60~100元范围内,故③正确; ④为了让市民享受到更多的优惠,若使50%左右的人获得折扣优惠,则乘坐地铁的月均花费达到80元以上的人可以享受折扣,故④正确.故选:C【点睛】本题主要考查了频数分布直方图,平均数以及中位数的应用,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.A解析:A【解析】【分析】设BO xm =,利用勾股定理依据AB 和CD 的长相等列方程,进而求出x 的值,即可求出AB 的长度.【详解】解:设BO xm =,依题意,得1AC =,1BD =,4AO =.在Rt AOB V 中,根据勾股定理得222224AB AO OB x =+=+,在Rt COD V 中,根据勾股定理22222(41)(1)CD CO OD x =+=-++,22224(41)(1)x x ∴+=-++,解得3x =,5AB ∴==,答:梯子AB 的长为5m .故选:A .【点睛】本题考查了勾股定理在实际生活中的应用,本题中找到AB CD =利用勾股定理列方程是解题的关键.6.C解析:C【解析】试题分析:根据平行四边形的性质依次分析各选项即可作出判断.∵平行四边形ABCD∴OA =OC ,∠BAD =∠BCD ,∠BAD +∠ABC =180°,但无法得到AC ⊥BD故选C.考点:平行四边形的性质点评:平行四边形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.7.D解析:D【解析】根据题意得:1010x x +≥⎧⎨-≠⎩, 解得:x≥-1且x≠1.故选D .8.C解析:C【解析】【分析】首先利用三角形的中位线定理得出AC ,进一步利用菱形的性质和勾股定理求得边长,得出周长即可.【详解】解:∵E ,F 分别是AB ,BC 边上的中点,∴∵四边形ABCD 是菱形,∴AC ⊥BD ,OA=12OB=12BD=2,∴,∴菱形ABCD 的周长为.故选C .9.D解析:D【解析】【分析】【详解】解:因为(250.5===,所以A ,B ,C 选项均错, 故选D 10.D解析:D【解析】【分析】利用函数图象,得出各段的时间以及离家的距离变化,进而得出答案.【详解】由图象可得出:小丽的爸爸从家里出去散步10分钟,休息20分钟,再向前走10分钟,然后利用20分钟回家.故选:D .【点睛】本题考查了函数的图象,解题的关键是要看懂图象的横纵坐标所表示的意义,然后再进行解答.11.B解析:B【解析】试题解析:已知∠ADE :∠EDC=3:2⇒∠ADE=54°,∠EDC=36°,又因为DE ⊥AC ,所以∠DCE=90°-36°=54°,根据矩形的性质可得∠DOC=180°-2×54°=72°所以∠BDE=180°-∠DOC-∠DEO=18°故选B .12.B解析:B【解析】【分析】由折叠的性质可得DN CN =,根据勾股定理可求DN 的长,即可求BN 的长.【详解】D Q 是AB 中点,6AB =,3AD BD ∴==,根据折叠的性质得,DN CN =,9BN BC CN DN ∴=-=-,在Rt DBN V 中,222DN BN DB =+,22(9)9DN DN ∴=-+,5DN ∴=4BN∴=,故选B.【点睛】本题考查了翻折变换,折叠的性质,勾股定理,熟练运用折叠的性质是本题的关键.二、填空题13.2【解析】试题分析:几个非负数之和为零则每个非负数都为零根据非负数的性质可得:m-3=0且n+1=0解得:m=3n=-1则m+n=3+(-1)=2考点:非负数的性质解析:2【解析】试题分析:几个非负数之和为零,则每个非负数都为零.根据非负数的性质可得:m-3=0且n+1=0,解得:m=3,n=-1,则m+n=3+(-1)=2.考点:非负数的性质14.24【解析】已知对角线的长度根据菱形的面积计算公式即可计算菱形的面积解:根据对角线的长可以求得菱形的面积根据S=ab=×6×8=24cm2故答案为24 解析:24【解析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.解:根据对角线的长可以求得菱形的面积,根据S=12ab=12×6×8=24cm2,故答案为24.15.【解析】【分析】根据题意画出示意图利用勾股定理可求出旗杆的高【详解】解:如图所示:设旗杆米则米在中即解得:旗杆的高为75米故答案为:75【点睛】本题考查了勾股定理的应用解答本题的关键是画出示意图熟练解析:7.5m【解析】【分析】根据题意画出示意图,利用勾股定理可求出旗杆的高.【详解】解:如图所示:设旗杆AB x =米,则(1)AC x =+米,在Rt ABC ∆中,222AC AB BC =+,即222(1)4x x +=+,解得:7.5x =.∴旗杆的高为7.5米故答案为:7.5.【点睛】本题考查了勾股定理的应用,解答本题的关键是画出示意图,熟练运用勾股定理. 16.45【解析】【分析】先设∠BAE=x°根据正方形性质推出AB=AE=AD ∠BAD=90°根据等腰三角形性质和三角形的内角和定理求出∠AEB 和∠AED 的度数根据平角定义求出即可【详解】解:设∠BAE=解析:45【解析】【分析】先设∠BAE=x°,根据正方形性质推出AB=AE=AD ,∠BAD=90°,根据等腰三角形性质和三角形的内角和定理求出∠AEB 和∠AED 的度数,根据平角定义求出即可.【详解】解:设∠BAE =x °.∵四边形ABCD 是正方形,∴∠BAD =90°,AB =AD .∵AE =AB ,∴AB =AE =AD ,∴∠ABE =∠AEB =12(180°﹣∠BAE )=90°﹣12x °,∠DAE =90°﹣x °, ∠AED =∠ADE =12(180°﹣∠DAE )=12[180°﹣(90°﹣x °)]=45°+12x °, ∴∠BEF =180°﹣∠AEB ﹣∠AED =180°﹣(90°﹣12x °)﹣(45°+12x °)=45°. 故答案为45.点睛:本题考查了三角形的内角和定理的运用,等腰三角形的性质的运用,正方形性质的应用,解答此题的关键是如何把已知角的未知角结合起来,题目比较典型,但是难度较大.17.【解析】【分析】根据矩形的性质可得∠ABC 的度数OA 与OB 的关系根据等边三角形的判定和性质可得答案【详解】∵ABCD 是矩形∴∠ABC=90°∵∠ACB=30°∴∠BAO=90°﹣∠ACB=60°∵O解析:60o【解析】【分析】根据矩形的性质,可得∠ABC的度数,OA与OB的关系,根据等边三角形的判定和性质,可得答案.【详解】∵ABCD是矩形,∴∠ABC=90°.∵∠ACB=30°,∴∠BAO=90°﹣∠ACB=60°.∵OA=OB,∴△ABO是等边三角形,∴∠AOB=60°.故答案为:60°.【点睛】本题考查了矩形的性质,利用矩形的性质得出∠ABC的度数是解答本题的关键.18.10【解析】【分析】首先根据题意画出图形然后再根据矩形两条对角线的夹角为60°证得△AOB是等边三角形即可解答本题【详解】解:如图:∵四边形ABCD是矩形∴OA=ACOB=BDAC=BD∴OA=OB解析:10【解析】【分析】首先根据题意画出图形,然后再根据矩形两条对角线的夹角为60°,证得△AOB是等边三角形,即可解答本题.【详解】解:如图:∵四边形ABCD是矩形,∴OA=12AC,OB=12BD,AC=BD∴OA=OB,∵∠A0B=60°,∴△AOB是等边三角形,∴OA=OB=AB=5,∴AC=2OA=10,即矩形对角线的长为10.故答案为:10.【点睛】本题考查了矩形的性质以及等边三角形的判定与性质,弄清题意、画出图形是解答本题的关键.19.<【解析】试题解析:∵∴∴解析:<【解析】试题解析:∵∴20.20【解析】【分析】分析表格中数据得到物体自由下落的高度随着时间的增大而增大与的关系为:把代入再进行计算即可【详解】解:由表格得用时间表示高度的关系式为:当时所以果子开始落下时离地面的高度大约是20 解析:20【解析】【分析】分析表格中数据,得到物体自由下落的高度h 随着时间t 的增大而增大,h 与t 的关系为:25h t =,把2t =代入25h t =,再进行计算即可.【详解】解:由表格得,用时间()t s 表示高度()h m 的关系式为:25h t =,当2t =时,2525420h =⨯=⨯=.所以果子开始落下时离地面的高度大约是20米.故答案为:20.【点睛】本题考查了根据图表找规律,并应用规律解决问题,要求有较强的分析数据和描述数据的能力.能够正确找到h 和t 的关系是解题的关键.三、解答题21.(1)4533y x =+;(2)52. 【解析】【分析】(1)利用待定系数法即可求出一次函数解析式;(2)求出点D 坐标,根据ABC AOD BOD S S S =+V V V 即可求解.【详解】(1)把A (-2,-1),B (1,3)代入y =kx +b 得 213k b k b -+=-⎧⎨+=⎩,解得4353kb⎧=⎪⎪⎨⎪=⎪⎩,所以一次函数解析式为4533y x=+;(2)把x=0代入4533y x=+得y=53,∴D点坐标为(0,53 ),∴15155=21=23232 ABC AOD BODS S S=+⨯⨯+⨯⨯V V V.【点睛】(1)待定系数法是求函数解析式的一种常用方法,要深刻领会,其实质是根据题意设出函数关系式,把点的坐标代入解析式构造方程,求解,回代,最后确定解析式;(2)平面直角坐标系中如果图形的面积不易直接求,则一般采用割补法求解.22.aba b-+,4-.【解析】【分析】首先通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.【详解】解:原式=a b ab aba b b a a b -⋅=-+-+.∵ab=)111=,a+b=4=-.23.(1)见解析;(2)见解析.【解析】【分析】(1)过点C作CD CB⊥,且点D是格点即可.(2)作一个△BEC与△BAC全等即可得出图形.【详解】(1)解:如图,线段CD就是所求作的图形.(2)解:如图,ABECY就是所求作的图形【点睛】本题考查作图-应用与设计,平行四边形的判定等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.24.(1)是平行四边形;(2)①AC=BD;证明见解析;②AC⊥BD.【解析】【分析】(1)如图2,连接AC,根据三角形中位线的性质及平行四边形判定定理即可得到结论;(2)①由(1)知,四边形EFGH是平行四边形,且FG=12BD,HG=12AC,于是得到当AC=BD时,FG=HG,即可得到结论;②若四边形EFGH是矩形,则∠HGF=90°,即GH⊥GF,又GH∥AC,GF∥BD,则AC⊥BD.【详解】解::(1)是平行四边形.证明如下:如图2,连接AC,∵E是AB的中点,F是BC的中点,∴EF∥AC,EF=12AC,同理HG∥AC,HG=12AC,综上可得:EF∥HG,EF=HG,故四边形EFGH是平行四边形;(2)①AC=BD.理由如下:由(1)知,四边形EFGH是平行四边形,且FG=12BD,HG=12AC,∴当AC=BD时,FG=HG,∴平行四边形EFGH是菱形;②当AC⊥BD时,四边形EFGH为矩形.理由如下:同(1)得:四边形EFGH是平行四边形,∵AC⊥BD,GH∥AC,∴GH⊥BD,∵GF∥BD,∴GH⊥GF,∴∠HGF=90°,∴四边形EFGH为矩形.【点睛】此题主要考查了中点四边形,关键是掌握三角形中位线定理,三角形的中位线平行于第三边且等于第三边的一半.25.36【解析】【分析】由AB=4,BC=3,∠B=90°可得AC=5.可求得S△ABC;再由AC=5,AD=13,CD=12,可得△ACD为直角三角形,进而求得S△ACD,可求S四边形ABCD=S△ABC+S△ACD.【详解】∵∠ABC=90°,AB=4,BC=3,∴2222435AB BC++=∵CD=12,AD=1322125169+=,213169=∴22212513+= ∴222CD AC AD += ∴∠ACD =90° ∴14362ABC S ∆=⨯⨯=, 1125302ACD S ∆=⨯⨯= ∴6+30=36ABCD S =四边形【点睛】此题考查勾股定理及逆定理的应用,判断△ACD 是直角三角形是关键.。

【压轴卷】初二数学下期中试卷(含答案)

【压轴卷】初二数学下期中试卷(含答案)

【压轴卷】初二数学下期中试卷(含答案)一、选择题1.下列运算中,正确的是( )A .235+=;B .2(32)32-=-;C .2a a =;D .2()a b a b +=+. 2.如图,在菱形ABCD 中,AB =6,∠ABC =60°,M 为AD 中点,P 为对角线BD 上一动点,连接PA 和PM ,则PA +PM 的最小值是( )A .3B .2C .3D .63.下列条件中,不能判断△ABC 为直角三角形的是A .21a =,22b =,23c =B .a :b :c=3:4:5C .∠A+∠B=∠CD .∠A :∠B :∠C=3:4:5 4.如图,ABC V 中,CD AB ⊥于,DE 是AC 的中点.若6,5,AD DE ==则CD 的长等于( )A .5B .6C .8D .105.如图,在正方形OABC 中,点A 的坐标是()3,1-,则C 点的坐标是( )A .()1,3B .()2,3C .()3,2D .()3,16.如图,在边长为a 的正方形ABCD 中,把边BC 绕点B 逆时针旋转60︒,得到线段BM .连接AM 并延长交CD 于点N ,连接MC ,则MNC ∆的面积为( )A .2312a -B .2212a -C .2314a -D .2214a - 7.△ABC 的三边分别是 a ,b ,c ,其对角分别是∠A ,∠B ,∠C ,下列条件不能判定△ABC 是直角三角形的是( ) A .∠B = ∠A - ∠C B .a : b : c = 5 :12 :13 C .b 2- a 2= c 2 D .∠A : ∠B : ∠C = 3 : 4 : 58.函数y =11x x +-中,自变量x 的取值范围是( ) A .x >-1 B .x >-1且x ≠1 C .x ≥一1 D .x ≥-1且x ≠19.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A .3x 2>B .x 3>C .3x 2<D .x 3<10.若x < 0,则2x x -的结果是( ) A .0 B .-2 C .0或-2 D .211.如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD ,若测得A ,C 之间的距离为12cm ,点B ,D 之间的距离为16m ,则线段AB 的长为( )A .9.6cmB .10cmC .20cmD .12cm12.下列各式不成立的是( )A 8718293=B 22233+=C .8184952== D 3232=+ 二、填空题13.一次函数的图像经过点A (3,2),且与y 轴的交点坐标是B (0,2- ),则这个一次函数的函数表达式是________________.14.23(1)0m n -+=,则m+n 的值为 .15.如图,点E 在正方形ABCD 的边AB 上,若1EB =,2EC =,那么正方形ABCD 的面积为_.16.如图所示的网格是正方形网格,则BAC DAE ∠-∠=__________︒(点A ,B ,C ,D ,E 是网格线交点).17.将函数31y x =+的图象平移,使它经过点()1,1,则平移后的函数表达式是____.18.已知菱形ABCD 的两条对角线长分别为12和16,则这个菱形ABCD 的面积S=_____.19.如图,矩形ABCD 中,15cm AB =,点E 在AD 上,且9cm AE =,连接EC ,将矩形ABCD 沿直线BE 翻折,点A 恰好落在EC 上的点A'处,则'A C =____________cm .20.2a =3b =,用含,a b 0.54,结果为________.三、解答题21.已知a ,b 分别为等腰三角形的两条边长,且a ,b 满足33652b a a =--求此三角形的周长.22.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.已知:在Rt ABC V 中,90BAC ∠=︒,斜边5BC =,直角边3AB Rt ABC =V ,的准外心P 在AC 边上,试求PA 的长.23.请阅读下列材料:问题:现有5个边长为1的正方形,排列形式如图①,在图中画出分割线,拼出如图②所示的新正方形.请你参考.上述做法,解决如下问题:(1)现有10个边长为1的正方形,排列形式如图③,请把它们分割后拼接成一个新的正方形,在图③中画出分割线,并在图④的正方形网格中用实线画出拼接成的新正方形;(图中每个小正方形的边长均为1)(2)如图⑤,现有由8个相同小正方形组成的十字形纸板,请在图中画出分割线,拼出一个新正方形.24.已知 90, 23,8,ACB BC AC CD ︒∠===是边AB 上的高,求CD 的长25.计算:(1123)233131÷()()【参考答案】***试卷处理标记,请不要删除1.D解析:D【解析】 A. 23与不是同类二次根式,不能合并,故错误; B.()23223-=-,故错误;C. 2a a =,故错误; D. ()2a b a b +=+,正确;故选D.2.C解析:C【解析】【分析】首先连接AC ,交BD 于点O ,连接CM ,则CM 与BD 交于点P ,此时PA+PM 的值最小,由在菱形ABCD 中,AB=6,∠ABC=60°,易得△ACD 是等边三角形,BD 垂直平分AC ,继而可得CM ⊥AD ,则可求得CM 的值,继而求得PA+PM 的最小值.【详解】解:连接AC ,交BD 于点O ,连接CM ,则CM 与BD 交于点P ,此时PA+PM 的值最小,∵在菱形ABCD 中,AB=6,∠ABC=60°,∴∠ADC=∠ABC=60°,AD=CD=6,BD 垂直平分AC ,∴△ACD 是等边三角形,PA=PC ,∵M 为AD 中点,∴DM=AD=3,CM ⊥AD ,∴CM==3, ∴PA+PM=PC+PM=CM=3. 故选:C .【点睛】此题考查了最短路径问题、等边三角形的判定与性质、勾股定理以及菱形的性质.注意准确找到点P 的位置是解此题的关键. 3.D解析:D【解析】【详解】试题分析:A 、根据勾股定理的逆定理,可知222+=a b c ,故能判定是直角三角形; B 、设a=3x ,b=4x ,c=5x ,可知222+=a b c ,故能判定是直角三角形;C 、根据三角形的内角和为180°,因此可知∠C=90°,故能判定是直角三角形;D 、而由3+4≠5,可知不能判定三角形是直角三角形.故选D考点:直角三角形的判定4.C解析:C【解析】【分析】先根据直角三角形的性质求出AC 的长,再根据勾股定理即可得出结论.【详解】解:∵ABC V 中,CD AB ⊥于D ,∴∠ADC =90°,则ADC V 为直角三角形,∵E 是AC 的中点,DE =5,∴AC =2DE =10,在Rt ADC V 中,AD =6,AC =10, ∴22221068CD AC AD =-=-=, 故选:C .【点睛】本题考查的是直角三角形斜边上的中线,熟知在直角三角形中,斜边上的中线等于斜边的一半是解答此题的关键. 5.A解析:A【解析】【分析】作CD ⊥x 轴于D ,作AE ⊥x 轴于E ,由AAS 证明△AOE ≌△OCD ,得出AE=OD ,OE=CD ,由点A 的坐标是(-3,1),得出OE=3,AE=1,∴OD=1,CD=3,得出C (1,3)即可.【详解】解:如图所示:作CD ⊥x 轴于D ,作AE ⊥x 轴于E ,则∠AEO=∠ODC =90°,∴∠OAE+∠AOE=90°,∵四边形OABC 是正方形,∴OA=CO ,∠AOC=90°,∴∠AOE+∠COD=90°,∴∠OAE=∠COD ,在△AOE 和△OCD 中,AEO ODC OAE COD OA CO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOE ≌△OCD (AAS ),∴AE=OD ,OE=CD ,∵点A 的坐标是(-3,1),∴OE=3,AE=1,∴OD=1,CD=3,∴C (1,3),故选:A .【点睛】本题考查了正方形的性质、全等三角形的判定与性质、坐标与图形性质;熟练掌握正方形的性质,证明三角形全等是解题的关键.6.C解析:C【解析】【详解】如图,作MG ⊥BC 于G ,MH ⊥CD 于H ,则BG=GC ,AB ∥MG ∥CD ,∴AM=MN ,∵MH ⊥CD ,∠D=90°,∴MH ∥AD ,∴NH=HD ,由旋转变换的性质可知,△MBC 是等边三角形,∴MC=BC=a ,∠MCD=30°,∴MH=12MC=12a ,3, ∴DH=a 3,∴CN=CH ﹣NH=2a ﹣(a ﹣2a )=﹣1)a ,∴△MNC 的面积=12×2a ×﹣1)a 2. 故选C. 7.D解析:D【解析】【分析】根据三角形内角和定理判断A 、D 即可;根据勾股定理的逆定理判断B 、C 即可.【详解】A 、∵∠B=∠A-∠C ,∴∠B+∠C=∠A ,∵∠A+∠B+∠C=180°,∴2∠A=180°,∴∠A=90°,即△ABC 是直角三角形,故本选项错误;B 、∵52+122=132,∴△ABC 是直角三角形,故本选项错误;C 、∵b 2-a 2=c 2,∴b 2=a 2+c 2,∴△ABC 是直角三角形,故本选项错误;D 、∵∠A :∠B :∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=45°,∠B=60°,∠C=75°,∴△ABC 不是直角三角形,故本选项正确;故选D .【点睛】本题考查了三角形内角和定理,勾股定理的逆定理的应用,主要考查学生的计算能力和辨析能力.8.D解析:D【解析】根据题意得:1010x x +≥⎧⎨-≠⎩, 解得:x≥-1且x≠1.故选D .9.C解析:C【解析】【详解】解:∵函数y=2x 和y=ax+4的图象相交于点A (m ,3),∴3=2m ,解得m=32. ∴点A 的坐标是(32,3). ∵当3x 2<时,y=2x 的图象在y=ax+4的图象的下方, ∴不等式2x <ax+4的解集为3x 2<. 故选C .10.D解析:D【解析】∵x < 0x x =-,∴x x=()22x x x x x x x x ---===. 故选D.11.B解析:B【解析】【分析】作AR ⊥BC 于R ,AS ⊥CD 于S ,根据题意先证出四边形ABCD 是平行四边形,再由AR =AS 推出BC =CD 得平行四边形ABCD 是菱形,再根据根据勾股定理求出AB 即可.【详解】作AR ⊥BC 于R ,AS ⊥CD 于S ,连接AC 、BD 交于点O .由题意知:AD ∥BC ,AB ∥CD ,∴四边形ABCD 是平行四边形,∵两个矩形等宽,∴AR =AS ,∵AR •BC =AS •CD ,∴BC =CD ,∴平行四边形ABCD 是菱形,∴AC ⊥BD ,在Rt △AOB 中,∵OA =12 AC =6cm ,OB =12BD =8cm ,∴AB =10(cm ),【点睛】本题主要考查菱形的判定和性质,证得四边形ABCD 是菱形是解题的关键.12.C解析:C【解析】【分析】根据二次根式的性质、二次根式的加法法则、除法法则计算,判断即可.【详解】822182933==,A 选项成立,不符合题意; 28222333+==B 选项成立,不符合题意; 818223252++==,C 选项不成立,符合题意; 323232(32)(32)==++-D 选项成立,不符合题意; 故选C .【点睛】本题考查的是二次根式的混合运算,掌握二次根式的性质、二次根式的混合运算法则是解题的关键.二、填空题13.y=x-2【解析】【分析】一次函数关系式y=kx+b 将AB 两点坐标代入解一元一次方程组可求kb 的值确定一次函数关系式【详解】设一次函数关系式y=kx+b 将A (32)B (0-2)代入得解得一次函数解析解析:y=43x-2. 【解析】【分析】一次函数关系式y=kx+b ,将A 、B 两点坐标代入,解一元一次方程组,可求k 、b 的值,确定一次函数关系式.【详解】设一次函数关系式y=kx+b ,将A (3,2)、B (0,-2)代入,得322k b b +⎧⎨-⎩==,解得432k b ⎧⎪⎨⎪-⎩==, 一次函数解析式为y=43x-2. 故答案为:y=43x-2. 【点睛】此题考查利用待定系数法求一次函数解析式,解题关键在于利用待定系数法进行求解. 14.2【解析】试题分析:几个非负数之和为零则每个非负数都为零根据非负数的性质可得:m -3=0且n+1=0解得:m=3n=-1则m+n=3+(-1)=2考点:非负数的性质解析:2【解析】试题分析:几个非负数之和为零,则每个非负数都为零.根据非负数的性质可得:m -3=0且n+1=0,解得:m=3,n=-1,则m+n=3+(-1)=2.考点:非负数的性质15.【解析】【分析】根据勾股定理求出BC 根据正方形的面积公式计算即可【详解】解:由勾股定理得正方形的面积故答案为:【点睛】本题考查了勾股定理如果直角三角形的两条直角边长分别是ab 斜边长为c 那么a2+b2 解析:3.【解析】【分析】根据勾股定理求出BC ,根据正方形的面积公式计算即可.【详解】解:由勾股定理得,BC == ∴正方形ABCD 的面积23BC ==,故答案为:3.【点睛】本题考查了勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2. 16.【解析】【分析】连接CGAG 根据勾股定理的逆定理可得∠CAG=90°从而知△CAG 是等腰直角三角形根据平行线的性质和三角形全等可知∠BAC -∠DAE=∠ACG 即可得解【详解】解:如图连接CGAG 由勾解析:45【解析】【分析】连接CG、AG,根据勾股定理的逆定理可得∠CAG=90°,从而知△CAG是等腰直角三角形,根据平行线的性质和三角形全等,可知,∠BAC-∠DAE=∠ACG,即可得解.【详解】解:如图,连接CG、AG,由勾股定理得:AC2=AG2=12+22=5,CG2=12+32=10,∴AC2+AG2=CG2,∴∠CAG=90°,∴△CAG是等腰直角三角形,∴∠ACG=45°,∵CF∥AB,∴∠ACF=∠BAC,在△CFG和△ADE中,∵CF=AD, ∠CFG=∠ADE=90°, FG=DE,∴△CFG≌△ADE(SAS),∴∠FCG=∠DAE,∴∠BAC-∠DAE=∠ACF-∠FCG=∠ACG=45°,故答案为:45.【点睛】本题考查了勾股定理的逆定理,勾股定理,三角形的全等的性质, 等腰直角三角形的判定和性质,正确的作出辅助线是解题的关键.17.y=3x﹣2【解析】【分析】根据函数图象平移的性质得出k的值设出相应的函数解析式再把经过的点代入即可得出答案【详解】解:新直线是由一次函数y=3x+1的图象平移得到的∴新直线的k=3可设新直线的解析解析:y=3x﹣2【解析】【分析】根据函数图象平移的性质得出k的值,设出相应的函数解析式,再把经过的点代入即可得出答案.【详解】解:新直线是由一次函数y=3x+1的图象平移得到的,∴新直线的k=3,可设新直线的解析式为:y=3x+b.∵经过点(1,1),则1×3+b =1, 解得b =﹣2,∴平移后图象函数的解析式为y =3x ﹣2;故答案为y =3x ﹣2.【点睛】此题考查了一次函数图形与几何变换,求直线平移后的解析式时要注意平移时k 和b 的值的变化.18.【解析】【分析】根据菱形的性质菱形的面积=对角线乘积的一半【详解】解:菱形的面积是:故答案为96【点睛】本题考核知识点:菱形面积解题关键点:记住根据对角线求菱形面积的公式解析:【解析】【分析】根据菱形的性质,菱形的面积=对角线乘积的一半.【详解】 解:菱形的面积是:11216962⨯⨯=. 故答案为96.【点睛】本题考核知识点:菱形面积. 解题关键点:记住根据对角线求菱形面积的公式. 19.8【解析】【分析】设A′C=xcm 先根据已知利用AAS 证明△A′BC≌△DCE 得出A′C=DE=xcm 则BC=AD=(9+x )cmA′B=AB=15cm 然后在Rt△A′BC 中由勾股定理可得BC2=A解析:8【解析】【分析】设A ′C=xcm ,先根据已知利用AAS 证明△A ′BC ≌△DCE ,得出A ′C=DE= xcm ,则BC=AD=(9+x )cm ,A ′B=AB=15cm ,然后在Rt △A ′BC 中,由勾股定理可得BC 2=A ′B 2+A ′C 2,即可得方程,解方程即可求得答案【详解】解:∵四边形ABCD 是矩形,∴AB=CD=15cm ,∠A=∠D=90°,AD ∥BC ,AD=BC ,∴∠DEC=∠A ′CB ,由折叠的性质,得:A ′B=AB=15cm ,∠BA ′E=∠A=90°,∴A ′B=CD ,∠BA ′C=∠D=90°,在△A ′BC 和△DCE 中,BA C D A CB DEC A B CD ∠=∠⎧⎪∠=∠=''⎨'⎪⎩∴△A′BC≌△DCE(AAS),∴A′C=DE,设A′C=xcm,则BC=AD=DE+AE=x+9(cm),在Rt△A′BC中,BC2=A′B2+A′C2,即(x+9)2=x2+152,解得:x=8,∴A′C=8cm.故答案为:8.【点睛】此题考查了矩形的性质、全等三角形的判定与性质、勾股定理以及折叠的性质.此题难度适中,注意掌握数形结合思想与方程思想的应用,注意掌握折叠前后图形的对应关系.20.【解析】【分析】将化简后代入ab即可【详解】解:∵∴故答案为:【点睛】本题考查了二次根式的乘除法法则的应用解题的关键是将化简变形本题属于中等题型解析:3 10 ab【解析】【分析】化简后,代入a,b即可.【详解】====a=b=,301=ab故答案为:310ab.【点睛】化简变形,本题属于中等题型.三、解答题21.三角形的周长为7或8【解析】【分析】根据二次根式的非负性,可求得a=2、b=3,根据等腰三角形的性质,可得三边长为2、2、3或2、3、3,从而求得三角形周长.【详解】∵33652b a a =+-+-∴3a -6≥0,2-a ≥0∴a =2∴b=3∵a ,b 分别为等腰三角形的两条边长∴等腰三角形的另一条边为2或3∴等腰三角形的周长为:2+2+3=7或2+3+3=8【点睛】本题考查二次根式的非负性和等腰三角形的多解问题,解题关键是利用二次根式的非负性,得出a =2.22.2PA =或78 【解析】【分析】先利用勾股定理计算出AC=4,根据准外心分类讨论:当PA=PC 时,易得PA=12AC=2;当PB=PC 时,设PA=x ,则PC=PB=4-x ,利用勾股定理得x 2+32=(4-x )2,解得x=78;当PA=PB 时,此情况不成立,然后解方程求出x 即可.【详解】如图:3,5,BC AB ==Q224AC AB BC ∴=-,若,PB PC =设PA x =,则()22243,x x -=+ 78x ∴=,即78PA =, 若,PA PC =则2,PA =若,PA PB =此情况不成立;综上,2PA =或78【点睛】本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.也考查了阅读理解能力.23.(1)见解析;(2)见解析【解析】【分析】(1)根据面积为10的正方形的边长为10,可得三个并列的小正方形的对角线的长为10; (2)根据面积为8的正方形的边长为8,可得三个并列的小正方形的对角线的长为8.【详解】(1)如图所示即为所求.(2)如图所示即为所求.【点睛】 本题主要考查了图形的设计,正确理解小正方形的面积的和等于拼成的正方形的面积是解题的关键.24230 【解析】【分析】已知两直角边,利用勾股定理求出斜边长,再利用面积法即可求出斜边上的高.【详解】解:Rt ABC ∆中,由勾股定理得221282025AB AC BC =+=+=1122ABC S AC AB AB CD ∆==Q g g 238230525AC BC CD AB ∴===g【点睛】此题考查勾股定理,关键是利用勾股定理求出斜边长.25.2 4 3【解析】【分析】根据二次根式的混合运算法则计算即可.【详解】原式=+2-1=13313-+-=243.【点睛】本题考查了二次根式的混合运算,掌握各运算法则和平方差公式是关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)小亮和妈妈坐公交车的速度为 ;爸爸自驾的速度为
(2)小亮从家到度假村期间,他离家的距离 与离家的时间 的关系式为;小亮从家到度假村的路途中,当他与他爸爸相遇时,离家的距离是
(3)当小亮和妈妈与他爸爸第 次相遇后,一直到全家会和为止, 为多少时小亮和妈妈与爸爸相距 ?
【参考答案】***试卷处理标记,请不要删除
∴△ABC、△ADC、△ABD是直角三角形,共3个直角三角形,
故选C.
【点睛】
本题考查了勾股定理的逆定理,解题的关键是掌握勾股定理.
7.C
解析:C
【解析】
【分析】
根据对角线互相平分的四边形是平行四边形;对角线互相平分且垂直的四边形是菱形;对角线互相垂直且相等的平行四边形是正方形;对角线互相平分且相等的四边形是矩形进行分析即可.
11.D
解析:D
【解析】
【分析】
根据正方形的性质及全等三角形的性质求出∠ABE=15°,∠BAC=45°,再求∠BFC,即可得出∠CFE.
【详解】
∵四边形ABCD是正方形,
∴AB=AD,
又∵△ADE是等边三角形,
∴AE=AD=DE,∠DAE=60°,
∴AB=AE,
∴∠ABE=∠AEB,∠BAE=90°+60°=150°,
故答案为:D
【点睛】
本题考查了特殊平行四边形的判定方法,熟练掌握特殊平行四边形与平行四边形之间的关系是判定的关键.
4.D
解析:D
【解析】
【分析】
寻找小于26的最大平方数和大于26的最小平方数即可.
【详解】
解:小于26的最大平方数为25,大于26的最小平方数为36,故 ,即:
,故选择D.
【点睛】
本题考查了二次根式的相关定义.
∴∠DAO=90°,
∴∠OAB+∠BAD=∠BAD+∠DAC=90°,
∴∠OAB=∠DAC,
在△OAB和△DAC中,
∠AOB=∠ADC,∠OAB=∠DAC,AB=AC
∴△OAB≌△DAC(AAS),
∴OB=CD,
∴CD=x,
∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,
∴y=x+1(x>0).
故选A.
【点睛】
本题考查动点问题的函数图象,明确题意、建立相应的函数关系式是解答本题的关键.
2.D
解析:D
【解析】
【分析】
由矩形的性质可知CD=AB= 3,BC=AD= 4,结合A点坐标即可求得C点坐标.
【详解】
∵四边形ABCD是长方形,
∴CD=AB= 3,BC=AD= 4,
∵点A(﹣ ,﹣1),
∴点C的坐标为(﹣ +3,﹣1+4),
15.△ABC中,AB=13cm,BC=10cm,BC边上的中线AD=12cm.则AC=______cm.
16.化简 _____________;
17.如图,连接四边形ABCD各边中点,得到四边形EFGH,对角线AC,BD满足________,才能使四边形EFGH是矩形.
18.矩形两条对角线的夹角为60°,矩形的较短的一边为5,则矩形的对角线的长是_____.
A.10尺B.11尺C.12尺D.13尺
6.如图,在5×5的正方形网格中,从在格点上的点A,B,C,D中任取三点,所构成的三角形恰好是直角三角形的个数为( )
A.1B.2C.3D.4
7.下列说法正确的有几个( )①对角线互相平分的四边形是平行四边形;②对角线互相垂直的四边形是菱形;③对角线互相垂直且相等的平行四边形是正方形;④对角线相等的平行四边形是矩形.
A.(﹣3, )B.( ,﹣3)C.(3, )D.( ,3)
3.已知四边形 是平行四边形,下列结论中不正确的是()
A.当 时,它是菱形B.当 时,它是菱形
C.当 时,它是矩形D.当 时,它是正方形
4.估计 的值在( )
A.2和3之间B.3和4之间C.4和5之间D.5和6之间
5.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()
【详解】
作AR⊥BC于R,AS⊥CD于S,连接AC、BD交于点O.
由题意知:AD∥BC,AB∥CD,
∴四边形ABCD是平行四边形,
∵两个矩形等宽,
∴AR=AS,
∵AR•BC=AS•CD,
∴BC=CD,
∴平行四边形ABCD是菱形,
∴AC⊥BD,
在Rt△AOB中,∵OA= AC=6cm,OB= BD=8cm,
A. B.10cmC.20cmD.12cm
二、填空题
13.某校在“爱护地球,绿化祖国“的创建活动中,组织了100名学生开展植数造林活动,其植树情况整理如下表:
植树棵数(单位:棵)
4
5
6
8
10
人数(人)
30
22
25
15
8
则这100名学生所植树棵数的中位数为_____.
14.如图,已知点E在正方形ABCD的边AB上,以BE为边向正方形ABCD外部作正方形BEFG,连接DF,M、N分别是DC、DF的中点,连接MN.若AB=7,BE=5,则MN=_______.
19.如图,矩形ABCD中, ,点E在AD上,且 ,连接EC,将矩形ABCD沿直线BE翻折,点A恰好落在EC上的点A'处,则 ____________cm.
20.如图,已知▱ABCO的顶点A、C分别在直线x=2和x=7上,O是坐标原点,则对角线OB长的最小值为_____.
三、解答题
21.我国汉代数学家赵爽为了证明勾股定理,创造了一幅“弦图”后人称其为“赵爽弦图”(如图1).图2是弦图变化得到,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=10,求S2的值.以下是求S2的值的解题过程,请你根据图形补充完整.
A.1个B.2个C.3个D.4个
8.函数y= 中,自变量x的取值范围是( )
A.x>-1B.x>-1且x≠1C.x≥一1D.x≥-1且x≠1
9.已知点(﹣2,y1),(﹣1,y2),(1,y3)都在直线y=﹣x+b上,则y1,y2,y3的值的大小关系是( )
A.y1>y2>y3B.y1<y2<y3C.y3>y1>y2D.y3>y1>y2
10.如图,矩形纸片 , ,点 在 上,且 .若将纸片沿 折叠,点 恰好落在 上,则矩形 的面积是()
A.12B. C. D.15
11.如图,在正方形ABCD外侧,作等边三角形ADE,AC、BE相交于点F,则∠CFE为()
A.150°B.145°C.135°D.120°
12.如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD,若测得A,C之间的距离为12cm,点B,D之间的距离为16m,则线段AB的长为
【压轴题】初二数学下期中试卷带答案
一、选择题
1.如右图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,如果点B的横坐标为x,点C的纵坐标为y,那么表示y与x的函数关系的图像大致是()
A. B.
C. D.
2.如图,四边形ABCD是长方形,AB=3,AD=4.已知A(﹣ ,﹣1),则点C的坐标是( )
∴AB= =10(cm),
故选:B.
【点睛】
本题主要考查菱形的判定和性质,证得四边形ABCD是菱形是解题的关键.
二、填空题
13.5【解析】【分析】直接利用中位数定义求解【详解】第50个数和第55个数都是5所以这100名学生所植树棵数的中位数为5(棵)故答案为5【点睛】考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排
8.D
解析:D
【解析】
根据题意得: ,
解得:x≥-1且x≠1.
故选D.
9.A
解析:A
【解析】
【分析】
先根据直线y=﹣x+b判断出函数图象,y随x的增加而减少,再根据各点横坐标的大小进行判断即可.
【详解】
解:∵直线y=﹣x+b,k=﹣1<0,
∴y随x的增大而减小,
又∵﹣2<﹣1<1,
∴y1>y2>y3.
一、选择题
1.A
解析:A
【解析】
【分析】
先做出合适的辅助线,再证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而确定函数图像.
【详解】
解:由题意可得:OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,
作AD∥x轴,作CD⊥AD于点D,如图所示:
∴∠DAO+∠AOD=180°,
即点C的坐标为( ,3),
故选D.
【点睛】
本题考查了矩形的性质和坐标的平移,根据平移的性质解决问题是解答此题的关键.
3.D
解析:D
【解析】
【分析】
根据特殊平行四边形的判定方法判断即可.
【详解】
解:有一组邻边相等的平行四边形是菱形,A选项正确;对角线互相垂直的平行四边形是菱形,B选项正确;有一个角是直角的平行四边形是矩形,C选项正确;对角线互相垂直且相等的平行四边形是正方形,D选项错误.
解:设每个直角三角形的面积为S
S1﹣S2=(用含S的代数式表示)①
S2﹣S3=(用含S的代数式表示)②
由①,②得,S1+S3=因为S1+S2+S3=10,
所以2S2+S2=10.
所以S2= .
22.如图,△ABC中,D、E、F分别在边BC、AB、AC上,且DE∥AC,DE=AF,延长FD到G,使DG=DF,求证:AG和DE互相平分.
23.邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;……依次类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形,如图1,平行四边形 中,若 ,则平行四边形 为1阶准菱形.
相关文档
最新文档